JP2004028297A - Earthquake resistant frame - Google Patents

Earthquake resistant frame Download PDF

Info

Publication number
JP2004028297A
JP2004028297A JP2002189429A JP2002189429A JP2004028297A JP 2004028297 A JP2004028297 A JP 2004028297A JP 2002189429 A JP2002189429 A JP 2002189429A JP 2002189429 A JP2002189429 A JP 2002189429A JP 2004028297 A JP2004028297 A JP 2004028297A
Authority
JP
Japan
Prior art keywords
pipes
housing
fixed
support
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002189429A
Other languages
Japanese (ja)
Other versions
JP4169538B2 (en
Inventor
Taketoshi Hatanaka
畑中 武利
Takeshi Naito
内藤 武志
Yushi Koyama
小山 雄史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoden Corp
Original Assignee
Shoden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoden Corp filed Critical Shoden Corp
Priority to JP2002189429A priority Critical patent/JP4169538B2/en
Publication of JP2004028297A publication Critical patent/JP2004028297A/en
Application granted granted Critical
Publication of JP4169538B2 publication Critical patent/JP4169538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce weight, to facilitate carrying and installation without lowering rigidity, strength and solidity as an earthquake resistant frame, to lead an optical fiber cable without generating a trouble, and to securely and appropriately hold a light equipment body such as a rack. <P>SOLUTION: This earthquake resistant frame is provided with support pipes 22 and 23 stood for arrangement at four positions in the periphery of the equipment body 100 and fixed to the frame at a lower end thereof, beam pipes 24 and 25 stretched between tips of the support pipes 22 and 23 arranged in both of a right and left sides in front and rear of the equipment body 100, connecting frames 26 to be stretched between the support pipes in front and rear of the equipment body 100 and between the beam pipes, and fixing beam materials 28 and 29 fixed to the support pipes or the beam pipes to hold the equipment body 100. The support pipes 22 and 23 and the beam pipes 24 and 25 are formed from a nearly cylindrical rigid pipe material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば各種通信機器等の被保護機器を収容した筐体をその周囲から保持、固定して、地震発生時の筐体の倒壊や移動による被保護機器の破損を防止するための耐震フレームに関するものである。
【0002】
【従来の技術】
従来、この種の耐震フレームは種々提供されており、図6はその一例を示す斜視図である。
図6に示す耐震フレーム50は、底板51、側板52,53、梁部材54を備えており、その全体が鋼板によって形成されている。この耐震フレーム50は、建物の二重床(ダクトフロア、フリーアクセスフロア)上に設置されるか、あるいは、床スラブ上に架台(図示せず)を介して設置されるものである。
また、60は被保護機器としての各種の通信機器や端子盤、配線盤等が収容された筐体であり、ボルトやジョイント等の適宜な手段によって耐震フレーム50に保持、固定されている。
【0003】
ここで、筐体60自体は強度が強く剛性の高い重量物であるため、この筐体60を保持、固定する耐震フレーム50にも肉厚で長尺の鋼板が使用されており、その重量も極めて重くなっている。
【0004】
【発明が解決しようとする課題】
上記のように、従来の耐震フレーム50は重量物からなり、しかも長尺の部材を組み立てて形成されるため、運搬や設置作業に多大な労力や時間を要すると共に、製造コストも非常に高いものであった。
特に、耐震フレーム50を構成する各部材を運搬する際に、寸法上の制約によってエレベータ等の運搬装置を使用できない場合もあり、また、組立、設置に専用の工具や設備を必要とするなど、施工の障害となる要因が数多く存在していた。
【0005】
更に、筐体60には外部から光ファイバーケーブルを引き込んで接続する配線盤等も含まれるが、これらの光ファイバーケーブルは耐震フレーム50の上面から引き込まれることが多い。その場合、梁部材54等は通常、角材状または平板状であり、その外表面に沿って導入される光ファイバーケーブルが梁部材54表面の角部により許容角度を超えて屈曲されてしまい、伝送損失が大きくなったり、伝送不能になる場合もあった。
【0006】
一方、近年では、EIA(米国規格協会)規格に適合した、いわゆる19インチラック内に各種通信機器等を実装する場合が増えている。この種のラックは比較的軽量であるため、これらのラックを保持するには図6に示したような大掛かりな耐震フレーム50は過剰設備となり、経済的にも無駄が多いものであった。
【0007】
そこで本発明は、耐震フレームとしての剛性や強度、堅牢性を損なうことなく軽量化及び運搬、設置作業の容易化を図り、しかも、光ファイバーケーブル等の導入にも何ら支障がないと共に、軽量なラック等の筐体を確実かつ適切に保持可能とした低コストの耐震フレームを提供しようとするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、被保護機器を収容した筐体をその周囲から保持、固定する耐震フレームにおいて、
前記筐体の周囲4箇所に立設、配置され、かつ下端部が架台に固定された支柱パイプと、筐体の前後においてそれぞれ筐体の左右両側に配置された支柱パイプの先端部相互間に架設される梁パイプと、筐体の前後の支柱パイプ相互間、及び、梁パイプ相互間に架設される連結フレームと、前記支柱パイプまたは梁パイプに固定されて筐体を保持する固定梁材とを備え、前記支柱パイプ及び梁パイプを、ほぼ円筒状で高剛性のパイプ材により形成したものである。
【0009】
請求項2記載の発明は、上記請求項1において、固定梁材と筐体の上面との間に、緩衝材を介在させたものである。
【0010】
請求項3記載の発明は、上記請求項1または2において、複数台並置された筐体群の左右両側方に、筐体に当接する緩衝材を配置したものである。
【0011】
請求項4記載の発明は、上記請求項1,2または3において、支柱パイプと梁パイプとを、筋交い部材により連結したものである。
【0012】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。
まず、図1は本発明の第1実施形態を示すもので、(a)は正面図、(b)は側面図である。なお、図1(b)では、図1(a)における後述の固定梁材28,29、連結プレート30、カップリング31、筐体100等の図示を省略してある。
この第1実施形態は、請求項1に記載した発明に相当する。
【0013】
これらの図において、11は床面Fに固定された架台であり、本実施形態の耐震フレームが保持、固定するべき筐体100を複数台並べて設置し、固定可能な平面積を有している。
ここで、筐体100は、例えば前述したEIA(米国規格協会)規格の19インチラックであるが、筐体100の大きさや種類、形式等は何ら限定されるものではない。この筐体100内には、被保護機器としての各種の通信機器、端子盤、配線盤等、電源装置等(図示せず)が実装されている。
【0014】
架台11の上面四隅には、架台11にボルト止めされた固定ベース21を介して、鋼鉄製で円筒状の支柱パイプ22,22,23,23が立設されている。図1(a)では、手前の左右に立設された支柱パイプに符号22,23を付してあり、これらの背後に立設された支柱パイプも同じく符号22,23で示すものとする。なお、支柱パイプ22,23の長さは筐体100の高さに応じて決定される。
【0015】
支柱パイプ22,23の上端部はほぼ90度に湾曲されおり、これらの端部にはフランジ22a,23aが形成されている。
