JP2004027323A - Electrolytic apparatus for producing sodium hypochlorite - Google Patents

Electrolytic apparatus for producing sodium hypochlorite Download PDF

Info

Publication number
JP2004027323A
JP2004027323A JP2002188581A JP2002188581A JP2004027323A JP 2004027323 A JP2004027323 A JP 2004027323A JP 2002188581 A JP2002188581 A JP 2002188581A JP 2002188581 A JP2002188581 A JP 2002188581A JP 2004027323 A JP2004027323 A JP 2004027323A
Authority
JP
Japan
Prior art keywords
catalyst
sodium hypochlorite
electrolytic cell
electrolytic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002188581A
Other languages
Japanese (ja)
Inventor
Masato Kamata
鎌田 眞人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Engineering Co Ltd
Original Assignee
Asahi Glass Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Engineering Co Ltd filed Critical Asahi Glass Engineering Co Ltd
Priority to JP2002188581A priority Critical patent/JP2004027323A/en
Publication of JP2004027323A publication Critical patent/JP2004027323A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic apparatus for producing sodium hypochlorite whose installation construction can be easily performed, and whose installation locations are not restricted by eliminating the need of exhausting gaseous hydrogen. <P>SOLUTION: An electrolyte 2 obtained by adding high concentration salt water to city water is stored in an electrolytic vessel 1. The center part of a cover body 7 is provided with a protrusive cylindrical passage 9, and the upper end of the passage 9 is provided with a catalyst vessel 11. The catalyst vessel 11 communicates with the electrolytic cell 1 through the passage 9. A recessed part 13 is peripherally formed on the outer circumference at the side part of the catalyst vessel 11. The recessed part 13 is provided with a communication hole 15 communicating with the inside. Porous ceramic is peripherally embedded in the recessed part 13. A catalyst chamber 18 filled with a catalyst 19 is formed inside the catalyst vessel 11. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は電解次亜塩素酸ナトリウム生成装置に係わり、特に水素ガスを排気する必要を無くすることで、設置工事が容易で設置場所による制限を受け難い電解次亜塩素酸ナトリウム生成装置に関する。
【0002】
【従来の技術】
従来、水道水等の原水に高濃度の食塩水を添加した被電解溶液を電気分解し、次亜塩素酸ナトリウムを含んだ溶液を生成する電解次亜塩素酸ナトリウム生成装置が知られている。この電解次亜塩素酸ナトリウム生成装置は、主として被電解溶液の入れられる電解槽、電気分解に必要な直流電源を供給する電源装置、原水に高濃度の食塩水を添加する高濃度食塩添加装置及び配管部から構成される。
【0003】
【発明が解決しようとする課題】
ところで、電解槽では、電気分解によって陰極から水素ガスが発生する。この水素ガスの発生量は食品や医療用等業務用の電解次亜塩素酸ナトリウム生成装置の場合には比較的大きくなる。このため、従来は、電解槽で発生した水素ガスを空気中に十分量希釈させるための強制排気装置を別に配設していた。
【0004】
また、この際には、強制排気装置のための配管を屋外まで施工する工事も必要となっていた。
更に、設置場所によっては屋外への配管施工ができなく、電解次亜塩素酸ナトリウム生成装置の設置が無理な場合もあった。
【0005】
