JP2004026660A - Method of manufacturing compound of silyl (meth)acrylate - Google Patents

Method of manufacturing compound of silyl (meth)acrylate Download PDF

Info

Publication number
JP2004026660A
JP2004026660A JP2002180859A JP2002180859A JP2004026660A JP 2004026660 A JP2004026660 A JP 2004026660A JP 2002180859 A JP2002180859 A JP 2002180859A JP 2002180859 A JP2002180859 A JP 2002180859A JP 2004026660 A JP2004026660 A JP 2004026660A
Authority
JP
Japan
Prior art keywords
acrylate
silyl
meth
general formula
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002180859A
Other languages
Japanese (ja)
Other versions
JP4178369B2 (en
JP2004026660A5 (en
Inventor
Yoichi Tonomura
殿村 洋一
Toru Kubota
久保田 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002180859A priority Critical patent/JP4178369B2/en
Publication of JP2004026660A publication Critical patent/JP2004026660A/en
Publication of JP2004026660A5 publication Critical patent/JP2004026660A5/ja
Application granted granted Critical
Publication of JP4178369B2 publication Critical patent/JP4178369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a silyl (meth)acrylate compound which is useful as a raw material and the like for a hydrolytic self-grinding polymer of a ship bottom coating and the like. <P>SOLUTION: The method for manufacturing a silyl (meth)acrylate represented by general formula (2) (wherein R<SP>1</SP>, R<SP>2</SP>and R<SP>3</SP>indicate each the same or different monovalent 1-10C hydrocarbon group and R<SP>4</SP>indicates a hydrogen atom or methyl group) wherein a chlorosilane compound expressed by general formula (1): R<SP>1</SP>R<SP>2</SP>R<SP>3</SP>SiCl (wherein R<SP>1</SP>, R<SP>2</SP>and R<SP>3</SP>indicate each the same or different monovalent 1-10C hydrocarbon group) is reacted with acrylic acid or methacrylic acid to produce the silyl (meth)acrylate, is characterized in that the above reaction is conducted in the presence of ammonia. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、下記一般式(2)で示されるシリル(メタ)アクリレート化合物の製造方法に関する。この化合物は、船底塗料などの加水分解性自己研磨型ポリマーの原料等として有用である。
【化2】

Figure 2004026660
(式中、R、R、Rは互いに同一又は異なる炭素数1〜10の1価炭化水素基であり、Rは水素原子又はメチル基を示す。)
【0002】
【従来の技術及び発明が解決しようとする課題】