また、24,25はそれぞれ両端にフランジ24a,24b,25a,25bが形成された鋼鉄製で円筒状の梁パイプであり、これらの梁パイプ24,25はフランジ24b,25aを相互にボルト止めして水平直線状に連結されると共に、各々他方のフランジ24a,25bを前記支柱パイプ22,23のフランジ22a,23aにボルト止めして支柱パイプ22,23に連結されている。
なお、梁パイプに関しても、図1(a)では、手前の左右に立設された梁パイプに符号24,25を付してあり、これらの背後に架設された梁パイプも同じく符号24,25で示すものとする。
【0016】
このようにして組み立てられた二組の門形の部材(各々が支柱パイプ22,23、梁パイプ24,25からなる)は、図1(b)に示す如く連結フレーム26及びカップリング27によって前後の支柱パイプ22,22同士、23,23同士、梁パイプ24,24同士、25,25同士が連結され、全体として剛性の高いフレームが形成される。
ここで、個々の梁パイプの長さや連結本数は、筐体100の幅や台数に応じて任意に設定可能である。
【0017】
更に、図1(a)に示すように、二組の支柱パイプ22,23間には、連結プレート30によって連結された鋼鉄製の角パイプまたは角棒からなる固定梁材28,29が架設されており、その両端部はカップリング31によって支柱パイプ22,23に連結されている。これらの固定梁材28,29の長さや連結本数は、支柱パイプ22,23の間隔、言い換えれば複数台の筐体100の全幅に応じて決定される。
上記固定梁材28,29は、図示されていないボルト等によって筐体100の上面に固定されており、支柱パイプ22,23に対して複数台の筐体100を確実に固定する作用をなしている。
【0018】
上記のように構成された本実施形態の耐震フレームによれば、その主要構成部材である支柱パイプ22,23、梁パイプ24,25等を円筒状のパイプによって形成したので、図6に示したような従来の耐震フレームに比べて大幅な軽量化が可能になる。また、各部材を分解した状態で設置場所まで運搬し、固定梁材28,29を含めた各部材の連結、固定作業をボルト等の締結のみによって実現可能であり、大掛かりな基礎工事や専用の工具、設備を用いることなく全体の組立、固定作業を実行することができる。
特に、図6の従来技術では、例えば側板52,53と梁部材54とを溶接により連結するといった手間が必要であるが、本実施形態では溶接作業なしで全体を組み立てることが可能である。
【0019】
そして、固定梁材28,29により複数台の筐体100を固定した後は、筐体100に加わる前後左右方向の力が固定梁材28,29を介し4本の支柱22,22,23,23に分散して伝達され、筐体100の倒壊や移動を防いでこれらを確実強固に保持することができる。従って、筐体100の内部の被保護機器を確実に保護することが可能である。
【0020】
また、筐体100内に光ファイバーケーブルを導入する場合には、梁パイプ24,25等の外周面に沿って光ファイバーケーブルを引き込めばケーブルが許容角度を超えて屈曲されるおそれがなく、伝送損失やファイバの破損を生じる心配もない。この場合、前後の梁パイプ24,24または25,25を相互に連結する連結フレーム26は、光ファイバーケーブルを案内するケーブルガイドしても機能する。
【0021】
次に、図2は本発明の第2実施形態を示すものであり、図1と同一の構成要素には同一番号を付して説明を省略し、以下では異なる部分を中心に説明する。この第2実施形態は、請求項2に記載した発明に相当する。
この第2実施形態は、固定梁材28,29と各筐体100とを直接連結せずに、両者の間に硬質ゴム等からなる緩衝材32を介在させたものである。この緩衝材32は、例えば円柱状のゴム体の軸方向両端部にボルトまたはめねじを形成して固定梁材28,29と筐体100とに連結、固定されている。
【0022】
この実施形態によれば、筐体100に加わる力が緩衝材32によっても吸収されるので、より一層の制震効果を得ることができる。また、固定梁材28,29と筐体100とが直接接触した場合の振動時の異音発生や筐体100へ傷が付くのを防止することもできる。
なお、緩衝材32の材質としてはゴムに限定されるものではなく、例えば空気やゲル状物質を封入したダンパーを使用しても良い。
【0023】
図3は、本発明の第3実施形態を示している。この実施形態は、複数台並置された筐体100(筐体群)の左右両側方の上部に緩衝材33を配置したものであり、請求項3に記載した発明に相当する。これらの緩衝材33は、例えば鋼鉄製の基板の片面に硬質ゴム等を貼り付けて形成されており、基板を固定梁材28,29の各一端部に固定すると共に、硬質ゴム側を複数台の筐体100の両側端の上部に当接させて配置される。
この実施形態において、固定梁材28,29は第1実施形態と同様に筐体100の上面にボルト等によって固定されている。
緩衝材33は、前記同様に空気やゲル状物質を封入したダンパーによって形成しても良い。
【0024】
本実施形態によれば、緩衝材33によって特に左右方向の振動を緩衝することができる。また、緩衝材33以外に、図2に示した緩衝材32を併用しても良い。
【0025】
次いで、図4は本発明の第4実施形態を示しており、この実施形態は請求項4に記載した発明に相当する。
図4において、11A,11B,11Cはそれぞれ架台であり、これらは一体的に形成しても良い。架台11A上には、保持するべき複数台の筐体110が並置され、固定されている。
【0026】
架台11Bの上面には、固定ベース45を一端に備えた鋼鉄製で円筒状の支柱パイプ35と支柱パイプ34とがスリーブ42を介して連結され、立設されており、同様に架台11Cの上面には、固定ベース45を一端に備えた支柱パイプ37と支柱パイプ36とがスリーブ42を介して連結され、立設されている。ここで、スリーブ42の内周面にはめねじが形成されており、各支柱パイプの端部外周面とねじ止め可能に形成されている。ここで、各支柱パイプの長さや連結本数は筐体110の高さ等に応じて決定される。
【0027】
支柱パイプ34,36の上端部には、スリーブ42を介してL字形の梁パイプ38,41が連結され、これらの梁パイプ38,41の間に、直線状の梁パイプ39,40がスリーブ42を介して連結されている。また、梁パイプ38,41の垂直部分(この垂直部分は、機能的には支柱パイプ34〜37と同様であり、請求項4における支柱パイプに相当するものである)と梁パイプ39,40の各一端部との間には、カップリング47を介してそれぞれ筋交い部材46が取り付けられている。なお、支柱パイプ34〜37にも適宜な位置にカップリング47が取り付けられており、これらのカップリング取付位置と梁パイプ39,40の適宜な位置との間に筋交い部材46を取り付けても良い。
【0028】
このようにして組み立てられた門形の部材(支柱パイプ34〜37、梁パイプ38〜41からなる)を前後二組用意し、図4(b)に示す如く連結フレーム48及びカップリング47によって前後の各パイプ同士を連結することにより、全体として剛性の高いフレームが形成される。
なお、個々の梁パイプの長さや連結本数は、筐体110の幅や台数に応じて任意に設定可能である。
【0029】
更に、図4(a)に示すように、二組の梁パイプ38,41の基端部間には、カップリング44を介して鋼鉄製の角パイプまたは角棒からなる固定梁材43が架設されている。この固定梁材43の長さは、支柱パイプ34(35)と36(37)との間隔、言い換えれば複数台の筐体110の全幅に応じて決定される。上記固定梁材43は、図示されていないボルト等によって筐体110の上面に固定されており、梁パイプ38,41(間接的には支柱パイプ34〜37)に対して複数台の筐体110を確実に固定する作用をなしている。
また、固定梁材43は、梁パイプ38〜41に対し複数箇所でカップリング47及び連結部材49によって連結されている。
【0030】
この実施形態によれば、筋交い部材46によりフレーム全体の強度を一層高めることができると共に、連結部材49によって固定梁材43を強固に支持し、結果的に筐体110の上下方向の振動を抑制することができる。
なお、本実施形態でも、図2や図3のように緩衝材32,33を使用して制震効果を高めても良い。
【0031】
図5は、本発明の第5実施形態を示している。この実施形態は、第4実施形態における連結部材49に代えて、斜め方向に延びる2本の腕金71を備えた剛体からなる連結部材70により梁パイプ39,40と固定梁材43とを連結したものである。なお、連結部材70と梁パイプ39,40との固定にはカップリング47を利用するものとし、固定梁材43には腕金71の基板72をボルト止めして固定するものとする。
この実施形態の作用は第4実施形態とほぼ同様であるが、特に、腕金71が左右方向、上下方向の圧縮荷重、引張荷重に対して有効に働くという利点がある。
【0032】
【発明の効果】
以上のように本発明によれば、耐震フレームの主要構成部材を円筒状のパイプ部材により形成したため、軽量化及び運搬、設置作業の容易化が可能であり、製造コストや施工コストを従来よりも大幅に低減することができる。
また、光ファイバーケーブルを筐体内に導入する場合にも何ら支障がなく、伝送損失の増大やケーブルの損傷を未然に防ぐことができる。
特に本発明は、比較的軽量なラック等の筐体を低コストにて確実かつ適切に保持、固定する用途に最適である。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す図であり、(a)は正面図、(b)は主要部の側面図である。
【図2】本発明の第2実施形態を示す正面図である。
【図3】本発明の第3実施形態を示す正面図である。
【図4】本発明の第4実施形態を示す図であり、(a)は正面図、(b)は側面図である。
【図5】本発明の第5実施形態を示す正面図である。
【図6】従来技術を示す斜視図である。
【符号の説明】
11,11A,11B,11C 架台
21,45 固定ベース
22,23,34,35,36,37 支柱パイプ
24,25,38,39,40,41 梁パイプ
22a,23a,24a,24b,25a,25b フランジ
26,48 連結フレーム
27,31,44,47 カップリング
28,29,43 固定梁材
30 連結プレート
32,33 緩衝材
42 スリーブ
46 筋交い部材
49 連結部材
100,110 筐体
