JP2004028501A - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator Download PDF

Info

Publication number
JP2004028501A
JP2004028501A JP2002188177A JP2002188177A JP2004028501A JP 2004028501 A JP2004028501 A JP 2004028501A JP 2002188177 A JP2002188177 A JP 2002188177A JP 2002188177 A JP2002188177 A JP 2002188177A JP 2004028501 A JP2004028501 A JP 2004028501A
Authority
JP
Japan
Prior art keywords
tube
pulse tube
heat
vacuum vessel
inertance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002188177A
Other languages
Japanese (ja)
Inventor
Ryuji Kikuchi
菊池  竜治
Yukio Yasukawa
保川  幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002188177A priority Critical patent/JP2004028501A/en
Publication of JP2004028501A publication Critical patent/JP2004028501A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1423Pulse tubes with basic schematic including an inertance tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently radiate heat drawn from a cold head to the outside of a system to operate a refrigerator without a hitch without attaching a heat transfer bar inside a vacuum vessel. <P>SOLUTION: This pulse tube refrigerator comprises a compressor 1, a cold storage unit 2, a pulse tube 3, a phase control part wherein an inertance tube 4a and a buffer tank 4b are combined, the cold head 6, and a high-temperature side heat exchanger 7. The cold storage unit and the pulse tube are displaced inside the vacuum vessel 8, and the inertance tube connected to the high-temperature side of the pulse tube is pulled out of the vacuum vessel and is connected to the buffer tank. As the inertance tube 4a, a metal tube of a high heat conductive material such as copper or a copper alloy, aluminum or an aluminum alloy, or titanium is adopted. With the inertance tube as a heat conductor, the heat drawn from the cold head by low-temperature PV work is radiated into the air outside the vacuum vessel through the inertance tube from the high-temperature side heat exchanger. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、クライオスタットに適用して極低温環境を作りだすパルスチューブ冷凍機に関する。
【0002】
【従来の技術】
まず、図3に本発明の対象となるパルスチューブ冷凍機の構成原理図を、図4にクライオスタットに適用した冷凍機の構成を示す。各図において、1は圧縮機、2は蓄冷器、3はパルス管、4はイナータンスチューブと呼ばれる位相制御用の細管4a(以下、「イナータンスチューブ」と呼称する)とバッファータンク4bを組合せた位相制御部、5は圧縮機1から引出したガス導管1aに接続して蓄冷器2の高温端側に設けた放熱器、6は蓄冷器2の低温端とパルス管3との間に介装したコールドヘッドとして機能する吸熱用の低温側熱交換器(以下「コールドヘッド」と呼称する)、7はパルス管3の高温端に設けてイナータンスチューブ4aを接続した放熱用の高温側熱交換器であり、冷凍機の系内にはヘリウムガス,窒素ガス,アルゴンガスなどの作動ガスが封入されている。