上記一般式(2)のシリル(メタ)アクリレート化合物は、一般的にクロロシラン化合物とアクリル酸又はメタクリル酸とを反応させる方法で製造され、その製造例としては特許第3052430号公報、同第3052431号公報、特開平4−342595号公報等が例示される。特許第3052431号公報、特開平4−342595号公報では、塩酸捕捉剤を反応系中に加えずに脱塩酸をおこなっているが、反応を進行させるためには高温に加熱する必要があり、シリル(メタ)アクリレート化合物、又は原料のアクリル酸、メタクリル酸の重合の危険性が伴うため、工業的製造は困難である。また、特許第3052430号公報においては、反応の際に生成する塩酸をトラップするために用いる塩酸捕捉剤として3級アミン化合物を用いている。3級アミンを用いることにより、反応性が向上し、反応を定量的に進行させるために高温に加熱する必要はなくなるが、3級アミンは高価であり、また分子量が大きいため、反応で生成する3級アミン塩酸塩の量が多く、撹拌のために大量の溶媒を必要とするので工業的に製造するには有利ではない。また、この特許明細書には3級アミンの代わりに、1級アミンや2級アミンを用いると副反応が生じるため、3級アミンを用いなければならないとの記載もある。
【0003】
本発明は上記事情に鑑みなされたもので、より安価に効率的かつ安全に行うことのできる上記一般式(2)のシリル(メタ)アクリレート化合物の製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するため鋭意検討を重ねた結果、安価で工業的に入手容易でかつ3級アミンに比べて著しく分子量の小さなアンモニアを塩酸捕捉剤として用いると、生じる塩酸塩(塩化アンモニウム)の量が少なくなるため、溶媒を実質的に用いる必要がなくなり、また意外にも1級アミンや2級アミンを用いた時に起こる副反応も起こらず、効率的に収率よく安全にシリル(メタ)アクリレート化合物が製造できることを知見し、本発明を完成するに至ったものである。
【0005】
従って、本発明は、下記一般式(1)
SiCl                     (1)
(式中、R、R、Rは、互いに同一又は異なる炭素数1〜10の1価炭化水素基を示す。)
で示されるクロロシラン化合物と、アクリル酸又はメタクリル酸とを反応させ、下記一般式(2)
【化3】
Figure 2004026660
(式中、R、R、Rは上と同じであり、Rは水素原子又はメチル基を示す。)
で示されるシリル(メタ)アクリレート化合物を製造する方法において、上記反応をアンモニアの存在下で行うことを特徴とする、上記一般式(2)で示されるシリル(メタ)アクリレート化合物の製造方法を提供するものである。
【0006】
以下、本発明につき更に詳しく説明する。
本発明のシリル(メタ)アクリレート化合物の製造方法において、原料として用いられるクロロシラン化合物は、下記一般式(1)
SiCl                     (1)
(式中、R、R、Rは、互いに同一又は異なる炭素数1〜10の1価炭化水素基を示す。)
で示されるものである。
【0007】
ここで、上記一般式(1)で示されるクロロシラン化合物としては、具体的にはトリメチルクロロシラン、トリエチルクロロシラン、トリプロピルクロロシラン、トリブチルクロロシラン、トリイソプロピルクロロシラン、トリ(sec−ブチル)クロロシラン、トリシクロペンチルクロロシラン、トリシクロヘキシルクロロシラン、トリフェニルクロロシラン、tert−ブチルジメチルクロロシラン、tert−ブチルジフェニルクロロシラン、tert−ブチルジイソプロピルクロロシラン、テキシルジメチルクロロシラン、テキシルジイソプロピルクロロシラン等が例示されるが、シリル(メタ)アクリレート化合物及びシリル(メタ)アクリレート化合物をポリマーに導いた時の加水分解性に対する適度な安定性の点から、上記一般式(1)で示されるクロロシラン化合物のR、R、R置換基が、互いに同一又は異なるα位に炭化水素基を有する炭素数3〜10の1価の分岐状炭化水素基又は炭素数3〜10の1価の環状炭化水素基であるものが好ましく、具体的にはトリイソプロピルクロロシラン、tert−ブチルジイソプロピルクロロシラン、テキシルジイソプロピルクロロシランが例示される。
【0008】
アクリル酸又はメタクリル酸と上記一般式(1)で示されるクロロシラン化合物との配合比は特に限定されないが、反応性、生産性の点から、アクリル酸又はメタクリル酸1モルに対し、クロロシラン化合物0.5〜2.0モル、特に0.8〜1.2モルの範囲が好ましい。
【0009】
本発明では、反応中に生じる塩酸をアンモニアを用いて脱塩酸するものである。アンモニアの量は特に限定されないが、反応性、生産性の点から、アクリル酸又はメタクリル酸1モルに対し、0.5〜5モル、特に1.0〜3.0モルの範囲が好ましい。アンモニアが0.5モル未満だと充分に脱塩酸が行われず反応が未達になる可能性があり、5モルを超えると、アンモニアの量に見合うだけの反応促進効果がみられない可能性がある。
【0010】
また、反応温度は特に限定されないが、常圧又は加圧下で−20℃〜150℃、特に0℃〜100℃が好ましい。
【0011】
なお、本反応は生成する塩化アンモニウムによる撹拌の負荷上昇が起こらず、反応性も良好であるので、実質的に溶媒を使用しなくてもよい。
【0012】
上記の反応は、アクリル酸又はメタクリル酸にアンモニアをフィードしながらクロロシラン化合物を加える方法、アクリル酸又はメタクリル酸にアンモニアをフィードし、(メタ)アクリル酸アンモニウムとした後、クロロシラン化合物を加える方法、クロロシラン化合物にアンモニアをフィードしながらアクリル酸又はメタクリル酸を加える方法、クロロシラン化合物にアンモニアをフィードし、シラザンとした後、アクリル酸又はメタクリル酸を加える方法、アクリル酸又はメタクリル酸とクロロシラン化合物との混合液にアンモニアをフィードする方法のいずれの方法を採用してもよいが、操作の簡便性の点から、アクリル酸又はメタクリル酸とクロロシラン化合物との混合液にアンモニアをフィードする方法が好ましい。
【0013】