F 床面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an earthquake-resistant device for holding and fixing a housing housing a device to be protected such as various communication devices from the periphery thereof to prevent damage to the device to be protected due to collapse or movement of the housing when an earthquake occurs. It is about frames.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, various types of seismic frames of this type have been provided, and FIG. 6 is a perspective view showing one example thereof.
The earthquake-resistant frame 50 shown in FIG. 6 includes a bottom plate 51, side plates 52 and 53, and a beam member 54, and is entirely formed of a steel plate. The earthquake-resistant frame 50 is installed on a double floor (duct floor, free access floor) of a building, or installed on a floor slab via a gantry (not shown).
Reference numeral 60 denotes a housing that accommodates various communication devices as a device to be protected, a terminal board, a wiring board, and the like, and is held and fixed to the earthquake-resistant frame 50 by appropriate means such as bolts and joints.
[0003]
Here, since the case 60 itself is a heavy object having high strength and high rigidity, a thick and long steel plate is also used for the earthquake-resistant frame 50 that holds and fixes the case 60, and the weight is also large. Extremely heavy.
[0004]
[Problems to be solved by the invention]
As described above, the conventional earthquake-resistant frame 50 is made of a heavy material and is formed by assembling a long member, so that a large amount of labor and time are required for transportation and installation work, and the manufacturing cost is very high. Met.
In particular, when transporting each member constituting the earthquake-resistant frame 50, there is a case where it is not possible to use a transportation device such as an elevator due to dimensional restrictions, and also requires special tools and equipment for assembly and installation, There were many factors that hindered construction.
[0005]
Further, the housing 60 also includes a wiring board or the like for drawing in and connecting an optical fiber cable from the outside, and these optical fiber cables are often pulled in from the upper surface of the earthquake-resistant frame 50. In this case, the beam member 54 or the like is usually in the shape of a rectangular bar or a flat plate, and the optical fiber cable introduced along the outer surface thereof is bent beyond the allowable angle by the corner of the surface of the beam member 54, and the transmission loss is reduced. In some cases, or transmission became impossible.
[0006]
On the other hand, in recent years, various communication devices and the like are mounted in so-called 19-inch racks conforming to the EIA (American Standards Association) standard. Since this type of rack is relatively lightweight, a large-scale anti-seismic frame 50 as shown in FIG. 6 for holding these racks is an excessive facility, and is economically wasteful.
[0007]
Therefore, the present invention aims to reduce the weight, facilitate the transportation and installation work without impairing the rigidity, strength, and robustness of the earthquake-resistant frame, and furthermore, does not hinder the introduction of the optical fiber cable and the like, and has a lightweight rack. It is an object of the present invention to provide a low-cost earthquake-resistant frame capable of securely and appropriately holding a housing such as a housing.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 is an earthquake-resistant frame that holds and fixes a housing containing a protected device from the periphery thereof.
Between the support pipes, which are erected and arranged at four places around the housing, and whose lower end is fixed to the gantry, and between the front ends of the support pipes disposed on the left and right sides of the housing before and after the housing, respectively. A beam pipe to be erected, between the support pipes before and after the housing, and a connection frame erected between the beam pipes, and a fixed beam material fixed to the support pipe or the beam pipe and holding the housing. And the support pipe and the beam pipe are formed of a substantially cylindrical and highly rigid pipe material.
[0009]
According to a second aspect of the present invention, in the first aspect, a cushioning material is interposed between the fixed beam member and the upper surface of the housing.
[0010]
According to a third aspect of the present invention, in the above first or second aspect, a cushioning material that contacts the housing is disposed on both left and right sides of the plurality of housing groups juxtaposed.