本発明はこのような従来の課題に鑑みてなされたもので、水素ガスを排気する必要を無くすることで、設置工事が容易で設置場所による制限を受け難い電解次亜塩素酸ナトリウム生成装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
このため本発明(請求項1)は、食塩水を電解槽にて電解して次亜塩素酸ナトリウムを生成させる電解次亜塩素酸ナトリウム生成装置において、電解に伴い発生する水素を酸素と反応させて水を生成させる触媒が充填された触媒容器と、該触媒容器に酸素又は空気を供給する手段とを備え、上記触媒容器と電解槽とが連結されてなることを特徴とする。
【0007】
触媒により、電気分解に伴い発生した水素ガスと酸素ガスを再結合させ水を生成させる。この際には、酸素ガスの不足分を補うため、酸素又は空気を触媒容器内に供給する。このことにより、水素ガスの反応率は上昇する。
以上により、水素ガスを空気中に希釈させる設備が不要となる。また、強制排気装置に付帯される配管を屋外まで施工する工事も不要となり、設置工事も簡便とすることができる。
【0008】
また、本発明(請求項2)は、上記触媒容器で生成した水を電解槽内に戻す手段を備え、上記触媒容器と上記水を電解槽内に戻す手段とが電解槽の上部に一体化して設けられてなることを特徴とする。
【0009】
触媒容器で生成した水を電解槽内に戻すことで、設備及び設置工事を簡素化することができる。生成された水を電解槽内に戻す手段を電解槽の上部に設けたことで、触媒容器で生成された水は電解槽に向けて自然落下される。
【0010】
更に、本発明(請求項3)は、高濃度食塩水の貯留槽、高濃度食塩水の貯留槽より電解槽へ食塩水を供給する食塩水供給手段、及び電解槽へ水を供給する水供給手段を備えて構成した。
【0011】
更に、本発明(請求項4)は、上記触媒容器が気孔フィルタを備えてなり、該気孔フィルタにより上記触媒容器内部が外気と連通されてなることを特徴とする。
【0012】
気孔フィルタは、例えば多孔質セラミックス層等である。通気性を確保しつつ防爆の安全性を一層高めることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について説明する。本発明の第1実施形態の構成図を図1に示す。図1において、電解槽1内には水道水の原水に対し高濃度食塩水が添加された被電解溶液2が貯留されている。この電解槽1内には、図示しない直流電源のマイナス端子に接続された陰極3及びプラス端子に接続された陽極5が配設されている。
【0014】
電解槽1の上部には蓋体7が被されている。そして、この蓋体7の中央部には円筒状の通路9が突設され、通路9の上端には触媒容器11が配設されている。触媒容器11は、通路9を経て電解槽1と連通されている。触媒容器11の側部外周には凹部13が周状に形成され、この凹部13には内部と連通する連通孔15が複数箇所に設けられている。
【0015】
そして、凹部13には多孔質セラミックス14が周状に埋設されている。また、触媒容器11の上部には、水素ガスの残存性を測定するためにガス検知栓17が設けられている。触媒容器11の内部で、かつ連通孔15の上方には触媒室18が形成され、この触媒室18内部には触媒19が充填されている。触媒19としてはパラジウム触媒体を用いるのが好ましい。電解電流値1Aあたりの触媒の充填量は0.3〜30gの範囲が望ましく、1〜10gの範囲が特に望ましい。
【0016】
更に、通路9の側部には、空気供給ポンプ25からの配管27が接続され、空気が触媒容器11内に供給されるようになっている。
かかる構成において、電気分解が起きると、陰極3からは水素ガス21が、陽極5からは酸素ガス23が発生する。水素ガス21及び酸素ガス23は軽いので、触媒容器11内に移動し、触媒19に接触する。
【0017】
水素ガス21は、触媒19に吸着され、酸素ガスと接触して水を生成し、安定な水分子となってパラジウム触媒体19から離脱する。触媒19の表面から離れた水分子は凝縮して水24となり電解槽1内に戻る。触媒から溶出等があるおそれがあり、この溶出物が生成水中に混入するのを嫌う場合は、水を電解槽に戻さず、別途装置外に排出する排水管路を設けてもよい。
【0018】
触媒19がパラジウム触媒である場合は、アルミニウム又はアルミナを主成分とし、シリカ、酸化チタンなどを少量加え、焼結させたものを担体とし、パラジウムを付着させたものが望ましい。担体は、表面積が大きい方が有効であるが、ハンドリング等のことも考慮すると円柱状又は球状とすることが望ましい。担体としては表面積が大きいことから、また、多孔質体を用いるのが望ましい。
【0019】
更に、触媒表面が湿潤してしまうと、触媒能力が低下するので担体は撥水性を持っていることが望ましく、撥水性が2/20粒以下であることが望ましい。ここでの撥水性は20粒の円柱状又は球状の担体を10分間水中に浸漬し、このうち湿潤した担体の数を計測した値である。撥水性が2/20粒以下であるとは、試験した20個の担体のうち、湿潤した担体が2個以下であったことを示す。
【0020】
更に、触媒室18が触媒19周辺の凝集水を吸水させる機構を持つことが望ましく、触媒室18は多孔質セラミックス層等で形成されることが望ましい。
なお、触媒反応によって放出される熱エネルギーは、触媒19あるいは周辺の充填物によって拡散されるため、反応は定常的に安定して進行する。
【0021】
以上により、電解槽1で発生した水素ガス21を空気中に希釈させる設備が不要となる。また、強制排気装置に付帯される配管を屋外まで施工する工事も不要となり、設置工事も簡便とすることができる。
本発明においては、陽極反応は式1の反応のみであるが、陰極反応は式2の反応と、式3の反応が発生する。
【0022】
【化1】
O + e → OH + 1/2H・・・・式1
O → 2H + 1/2O + 2e・・・式2
2Cl → Cl + 2e− ・・・・・・・・・式3
【0023】
したがって、発生する水素を完全に反応させて水にするためには、別途、酸素を補う必要がある。
