JP2004027289A - Self fluxing alloy thermal spray material containing ceramic particle - Google Patents

Self fluxing alloy thermal spray material containing ceramic particle Download PDF

Info

Publication number
JP2004027289A
JP2004027289A JP2002185170A JP2002185170A JP2004027289A JP 2004027289 A JP2004027289 A JP 2004027289A JP 2002185170 A JP2002185170 A JP 2002185170A JP 2002185170 A JP2002185170 A JP 2002185170A JP 2004027289 A JP2004027289 A JP 2004027289A
Authority
JP
Japan
Prior art keywords
fluxing alloy
self
powder
ceramic
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002185170A
Other languages
Japanese (ja)
Inventor
Shuhei Nakahama
中浜 修平
Hiroshi Nagasaka
長坂 浩志
Kenichi Sugiyama
杉山 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002185170A priority Critical patent/JP2004027289A/en
Priority to AU2003244194A priority patent/AU2003244194A1/en
Priority to PCT/JP2003/008042 priority patent/WO2004001090A1/en
Priority to CNA03818365XA priority patent/CN1671878A/en
Publication of JP2004027289A publication Critical patent/JP2004027289A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Hydraulic Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal sprayed layer excellent in cavitation erosion resistance and slurry erosion resistance. <P>SOLUTION: A self fluxing alloy thermal spray material containing a ceramic particle is made by mixing and flocculating at least one of ceramic powder 11 selected from the group consisting of carbide, oxide, nitride or boride, and at least one of self fluxing alloy powder 12 selected from the group consisting of nickel base self fluxing alloy powder, cobalt base self fluxing alloy powder or iron base self fluxing alloy powder, and the self fluxing alloy thermal spray material is made by the granular object 10 which has a bigger average secondary particle size than an average primary particle size of the above powder, wherein the average secondary particle size is 15-250 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、セラミックス粒子含有自溶性合金溶射材料に関し、詳細には、ポンプ、水車及びタービンなどのターボ機械、特に金属基材の表面に耐キャビテーションエロージョン性及び耐スラリーエロージョン性などが要求される羽根車、ケーシング、ブレード及び軸受などの耐摩耗性が要求される部材等の金属基材の表面に耐摩耗性コーティング層を施すのに適したセラミックス含有自溶性合金溶射材料、そのような溶射材料で溶射処理された羽根車及びその羽根車を有する流体機械に関するものである。
【0002】
【従来技術】
ポンプ及び水車などのターボ機械では、流水中への土砂の混入によるスラリーエロージョン、部分負荷運転によるキャビテーションエロージョンの発生などによる材料の損傷が問題となる。特に、羽根車、ケーシングなどでは、キャビテーションエロージョンと同時に、スラリーエロージョンが重畳して発生するため、高靭性と共に優れた耐スラリーエロージョン性及び耐キャビテーションエロージョン性が要求される。羽根車、ケーシングでは、損傷が起こると予測される部位に予め耐摩耗性の溶射被膜を施工することができる。また、一定の稼動後に、スラリーエロージョン、キャビテーションエロージョンで損傷した箇所を溶射による補修施工することで、ポンプ、水車など機器の長寿命化を図ることができる。
【0003】
溶射法は、数多くの手法が提案され、表面改質技術の重要な位置を占めている。その中でも溶射溶融法は、自溶性合金粉末をフレーム溶射法などので溶射した被膜を溶融状態に加熱して、皮膜中の気孔が減少し、更に溶射粒子間の結合と基材との密着強さという点で、最も有効な溶射法であるため、耐摩耗性が要求される部材に広く適用されている。土砂摩耗が起こる環境で使用される機械部品には、タングステンなどの炭化物粉末と自溶性合金粉末とを混合した溶射粉末による溶射溶融法が一般に適用されている。土砂摩耗が起こる機械では、土砂の粒径が0.1mm以上である場合、0.1ミリ〜数ミリ程度の炭化タングステン粒子が使用され、所定の目的を達成している。
【0004】
最近、高速フレーム溶射(HVOF、HVAFなど)による手法で、数ミクロンの炭化物粒子を分散したニッケル(Ni)基合金又はコバルト(Co)基合金溶射膜が耐摩耗部材に適用されている。高速フレーム溶射膜は、水車又はポンプ用羽根車、ケージングなどに適用され、耐スラリーエロージョン性に優れた特性を発揮することが確認されている。しかし、高速フレーム溶射では、数ミクロンオーダの炭化物粒子とNi基又はCo基合金粉末を造粒した粉末、又は造粒した後焼結して粉砕した粉末を原料として、溶射膜を形成する方法である。この方法では部分溶融であるため、溶射層内に微小な空隙が無数存在し、粒子間の密着力が不足している。そのため、高速フレーム溶射膜はキャビテーションエロージョンに対する特性が弱く、キャビテーションが発生する箇所への適用が難しい。
【0005】
水車或いはポンプなどは、キャビテーションエロージョンと同時に、スラリーエロージョンが重畳して起こるため、耐スラリーエロージョン性と同時に、耐キャビテーションエロージョン性にも優れた溶射膜の開発が急務となっいる。自溶性合金溶射膜は溶融状態に加熱するフュ−ジング処理により皮膜中の気孔が減少し、更に溶射粒子間の結合と基材との密着強さが向上するので、この自溶性合金を使用した溶射溶融法は、耐スラリーエロージョン性、耐キャビテーションエロージョン性が要求される部材に広く適用されている。
【0006】
従来の溶射材粉末及びフレーム溶射法による溶射概念図をそれぞれ図1及び図2に示す。土砂摩耗が起こる機械では、土砂の平均粒径が0.1mm以上であるので、セラミックス粉末として粒径が0.1ミリ〜数ミリ程度の炭化タングステン粒子が使用され、所定の目的を達成している。平均粒径が0.1mm以下の比較的小さい砂が混入した河川水中では、平均粒径が60ないし125μmの炭化タングステンを分散した溶射膜が羽根車、ケーシングに適用されている。溶射溶融として用いられる溶射材料には、図1に示されるように、粒径が45μmから125μmである炭化タングステン粉末1と粒径が15μmから125μmである自溶性合金粉末2とを、単に混合した溶射材末粉3が用いられている。そして、フレーム溶射法では、図2に示されるように、溶射材供給ノズル5から炭化タングステン粉末1と自溶性合金粉末2とからなる溶射材粉末3を供給すると共にその供給ノズルから出る溶射材粉末をガスノズル6からの高温の燃焼ガス7で基材Bの表面に吹き付け、自溶性合金の粉末を溶融してその表面に溶射層4として溶着させるとともにセラミックスである炭化タングステン粒子1を溶射層4内に取り込むようにしている。
【0007】
発明者らは、各種粒径の炭化タングステン粉末と自溶性合金粉末とを混合した溶射粉末を用いて、フレーム溶射したところ、粒径が100μm以下であると、炭化タングステン粒子の飛散が起こることを観察した。特に、粒径が60μm以下であると、炭化タングステン粒子の飛散が顕著になり、極端に溶射効率が低下することが判明した。また、発明者らの実験では、炭化タングステン粉末と自溶性合金粉末とを混合させた溶射粉末を用いて、溶射溶融法で作製した溶射材は、炭化タングステンが均一に分散した溶射層を作製することが困難であり、耐キャビテーションエロージョン性も充分な特性が得られていない。
【0008】
【発明が解決しようとする課題】
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、炭化タングステンのようなセラミックスの粉末とニッケル基自溶性合金粉末とをバインダーを介して造粒することで、凝集した平均二次粒径が15〜125μmである粒状体とすることにより、フレーム溶射時、炭化タングステン粉末の飛散を防止し、溶射効率が向上することを見出した。また、粒状体で構成された粉末を用いることにより、溶射層に炭化タングステンが均一に分散した溶射膜を形成できることを確認し、耐スラリーエロージョン性及び耐キャビテーションエロージョン性に優れた溶射層を形成することができることを見出した。
【0009】
したがって、本発明が解決しようとする課題は、各種粒径のセラミックス粉末と自溶性合金粉末とを混合して造粒或いは焼結粉砕することにより粒状体とすることで、溶射処理時における硬質のセラミックス粉末の飛散を少なくした溶射材料を提供することである。
本発明が解決しようとする他の課題は、上記セラミックス粉末と自溶性合金粉末の粒状体の大きさを最適の大きさにすることにより、溶射処理時における硬質のセラミックス粉末の飛散を少なくした溶射材料を提供することである。
本願が解決しようとする別の課題は、上記のような溶射材料を用いて溶射処理された回転部材、その回転部材を備えた流体機械を提供することである。
【0010】
【課題を解決するための手段】
本願の一つの発明によるセラミックス粒子含有自溶性合金溶射材料は、炭化物、酸化物、窒化物又はホウ化物から成る群から選ばれる少なくとも一種類のセラミックス粉末と、ニッケル基自溶性合金粉末、コバルト基自溶性合金又は鉄基自溶性合金粉末から成る群から選ばれる少なくとも一種類の自溶性合金粉末とを混合して凝集し、前記粉末の平均一次粒径よりも大きな平均二次粒径を有する粒状体をつくり、前記粒状体の前記平均二次粒径が15〜250μmであることに特徴を有する。
【0011】
上記セラミックス粒子含有自溶性合金溶射材料において、前記セラミックス粉末の平均一次粒径をR1、前記自溶性合金粉末の平均一次粒径をR2とした場合、R2/R1が20以下であってもよい。また、前記セラミックス粉末及び前記自溶性合金の平均一次粒径が、それぞれ、1〜60μm及び1〜60μmであっても良い。更に、前記セラミックス粉末が炭化タングステン、炭化クロム、炭化チタンから成る群から選択された少なくとも1種類の炭化物粉末であっても良い。
本願の他の発明は、ハブと、前記ハブの周りに円周方向に隔てて取り付けられた複数の翼とを備た羽根車において、前記羽根車の表面の少なくとも一部が、上記のセラミックス粒子含有自溶性合金溶射材料で溶射処理されて構成されている。
本願の別の発明は、ハブと、前記ハブの周りに円周方向に隔てて取り付けられた複数の翼とを備た羽根車と、前記羽根車を回転可能に収容する室を画定するケーシングと、を備えた流体機械において、前記羽根車の表面の少なくとも一部及び/又は前記ケーシングの内面の少なくとも一部が、前記のセラミックス粒子含有自溶性合金溶射材料で溶射処理されて構成されている。
【0012】
【実施例】
以下、本発明の実施形態について説明する。
本実施形態においては、まず、例えば、炭化タングステン(WC又はWC)、炭化チタン(TiC)、炭化クロム(Cr)のような炭化物であるセラミックス粉末11と、ニッケル基自溶性合金粉末12とをバインダーを介して公知の造粒方法により造粒することで凝集し、図3[A]に示されるような粒状体10にし、この粒状体10によって本実施形態の溶射材料を形成する。WC、WC等のセラミックスの粉末及びニッケル基自溶性合金粉末の平均一次粒径は、いずれも、好ましくは1μmないし60μmの範囲、最も好ましくは5μmないし30μmの範囲である。その理由は、粒径が1μm未満であると溶射時における粒子の酸化が問題になるためである。また、粒径が60μmを超えると造粒化が困難になるからである。また、セラミックス粉末の平均一次粒径をR1、前記自溶性合金粉末の平均一次粒径をR2とした場合、R2/R1が好ましくは0.1以上20以下であり、最も好ましくは0.1以上10以下である。その理由は、R2/R1が20を超えると、図3[B]に示されるように、各自溶性合金の粒子12が微細なセラミック粒子11で被われるため、溶射した時に溶射皮膜内に空隙ができ易くなるためである。また、0.1以上としたのは、セラミックス粒子が上述のように1μmないし60μmの範囲のものを使用する場合に、自溶性合金の実用可能な粒径がセラミックス粒子の径の1/10程度までだからである。
【0013】
セラミックスとしては、上記炭化物に限らず、例えば酸化アルミニュウム(Al)、酸化ジルコニュウム(ZrO)、酸化チタン(TiO)等の酸化物、例えば窒化ボロン(BN)等の窒化物、又は、例えばホウ化チタン(TiB)等のホウ化物であっても良い。更に、上記炭化物、酸化物、窒化物及びホウ化物は、単独で使用されても或いはそれらの任意の幾つかの組合せとして使用されても良い。これら酸化物、窒化物又はホウ化物の平均一次粒径は、前述と同じ範囲でもよい。ニッケル基自溶性合金の例としては、例えば、Ni−B−Si、Ni−P等がある。自溶性(融点の低い自己溶融性)合金としては、上記ニッケル基自溶性合金粉末の他に、例えばCo−B−Si、Co−P等のコバルト基自溶性合金、又は、例えばFeSi、Fe−B−Si、Fe−P等の鉄基自溶性合金でもよい。これらの自溶性合金は単独でも或いはそれらの任意の組合せで使用してもよい。
【0014】
セラミックスの粉末と自溶性合金の粉末を粒状体にする方法としては、前述の公知の造粒方法の他に、それらの粉末を所望の大きさに固めて焼結し、粉砕する方法でも良い。粒状体の平均粒径すなわち平均二次粒径は好ましくは15μmないし250μmの範囲であり、最も好ましくは、45μmないし125μmの範囲である。その理由は、二次粒径が15μm未満であると溶射効率が低下するためであり、二次粒径が250μmを超えると通常のフレーム溶射ガンを使用しての溶射が困難となるからである。
【0015】
[実施例1]
セラミックスの粉末として、平均一次粒径が5μmの炭化タングステン(WC)の粉末を使用し、自溶性合金の一種であるニッケル基合金の粉末として、市販のコルモノイNo.4相当の粉末を使用した。その粉末の平均一次粒径は20μm以下であった。これらの粉末を混合し、公知の造粒方法で平均二次粒径が45ないし125μmの粒状体から成る溶射材料をつくった。