また、上記の反応において、重合を防止するために、ヒドロキノン、p−メトキシフェノール、2,6−ジ−tert−ブチルフェノール、2,6−ジ−tert−ブチル−4−メチルフェノール等の重合禁止剤を添加してもよい。
【0014】
反応終了後には塩化アンモニウムが生じるが、これは反応液を濾過、又は水を加えて塩化アンモニウムを溶解、分離することにより除去できる。以上のようにして塩を除去した反応液からは、通常の方法で目的物を回収することができる。
【0015】
このような本発明の製造法では、下記一般式(2)
【化4】
Figure 2004026660
(式中、R、R、Rは上と同じであり、Rは水素原子又はメチル基を示す。)
で示されるシリル(メタ)アクリレート化合物を得ることができる。
【0016】
上記一般式(2)で示されるシリル(メタ)アクリレート化合物として具体的には、トリメチルシリルアクリレート、トリエチルシリルアクリレート、トリプロピルシリルアクリレート、トリブチルシリルアクリレート、トリイソプロピルシリルアクリレート、トリ(n−ブチル)シリルアクリレート、トリ(sec−ブチル)アクリレート、トリシクロペンチルシリルアクリレート、トリシクロヘキシルシリルアクリレート、トリフェニルシリルアクリレート、tert−ブチルジメチルシリルアクリレート、tert−ブチルジフェニルシリルアクリレート、tert−ブチルジイソプロピルシリルアクリレート、テキシルジメチルシリルアクリレート、テキシルジイソプロピルシリルアクリレート、トリメチルシリルメタクリレート、トリエチルシリルメタクリレート、トリプロピルシリルメタクリレート、トリブチルシリルメタクリレート、トリイソプロピルシリルメタクリレート、トリ(sec−ブチル)シリルメタクリレート、トリシクロペンチルシリルメタクリレート、トリシクロヘキシルシリルメタクリレート、トリフェニルシリルメタクリレート、tert−ブチルジメチルシリルメタクリレート、tert−ブチルジフェニルシリルメタクリレート、tert−ブチルジイソプロピルシリルメタクリレート、テキシルジメチルシリルメタクリレート、テキシルジイソプロピルシリルメタクリレート等が例示される。
【0017】
【実施例】
以下、実施例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0018】
[実施例1]
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、アクリル酸(36.8g、0.51mol)、2,6−ジ−tert−ブチル−4−メチルフェノール(0.11g)を仕込み、25℃にてアンモニア(9.4g、0.55mol)とトリイソプロピルクロロシラン(96.4g、0.50mol)とを1時間かけて同時にフィードした。フィード終了後、反応液を50℃で5時間撹拌した。その後反応液を室温まで冷却し、生じた塩化アンモニウムを濾別し蒸留した。トリイソプロピルシリルアクリレートを沸点89−90℃/0.67kPaの留分として102.0g得た(収率89%)。
【0019】
[実施例2]
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、メタクリル酸(43.9g、0.51mol)、2,6−ジ−tert−ブチル−4−メチルフェノール(0.11g)を仕込み、25℃にてアンモニア(9.4g、0.55mol)とトリイソプロピルクロロシラン(96.4g、0.50mol)とを1時間かけて同時にフィードした。フィード終了後、反応液を50℃で5時間撹拌した。その後反応液を室温まで冷却し、生じた塩化アンモニウムを濾別し蒸留した。トリイソプロピルシリルメタクリレートを沸点89−90℃/0.67kPaの留分として109.5g得た(収率90%)。
【0020】
[実施例3]
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、アクリル酸(36.8g、0.51mol)、トリイソプロピルクロロシラン(96.4g、0.50mol)、2,6−ジ−tert−ブチル−4−メチルフェノール(0.11g)を仕込み、25℃にてアンモニア(9.4g、0.55mol)を1時間かけてフィードした。フィード終了後、反応液を50℃で5時間撹拌した。その後反応液を室温まで冷却し、反応液に水(75g)を加え、生じた塩酸塩を溶解し、水層を除いた後、有機層を蒸留した。トリイソプロピルシリルアクリレートを沸点89−90℃/0.67kPaの留分として108.3g得た(収率95%)。
【0021】
[実施例4]
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、メタクリル酸(43.9g、0.51mol)、トリイソプロピルクロロシラン(96.4g、0.50mol)、2,6−ジ−tert−ブチル−4−メチルフェノール(0.11g)を仕込み、25℃にてアンモニア(9.4g、0.55mol)を1時間かけてフィードした。フィード終了後、反応液を50℃で5時間撹拌した。その後反応液を室温まで冷却し、反応液に水(75g)を加え、生じた塩酸塩を溶解し、水層を除いた後、有機層を蒸留した。トリイソプロピルシリルメタクリレートを沸点110−111℃/1.3kPaの留分として115.3g得た(収率95%)。
【0022】
[比較例1]
トリエチルアミンを用いたトリイソプロピルシリルアクリレートの製造法