このため、酸素ガスの不足分を補うため、空気供給ポンプ25により空気を触媒室18に供給することとするのが望ましい。但し、好ましくは、純酸素を送り込むのが望ましい。このことにより、水素ガスの分解効率は上昇する。
【0024】
次に、本発明の第2実施形態について説明する。
本発明の第2実施形態の全体構成図を図2に示す。なお、図1と同一要素のものについては同一符号を付して説明は省略する。
【0025】
図2において、高濃度塩水貯留部29内には高濃度塩水31が貯留されている。高濃度塩水としては、濃度が5〜28質量%であるものが好ましく、一般的には常温での飽和食塩水(26質量%)が使用される。この高濃度塩水31は、塩水供給ポンプ33により吸引されて原水である水道水32に混入されて電解槽1に供給されるようになっている。
【0026】
そして、電解槽1で電気分解され、生成された次亜塩素酸ナトリウム水溶液は吐出管35により移送されるようになっている。この吐出管35の途中には触媒容器11と連結する気液分離装置34が配設されている。また、この触媒容器11には、空気供給ポンプ25から空気が供給されるようになっている。
【0027】
かかる構成において、電解槽1で発生した水素ガス及び酸素ガスは気液分離装置34で次亜塩素酸ナトリウム溶液と分離され、触媒容器11に送られる。水素ガス及び酸素ガスは触媒容器11内で反応し、水を生成する。
このように、既存の電解次亜塩素酸ナトリウム製造装置に気液分離装置34及び触媒容器11を設ける等の改造工事を行うことによっても本発明の装置が得られる。
【0028】
【実施例】
次に、本電解槽1を用いて具体的に行った試験結果について説明する。
容量20Lの貯水式の電解槽に、図1のように触媒を設置し、以下の条件で電気分解を行った。なお、図1においては、触媒室18での反応をわかりやすく説明するために触媒19を図示したが、その充填の状態は均一であり、図1の通りに配置されているわけではない。
電解条件の設定は、一般的な電解次亜塩素酸ナトリウム生成装置の条件を採用した。
触媒の充填量は、電解電流1Aあたり3.3gとした。
【0029】
【表1】

Figure 2004027323
【0030】
このときの水素ガスの発生量は、1.2L/分である。また、空気供給ポンプ25からの空気供給量は3L/分である。水素ガス濃度は接触燃焼式の可燃性ガス検知器を用いて測定した。測定は、電解を停止させた直後にガス検知栓17を外し、センサー部分を触媒室18内に挿入し測定した。
【0031】
【表2】
Figure 2004027323
【0032】
表1のとおり、触媒容器11を設けることによって水素ガス21が系外に漏洩しないことがわかった。
【0033】
【発明の効果】
以上説明したように本発明によれば、電解液の電気分解に伴い発生する水素ガスと酸素ガスを反応させ水に戻す触媒を備えて構成したので、水素ガスを空気中に希釈させる設備が不要となる。また、強制排気装置に付帯される配管を屋外まで施工する工事も不要となり、設置工事も簡便とすることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の構成図
【図2】本発明の第2実施形態の全体構成図
【符号の説明】
1 電解槽
2 電解液
3 陰極
5 陽極
7 蓋体
9 通路
11 触媒容器
18 触媒室
19 触媒
21 水素ガス
23 酸素ガス
24 水
25 空気供給ポンプ
29 高濃度塩水貯留部
35 吐出管[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolytic sodium hypochlorite generator, and more particularly to an electrolytic sodium hypochlorite generator which is easy to install and hardly restricted by installation locations by eliminating the need to exhaust hydrogen gas.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is known an electrolytic sodium hypochlorite generator that electrolyzes a solution to be electrolyzed by adding a high-concentration saline solution to raw water such as tap water to generate a solution containing sodium hypochlorite. This electrolytic sodium hypochlorite generating apparatus is mainly composed of an electrolytic cell containing a solution to be electrolyzed, a power supply for supplying DC power required for electrolysis, a high-concentration salt adding apparatus for adding high-concentration saline to raw water, and It is composed of a piping section.
[0003]
[Problems to be solved by the invention]