この実施例1による溶射材料及び従来例の混合粉末タイプの溶射材料を、操作型電子顕微鏡で観察した結果を示すと図4の上段に示される顕微鏡写真図のようになる。また、実施例1による溶射材料を使用して溶射処理を行った場合の溶射層及び前記従来の溶射材料を使用して溶射処理を行った場合の溶射層を上記顕微鏡で観察した結果を示すと図4の下段の顕微鏡写真図のようになる。これらの写真図から明らかなように、従来例の溶射層断面は、比較的大きな空隙が多い組織になっている。一方、本発明の溶射層断面は、空隙が少なく、緻密な溶射層になっている。溶射断面の白い箇所が炭化タングステンで、その周辺が自溶性合金のマトリックス相である。従来例の場合、炭化タングステン粒子の大きさが数十から100μmであり、炭化タングステン粒子が不均一に分散している様子が観察される。実施例1による溶射材料では、平均粒径が5μmの炭化タングステンが均一に分散した溶射層が得られていることが分かる。この実施例1による溶射材料の耐キャビテーションエロージョン性は、基材CA6NMよりも4倍以上の特性を示した。
【0016】
[実施例2]
セラミックスの粉末として、平均一次粒径が5μmの炭化タングステン(WC)の粉末を使用し、自溶性合金の一種であるコバルト基合金の粉末として、市販のステライトNo.1相当の粉末を使用した。その粉末の平均一次粒径は20μm以下であった。これらの粉末を混合し、公知の造粒方法で平均二次粒径が45ないし125μmの粒状体からなる溶射材料をつくった。
この実施例2による溶射材料及び従来例のCo基自溶性合金粉末タイプの溶射材料を、操作型電子顕微鏡で観察した結果を示すと図5の上段に示される顕微鏡写真図のようになる。また、実施例2による溶射材料を使用して溶射処理を行った場合の溶射層及び前記従来の溶射材料を使用して溶射処理を行った場合の溶射層を上記顕微鏡で観察した結果を示すと図5の下段の顕微鏡写真図のようになる。
この顕微鏡写真から明らかなように、従来例の溶射層断面は、比較的大きな空隙が多い組織になっている。一方、実施例2による溶射層断面は、空隙が少なく、緻密な溶射層になっている。溶射断面の白い箇所が炭化タングステンで、その周辺が自溶性合金のマトリックス相である。また、従来例の場合、炭化タングステン粒子の大きさが数十から100μmであり、炭化タングステン粒子が不均一に分散している様子が観察される。本発明では、平均粒径が5μmの炭化タングステンが均一に分散した溶射層が得られていることが分かる。この実施例2の溶射材料の耐キャビテーションエロージョン性も、基材CA6NMよりも4倍以上の特性を示した。
【0017】
上記のようにしてつくられたセラミックス粒子含有自溶性合金溶射材料は、フレーム溶射法により基材の表面に溶射され、基材に耐摩耗性の皮膜を形成する。かかる耐摩耗性の皮膜が形成される基材の例としては、ポンプ、水車、コンプレッサーなどの回転機械の部材、より具体的には、耐サンドエロージョン性又は耐スラリーエロージョン性などが要求される羽根車、ケーシング、ブレード、軸受及びシールなどがあげられる。このような基材に耐摩耗性の皮膜を形成することにより、このような基材の耐摩耗性を向上させ、そのような基材を使用した機械、例えば、ポンプ、水車、コンプレッサー等の寿命を延ばすことが可能になる。より具体的には、図6に示されるように、羽根車30は、回転軸を受ける軸穴31が形成されたハブ32と、そのハブ32から半径方向外側に放射上に広がる円板状の主板33と、主板33から軸方向(図6において上下方向)に隔てられた環状の側板34と、主板33と側板34との間において円周方向(軸穴の軸線O−O回りの円周方向)に等間隔に隔てて配置され所望の曲面に沿って湾曲して側板及び主板と一体的に形成された複数の翼35とで構成されていて、主板33、側板34及び翼35により流体の流れる流路36を画定している。流路36の半径方向内側の部分37が入口部となり、半径方向外側の部分38が出口部となる。また、環状の側板34は、円周方向内側の軸方向に伸びる部分34aと、半径方向外側に伸びる部分34bとを有し、軸方向伸長部分34aによって羽根車30の入口39を画定している。このような羽根車30を回転させて流体を送り出す場合、例えば、羽根車を土砂を含む水中で回転させると、水中の土砂の粒子が羽根車30の表面、特に羽根車30内の流路36を画定する主板33の内面41、側板34の内面42及び翼35の両面、すなわち圧力面43、負圧面44に当たってこれを擦り、それらの表面が摩擦により極端に摩耗することになる。
【0018】
そこで、羽根車30の上記流路36を画成する内面41及び42、圧力面43及び負圧面44、入口39の内面45、側板34の外側面46及び主板33の裏面47のうち所望する面、例えば、側板34の外周面46(領域A1)及び主板33,側板34及び翼35によって限定された流路36を画定する表面であって羽根車の外周側の所定の範囲内(図6では半径rの円と半径rの円とで囲まれた範囲内)の領域A2に属する表面に、高速フレーム溶射方式で本発明によるセラミックス粒子含有自溶性合金溶射材料を溶射させる。
【0019】
上記のように高速フレーム溶射方式によりセラミックス粒子含有自溶性合金溶射材料で表面処理された本発明の羽根車30は、水車或いはポンプのような流体機械に使用される。図7において、このような流体機械の一例として立形ポンプ50が断面で示されている。同図において、ポンプ50は、本発明による羽根車30を収容するポンプ室52を画成するケーシング51と、軸線を鉛直にして配置されていて下端に羽根車30が固定された主軸57と、ケーシングの上方に取り付けられていて主軸57をケーシングに関して回転自在に支持する主軸受け58と、ケーシング51と主軸57との間からの流体の漏れを防止するシール装置59と、を備えている。ケーシング51は管状の支持台60の上に公知の方法で固定されている。ケーシング51は、上側の円盤状の端板53と、渦巻き状の出口室55を画成するケーシング本体54と、管状のカバー56とを備えている。カバー56の下端には筒状の吸出し管61が接続されている。
上記ポンプにおいて、主軸37を回転させることによってその下端に固定された羽根車30を回転させると、流体が吸出し管61内で矢印Xで示されるように羽根車の入口39に吸い込まれ、羽根車30の流路36を通って出口38側から半径方向に押し出され、出口室55内に流入する。出口室内の流体は、図示しない出口から吐き出される。なお、ケーシングの内面の少なくとも一部をセラミックス粒子含有自溶性合金溶射材料を用いて表面処理してもよい。
【0020】
【発明の効果】
本発明によれば次のような効果を奏することが可能である。
(イ)溶射施工時におけるセラミックスの粉末の飛散を極力抑えることができセラミックスの溶射効率を向上させることが可能である。
(ロ)溶着皮膜中へセラミックスの粒子を効率良く分散して取り込むことが可能になり、耐キャビテーションエロージョン性及び耐スラリーエロージョン性を向上できる。
【図面の簡単な説明】
【図1】従来のセラミックス粉末と自溶性合金粉末の混合粉末からなる溶射材料の拡大説明図である。
【図2】フレーム溶射法の原理を説明する図である。
【図3】セラミックス粉末と自溶性合金粉末とを粒状体とした本発明の溶射材料の拡大説明図である。
【図4】従来の混合型溶射材と本発明の実施例1の溶射材の実験結果を示す断面図である。
【図5】従来の混合型溶射材と本発明の実施例2の溶射材の実験結果を示す断面図である。
【図6】本発明のセラミックス粒子含有自溶性合金溶射材料で高速フレーム溶射方式で溶射処理された羽根車の一例を示す断面図である。
【図7】図6の羽根車を備えるポンプの断面図である。
【符号の説明】
10 粒状体            11 セラミックス粉末
12 自溶性合金粉末
30 羽根車            32 ハブ
35 翼              36 流路
50 ポンプ(流体機械)      51 ケーシング
[0001]
[Industrial applications]
The present invention relates to a ceramic particle-containing self-fluxing alloy sprayed material, and more particularly, to a turbomachine such as a pump, a water turbine, and a turbine, and in particular, a blade that is required to have cavitation erosion resistance and slurry erosion resistance on the surface of a metal substrate. A ceramic-containing self-fluxing alloy spray material suitable for applying a wear-resistant coating layer on the surface of a metal substrate such as a car, a casing, a blade, a bearing or the like where wear resistance is required. The present invention relates to a sprayed impeller and a fluid machine having the impeller.
[0002]
[Prior art]
In turbo machines such as pumps and water turbines, there is a problem of material erosion due to slurry erosion caused by mixing of earth and sand into running water and cavitation erosion caused by partial load operation. Particularly, in an impeller, a casing, and the like, since slurry erosion is generated simultaneously with cavitation erosion, high toughness and excellent slurry erosion resistance and cavitation erosion resistance are required. In the impeller and casing, a wear-resistant sprayed coating can be applied in advance to a portion where damage is predicted to occur. In addition, after a certain operation, by repairing the portion damaged by the slurry erosion and the cavitation erosion by thermal spraying, it is possible to extend the life of equipment such as a pump and a water wheel.
[0003]
Many methods have been proposed for the thermal spraying method and occupy an important position in the surface modification technology. Among them, the spray melting method heats the self-fluxing alloy powder sprayed film by flame spraying etc. to the molten state, reduces the pores in the film, furthermore, the bond between the sprayed particles and the adhesion strength with the substrate In this respect, since this is the most effective thermal spraying method, it is widely applied to members requiring wear resistance. For mechanical parts used in an environment where earth and sand wear occurs, a thermal spray melting method using a thermal spray powder obtained by mixing a carbide powder such as tungsten and a self-fluxing alloy powder is generally applied. In a machine in which earth and sand wear occurs, when the particle size of the earth and sand is 0.1 mm or more, tungsten carbide particles of about 0.1 mm to several mm are used, thereby achieving a predetermined purpose.
[0004]
Recently, a nickel (Ni) -based alloy or cobalt (Co) -based alloy sprayed film in which carbide particles of several microns are dispersed has been applied to a wear-resistant member by a technique using high-speed flame spraying (HVOF, HVAF, etc.). The high-speed flame sprayed film is applied to a water wheel or an impeller for a pump, caging, and the like, and has been confirmed to exhibit excellent characteristics of slurry erosion resistance. However, in high-speed flame spraying, a method of forming a sprayed film using a powder obtained by granulating carbide particles and a Ni-based or Co-based alloy powder on the order of several microns, or a powder obtained by granulating, sintering and pulverizing is used as a raw material. is there. In this method, since partial melting is performed, numerous voids exist in the sprayed layer, and the adhesion between particles is insufficient. Therefore, the high-speed flame-sprayed film has weak characteristics against cavitation erosion, and is difficult to apply to a location where cavitation occurs.