[0011]
According to a fourth aspect of the present invention, in the first, second or third aspect, the support pipe and the beam pipe are connected by a brace member.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 shows a first embodiment of the present invention, in which (a) is a front view and (b) is a side view. In FIG. 1B, illustration of fixed beams 28 and 29, a connecting plate 30, a coupling 31, a housing 100, and the like described later in FIG. 1A is omitted.
The first embodiment corresponds to the first aspect of the present invention.
[0013]
In these figures, reference numeral 11 denotes a gantry fixed to the floor F, which has a plurality of housings 100 to be held and fixed by the aseismic frame of the present embodiment arranged side by side and has a fixable flat area. .
Here, the housing 100 is, for example, a 19-inch rack of the above-mentioned EIA (American Standards Association) standard, but the size, type, type, and the like of the housing 100 are not limited at all. In the housing 100, various communication devices as terminal devices to be protected, a terminal board, a wiring board, a power supply device (not shown), and the like are mounted.
[0014]
At the four corners of the upper surface of the gantry 11, cylindrical pillar pipes 22, 22, 23, and 23 made of steel are erected via a fixed base 21 bolted to the gantry 11. In FIG. 1 (a), reference numerals 22 and 23 are attached to the support pipes standing upright on the left and right sides, and the support pipes standing upright behind them are also denoted by reference numerals 22 and 23. Note that the length of the support pipes 22 and 23 is determined according to the height of the housing 100.
[0015]
The upper ends of the support pipes 22 and 23 are curved at substantially 90 degrees, and flanges 22a and 23a are formed at these ends.
Reference numerals 24 and 25 denote steel cylindrical beam pipes having flanges 24a, 24b, 25a and 25b formed at both ends thereof. These beam pipes 24 and 25 bolt the flanges 24b and 25a to each other. And the other flanges 24a, 25b are bolted to the flanges 22a, 23a of the support pipes 22, 23 and connected to the support pipes 22, 23, respectively.
1A, reference numerals 24 and 25 are attached to beam pipes erected on the left and right sides in the front, respectively, and beam pipes erected behind these are also denoted by reference numerals 24 and 25. It is assumed that
[0016]
The two sets of portal members (each consisting of support pipes 22 and 23 and beam pipes 24 and 25) assembled in this manner are moved forward and backward by a connecting frame 26 and a coupling 27 as shown in FIG. Are connected to each other, the beam pipes 24, 24, and the beam pipes 25, 25 are connected to each other to form a frame having high rigidity as a whole.
Here, the length and the number of connected individual beam pipes can be arbitrarily set according to the width and the number of housings 100.
[0017]
Further, as shown in FIG. 1 (a), fixed beam members 28 and 29 made of steel square pipes or square bars connected by a connection plate 30 are installed between the two sets of support pipes 22 and 23. Both ends are connected to the support pipes 22 and 23 by couplings 31. The length and the number of connection of the fixed beam members 28 and 29 are determined according to the interval between the support pipes 22 and 23, in other words, the total width of the plurality of casings 100.
The fixing beams 28 and 29 are fixed to the upper surface of the housing 100 by bolts or the like (not shown), and function to securely fix the plurality of housings 100 to the support pipes 22 and 23. I have.
[0018]
According to the seismic frame of the present embodiment configured as described above, the main constituent members, ie, the support pipes 22 and 23, the beam pipes 24 and 25, and the like are formed by cylindrical pipes, and thus are shown in FIG. It is possible to significantly reduce the weight compared to such a conventional earthquake-resistant frame. In addition, each member is disassembled and transported to the installation location, and the connection and fixing of the members including the fixing beams 28 and 29 can be realized only by fastening bolts or the like, so that a large-scale foundation work or a special The entire assembly and fixing work can be performed without using tools and equipment.