By the way, in the electrolytic cell, hydrogen gas is generated from the cathode by electrolysis. The amount of generated hydrogen gas is relatively large in the case of an electrolytic sodium hypochlorite generator for business use such as food and medical use. For this reason, conventionally, a forced exhaust device for diluting a sufficient amount of hydrogen gas generated in the electrolytic cell into air has been provided.
[0004]
In this case, it was also necessary to construct a pipe for the forced exhaust device to the outside.
In addition, depending on the installation location, there is a case where it is not possible to construct a pipe outdoors and it is impossible to install an electrolytic sodium hypochlorite generator.
[0005]
The present invention has been made in view of such conventional problems, and by eliminating the need to exhaust hydrogen gas, an electrolytic sodium hypochlorite generator that is easy to install and is not easily restricted by the installation location. The purpose is to provide.
[0006]
[Means for Solving the Problems]
For this reason, the present invention (claim 1) provides an electrolytic sodium hypochlorite generating apparatus that generates sodium hypochlorite by electrolyzing a saline solution in an electrolytic cell, by reacting hydrogen generated during electrolysis with oxygen. And a means for supplying oxygen or air to the catalyst container, wherein the catalyst container and the electrolytic cell are connected to each other.
[0007]
The catalyst recombines the hydrogen gas and oxygen gas generated during the electrolysis to produce water. At this time, oxygen or air is supplied into the catalyst container to make up for the shortage of oxygen gas. As a result, the reaction rate of the hydrogen gas increases.
As described above, the equipment for diluting the hydrogen gas into the air becomes unnecessary. In addition, there is no need to construct the piping attached to the forced exhaust device to the outside, and the installation work can be simplified.
[0008]
The present invention (claim 2) further comprises means for returning the water generated in the catalyst container into the electrolytic cell, and the catalyst container and the means for returning the water into the electrolytic cell are integrated into the upper part of the electrolytic cell. It is characterized by being provided.
[0009]
By returning the water generated in the catalyst container to the inside of the electrolytic cell, the equipment and installation work can be simplified. Since the means for returning the generated water to the inside of the electrolytic cell is provided at the upper part of the electrolytic cell, the water generated in the catalyst container falls naturally toward the electrolytic cell.