[0005]
Since slurry erosion occurs simultaneously with cavitation erosion in a water wheel or a pump, there is an urgent need to develop a sprayed coating having excellent erosion resistance as well as slurry erosion resistance. This self-fluxing alloy was used because the self-fluxing alloy spray coating reduces the pores in the coating by fusing treatment of heating to a molten state, and further improves the bonding between the sprayed particles and the adhesion strength to the substrate. The thermal spray melting method is widely applied to members requiring slurry erosion resistance and cavitation erosion resistance.
[0006]
FIGS. 1 and 2 show conceptual views of conventional thermal spraying material powder and thermal spraying by the flame spraying method, respectively. In a machine in which earth and sand wear occurs, since the average particle diameter of earth and sand is 0.1 mm or more, tungsten carbide particles having a particle diameter of about 0.1 mm to several millimeters are used as ceramic powder to achieve a predetermined purpose. I have. In river water mixed with relatively small sand having an average particle diameter of 0.1 mm or less, a sprayed film in which tungsten carbide having an average particle diameter of 60 to 125 μm is dispersed is applied to an impeller and a casing. As shown in FIG. 1, a tungsten carbide powder 1 having a particle size of 45 μm to 125 μm and a self-fluxing alloy powder 2 having a particle size of 15 μm to 125 μm were simply mixed into the thermal spray material used for thermal spray melting. Thermal spray powder 3 is used. In the flame spraying method, as shown in FIG. 2, a spraying material powder 3 composed of a tungsten carbide powder 1 and a self-fluxing alloy powder 2 is supplied from a spraying material supply nozzle 5, and a spraying material powder exiting from the supply nozzle. Is sprayed onto the surface of the base material B with a high-temperature combustion gas 7 from a gas nozzle 6 to melt the self-fluxing alloy powder and fuse it as a sprayed layer 4, and the tungsten carbide particles 1, which are ceramics, in the sprayed layer 4. I try to take in.
[0007]
The inventors of the present invention performed flame spraying using a sprayed powder obtained by mixing tungsten carbide powder having various particle diameters and a self-fluxing alloy powder, and found that when the particle diameter is 100 μm or less, scattering of tungsten carbide particles occurs. Observed. In particular, it has been found that when the particle size is 60 μm or less, the scattering of tungsten carbide particles becomes remarkable, and the thermal spraying efficiency is extremely reduced. Further, in the experiments of the inventors, using a thermal spray powder obtained by mixing a tungsten carbide powder and a self-fluxing alloy powder, a thermal spray material produced by a thermal spray melting method produces a thermal spray layer in which tungsten carbide is uniformly dispersed. However, it is difficult to obtain sufficient cavitation erosion resistance.
[0008]
[Problems to be solved by the invention]
The present inventors have conducted intensive studies to solve the above problems, and as a result, agglomerated average powders by granulating a ceramic powder such as tungsten carbide and a nickel-based self-fluxing alloy powder via a binder. It has been found that by using a granular material having a secondary particle diameter of 15 to 125 μm, the tungsten carbide powder is prevented from scattering during flame spraying, and the spraying efficiency is improved. In addition, it was confirmed that by using the powder composed of the granular material, a sprayed film in which tungsten carbide was uniformly dispersed in the sprayed layer could be formed, and a sprayed layer having excellent slurry erosion resistance and cavitation erosion resistance was formed. I found that I can do it.
[0009]
Therefore, the problem to be solved by the present invention is to mix a ceramic powder of various particle sizes and a self-fluxing alloy powder and granulate or sinter and pulverize them to obtain a granular material, thereby obtaining a hard material at the time of thermal spraying. An object of the present invention is to provide a thermal spray material in which scattering of ceramic powder is reduced.
Another object to be solved by the present invention is to reduce the scattering of the hard ceramic powder during the thermal spraying process by optimizing the size of the granular material of the ceramic powder and the self-fluxing alloy powder. Is to provide the material.
Another object to be solved by the present application is to provide a rotary member sprayed using the above-described thermal spray material and a fluid machine including the rotary member.
[0010]
[Means for Solving the Problems]
The self-fluxing alloy sprayed material containing ceramic particles according to one aspect of the present invention includes at least one ceramic powder selected from the group consisting of carbides, oxides, nitrides, and borides, a nickel-based self-fluxing alloy powder, and a cobalt-based self-fluxing alloy. A particulate material having a mean secondary particle size larger than the mean primary particle size of the powder by mixing and aggregating with at least one type of self-fluxing alloy powder selected from the group consisting of a fusible alloy and an iron-based self-fluxing alloy powder; Wherein the average secondary particle size of the granular material is 15 to 250 μm.
[0011]
In the ceramic particle-containing self-fluxing alloy sprayed material, when the average primary particle size of the ceramic powder is R1 and the average primary particle size of the self-fluxing alloy powder is R2, R2 / R1 may be 20 or less. The ceramic powder and the self-fluxing alloy may have an average primary particle diameter of 1 to 60 μm and 1 to 60 μm, respectively. Further, the ceramic powder may be at least one kind of carbide powder selected from the group consisting of tungsten carbide, chromium carbide, and titanium carbide.
Another invention of the present application is an impeller provided with a hub and a plurality of blades attached circumferentially around the hub, wherein at least a part of the surface of the impeller has the ceramic particles. It is formed by spraying with a contained self-fluxing alloy spray material.
Another invention of the present application is directed to an impeller having a hub, a plurality of wings circumferentially mounted around the hub, and a casing defining a chamber for rotatably housing the impeller. , At least a portion of the surface of the impeller and / or at least a portion of the inner surface of the casing are sprayed with the ceramic particle-containing self-fluxing alloy spray material.
[0012]
【Example】
Hereinafter, embodiments of the present invention will be described.