In particular, in the prior art shown in FIG. 6, for example, it is necessary to connect the side plates 52 and 53 and the beam member 54 by welding, but in the present embodiment, the entirety can be assembled without welding work.
[0019]
After the plurality of casings 100 are fixed by the fixing beams 28 and 29, the forces applied to the casing 100 in the front-rear and left-right directions are fixed to the four columns 22, 22, 23, via the fixing beams 28 and 29. Thus, the casing 100 is securely transmitted to the casing 23 and can be securely held. Therefore, it is possible to reliably protect the device to be protected inside the housing 100.
[0020]
Further, when an optical fiber cable is introduced into the casing 100, if the optical fiber cable is drawn in along the outer peripheral surfaces of the beam pipes 24 and 25, there is no possibility that the cable is bent beyond an allowable angle, and the transmission loss is reduced. There is no need to worry about breakage or fiber breakage. In this case, the connection frame 26 for connecting the front and rear beam pipes 24, 24 or 25, 25 to each other also functions as a cable guide for guiding the optical fiber cable.
[0021]
Next, FIG. 2 shows a second embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. Hereinafter, different portions will be mainly described. The second embodiment corresponds to the second aspect of the present invention.
In the second embodiment, the fixed beams 28 and 29 and the respective housings 100 are not directly connected to each other, but a buffer 32 made of hard rubber or the like is interposed between the two. The cushioning member 32 is connected and fixed to the fixed beam members 28 and 29 and the housing 100 by forming bolts or female threads at both ends in the axial direction of a cylindrical rubber body, for example.
[0022]
According to this embodiment, since the force applied to the housing 100 is also absorbed by the cushioning member 32, a further vibration damping effect can be obtained. Further, it is also possible to prevent generation of abnormal noise at the time of vibration when the fixed beams 28 and 29 come into direct contact with the housing 100 and prevent the housing 100 from being damaged.
Note that the material of the cushioning member 32 is not limited to rubber, and for example, a damper in which air or a gel-like substance is sealed may be used.
[0023]
FIG. 3 shows a third embodiment of the present invention. In the present embodiment, a plurality of housings 100 (housing groups) are provided with cushioning members 33 on the upper left and right sides thereof, which corresponds to the third aspect of the present invention. These cushioning members 33 are formed, for example, by sticking hard rubber or the like to one surface of a steel substrate, fixing the substrate to one end of each of the fixed beam members 28 and 29, and providing a plurality of hard rubber sides. Are arranged in contact with the upper portions of both ends of the housing 100.
In this embodiment, the fixed beams 28 and 29 are fixed to the upper surface of the housing 100 by bolts and the like, as in the first embodiment.
The buffer material 33 may be formed by a damper in which air or a gel-like substance is sealed as described above.
[0024]
According to the present embodiment, the left and right vibrations can be particularly damped by the damper 33. Further, in addition to the cushioning material 33, the cushioning material 32 shown in FIG.
[0025]
Next, FIG. 4 shows a fourth embodiment of the present invention, and this embodiment corresponds to the invention described in claim 4.
In FIG. 4, 11A, 11B, and 11C are mounts, respectively, and these may be integrally formed. A plurality of housings 110 to be held are juxtaposed and fixed on the gantry 11A.
[0026]
On a top surface of the gantry 11B, a steel cylindrical support pipe 35 and a support pipe 34 each having a fixed base 45 at one end are connected via a sleeve 42 and are erected. A support pipe 37 having a fixed base 45 at one end and a support pipe 36 are connected via a sleeve 42 and are erected. Here, an internal thread is formed on the inner peripheral surface of the sleeve 42, and is formed so as to be able to be screwed to the outer peripheral surface at the end of each support pipe. Here, the length and the number of the connecting pipes are determined according to the height of the housing 110 and the like.
[0027]