[0010]
Further, the present invention (claim 3) provides a storage tank for high-concentration saline, a supply means for supplying saline from the storage tank for high-concentration saline to the electrolysis tank, and a water supply for supplying water to the electrolysis tank. Means were provided.
[0011]
Further, the present invention (claim 4) is characterized in that the catalyst container is provided with a pore filter, and the inside of the catalyst container is communicated with outside air by the pore filter.
[0012]
The pore filter is, for example, a porous ceramic layer or the like. Explosion-proof safety can be further enhanced while ensuring air permeability.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. FIG. 1 shows a configuration diagram of the first embodiment of the present invention. In FIG. 1, an electrolytic cell 1 stores an electrolytic solution 2 in which high-concentration saline is added to raw tap water. In the electrolytic cell 1, a cathode 3 connected to a minus terminal of a DC power supply (not shown) and an anode 5 connected to a plus terminal are provided.
[0014]
A lid 7 is covered on the upper part of the electrolytic cell 1. A cylindrical passage 9 protrudes from the center of the lid 7, and a catalyst container 11 is disposed at an upper end of the passage 9. The catalyst container 11 is in communication with the electrolytic cell 1 via the passage 9. A concave portion 13 is formed in the outer periphery of a side portion of the catalyst container 11, and a plurality of communication holes 15 communicating with the inside are formed in the concave portion 13.
[0015]
In the recess 13, a porous ceramic 14 is buried circumferentially. In addition, a gas detection plug 17 is provided at an upper portion of the catalyst container 11 for measuring the residual property of the hydrogen gas. A catalyst chamber 18 is formed inside the catalyst container 11 and above the communication hole 15, and a catalyst 19 is filled in the catalyst chamber 18. As the catalyst 19, it is preferable to use a palladium catalyst. The filling amount of the catalyst per 1 A of the electrolytic current value is preferably in the range of 0.3 to 30 g, and particularly preferably in the range of 1 to 10 g.
[0016]
Furthermore, a pipe 27 from an air supply pump 25 is connected to the side of the passage 9 so that air is supplied into the catalyst container 11.
In this configuration, when electrolysis occurs, hydrogen gas 21 is generated from the cathode 3 and oxygen gas 23 is generated from the anode 5. Since the hydrogen gas 21 and the oxygen gas 23 are light, they move into the catalyst container 11 and come into contact with the catalyst 19.
[0017]
The hydrogen gas 21 is adsorbed by the catalyst 19 and comes into contact with the oxygen gas to generate water, and becomes a stable water molecule and is released from the palladium catalyst body 19. Water molecules separated from the surface of the catalyst 19 condense into water 24 and return to the electrolytic cell 1. If there is a possibility that the catalyst may be eluted from the catalyst, and it is not desirable for the eluted substance to be mixed into the produced water, a drain pipe for separately discharging the water to the outside of the apparatus without returning the water to the electrolytic tank may be provided.
[0018]
In the case where the catalyst 19 is a palladium catalyst, it is preferable that the carrier is a carrier containing aluminum or alumina as a main component, a small amount of silica, titanium oxide, and the like added and sintered as a carrier, and palladium adhered thereto. It is more effective for the carrier to have a large surface area, but it is desirable that the carrier be cylindrical or spherical in consideration of handling and the like. Since the carrier has a large surface area, it is desirable to use a porous body.
[0019]
Further, when the surface of the catalyst becomes wet, the catalytic ability is reduced. Therefore, the carrier desirably has water repellency, and the water repellency is preferably 2/20 or less. Here, the water repellency is a value obtained by immersing 20 columnar or spherical carriers in water for 10 minutes and measuring the number of wet carriers. A water repellency of not more than 2/20 particles indicates that out of the 20 tested carriers, no more than 2 wet carriers were observed.
[0020]
Further, the catalyst chamber 18 preferably has a mechanism for absorbing coagulated water around the catalyst 19, and the catalyst chamber 18 is preferably formed of a porous ceramic layer or the like.