In the present embodiment, first, for example, a ceramic powder 11 which is a carbide such as tungsten carbide (WC or W 2 C), titanium carbide (TiC), and chromium carbide (Cr 2 C 3 ), and a nickel-based self-fluxing alloy The powder 12 is agglomerated by granulation via a binder by a known granulation method to form a granular material 10 as shown in FIG. 3A, and the thermal spray material of the present embodiment is formed by the granular material 10. I do. The average primary particle size of the ceramic powder such as WC and W 2 C and the nickel-based self-fluxing alloy powder are each preferably in the range of 1 μm to 60 μm, most preferably in the range of 5 μm to 30 μm. The reason is that if the particle size is less than 1 μm, oxidation of the particles during thermal spraying becomes a problem. On the other hand, if the particle size exceeds 60 μm, granulation becomes difficult. When the average primary particle size of the ceramic powder is R1 and the average primary particle size of the self-fluxing alloy powder is R2, R2 / R1 is preferably 0.1 or more and 20 or less, most preferably 0.1 or more. 10 or less. The reason is that when R2 / R1 exceeds 20, the particles 12 of each self-fluxing alloy are covered with the fine ceramic particles 11 as shown in FIG. It is because it becomes easy to do. Further, the reason why the diameter is set to 0.1 or more is that when the ceramic particles have a size of 1 μm to 60 μm as described above, the practically usable particle size of the self-fluxing alloy is about 1/10 of the diameter of the ceramic particles. Because until.
[0013]
Ceramics are not limited to the above-mentioned carbides. For example, oxides such as aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ) and titanium oxide (TiO 2 ), nitrides such as boron nitride (BN), or For example, a boride such as titanium boride (TiB) may be used. Further, the carbides, oxides, nitrides, and borides may be used alone or in any combination thereof. The average primary particle size of these oxides, nitrides or borides may be in the same range as described above. Examples of the nickel-based self-fluxing alloy include, for example, Ni-B-Si and Ni-P. As the self-fluxing alloy (self-fusing alloy having a low melting point), in addition to the nickel-based self-fluxing alloy powder, a cobalt-based self-fluxing alloy such as Co-B-Si or Co-P, or FeSi or Fe- Iron-based self-fluxing alloys such as B-Si and Fe-P may be used. These self-fluxing alloys may be used alone or in any combination thereof.
[0014]
As a method of forming the ceramic powder and the self-fluxing alloy powder into a granular material, in addition to the above-described known granulation method, a method in which the powder is solidified to a desired size, sintered, and then pulverized may be used. The average particle size, ie the average secondary particle size, of the granules is preferably in the range from 15 μm to 250 μm, most preferably in the range from 45 μm to 125 μm. The reason is that if the secondary particle size is less than 15 μm, the thermal spraying efficiency is reduced, and if the secondary particle size exceeds 250 μm, it becomes difficult to perform thermal spraying using a normal flame spray gun. .
[0015]
[Example 1]
As a ceramic powder, a tungsten carbide (WC) powder having an average primary particle size of 5 μm was used. As a nickel-based alloy powder, which is a kind of self-fluxing alloy, a commercially available Colmonoy No. 1 powder was used. Four equivalents of powder were used. The average primary particle size of the powder was 20 μm or less. These powders were mixed to produce a thermal spray material consisting of granules having an average secondary particle size of 45 to 125 μm by a known granulation method.
The results of observing the sprayed material according to Example 1 and the sprayed material of the mixed powder type of the conventional example with an operation type electron microscope are as shown in the micrograph shown in the upper part of FIG. In addition, the results of observing the sprayed layer when the thermal spraying process is performed using the thermal sprayed material according to Example 1 and the thermal sprayed layer when the thermal spraying process is performed using the conventional thermal sprayed material are observed with the microscope. FIG. 4 shows a micrograph at the bottom. As is clear from these photographs, the cross-section of the sprayed layer of the conventional example has a structure having many relatively large voids. On the other hand, the cross section of the sprayed layer of the present invention is a dense sprayed layer with few voids. Tungsten carbide is the white spot on the thermal spray section, and the surrounding area is the matrix phase of the self-fluxing alloy. In the case of the conventional example, the size of the tungsten carbide particles is several tens to 100 μm, and it is observed that the tungsten carbide particles are unevenly dispersed. It can be seen that in the thermal spray material according to Example 1, a thermal spray layer in which tungsten carbide having an average particle diameter of 5 μm was uniformly dispersed was obtained. The cavitation erosion resistance of the thermal sprayed material according to Example 1 was four times or more that of the base material CA6NM.
[0016]
[Example 2]
As a ceramic powder, a tungsten carbide (WC) powder having an average primary particle diameter of 5 μm was used. As a cobalt-based alloy powder, which is a kind of self-fluxing alloy, commercially available Stellite No. 1 powder was used. One equivalent of powder was used. The average primary particle size of the powder was 20 μm or less. These powders were mixed to produce a thermal spray material consisting of granules having an average secondary particle size of 45 to 125 μm by a known granulation method.
Observation results of the thermal spray material according to Example 2 and the thermal spray material of the Co-based self-fluxing alloy powder type of the conventional example by an operation type electron microscope are as shown in a micrograph shown in the upper part of FIG. Further, the results of observing the results of observation of the sprayed layer when the thermal spraying process was performed using the thermal sprayed material according to Example 2 and the thermal sprayed layer when the thermal spraying process was performed using the conventional thermal sprayed material with the above microscope are shown. The result is as shown in the micrograph at the bottom of FIG.
As is clear from this micrograph, the cross section of the conventional sprayed layer has a structure having relatively large voids. On the other hand, the cross section of the thermal sprayed layer according to Example 2 is a dense thermal sprayed layer having few voids. Tungsten carbide is the white spot on the thermal spray section, and the surrounding area is the matrix phase of the self-fluxing alloy. In the case of the conventional example, the size of the tungsten carbide particles is from several tens to 100 μm, and it is observed that the tungsten carbide particles are unevenly dispersed. It can be seen that in the present invention, a sprayed layer in which tungsten carbide having an average particle size of 5 μm is uniformly dispersed is obtained. The cavitation erosion resistance of the thermal sprayed material of Example 2 also exhibited a property four times or more that of the base material CA6NM.