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、アクリル酸(36.8g、0.51mol)、トルエン(50ml)、2,6−ジ−t−ブチル−4−メチルフェノール(0.11g)を仕込み、25℃にてトリエチルアミン(55.7g、0.55mol)を1時間かけて滴下した。滴下終了後、トリイソプロピルクロロシラン(96.4g、0.50mol)を25℃で1時間かけて滴下した。滴下中に生じた塩により撹拌が困難になったため、トルエンを120ml追加しなければならなかった。滴下終了後、反応液を50℃で5時間撹拌した。その後反応液を室温まで冷却し、生じたトリエチルアミン塩酸塩を濾別し蒸留した。トリイソプロピルシリルアクリレートを沸点110−111℃/1.3kPaの留分として101.8g得た(収率89%)。
【0023】
【発明の効果】
本発明によれば、安価で工業的に入手容易なアンモニアを塩酸捕捉剤として用いることにより、溶媒を実質的に用いることなく、効率的に収率よく安全にシリル(メタ)アクリレートを製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a silyl (meth) acrylate compound represented by the following general formula (2). This compound is useful as a raw material of a hydrolyzable self-polishing polymer such as a ship bottom paint.
Embedded image
Figure 2004026660
(In the formula, R 1 , R 2 , and R 3 are the same or different and are monovalent hydrocarbon groups having 1 to 10 carbon atoms, and R 4 is a hydrogen atom or a methyl group.)
[0002]
Problems to be solved by the prior art and the invention
The silyl (meth) acrylate compound represented by the general formula (2) is generally produced by a method of reacting a chlorosilane compound with acrylic acid or methacrylic acid. Examples of the production are described in Japanese Patent Nos. 3052430 and 3052431. And Japanese Patent Application Laid-Open No. 4-342595. In Japanese Patent No. 3052431 and JP-A-4-342595, dehydrochlorination is carried out without adding a hydrochloric acid scavenger into the reaction system. However, in order to advance the reaction, it is necessary to heat the mixture to a high temperature. Since there is a risk of polymerization of the (meth) acrylate compound or acrylic acid or methacrylic acid as raw materials, industrial production is difficult. In Japanese Patent No. 3052430, a tertiary amine compound is used as a hydrochloric acid scavenger used to trap hydrochloric acid generated during the reaction. By using a tertiary amine, the reactivity is improved, and it is not necessary to heat to a high temperature in order to progress the reaction quantitatively. However, the tertiary amine is expensive and has a large molecular weight, so that it is formed by the reaction. Since the amount of the tertiary amine hydrochloride is large and a large amount of solvent is required for stirring, it is not advantageous for industrial production. This patent also states that if a primary amine or a secondary amine is used instead of a tertiary amine, a side reaction occurs, so that a tertiary amine must be used.