The thermal energy released by the catalytic reaction is diffused by the catalyst 19 or the surrounding packing, so that the reaction constantly and stably proceeds.
[0021]
As described above, the equipment for diluting the hydrogen gas 21 generated in the electrolytic cell 1 into the air becomes unnecessary. In addition, there is no need to construct the piping attached to the forced exhaust device to the outside, and the installation work can be simplified.
In the present invention, the anodic reaction is only the reaction of the formula 1, whereas the cathodic reaction is a reaction of the formula 2 and a reaction of the formula 3.
[0022]
Embedded image
H 2 O + e → OH + 1 / 2H 2 ··· Formula 1
H 2 O → 2H + + 1 / 2O 2 + 2e - ··· Formula 2
2Cl → Cl 2 + 2e Equation 3
[0023]
Therefore, it is necessary to supplement oxygen separately in order to completely react the generated hydrogen with water.
Therefore, it is desirable to supply air to the catalyst chamber 18 by the air supply pump 25 in order to compensate for the shortage of oxygen gas. However, it is preferable to feed pure oxygen. As a result, the decomposition efficiency of hydrogen gas increases.
[0024]
Next, a second embodiment of the present invention will be described.
FIG. 2 shows an overall configuration diagram of the second embodiment of the present invention. The same elements as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
[0025]
In FIG. 2, high-concentration salt water 31 is stored in a high-concentration salt water storage unit 29. As the high-concentration salt water, one having a concentration of 5 to 28% by mass is preferable, and a saturated saline solution (26% by mass) at room temperature is generally used. The high-concentration salt water 31 is sucked by a salt water supply pump 33, mixed with tap water 32 as raw water, and supplied to the electrolytic cell 1.
[0026]
The aqueous solution of sodium hypochlorite generated by electrolysis in the electrolytic cell 1 is transported by a discharge pipe 35. A gas-liquid separator 34 connected to the catalyst container 11 is provided in the middle of the discharge pipe 35. In addition, air is supplied to the catalyst container 11 from an air supply pump 25.
[0027]
In such a configuration, the hydrogen gas and the oxygen gas generated in the electrolytic cell 1 are separated from the sodium hypochlorite solution by the gas-liquid separator 34 and sent to the catalyst container 11. The hydrogen gas and the oxygen gas react in the catalyst container 11 to generate water.
As described above, the apparatus of the present invention can also be obtained by performing remodeling work such as providing the gas-liquid separator 34 and the catalyst container 11 on the existing electrolytic sodium hypochlorite production apparatus.
[0028]
【Example】
Next, test results specifically performed using the present electrolytic cell 1 will be described.
The catalyst was installed in a water storage type electrolytic cell having a capacity of 20 L as shown in FIG. 1, and electrolysis was performed under the following conditions. Although the catalyst 19 is illustrated in FIG. 1 for easy understanding of the reaction in the catalyst chamber 18, the state of filling is uniform, and the catalyst 19 is not arranged as shown in FIG. 1.
For the setting of the electrolysis conditions, the conditions of a general electrolytic sodium hypochlorite generator were adopted.
The filling amount of the catalyst was 3.3 g per 1 A of electrolytic current.
[0029]
[Table 1]
Figure 2004027323
[0030]
The amount of hydrogen gas generated at this time is 1.2 L / min. The amount of air supplied from the air supply pump 25 is 3 L / min. The hydrogen gas concentration was measured using a combustible gas detector of the contact combustion type. Immediately after the electrolysis was stopped, the gas detection plug 17 was removed, and the sensor was inserted into the catalyst chamber 18 for measurement.
[0031]
[Table 2]
Figure 2004027323
[0032]
As shown in Table 1, it was found that the provision of the catalyst container 11 prevented the hydrogen gas 21 from leaking out of the system.