[0017]
The ceramic particle-containing self-fluxing alloy sprayed material produced as described above is sprayed on the surface of the base material by a flame spraying method to form a wear-resistant film on the base material. Examples of the substrate on which the abrasion-resistant film is formed include members of a rotating machine such as a pump, a water wheel, and a compressor, and more specifically, a blade that requires sand erosion resistance or slurry erosion resistance. Examples include cars, casings, blades, bearings and seals. By forming an abrasion-resistant film on such a substrate, the abrasion resistance of such a substrate is improved, and the life of a machine using such a substrate, for example, a pump, a water wheel, a compressor, etc. Can be extended. More specifically, as shown in FIG. 6, the impeller 30 has a hub 32 in which a shaft hole 31 for receiving a rotation shaft is formed, and a disc-shaped radially outwardly extending radially outward from the hub 32. A main plate 33, an annular side plate 34 separated from the main plate 33 in the axial direction (vertical direction in FIG. 6), and a circumferential direction between the main plate 33 and the side plate 34 (a circumference around the axis O-O of the shaft hole). Direction), and is formed along with a side plate and a main plate and a plurality of wings 35 formed integrally with the side plate and the main plate by being curved along a desired curved surface. Flow path 36 is defined. A radially inner portion 37 of the flow path 36 serves as an inlet, and a radially outer portion 38 serves as an outlet. Further, the annular side plate 34 has a portion 34a extending in the circumferential direction and extending in the axial direction, and a portion 34b extending in the radial direction, and defines the inlet 39 of the impeller 30 by the axially extending portion 34a. . When the impeller 30 is rotated to send out fluid, for example, when the impeller is rotated in water containing earth and sand, particles of the earth and sand in the water cause the surface of the impeller 30, particularly the flow path 36 in the impeller 30. Are rubbed against the inner surface 41 of the main plate 33, the inner surface 42 of the side plate 34, and both surfaces of the blade 35, that is, the pressure surface 43 and the negative pressure surface 44, and these surfaces are extremely worn by friction.
[0018]
Therefore, desired surfaces among the inner surfaces 41 and 42 defining the flow path 36 of the impeller 30, the pressure surface 43 and the suction surface 44, the inner surface 45 of the inlet 39, the outer surface 46 of the side plate 34, and the back surface 47 of the main plate 33. For example, the outer peripheral surface 46 (area A1) of the side plate 34 and the surface defining the flow path 36 defined by the main plate 33, the side plate 34, and the blades 35 and within a predetermined range on the outer peripheral side of the impeller (FIG. 6) the surface belonging to the region A2 in the area surrounded by the circle of the circle and the radius r of the radius r 1), it is sprayed ceramic particles containing self-fluxing alloy sprayed material according to the invention in a high speed flame spraying method.
[0019]
The impeller 30 of the present invention surface-treated with the ceramic particle-containing self-fluxing alloy spraying material by the high-speed flame spraying method as described above is used for a fluid machine such as a water wheel or a pump. In FIG. 7, a vertical pump 50 is shown in cross section as an example of such a fluid machine. In the figure, a pump 50 includes a casing 51 that defines a pump chamber 52 that accommodates the impeller 30 according to the present invention, a main shaft 57 that is arranged with the axis vertical and the lower end of which is fixed to the impeller 30. A main bearing 58 mounted above the casing and rotatably supporting the main shaft 57 with respect to the casing, and a seal device 59 for preventing leakage of fluid from between the casing 51 and the main shaft 57 are provided. The casing 51 is fixed on the tubular support base 60 by a known method. The casing 51 includes an upper disc-shaped end plate 53, a casing main body 54 defining a spiral outlet chamber 55, and a tubular cover 56. A cylindrical suction pipe 61 is connected to the lower end of the cover 56.
In the above pump, when the impeller 30 fixed to the lower end thereof is rotated by rotating the main shaft 37, the fluid is sucked into the inlet 39 of the impeller as shown by the arrow X in the suction pipe 61, and the impeller is rotated. It is pushed out radially from the outlet 38 side through the 30 flow paths 36 and flows into the outlet chamber 55. The fluid in the outlet chamber is discharged from an outlet (not shown). Note that at least a part of the inner surface of the casing may be subjected to a surface treatment using a ceramic particle-containing self-fluxing alloy spray material.
[0020]
【The invention's effect】
According to the present invention, the following effects can be obtained.
(A) Spattering of ceramic powder during thermal spraying can be minimized and the thermal spraying efficiency of ceramics can be improved.
(B) It becomes possible to efficiently disperse and take in the ceramic particles into the deposited film, thereby improving the cavitation erosion resistance and the slurry erosion resistance.
[Brief description of the drawings]
FIG. 1 is an enlarged explanatory view of a conventional thermal spray material composed of a mixed powder of a ceramic powder and a self-fluxing alloy powder.
FIG. 2 is a diagram illustrating the principle of the flame spraying method.
FIG. 3 is an enlarged explanatory view of a thermal spray material of the present invention in which a ceramic powder and a self-fluxing alloy powder are formed into a granular material.
FIG. 4 is a cross-sectional view showing experimental results of a conventional mixed-type thermal spray material and a thermal spray material of Example 1 of the present invention.
FIG. 5 is a cross-sectional view showing experimental results of a conventional mixed-type thermal spray material and a thermal spray material of Example 2 of the present invention.
FIG. 6 is a cross-sectional view showing an example of an impeller sprayed by a high-speed flame spraying method using the ceramic particle-containing self-fluxing alloy spray material of the present invention.
FIG. 7 is a sectional view of a pump including the impeller of FIG. 6;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Granular body 11 Ceramic powder 12 Self-fluxing alloy powder 30 Impeller 32 Hub 35 Blade 36 Flow path 50 Pump (fluid machine) 51 Casing