[0003]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a silyl (meth) acrylate compound of the above general formula (2), which can be carried out more efficiently and safely at lower cost.
[0004]
Means for Solving the Problems and Embodiments of the Invention
The inventor of the present invention has conducted intensive studies to achieve the above object. As a result, when ammonia is used as a hydrochloric acid scavenger, it is inexpensive, industrially available, and has a significantly smaller molecular weight than a tertiary amine. (Ammonium chloride) is reduced, so that it is not necessary to use a solvent substantially, and surprisingly, no side reaction occurs when a primary amine or a secondary amine is used. The inventors have found that silyl (meth) acrylate compounds can be produced, and have completed the present invention.
[0005]
Therefore, the present invention provides the following general formula (1)
R 1 R 2 R 3 SiCl (1)
(In the formula, R 1 , R 2 , and R 3 represent the same or different monovalent hydrocarbon groups having 1 to 10 carbon atoms.)
Is reacted with acrylic acid or methacrylic acid to obtain a compound represented by the following general formula (2)
Embedded image
Figure 2004026660
(In the formula, R 1 , R 2 , and R 3 are the same as above, and R 4 represents a hydrogen atom or a methyl group.)
A method for producing a silyl (meth) acrylate compound represented by the general formula (2), wherein the reaction is carried out in the presence of ammonia. Is what you do.
[0006]
Hereinafter, the present invention will be described in more detail.
In the method for producing a silyl (meth) acrylate compound of the present invention, the chlorosilane compound used as a raw material is represented by the following general formula (1)
R 1 R 2 R 3 SiCl (1)
(In the formula, R 1 , R 2 , and R 3 represent the same or different monovalent hydrocarbon groups having 1 to 10 carbon atoms.)
It is shown by.
[0007]
Here, as the chlorosilane compound represented by the general formula (1), specifically, trimethylchlorosilane, triethylchlorosilane, tripropylchlorosilane, tributylchlorosilane, triisopropylchlorosilane, tri (sec-butyl) chlorosilane, tricyclopentylchlorosilane, Examples include tricyclohexylchlorosilane, triphenylchlorosilane, tert-butyldimethylchlorosilane, tert-butyldiphenylchlorosilane, tert-butyldiisopropylchlorosilane, texyldimethylchlorosilane, texyldiisopropylchlorosilane, and the like. Examples thereof include a silyl (meth) acrylate compound and silyl. From the viewpoint of appropriate stability against hydrolysis when the (meth) acrylate compound is introduced into the polymer, R 1, R 2 of the chlorosilane compound represented by formula (1), R 3 substituent is a monovalent branched hydrocarbon group or a C 3 to 10 carbon atoms having a hydrocarbon group at the same or different α-position to each other Those which are monovalent cyclic hydrocarbon groups of several to 10 are preferable, and specific examples include triisopropylchlorosilane, tert-butyldiisopropylchlorosilane, and texyldiisopropylchlorosilane.
[0008]
The mixing ratio of acrylic acid or methacrylic acid to the chlorosilane compound represented by the above general formula (1) is not particularly limited. However, from the viewpoint of reactivity and productivity, the chlorosilane compound is added in an amount of 0.1 mol to 1 mol of acrylic acid or methacrylic acid. The range of 5 to 2.0 mol, particularly 0.8 to 1.2 mol is preferable.