【0003】
また、8はクライオスタットの真空容器であり、該真空容器8には前記パルスチューブ冷凍機の蓄冷器2,低温側熱交換器6,パルス管3,高温側熱交換器7、および被冷却物(コールドヘッド6に伝熱的に取付ける)を収容して周囲から熱的に隔離した上で、高温側熱交換器7に接続したイナータンスチューブ(ステンレス製チューブ)4aを真空容器8から外部に引出してバッファータンク4bに接続し、さらに高温側熱交換器7と真空容器8のフランジ(ヒートシンクとして機能する金属ベース)8aとの間にまたがって銅材で作られた伝熱バー9を付設している。
【0004】
なお、前記の真空容器8は小形の容器で、例えば通信フィルタの冷却装置として適用する冷凍機では、真空容器8の外形サイズは130φ×250mm程度である。また、真空容器8から外部に引出したイナータンスチューブ4aは、例えばコイル状に巻いて省スペース化を図るようにしている。
かかる構成になるパルスチューブ冷凍機の動作原理はよく知られている通りであり、冷凍機の運転時に圧縮機1のピストン1aを往復動操作することにより、圧縮機1内で作動ガスが圧縮,膨張を繰り返すとともに、作動ガスは圧縮機1から蓄冷器2,コールドヘッド6,パルス管3,高温側端熱交換器7を通り、位相制御部4のバッファータンクとの間でほぼ正弦波的に圧力振幅を伴って流れる。これにより、作動ガスの圧力変化と流量変化の間に位相差が発生する。これを電気回路に例えると、イナータンスチューブ4aが電気回路のインダクタンス,抵抗,インピーダンス成分、バッファータンク4bはインピーダンス成分に相当する。したがって、イナータンスチューブ4aの管径,長さおよびバッファータンク4bの容積を変えることで、作動ガスの圧力に対する流量の位相差を−90°〜+90°まで変化させることができ、これによりパルス管3内で作動ガスの圧力と流量の間に位相差が生じ、この圧力と流量のなす仕事が低温部でのPV仕事となってコールドヘッド6に寒冷(70K程度の極低温)を発生して被冷却部を冷却する。なお、この発生寒冷を低温PV仕事と呼ぶ。また、低温PV仕事によりコールドヘッド6で被冷却部から汲み上げた熱は、作動ガスのガス振動によりパルス管3を通じて高温側熱交換器7に熱移送され、ここから伝熱バー9を伝熱して真空容器8のフランジ8aから系外に放熱される。
【0005】
【発明が解決しようとする課題】
ところで、前記した従来のパルスチューブ冷凍機には次記のような問題点がある。
すなわち、従来構成では前記の低温PV仕事によりコールドヘッド6から汲み上げ、パルス管3を通じて高温側熱交換器7に熱移送された熱を、伝熱バー9を介して系外へ放熱するために、高温側熱交換器7と真空容器8のフランジ8aとの間に跨がって真空容器8の中に伝熱バー9を付設しているが、この伝熱バー9で高い伝熱性を確保させるためにバーの断面積が比較的大きくなる。
【0006】
しかも、限られた空間の真空容器8の中でコールドヘッド6に取り付ける被冷却体(図示せず)と伝熱バー9とが干渉(接触)し易く、またこの不要な干渉を避けるには伝熱バー9をコールドヘッド6との間に十分な離間させて被冷却体の設置スペースを確保する必要があることから、結果として真空容器8が大形化する。さらに、冷凍機の運転時にはコールドヘッド6と高温側熱交換器7との間には大きな温度勾配が生じることから、この温度勾配に対応する熱的応力を吸収するためには伝熱バー9に可撓性をもたせる必要があるなど、真空容器8の内部に伝熱バー9を付設した従来構成のパルスチューブ冷凍機では、その組立構造面で様々な制約を受けることになる。
【0007】
本発明は上記の点に鑑みなされたものであり、その目的は前記課題を解決し、真空容器内に伝熱バーを付設することなしに、コールドヘッドから汲み上げた熱を効率よく系外に放熱して支障無く運転できるようにしたパルスチューブ冷凍機を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、作動ガスに往復動流を与える圧縮機と、圧縮機に放熱器を介して接続した蓄冷器と、蓄冷器の低温端にコールドヘッドとして機能する吸熱用の低温側熱交換器を介して接続したパルス管と、イナータンスチューブ(位相制御用の細管)とバッファタンクを組合せてパルス管の高温端に高温側熱交換器を介して接続した位相制御部とから構成され、かつ前記蓄冷器およびパルス管を真空容器内に配置した上で、パルス管の高温端に接続したイナータンスチューブを真空容器から外部に引き出してバッファタンクに接続したパルスチューブ冷凍機において、
前記のイナータンスチューブを、銅ないし銅合金,アルミニウムないしアルミニウム合金,チタンのいずれかの良伝熱性金属材料で作られたチューブを採用して構成するものとする(請求項1)。
【0009】
上記の構成によれ、パルス管の高温端に接続して真空容器から外部に引出したイナータンスチューブ自身が図4で述べた伝熱バーの役目を果す。すなわち、冷凍機の低温PV仕事によりコールドヘッド(低温側熱交換器)で吸熱し、ここから作動ガスのガス振動によりパルス管の高温側熱交換器に熱移送された熱は、作動ガスと接する伝熱性の高いイナータンスチューブに伝熱し、真空容器外に引出した配管領域から系外に放熱する。これにより、従来構造で真空容器内に付設していた伝熱バーを排除しても、従来と殆ど同等な冷凍能力を発揮してパルスチューブ冷凍機を支障無く運転できる。なお、この点については後述のように発明者等が行った実機テストからも確認されている。
【0010】