L-shaped beam pipes 38 and 41 are connected to upper ends of the support pipes 34 and 36 via a sleeve 42, and linear beam pipes 39 and 40 are provided between the beam pipes 38 and 41. Are connected via The vertical portions of the beam pipes 38 and 41 (the vertical portions are functionally similar to the post pipes 34 to 37 and correspond to the post pipes in claim 4) and the beam pipes 39 and 40. Brace members 46 are attached to the respective ends via couplings 47. Couplings 47 are attached to the support pipes 34 to 37 at appropriate positions, and a brace member 46 may be attached between these coupling installation positions and appropriate positions of the beam pipes 39 and 40. .
[0028]
Two sets of front and rear gate-shaped members (consisting of support pipes 34 to 37 and beam pipes 38 to 41) assembled in this way are prepared, and as shown in FIG. By connecting the pipes to each other, a frame having high rigidity as a whole is formed.
The length and the number of connected beam pipes can be arbitrarily set according to the width and the number of the housings 110.
[0029]
Further, as shown in FIG. 4 (a), a fixed beam member 43 made of a steel square pipe or a square bar is installed between the base ends of the two sets of beam pipes 38 and 41 via a coupling 44. Have been. The length of the fixed beam member 43 is determined according to the distance between the support pipes 34 (35) and 36 (37), in other words, the total width of the plurality of housings 110. The fixed beam 43 is fixed to the upper surface of the housing 110 by bolts or the like (not shown), and a plurality of housings 110 are connected to the beam pipes 38 and 41 (indirectly to the support pipes 34 to 37). Has the effect of securely fixing the
Further, the fixed beam member 43 is connected to the beam pipes 38 to 41 at a plurality of locations by a coupling 47 and a connecting member 49.
[0030]
According to this embodiment, the strength of the entire frame can be further increased by the brace members 46, and the fixed beam members 43 are firmly supported by the connecting members 49, and as a result, vertical vibration of the housing 110 is suppressed. can do.
Note that, also in the present embodiment, the damping effect may be enhanced by using the cushioning materials 32 and 33 as shown in FIGS.
[0031]
FIG. 5 shows a fifth embodiment of the present invention. In this embodiment, instead of the connecting member 49 in the fourth embodiment, the beam pipes 39 and 40 and the fixed beam member 43 are connected by a connecting member 70 made of a rigid body having two arm bars 71 extending in an oblique direction. It was done. The coupling 47 is used to fix the connecting member 70 to the beam pipes 39 and 40, and the substrate 72 of the arm member 71 is fixed to the fixing beam 43 by bolting.
The operation of this embodiment is almost the same as that of the fourth embodiment, but has an advantage that the arm 71 works effectively against the compressive load and the tensile load in the horizontal direction and the vertical direction.
[0032]
【The invention's effect】
As described above, according to the present invention, since the main constituent members of the earthquake-resistant frame are formed of cylindrical pipe members, weight reduction and transportation, installation work can be facilitated, and manufacturing costs and construction costs are reduced as compared with the conventional case. It can be greatly reduced.
In addition, there is no problem in introducing the optical fiber cable into the housing, and it is possible to prevent an increase in transmission loss and damage to the cable.
In particular, the present invention is most suitable for use in securely and appropriately holding and fixing a relatively lightweight enclosure such as a rack at low cost.
[Brief description of the drawings]
FIG. 1 is a view showing a first embodiment of the present invention, wherein (a) is a front view and (b) is a side view of a main part.
FIG. 2 is a front view showing a second embodiment of the present invention.
FIG. 3 is a front view showing a third embodiment of the present invention.
FIG. 4 is a view showing a fourth embodiment of the present invention, wherein (a) is a front view and (b) is a side view.
FIG. 5 is a front view showing a fifth embodiment of the present invention.
FIG. 6 is a perspective view showing a conventional technique.
[Explanation of symbols]
11, 11A, 11B, 11C Stands 21, 45 Fixed bases 22, 23, 34, 35, 36, 37 Support pipes 24, 25, 38, 39, 40, 41 Beam pipes 22a, 23a, 24a, 24b, 25a, 25b Flanges 26, 48 Connection frames 27, 31, 44, 47 Couplings 28, 29, 43 Fixed beam members 30 Connection plates 32, 33 Buffer materials 42 Sleeves 46 Brace members 49 Connection members 100, 110 Housing F Floor surface