Claims (6)

炭化物、酸化物、窒化物又はホウ化物から成る群から選ばれる少なくとも一種類のセラミックス粉末と、ニッケル基自溶性合金粉末、コバルト基自溶性合金又は鉄基自溶性合金粉末から成る群から選ばれる少なくとも一種類の自溶性合金粉末とを混合して凝集し、前記粉末の平均一次粒径よりも大きな平均二次粒径を有する粒状体をつくり、前記粒状体の前記平均二次粒径が15〜250μmであることを特徴とするセラミックス粒子含有自溶性合金溶射材料。At least one type of ceramic powder selected from the group consisting of carbides, oxides, nitrides or borides, and at least one selected from the group consisting of nickel-based self-fluxing alloy powders, cobalt-based self-fluxing alloys, and iron-based self-fluxing alloy powders One kind of self-fluxing alloy powder is mixed and agglomerated to form a granular material having an average secondary particle size larger than the average primary particle size of the powder, and the average secondary particle size of the granular material is 15 to A self-fluxing alloy spray material containing ceramic particles, which is 250 μm. 請求項1に記載のセラミックス粒子含有自溶性合金溶射材料において、前記セラミックス粉末の平均一次粒径をR1、前記自溶性合金粉末の平均一次粒径をR2とした場合、R2/R1が20以下であることを特徴とするセラミックス粒子含有自溶性合金溶射材料。The ceramic particle-containing self-fluxing alloy spray material according to claim 1, wherein R2 / R1 is 20 or less, where R1 is the average primary particle size of the ceramic powder and R2 is the average primary particle size of the self-fluxing alloy powder. A self-fluxing alloy sprayed material containing ceramic particles, characterized in that: 請求項1又は2に記載のセラミックス粒子含有自溶性合金溶射材料において、前記セラミックス粉末及び前記自溶性合金の平均一次粒径が、それぞれ、1〜60μm及び1〜60μmであることを特徴とするセラミックス粒子含有自溶性合金溶射材料。The ceramic particle-containing self-fluxing alloy sprayed material according to claim 1, wherein the ceramic powder and the self-fluxing alloy have an average primary particle size of 1 to 60 μm and 1 to 60 μm, respectively. Particle-containing self-fluxing alloy spray material. 請求項1ないし3のいずれかに記載のセラミックス粒子含有自溶性合金溶射材料において、前記セラミックス粉末が炭化タングステン、炭化クロム、炭化チタンから成る群から選択された少なくとも1種類の炭化物粉末であることを特徴とするセラミックス粒子含有自溶性合金溶射材料。The ceramic particle-containing self-fluxing alloy sprayed material according to any one of claims 1 to 3, wherein the ceramic powder is at least one kind of carbide powder selected from the group consisting of tungsten carbide, chromium carbide, and titanium carbide. Characteristic self-fluxing alloy spray material containing ceramic particles. ハブと、前記ハブの周りに円周方向に隔てて取り付けられた複数の翼とを備た羽根車において、
前記羽根車の表面の少なくとも一部が、請求項1ないし4に記載のセラミックス粒子含有自溶性合金溶射材料で溶射処理された羽根車。
An impeller comprising a hub and a plurality of blades mounted circumferentially around the hub,
An impeller, wherein at least a part of the surface of the impeller is sprayed with the ceramic particle-containing self-fluxing alloy spray material according to any one of claims 1 to 4.
ハブと、前記ハブの周りに円周方向に隔てて取り付けられた複数の翼とを備た羽根車と、
前記羽根車を回転可能に収容する室を画定するケーシングと、
を備え、
前記羽根車の表面の少なくとも一部及び/又は前記ケーシングの内面の少なくとも一部が、請求項1ないし4に記載のセラミックス粒子含有自溶性合金溶射材料で溶射処理された流体機械。
A hub, and an impeller having a plurality of blades attached circumferentially around the hub,
A casing that defines a chamber that rotatably houses the impeller;
With
A fluid machine in which at least a part of a surface of the impeller and / or at least a part of an inner surface of the casing are thermally sprayed with the ceramic particle-containing self-fluxing alloy spray material according to any one of claims 1 to 4.
JP2002185170A 2002-06-25 2002-06-25 Self fluxing alloy thermal spray material containing ceramic particle Pending JP2004027289A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002185170A JP2004027289A (en) 2002-06-25 2002-06-25 Self fluxing alloy thermal spray material containing ceramic particle
AU2003244194A AU2003244194A1 (en) 2002-06-25 2003-06-25 Ceramic particle-containing self-melting alloy thermal spraying material
PCT/JP2003/008042 WO2004001090A1 (en) 2002-06-25 2003-06-25 Ceramic particle-containing self-melting alloy thermal spraying material
CNA03818365XA CN1671878A (en) 2002-06-25 2003-06-25 Ceramic particle-containing self-melting alloy thermal spraying material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185170A JP2004027289A (en) 2002-06-25 2002-06-25 Self fluxing alloy thermal spray material containing ceramic particle