また、本発明によれば、前記構成を基本とした実施態様として、真空容器から外部に引出したイナータンスチューブの配管領域に放熱フインを取付け(請求項2)、かつこの放熱フインを銅ないし銅合金,アルミニウムないしアルミニウム合金,チタンのいずれかの良伝熱性金属材料で構成する(請求項3)ことで、イナータンスチューブからの放熱性をさらに高めることかできる。
【0011】
【発明の実施の形態】
以下、この発明の実施の形態を図1、図2に示す実施例に基づいて説明する。なお、各実施例の図中で図4に対応する部材には同じ符号を付してその説明は省略する。
〔実施例1〕
図1は、本発明の請求項1に対応する実施例を示すものである。すなわち、図示実施例のパルスチューブ冷凍機の構成は基本的に図4に示した従来のものと同じであるが、従来の構成で真空容器8の内部に付設していた伝熱バー9(図4参照)を排除し、その代わりに高温側熱交換器7に接続して真空容器8から外部に引出し配管したイナータンスチューブ4aに銅製チューブを採用し、このイナータンスチューブを伝熱体として高温側熱交換器7に生じた熱(低温PV仕事に対応する熱)系外に放熱するように構成している。ここで、銅の熱伝導率は0.94cal/cm/sec/ ℃、ステンレス鋼(SUS304)の熱伝導率は0.039cal/cm/sec/ ℃であり、イナータンスチューブ4aとして従来のステンレス鋼製チューブに代えて銅製チューブを採用することにより、従来構成の伝熱バー9と同等な伝熱性を確保できる。なお、イナータンスチューブ4aの材質としては、細管の加工性,伝熱性,実用性を勘案して、銅合金,アルミニウムないしアルミニウム合金,チタンなどの良伝熱性金属材料を採用して実施することもできる。
【0012】
ここで、コールドヘッド6に発生する寒冷温度が70K,冷凍出力が数W程度の小型のパルスチューブ冷凍機を供試例として、発明者等はイナータンスチューブ4aに内径4mmφ,外径6mmφ,長さ3mの銅製チューブを採用して組立てたパルスチューブ冷凍機と、イナータンスチューブ4aをステンレスチューブとして真空容器8内に伝熱バー9を付設した従来構造(図4参照)のパルスチューブ冷凍機とを用意し、双方の冷却性能を比較するために実機テストを行った。表1はその試験結果を示す。
【0013】
【表1】

Figure 2004028501
上記の表1から判るように、本発明の実施例と従来例に基づくパルスチューブ冷凍機は、同じ冷凍出力で消費電力の差は0.1W以下であり、冷凍機の性能としては殆ど差異が見られなかった。なお、高温側熱交換器7の温度については、本発明の実施例が6.4K高くなっているが、最終的にはこの熱はイナータンスチューブ4aの内壁面とここを流れる作動ガスとで熱交換した上でイナータンスチューブ4aを伝熱し、真空容器8から引出した配管領域4a−1で周囲空気による自然空冷,もしくは強制空冷されて系外に放熱される。これにより、冷凍出力としては従来例と殆ど変わらない結果が得られている。この試験結果から、従来構造で真空容器内に付設した伝熱バー9を排除しても、コールドヘッド7で汲み上げた低温PV仕事に対応する熱を良伝熱性の材料で作られたイナータンスチューブ4aを介して系外に放熱することで冷凍能力を低下させることなく運転できることが判明し、本発明が極めて有効であることが実証された。
【0014】
〔実施例2〕
図2は本発明の請求項2,3に対応する実施例を示すものである。この実施例においては、真空容器7から外部に引出したイナータンスチューブ4aの配管領域4a−1に銅ないし銅合金,アルミニウムないしアルミニウム合金,チタンなどの良伝熱性材料で作られた放熱フィン4cを取付けてイナータンスチューブ4aの放熱面積の拡大化を図っている。
【0015】
すなわち、真空容器8の内部に配置した高温側熱交換器7の発生熱をイナータンスチューブ4aを介して効率よく外部へ放熱させるためには、イナータンスチューブ4a放熱面積が大きいほど効果がある。かかる点、先記実施例1のようにイナータンスチューブ4aをそのまま真空容器1から外部に引出し配管した構成のままでは、イナータンスチューブ4aの管内部では作動ガスが流速20〜50m/sec 程度の振動流となつて流れているので、作動ガスと管内壁との間の境界面における熱伝導率は大きくて熱伝達が効率的に行われるが、管の外表面と大気との間の境界面では強制空冷等を行っても熱伝達率が大きく取れない。そこで、図示実施例のようにイナータンスチューブ4aの外部配管領域4a−1に放熱フイン4cを取付けて放熱表面積を大きくすることにより、イナータンスチューブ4aと大気との間の熱交換性が高まり、コールドヘッド7で汲み上げた低温PV仕事をより効率的に熱に変換して系外に放熱することが可能となる。
【0016】
【発明の効果】
以上述べたように、本発明によれば、作動ガスに往復動流を与える圧縮機と、圧縮機に放熱器を介して接続した蓄冷器と、蓄冷器の低温端にコールドヘッドとして機能する吸熱用の低温側熱交換器を介して接続したパルス管と、イナータンスチューブとバッファタンクを組合せてパルス管の高温端に高温側熱交換器を介して接続した位相制御部とから構成され、かつ前記蓄冷器およびパルス管を真空容器内に配置した上で、パルス管の高温端に接続したイナータンスチューブを真空容器から外部に引き出してバッファタンクに接続したパルスチューブ冷凍機において、前記のイナータンスチューブを、銅ないし銅合金,アルミニウムないしアルミニウム合金,チタンのいずれかの良伝熱性材料で構成したことにより、