Claims (4)

被保護機器を収容した筐体をその周囲から保持、固定する耐震フレームにおいて、
前記筐体の周囲4箇所に立設、配置され、かつ下端部が架台に固定された支柱パイプと、
筐体の前後においてそれぞれ筐体の左右両側に配置された支柱パイプの先端部相互間に架設される梁パイプと、
筐体の前後の支柱パイプ相互間、及び、梁パイプ相互間に架設される連結フレームと、
前記支柱パイプまたは梁パイプに固定されて筐体を保持する固定梁材とを備え、
前記支柱パイプ及び梁パイプを、ほぼ円筒状で高剛性のパイプ材により形成したことを特徴とする耐震フレーム。
In an earthquake-resistant frame that holds and fixes the housing containing the protected equipment from around
A support pipe that is erected and arranged at four places around the housing, and whose lower end is fixed to a gantry;
Beam pipes to be installed between the front ends of the support pipes arranged on the left and right sides of the housing before and after the housing,
Between the support pipes before and after the housing, and a connection frame erected between the beam pipes,
A fixed beam material fixed to the support pipe or the beam pipe to hold the housing,
An earthquake-resistant frame, wherein the support pipe and the beam pipe are formed of a substantially cylindrical, high-rigidity pipe material.
請求項1記載の耐震フレームにおいて、
固定梁材と筐体の上面との間に、緩衝材を介在させたことを特徴とする耐震フレーム。
The earthquake-resistant frame according to claim 1,
An anti-seismic frame characterized by interposing a cushioning material between a fixed beam member and an upper surface of a housing.
請求項1または2に記載した耐震フレームにおいて、
複数台並置された筐体群の左右両側方に、筐体に当接する緩衝材を配置したことを特徴とする耐震フレーム。
The earthquake-resistant frame according to claim 1 or 2,
An anti-seismic frame comprising a plurality of juxtaposed housing groups, on both left and right sides of which a cushioning material is provided for contacting the housing.
請求項1,2または3に記載した耐震フレームにおいて、
支柱パイプと梁パイプとを、筋交い部材により連結したことを特徴とする耐震フレーム。
The earthquake-resistant frame according to claim 1, 2, or 3,
A quake-resistant frame, wherein a support pipe and a beam pipe are connected by a brace member.
JP2002189429A 2002-06-28 2002-06-28 Seismic frame Expired - Lifetime JP4169538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189429A JP4169538B2 (en) 2002-06-28 2002-06-28 Seismic frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189429A JP4169538B2 (en) 2002-06-28 2002-06-28 Seismic frame