[0033]
【The invention's effect】
As described above, according to the present invention, a catalyst for reacting hydrogen gas generated by electrolysis of an electrolytic solution with oxygen gas and returning it to water is provided, so that equipment for diluting hydrogen gas into air is unnecessary. It becomes. In addition, there is no need to construct the piping attached to the forced exhaust device to the outside, and the installation work can be simplified.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment of the present invention. FIG. 2 is an overall configuration diagram of a second embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Electrolyte 3 Cathode 5 Anode 7 Lid 9 Passage 11 Catalyst container 18 Catalyst chamber 19 Catalyst 21 Hydrogen gas 23 Oxygen gas 24 Water 25 Air supply pump 29 High concentration salt water storage section 35 Discharge pipe

Claims (4)

食塩水を電解槽にて電解して次亜塩素酸ナトリウムを生成させる電解次亜塩素酸ナトリウム生成装置において、電解に伴い発生する水素を酸素と反応させて水を生成させる触媒が充填された触媒容器と、該触媒容器に酸素又は空気を供給する手段とを備え、上記触媒容器と電解槽とが連結されてなることを特徴とする電解次亜塩素酸ナトリウム生成装置。In an electrolytic sodium hypochlorite generator that generates sodium hypochlorite by electrolyzing saline solution in an electrolytic cell, a catalyst filled with a catalyst that reacts hydrogen generated during electrolysis with oxygen to generate water An electrolytic sodium hypochlorite generator, comprising: a container; and means for supplying oxygen or air to the catalyst container, wherein the catalyst container and the electrolytic cell are connected. 上記触媒容器で生成した水を電解槽内に戻す手段を備え、上記触媒容器と上記水を電解槽内に戻す手段とが電解槽の上部に一体化して設けられてなる請求項1記載の電解次亜塩素酸ナトリウム生成装置。2. The electrolysis apparatus according to claim 1, further comprising means for returning water generated in the catalyst container into the electrolytic cell, wherein the catalyst container and means for returning the water into the electrolytic cell are integrally provided on an upper part of the electrolytic cell. Sodium hypochlorite generator. 高濃度食塩水の貯留槽、高濃度食塩水の貯留槽より電解槽へ食塩水を供給する食塩水供給手段、及び電解槽へ水を供給する水供給手段を備える請求項1又は2記載の電解次亜塩素酸ナトリウム生成装置。The electrolysis according to claim 1 or 2, further comprising a storage tank for a high-concentration saline solution, a saline solution supply means for supplying a saline solution from the high-concentration saline solution storage tank to the electrolytic cell, and a water supply means for supplying water to the electrolytic cell. Sodium hypochlorite generator. 上記触媒容器が気孔フィルタを備えてなり、該気孔フィルタにより上記触媒容器内部が外気と連通されてなる請求項1、2又は3記載の電解次亜塩素酸ナトリウム生成装置。The electrolytic sodium hypochlorite generator according to claim 1, 2 or 3, wherein the catalyst container includes a pore filter, and the inside of the catalyst container is communicated with outside air by the pore filter.