真空容器の内部に配置した高温側熱交換器で低温PV仕事から変換された熱を、従来構成のように真空容器内に伝熱バーを付設することなく、冷凍機の作動ガスを伝熱媒体として良伝熱性材で作られたイナータンスチューブに伝熱させた上で、真空容器外に引き出したをイナータンスチューブの配管領域から大気中へ放熱させることができる。これにより冷凍能力を確保しつつ、真空容器の小型化,被冷却体を配置する有効空間の増大化が図れ、さらにはコスト低減を可能にしたパルスチューブ冷凍機を提供できる。
【0017】
また、真空容器から外部に引出したイナータンスチューブの配管領域に放熱フインを取り付けることにより、イナータンスチューブと大気の間の熱交換性をさらに高めて冷凍能力の向上化が図れる。
【図面の簡単な説明】
【図1】本発明の実施例1に対応するパルスチューブ冷凍機の構成図
【図2】本発明の実施例2に対応するパルスチューブ冷凍機の構成図
【図3】パルスチューブ冷凍機の原理構成図
【図4】従来におけるパルスチューブ冷凍機の構成図
【符号の説明】
1  圧縮機
2  蓄冷器
3  パルス管
4  位相制御部
4a イナータンスチューブ
4a−1 真空容器外の配管領域
4b バッファータンク
4c 放熱フィン
6  コールドヘッド(低温側熱交換器)
7  高温側熱交換器
8  真空容器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pulse tube refrigerator for creating a cryogenic environment by applying to a cryostat.
[0002]
[Prior art]
First, FIG. 3 shows a configuration principle diagram of a pulse tube refrigerator to which the present invention is applied, and FIG. 4 shows a configuration of a refrigerator applied to a cryostat. In each figure, 1 is a compressor, 2 is a regenerator, 3 is a pulse tube, 4 is a thin tube 4a for phase control called an inertance tube (hereinafter referred to as "inertance tube") and a buffer tank 4b. A phase control unit 5 is connected to a gas conduit 1 a drawn from the compressor 1 and provided at a high-temperature end of the regenerator 2. A radiator 6 is provided between the low-temperature end of the regenerator 2 and the pulse tube 3. A low-temperature heat exchanger for heat absorption (hereinafter referred to as a “cold head”) functioning as a cold head mounted thereon, and 7 is a high-temperature heat exchanger for heat radiation provided at the high-temperature end of the pulse tube 3 and connected to an inertance tube 4a. A working gas such as helium gas, nitrogen gas, and argon gas is sealed in the refrigerator.
[0003]
Reference numeral 8 denotes a cryostat vacuum vessel. The vacuum vessel 8 includes a regenerator 2, a low-temperature side heat exchanger 6, a pulse tube 3, a high-temperature side heat exchanger 7, and an object to be cooled (the pulse tube refrigerator). (Heat-conductively attached to the cold head 6) and thermally isolated from the surroundings, and an inertance tube (stainless steel tube) 4a connected to the high-temperature side heat exchanger 7 is drawn out of the vacuum vessel 8 to the outside. Connected to the buffer tank 4b, and further provided with a heat transfer bar 9 made of a copper material over the high-temperature side heat exchanger 7 and the flange (metal base functioning as a heat sink) 8a of the vacuum vessel 8. I have.