Publications (2)

Publication Number Publication Date
JP2004028297A true JP2004028297A (en) 2004-01-29
JP4169538B2 JP4169538B2 (en) 2008-10-22

Family

ID=31183857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189429A Expired - Lifetime JP4169538B2 (en) 2002-06-28 2002-06-28 Seismic frame

Country Status (1)

Country Link
JP (1) JP4169538B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107487A (en) * 2012-11-29 2014-06-09 Center Peer Corp Rack and reinforcement frame
KR101664986B1 (en) * 2016-02-17 2016-10-11 이승철 Distribution board for earthquake-proof
JP2019198818A (en) * 2018-05-16 2019-11-21 株式会社アドバン理研 Gas manufacturing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107487A (en) * 2012-11-29 2014-06-09 Center Peer Corp Rack and reinforcement frame
KR101664986B1 (en) * 2016-02-17 2016-10-11 이승철 Distribution board for earthquake-proof
JP2019198818A (en) * 2018-05-16 2019-11-21 株式会社アドバン理研 Gas manufacturing apparatus
JP7051578B2 (en) 2018-05-16 2022-04-11 株式会社アドバン理研 Gas production equipment

Also Published As

Publication number Publication date
JP4169538B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JPH0715158A (en) Vibration-proof frame for electronic equipment
KR101759163B1 (en) Vibration endurable cable tray structure
KR101774285B1 (en) Seismic isolating device
JP2015144276A (en) Information technology device and relevant portable information technology hosting center
KR101757664B1 (en) Switchboard equipped with earthquake-resistance frame and the method of earthquake-resistance switchboard
KR101795672B1 (en) A power supplying apparatus with earthquake-proof apparatus
KR20190075265A (en) Seismic Coupler of Thread Bolt
JP2004028297A (en) Earthquake resistant frame
KR20120058283A (en) Isolation stand
KR102138606B1 (en) Damping device having anti-buckling function
JP2001173408A (en) Turbine building structure
KR102267935B1 (en) Tower crane
KR102213521B1 (en) Earthquake-proof device
JP2016101020A (en) Seismic isolator for switch board and construction method of switch board
JP2007159295A (en) Rotary rack for electronic apparatus, and its using method
KR102056861B1 (en) Vibration proof plate assembly for shock absorbing
KR101719128B1 (en) Earthquake-proof type cable tray and duct system of wire base for earthquake-proof design
KR101099754B1 (en) Clble tray
KR20180028722A (en) Pipe supporting tool for earthquake-proof construction
JP2002338176A (en) Protective implement of vibration isolation body for hoisting machine and its using method
CN216086105U (en) Electric automatization engineering construction private cable frame
KR102591557B1 (en) Apparatus supporting cable tray for eaarthquake resistant
JPH0365913B2 (en)
JP3700127B2 (en) Horizontal displacement restraint jig for seismic isolation devices
CN216110107U (en) Foundation ditch protector that construction used

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4169538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140815

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term