JP2002188581A 2002-06-27 2002-06-27 Electrolytic apparatus for producing sodium hypochlorite Pending JP2004027323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188581A JP2004027323A (en) 2002-06-27 2002-06-27 Electrolytic apparatus for producing sodium hypochlorite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188581A JP2004027323A (en) 2002-06-27 2002-06-27 Electrolytic apparatus for producing sodium hypochlorite

Publications (1)

Publication Number Publication Date
JP2004027323A true JP2004027323A (en) 2004-01-29

Family

ID=31183294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188581A Pending JP2004027323A (en) 2002-06-27 2002-06-27 Electrolytic apparatus for producing sodium hypochlorite

Country Status (1)

Country Link
JP (1) JP2004027323A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296213B1 (en) * 2012-08-28 2013-08-13 (주) 테크윈 Electrolysis apparatus with removal device for hydrogen
KR101532028B1 (en) * 2013-05-31 2015-06-29 삼성중공업 주식회사 Hydrogen byproduct treatment device and ship ballast water treatment device having hydrogen byproduct treatment device
WO2015199358A1 (en) * 2014-06-26 2015-12-30 (주)테크윈 Ballast water treatment system
CN106148994A (en) * 2016-08-29 2016-11-23 潍坊和创环保设备有限公司 Sodium hypochlorite produces and uses generator main frame
US10367055B2 (en) 2014-03-26 2019-07-30 Tsinghua University Epitaxial structure having nanotube film free of carbon nanotubes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296213B1 (en) * 2012-08-28 2013-08-13 (주) 테크윈 Electrolysis apparatus with removal device for hydrogen
KR101532028B1 (en) * 2013-05-31 2015-06-29 삼성중공업 주식회사 Hydrogen byproduct treatment device and ship ballast water treatment device having hydrogen byproduct treatment device
US10367055B2 (en) 2014-03-26 2019-07-30 Tsinghua University Epitaxial structure having nanotube film free of carbon nanotubes
WO2015199358A1 (en) * 2014-06-26 2015-12-30 (주)테크윈 Ballast water treatment system
KR20160001786A (en) * 2014-06-26 2016-01-07 (주) 테크윈 A ballast water treatment system
KR101600037B1 (en) 2014-06-26 2016-03-07 (주)테크윈 A ballast water treatment system
CN106660625A (en) * 2014-06-26 2017-05-10 技术获胜者有限公司 Ballast water treatment system
US10322788B2 (en) 2014-06-26 2019-06-18 Techwin Co, Ltd. Ballast water treatment system
CN106148994A (en) * 2016-08-29 2016-11-23 潍坊和创环保设备有限公司 Sodium hypochlorite produces and uses generator main frame

Similar Documents

Publication Publication Date Title
JP5736037B2 (en) Portable hydrogen-rich water production equipment
CN1441857A (en) Apparatus for generating fluorine gas
JP2000226682A (en) Method and device for electrochemical processing
JP2007211268A (en) Water-vapor electrolysis apparatus
KR101361651B1 (en) A device using electrolyzer with a bipolar membrane and the method of producing hypochlorite solution and hydrogen gas thereby
JP2007522941A (en) Gas-driven electrolytic cell
JP2009537289A (en) Small ozone generator for water purification and its use
JP6869188B2 (en) Reduction water production equipment and reduction water production method
CN111115916A (en) Device and method for treating fracturing flow-back fluid of oil and gas field
JP2004027323A (en) Electrolytic apparatus for producing sodium hypochlorite
CN100560510C (en) Photoelectrochemistrmultiple multiple phase catalytic oxidation device for treatment of water
CN209411983U (en) A kind of oil-gas field fracturing returns the wastewater treatment equipment of drain
TW200519231A (en) Method for the electrolysis of an aqueous solution of hydrogen chloride or alkali metal chloride
JP2603760B2 (en) De-cyanation apparatus and method for removing cyanide from wastewater
KR101387800B1 (en) Bucket with nitrogen chamber and oxygen chamber
JP2006194230A (en) Internal combustion engine and engine body using energy by electrolysis of water
JPH022825A (en) Electrolytic ozonizer having waste gas decomposing function and method for decomposing waste gas with the same ozonizer
RU82297U1 (en) PLASMODYNAMIC REACTOR FOR THE PROCESSING OF LIQUID ORGANIC WASTE
US4714533A (en) Electrolyser for highly-active tritiated water
CN214881851U (en) PEM low-voltage electrolysis ozone generating device
JPH0627654Y2 (en) Water electrolysis device for ozone gas generation
KR100663256B1 (en) An onside type generating device for hydrogen peroxide and providing device for hydrogen peroxide
JP2000191307A (en) Reduction of nitrous oxide gas and electrolytic cell
JP3906732B2 (en) Electrolyzed water generator
RU131727U1 (en) ELECTROLYZER FOR PRODUCING FLUORINE