[0004]
The vacuum vessel 8 is a small vessel. For example, in a refrigerator used as a cooling device for a communication filter, the outer size of the vacuum vessel 8 is about 130 φ × 250 mm. The inertance tube 4a drawn out of the vacuum container 8 is wound, for example, in a coil shape to save space.
The operating principle of the pulse tube refrigerator having such a configuration is well known. When the piston 1a of the compressor 1 is reciprocated during the operation of the refrigerator, the working gas is compressed and compressed in the compressor 1. As the expansion is repeated, the working gas passes from the compressor 1 through the regenerator 2, the cold head 6, the pulse tube 3, the high-temperature end heat exchanger 7, and almost sinusoidally with the buffer tank of the phase control unit 4. It flows with pressure amplitude. As a result, a phase difference occurs between a change in the pressure of the working gas and a change in the flow rate. If this is compared to an electric circuit, the inertance tube 4a corresponds to the inductance, resistance and impedance components of the electric circuit, and the buffer tank 4b corresponds to the impedance component. Therefore, by changing the diameter and length of the inertance tube 4a and the volume of the buffer tank 4b, the phase difference of the flow rate with respect to the pressure of the working gas can be changed from -90 ° to + 90 °. A phase difference occurs between the pressure and the flow rate of the working gas in the working gas 3, and the work performed by the pressure and the flow rate becomes the PV work in the low-temperature part, and generates cold (very low temperature of about 70 K) in the cold head 6. The part to be cooled is cooled. Note that this generated cold is called low-temperature PV work. Further, the heat pumped from the cooled part by the cold head 6 by the low-temperature PV work is heat-transferred to the high-temperature side heat exchanger 7 through the pulse tube 3 by the gas vibration of the working gas, from which the heat transfer bar 9 is transferred. The heat is radiated from the flange 8a of the vacuum vessel 8 to the outside of the system.
[0005]
[Problems to be solved by the invention]
By the way, the above-mentioned conventional pulse tube refrigerator has the following problems.
That is, in the conventional configuration, in order to radiate heat from the cold head 6 by the low-temperature PV work and heat transferred to the high-temperature side heat exchanger 7 through the pulse tube 3 to the outside of the system through the heat transfer bar 9, A heat transfer bar 9 is provided in the vacuum vessel 8 so as to straddle between the high temperature side heat exchanger 7 and the flange 8a of the vacuum vessel 8, and the heat transfer bar 9 ensures high heat conductivity. Therefore, the cross-sectional area of the bar becomes relatively large.
[0006]
In addition, the cooling target (not shown) attached to the cold head 6 and the heat transfer bar 9 in the limited space of the vacuum vessel 8 easily interfere (contact) with each other. Since the heat bar 9 needs to be sufficiently separated from the cold head 6 to secure an installation space for the object to be cooled, the vacuum vessel 8 becomes large as a result. Furthermore, since a large temperature gradient is generated between the cold head 6 and the high-temperature side heat exchanger 7 during operation of the refrigerator, the heat transfer bar 9 is required to absorb the thermal stress corresponding to the temperature gradient. The pulse tube refrigerator of the conventional configuration in which the heat transfer bar 9 is provided inside the vacuum vessel 8 has various restrictions in terms of the assembly structure, such as the need to have flexibility.
[0007]
The present invention has been made in view of the above points, and an object of the present invention is to solve the above-mentioned problems, and to efficiently radiate heat pumped from a cold head to the outside without providing a heat transfer bar in a vacuum vessel. To provide a pulse tube refrigerator which can be operated without trouble.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a compressor for giving a reciprocating flow to a working gas, a regenerator connected to the compressor via a radiator, and a cold head at a low-temperature end of the regenerator A pulse tube connected via a low-temperature heat exchanger for heat absorption, an inertance tube (a thin tube for phase control) and a buffer tank are combined and connected to the high-temperature end of the pulse tube via a high-temperature heat exchanger. And a pulse controller connected to the buffer tank by pulling out an inertance tube connected to the high-temperature end of the pulse tube from the vacuum container to the outside, after the regenerator and the pulse tube are arranged in the vacuum container. In the tube refrigerator,
The inertance tube is constituted by adopting a tube made of any one of copper, copper alloy, aluminum, aluminum alloy and titanium, which is a good heat conductive metal material.