Publications (1)

Publication Number Publication Date
JP2004027289A true JP2004027289A (en) 2004-01-29

Family

ID=29996726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185170A Pending JP2004027289A (en) 2002-06-25 2002-06-25 Self fluxing alloy thermal spray material containing ceramic particle

Country Status (4)

Country Link
JP (1) JP2004027289A (en)
CN (1) CN1671878A (en)
AU (1) AU2003244194A1 (en)
WO (1) WO2004001090A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621925B1 (en) 2004-08-10 2006-09-14 학교법인 포항공과대학교 Fabrication of surface composite using self-fluxing ceramic powder
JP2008025437A (en) * 2006-07-20 2008-02-07 Mitsubishi Materials Corp Sliding device
KR100855872B1 (en) * 2007-02-13 2008-09-05 주식회사 코미코 Slurry Composition For Forming A Plasma Spray Coating Powder, Method Of Forming The Slurry Composition And The Plasma Spray Coating Powder
JP2009068069A (en) * 2007-09-13 2009-04-02 Babcock Hitachi Kk Material for coating on surface of metallic base material
WO2010016282A1 (en) 2008-08-06 2010-02-11 三菱重工業株式会社 Component for rotary machine
JP2012503762A (en) * 2008-09-25 2012-02-09 アーベーベー・アーベー Sensor for measuring stress, including a layer of magnetoelastic material, and method for manufacturing the layer
US8268453B2 (en) 2009-08-06 2012-09-18 Synthesarc Inc. Steel based composite material
JP2014074231A (en) * 2009-09-07 2014-04-24 Fujimi Inc Spray coating powder
JP2015507687A (en) * 2011-12-05 2015-03-12 ホガナス アクチボラグ (パブル) New materials for high-speed flame spraying and products produced thereby
JP2015515566A (en) * 2012-02-02 2015-05-28 シーメンス アクティエンゲゼルシャフト Turbomachine component having a separate joint and steam turbine having the turbomachine component
CN104858421A (en) * 2015-05-09 2015-08-26 芜湖鼎瀚再制造技术有限公司 High-hardness Co-Ni-Fe-B weld layer material and preparing method thereof
CN104858419A (en) * 2015-05-09 2015-08-26 安徽鼎恒再制造产业技术研究院有限公司 Co-Cr-W-B welding layer material and preparation method thereof
CN104858418A (en) * 2015-05-09 2015-08-26 安徽再制造工程设计中心有限公司 High-strength Co-Cr-W-B welding layer material and preparation method thereof
CN104923957A (en) * 2015-05-09 2015-09-23 安徽再制造工程设计中心有限公司 High-strength Co-Ni-Fe-B weld layer material and preparation method thereof
JP2016503149A (en) * 2012-12-21 2016-02-01 フレニー ブレンボ ソシエテ ペルアチオニ Brake disc manufacturing method and disc brake brake disc
US9340862B2 (en) 2009-09-07 2016-05-17 Fujimi Incorporated Powder for thermal spraying