[0009]
According to the above configuration, the inertance tube itself connected to the high temperature end of the pulse tube and drawn out of the vacuum vessel serves as the heat transfer bar described in FIG. That is, heat is absorbed by the cold head (low-temperature side heat exchanger) by the low-temperature PV work of the refrigerator, and the heat transferred from this to the high-temperature side heat exchanger of the pulse tube by the gas vibration of the working gas comes into contact with the working gas. Heat is transferred to the inertance tube, which has high heat conductivity, and is radiated to the outside of the system from the piping area drawn out of the vacuum vessel. Thus, even if the heat transfer bar provided in the vacuum vessel in the conventional structure is eliminated, the pulse tube refrigerator can be operated without hindrance by exhibiting a refrigerating capacity almost equivalent to the conventional one. It should be noted that this point has also been confirmed from actual machine tests performed by the inventors as described later.
[0010]
Further, according to the present invention, as an embodiment based on the above configuration, a heat radiation fin is attached to a piping region of an inertance tube drawn out of a vacuum vessel to the outside (claim 2), and the heat radiation fin is made of copper or copper. The heat dissipation from the inertance tube can be further enhanced by using an alloy, aluminum or an aluminum alloy, or a good heat conductive metal material of titanium (claim 3).
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the embodiments shown in FIGS. In the drawings of each embodiment, members corresponding to those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.
[Example 1]
FIG. 1 shows an embodiment corresponding to claim 1 of the present invention. That is, although the configuration of the pulse tube refrigerator of the illustrated embodiment is basically the same as the conventional one shown in FIG. 4, the heat transfer bar 9 (see FIG. 4), and instead, a copper tube is adopted as the inertance tube 4a connected to the high-temperature side heat exchanger 7 and drawn out from the vacuum vessel 8 to be piped. The heat generated in the side heat exchanger 7 (heat corresponding to low-temperature PV work) is radiated outside the system. Here, the thermal conductivity of copper is 0.94 cal / cm / sec / ° C., the thermal conductivity of stainless steel (SUS304) is 0.039 cal / cm / sec / ° C., and the inertance tube 4a is made of a conventional stainless steel. By adopting a copper tube in place of the tube made of copper, the same heat conductivity as the heat transfer bar 9 of the conventional configuration can be secured. In addition, as a material of the inertance tube 4a, a good heat conductive metal material such as copper alloy, aluminum or aluminum alloy, and titanium may be adopted in consideration of workability, heat conductivity, and practicality of the thin tube. it can.
[0012]
Here, as a test example, a small pulse tube refrigerator having a cold temperature generated in the cold head 6 of 70 K and a refrigerating output of about several W, the inventors of the present invention have provided an inertance tube 4a with an inner diameter of 4 mmφ, an outer diameter of 6 mmφ, and a length of 4 mm. A pulse tube refrigerator assembled using a 3 m-long copper tube; and a pulse tube refrigerator having a conventional structure (see FIG. 4) in which a heat transfer bar 9 is provided in a vacuum vessel 8 using an inertance tube 4a as a stainless steel tube. Was prepared, and an actual machine test was performed to compare the cooling performances of the two. Table 1 shows the test results.
[0013]
[Table 1]
Figure 2004028501
As can be seen from Table 1 above, the pulse tube refrigerators according to the embodiment of the present invention and the conventional example have the same refrigeration output and the difference in power consumption is 0.1 W or less, and there is almost no difference in the performance of the refrigerator. I couldn't see it. The temperature of the high-temperature side heat exchanger 7 is 6.4 K higher in the embodiment of the present invention, but this heat is ultimately generated by the inner wall surface of the inertance tube 4a and the working gas flowing therethrough. After the heat exchange, the inertance tube 4a is transferred, and is cooled by natural air or forced air by ambient air in the piping area 4a-1 drawn from the vacuum vessel 8, and is radiated to the outside of the system. As a result, a result that the refrigeration output is almost the same as that of the conventional example is obtained. From this test result, even if the heat transfer bar 9 attached to the inside of the vacuum vessel in the conventional structure is eliminated, the inertance tube made of a material having good heat conductivity can transfer the heat corresponding to the low-temperature PV work pumped by the cold head 7. By radiating heat to the outside of the system via 4a, it was found that the operation could be performed without reducing the refrigerating capacity, and it was proved that the present invention was extremely effective.
[0014]
[Example 2]
FIG. 2 shows an embodiment corresponding to claims 2 and 3 of the present invention. In this embodiment, radiation fins 4c made of a good heat conductive material such as copper, a copper alloy, an aluminum, an aluminum alloy, or titanium are provided in a piping area 4a-1 of an inertance tube 4a drawn out of a vacuum vessel 7 to the outside. It is attached to increase the heat radiation area of the inertance tube 4a.
[0015]
That is, in order to efficiently radiate the heat generated by the high-temperature side heat exchanger 7 disposed inside the vacuum vessel 8 to the outside through the inertance tube 4a, the effect is larger as the heat radiation area of the inertance tube 4a is larger. In this regard, if the inertance tube 4a is drawn out from the vacuum vessel 1 to the outside as in the first embodiment, the working gas flows at a flow rate of about 20 to 50 m / sec inside the inertance tube 4a. Since it flows in an oscillating flow, the thermal conductivity at the interface between the working gas and the inner wall of the pipe is large and heat transfer is efficient, but the interface between the outer surface of the pipe and the atmosphere is high. However, even if forced air cooling is performed, a large heat transfer coefficient cannot be obtained. Therefore, as shown in the illustrated embodiment, the heat exchange fin 4c is attached to the external piping area 4a-1 of the inertance tube 4a to increase the heat radiation surface area, thereby increasing the heat exchange property between the inertance tube 4a and the atmosphere. The low-temperature PV work pumped by the cold head 7 can be more efficiently converted to heat and released to the outside of the system.
[0016]
【The invention's effect】
As described above, according to the present invention, a compressor for providing a reciprocating flow to a working gas, a regenerator connected to the compressor via a radiator, and an endothermic functioning as a cold head at a low-temperature end of the regenerator. A pulse tube connected via a low-temperature side heat exchanger for use, and a phase control unit connected to the high-temperature end of the pulse tube via a high-temperature side heat exchanger by combining an inertance tube and a buffer tank, and A pulse tube refrigerator in which the regenerator and the pulse tube are arranged in a vacuum vessel, and an inertance tube connected to a high-temperature end of the pulse tube is drawn out of the vacuum vessel and connected to a buffer tank. By making the tube from copper or copper alloy, aluminum or aluminum alloy, or titanium
The heat converted from the low-temperature PV work by the high-temperature side heat exchanger disposed inside the vacuum vessel is used to transfer the working gas of the refrigerator to the heat transfer medium without providing a heat transfer bar in the vacuum vessel as in the conventional configuration. After the heat is transferred to an inertance tube made of a good heat conductive material, the heat drawn out of the vacuum vessel can be radiated to the atmosphere from the piping region of the inertance tube. This makes it possible to provide a pulse tube refrigerator that can reduce the size of the vacuum vessel, increase the effective space for disposing the object to be cooled, and reduce the cost while securing the refrigerating capacity.
[0017]
Further, by attaching a heat radiation fin to the piping area of the inertance tube drawn out of the vacuum vessel to the outside, the heat exchange between the inertance tube and the atmosphere can be further improved, and the refrigerating capacity can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a pulse tube refrigerator corresponding to a first embodiment of the present invention; FIG. 2 is a configuration diagram of a pulse tube refrigerator corresponding to a second embodiment of the present invention; FIG. 3 is a principle of the pulse tube refrigerator; Configuration diagram [Fig. 4] Configuration diagram of conventional pulse tube refrigerator [Description of symbols]
Reference Signs List 1 compressor 2 regenerator 3 pulse tube 4 phase controller 4a inertance tube 4a-1 piping area 4b outside vacuum vessel 4b buffer tank 4c radiating fin 6 cold head (low-temperature side heat exchanger)
7 High temperature heat exchanger 8 Vacuum container

Claims (3)

作動ガスに往復動流を与える圧縮機と、圧縮機に放熱器を介して接続した蓄冷器と、蓄冷器の低温端にコールドヘッドとして機能する吸熱用の低温側熱交換器を介して接続したパルス管と、イナータンスチューブとバッファタンクを組合せてパルス管の高温端に高温側熱交換器を介して接続した位相制御部とから構成され、かつ前記蓄冷器およびパルス管を真空容器内に配置した上で、パルス管の高温端に接続したイナータンスチューブを真空容器から外部に引き出してバッファタンクに接続したパルスチューブ冷凍機において、
前記のイナータンスチューブを、銅ないし銅合金,アルミニウムないしアルミニウム合金,チタンのいずれかの良伝熱性金属材料で構成したことを特徴とするパルスチューブ冷凍機。
A compressor for giving a reciprocating flow to the working gas, a regenerator connected to the compressor via a radiator, and a regenerator connected to a low-temperature end of the regenerator via a low-temperature heat exchanger for heat absorption functioning as a cold head. A pulse tube, a phase control unit connected to a high-temperature end of the pulse tube via a high-temperature heat exchanger by combining an inertance tube and a buffer tank, and the regenerator and the pulse tube are arranged in a vacuum vessel. After that, in the pulse tube refrigerator connected to the buffer tank by pulling out the inertance tube connected to the high temperature end of the pulse tube from the vacuum container to the outside,
A pulse tube refrigerator, wherein the inertance tube is made of any one of copper, copper alloy, aluminum, aluminum alloy, and titanium.