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7974690B2 (en) 2008-06-30 2011-07-05 Medtronic, Inc. Lead integrity testing during suspected tachyarrhythmias
DE102009008105B4 (en) * 2009-02-09 2017-02-09 Daimler Ag Brake disc for a vehicle
CN108385104A (en) * 2018-03-30 2018-08-10 燕山大学 A kind of restorative procedure of automobile castellated shaft
DE102021124547A1 (en) * 2021-09-22 2023-03-23 Borgwarner Inc. CHARGER

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2988281B2 (en) * 1994-10-05 1999-12-13 旭硝子株式会社 Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating
JPH08225914A (en) * 1995-02-22 1996-09-03 Suzuki Motor Corp Multilayer thermal-sprayed film and its formation
JP3410025B2 (en) * 1998-06-16 2003-05-26 トーカロ株式会社 Carbide cermet spray-coated member and method of manufacturing the member
JP2001192802A (en) * 2000-01-05 2001-07-17 Kawasaki Heavy Ind Ltd Corrosion resistant composite thermal spray material, thermally sprayed coating using the same material and member having thermally sprayed coating
JP2001234323A (en) * 2000-02-17 2001-08-31 Fujimi Inc Thermal spraying powder material, and thermal spraying method and sprayed coating film using the same
JP2002004026A (en) * 2000-06-19 2002-01-09 Koei Seiko Kk Carbide-based composite powder for thermal spraying

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621925B1 (en) 2004-08-10 2006-09-14 학교법인 포항공과대학교 Fabrication of surface composite using self-fluxing ceramic powder
JP2008025437A (en) * 2006-07-20 2008-02-07 Mitsubishi Materials Corp Sliding device
KR100855872B1 (en) * 2007-02-13 2008-09-05 주식회사 코미코 Slurry Composition For Forming A Plasma Spray Coating Powder, Method Of Forming The Slurry Composition And The Plasma Spray Coating Powder
JP2009068069A (en) * 2007-09-13 2009-04-02 Babcock Hitachi Kk Material for coating on surface of metallic base material
US8512864B2 (en) 2008-08-06 2013-08-20 Mitsubishi Heavy Industries, Ltd. Component for rotary machine
WO2010016282A1 (en) 2008-08-06 2010-02-11 三菱重工業株式会社 Component for rotary machine
US8272277B2 (en) 2008-09-25 2012-09-25 Abb Ab Sensor for measuring stresses including a layer of a magnetoelastic material and a method for producing the layer
JP2012503762A (en) * 2008-09-25 2012-02-09 アーベーベー・アーベー Sensor for measuring stress, including a layer of magnetoelastic material, and method for manufacturing the layer
US8268453B2 (en) 2009-08-06 2012-09-18 Synthesarc Inc. Steel based composite material
US9340862B2 (en) 2009-09-07 2016-05-17 Fujimi Incorporated Powder for thermal spraying
JP2014074231A (en) * 2009-09-07 2014-04-24 Fujimi Inc Spray coating powder
JP2015507687A (en) * 2011-12-05 2015-03-12 ホガナス アクチボラグ (パブル) New materials for high-speed flame spraying and products produced thereby
JP2015515566A (en) * 2012-02-02 2015-05-28 シーメンス アクティエンゲゼルシャフト Turbomachine component having a separate joint and steam turbine having the turbomachine component
US9995178B2 (en) 2012-02-02 2018-06-12 Siemens Aktiengesellschaft Turbomachine component with a parting joint, and a steam turbine comprising said turbomachine component
JP2016503149A (en) * 2012-12-21 2016-02-01 フレニー ブレンボ ソシエテ ペルアチオニ Brake disc manufacturing method and disc brake brake disc
CN104858419A (en) * 2015-05-09 2015-08-26 安徽鼎恒再制造产业技术研究院有限公司 Co-Cr-W-B welding layer material and preparation method thereof
CN104858418A (en) * 2015-05-09 2015-08-26 安徽再制造工程设计中心有限公司 High-strength Co-Cr-W-B welding layer material and preparation method thereof
CN104923957A (en) * 2015-05-09 2015-09-23 安徽再制造工程设计中心有限公司 High-strength Co-Ni-Fe-B weld layer material and preparation method thereof
CN104858421A (en) * 2015-05-09 2015-08-26 芜湖鼎瀚再制造技术有限公司 High-hardness Co-Ni-Fe-B weld layer material and preparing method thereof

Also Published As

Publication number Publication date
CN1671878A (en) 2005-09-21
AU2003244194A1 (en) 2004-01-06
WO2004001090A1 (en) 2003-12-31

Similar Documents

Publication Publication Date Title
JP2004027289A (en) Self fluxing alloy thermal spray material containing ceramic particle
US6565257B1 (en) Submergible pumping system with thermal sprayed polymeric wear surfaces
JP3801452B2 (en) Abrasion resistant coating and its construction method
JP6340010B2 (en) Seal system for use in a turbomachine and method of making the same
CN101300313B (en) Strontium titanium oxides and abradable coatings made therefrom
EP0796929A1 (en) Abrasive Seal coatings
JP2005133715A (en) Method for coating substrate
EP2372104B1 (en) Blade outer air seal with improved efficiency
US20140140836A1 (en) Component with cladding surface and method of applying same
JPWO2004035852A1 (en) Piston ring, thermal spray coating used therefor, and manufacturing method
US20140140835A1 (en) Component with cladding surface and method of applying same
EP3502422A1 (en) Compressor abradable seal with improved solid lubricant retention
JP4058294B2 (en) Wear-resistant surface treatment method for rotating member, impeller, and fluid machine having the impeller
EP3456928B1 (en) Blade outer air seal for gas turbine engines in high erosion environment
CN102732817A (en) Methods for forming an oxide-dispersion strengthened coating
JP2007314839A (en) Spray deposit film for piston ring, and the piston ring
JP2009235476A (en) Coating for high-temperature seal
JP4510618B2 (en) Wear resistant composite wire for arc spraying
JP2007009277A (en) Method of forming wear-resistant spray deposit, and thermal spraying machine
JP4322473B2 (en) Water supply pump
JP2005002880A (en) Stationary blade segment of gas turbine engine, and gas turbine engine
CA2832615C (en) Wear resistant slurry pump parts produced using hot isostatic pressing
JP4081305B2 (en) Coating material selection method and coating
CN116802382A (en) Rotary part component of gas turbine engine and manufacturing method thereof
CA1273538A (en) Chromium carbide coating for protecting steam turbine components subject to solid particle erosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070913