請求項1に記載パルスチューブ冷凍機において、真空容器から外部に引出したイナータンスチューブの配管領域に放熱フインを取付けたことを特徴とするパルスチューブ冷凍機。2. The pulse tube refrigerator according to claim 1, wherein a radiation fin is attached to a piping region of the inertance tube drawn out of the vacuum vessel to the outside. 請求項2に記載のパルスチューブ冷凍機において、放熱フインを、銅ないし銅合金,アルミニウムないしアルミニウム合金,チタンのいずれかの良伝熱性金属材料で構成したことを特徴とするパルスチューブ冷凍機。3. The pulse tube refrigerator according to claim 2, wherein the heat radiation fin is made of any one of copper, copper alloy, aluminum, aluminum alloy, and titanium.
JP2002188177A 2002-06-27 2002-06-27 Pulse tube refrigerator Pending JP2004028501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188177A JP2004028501A (en) 2002-06-27 2002-06-27 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188177A JP2004028501A (en) 2002-06-27 2002-06-27 Pulse tube refrigerator

Publications (1)

Publication Number Publication Date
JP2004028501A true JP2004028501A (en) 2004-01-29

Family

ID=31183003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188177A Pending JP2004028501A (en) 2002-06-27 2002-06-27 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP2004028501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181767A (en) * 2013-03-19 2014-09-29 Yaskawa Electric Corp Driving mechanism and robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181767A (en) * 2013-03-19 2014-09-29 Yaskawa Electric Corp Driving mechanism and robot

Similar Documents

Publication Publication Date Title
US6644038B1 (en) Multistage pulse tube refrigeration system for high temperature super conductivity
JPH024163A (en) Cooling device for semiconductor element for power
JP2003532046A (en) Stirling cycle cooler with maximum cold limit design
JP4365188B2 (en) Pulse tube type refrigeration equipment
JP2007530911A (en) Cryogenic cooler system with frequency-converting mechanical resonator
JP2016161140A (en) Stirling refrigerator
JP2004293891A (en) Pulse pipe refrigerating machine
JP5289784B2 (en) Refrigerator integrated cryogenic container
CN109243752B (en) Auxiliary cooling device and cooling equipment
JP2004028501A (en) Pulse tube refrigerator
JP2007530905A (en) Pulse tube refrigerator for changing average pressure
JP2977809B1 (en) Refrigeration equipment
RU2273808C2 (en) Refrigeration machine with pulsating pipe
JP2007530904A (en) Resonant linear motor driven cryocooler system
JP2004333054A (en) Pulse pipe refrigerator
JP2699939B2 (en) Regenerator refrigerator
JP3741300B2 (en) Pulse tube refrigerator
JP3001542B1 (en) Cooling system
JP3765035B2 (en) Refrigerator exhaust heat system
JPH0634214A (en) Pulse tube refrigerator
JP2004247583A (en) Electronic device
JP3635904B2 (en) Gas cycle engine refrigerator
JP2004347175A (en) Impulse wave tube refrigerator
CN110118404A (en) A kind of refrigerating enclosures structure
JP2005121323A (en) Stirling engine and heat exchange system