[0009]
In the present invention, hydrochloric acid generated during the reaction is dehydrochlorinated using ammonia. The amount of ammonia is not particularly limited, but is preferably from 0.5 to 5 mol, particularly preferably from 1.0 to 3.0 mol, per 1 mol of acrylic acid or methacrylic acid from the viewpoint of reactivity and productivity. If the amount of ammonia is less than 0.5 mol, the reaction may not be achieved due to insufficient dehydrochlorination, and if the amount exceeds 5 mol, there is a possibility that the effect of promoting the reaction corresponding to the amount of ammonia may not be obtained. is there.
[0010]
The reaction temperature is not particularly limited, but is preferably -20 ° C to 150 ° C, particularly preferably 0 ° C to 100 ° C under normal pressure or under pressure.
[0011]
This reaction does not cause an increase in stirring load due to the generated ammonium chloride and has good reactivity, so that it is not necessary to substantially use a solvent.
[0012]
The above-mentioned reaction is a method of adding a chlorosilane compound while feeding ammonia to acrylic acid or methacrylic acid, a method of feeding ammonia to acrylic acid or methacrylic acid to obtain ammonium (meth) acrylate, and then adding a chlorosilane compound. A method of adding acrylic acid or methacrylic acid while feeding ammonia to the compound, a method of feeding ammonia to the chlorosilane compound to form silazane, and then adding acrylic acid or methacrylic acid, a mixed solution of acrylic acid or methacrylic acid and a chlorosilane compound Any method of feeding ammonia to the mixture may be employed, but from the viewpoint of easy operation, a method of feeding ammonia to a mixture of acrylic acid or methacrylic acid and a chlorosilane compound is preferable.
[0013]
In the above reaction, polymerization inhibitors such as hydroquinone, p-methoxyphenol, 2,6-di-tert-butylphenol, and 2,6-di-tert-butyl-4-methylphenol are used to prevent polymerization. May be added.
[0014]
After the completion of the reaction, ammonium chloride is produced, which can be removed by filtering the reaction solution or adding water to dissolve and separate ammonium chloride. From the reaction solution from which the salt has been removed as described above, the target substance can be recovered by an ordinary method.
[0015]
In such a production method of the present invention, the following general formula (2)
Embedded image
Figure 2004026660
(In the formula, R 1 , R 2 , and R 3 are the same as above, and R 4 represents a hydrogen atom or a methyl group.)
Can be obtained.
[0016]
Specific examples of the silyl (meth) acrylate compound represented by the general formula (2) include trimethylsilyl acrylate, triethylsilyl acrylate, tripropylsilyl acrylate, tributylsilyl acrylate, triisopropylsilyl acrylate, and tri (n-butyl) silyl acrylate. , Tri (sec-butyl) acrylate, tricyclopentylsilyl acrylate, tricyclohexylsilyl acrylate, triphenylsilyl acrylate, tert-butyldimethylsilyl acrylate, tert-butyldiphenylsilyl acrylate, tert-butyldiisopropylsilyl acrylate, texyl dimethylsilyl acrylate , Texyl diisopropylsilyl acrylate, trimethylsilyl methacrylate, Triethylsilyl methacrylate, tripropylsilyl methacrylate, tributylsilyl methacrylate, triisopropylsilyl methacrylate, tri (sec-butyl) silyl methacrylate, tricyclopentylsilyl methacrylate, tricyclohexylsilyl methacrylate, triphenylsilyl methacrylate, tert-butyldimethylsilyl methacrylate, Examples thereof include tert-butyldiphenylsilyl methacrylate, tert-butyldiisopropylsilyl methacrylate, texyl dimethylsilyl methacrylate, texyl diisopropylsilyl methacrylate, and the like.
[0017]
【Example】
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the following Examples.
[0018]
[Example 1]
Acrylic acid (36.8 g, 0.51 mol) and 2,6-di-tert-butyl-4-methylphenol (0.11 g) were placed in a flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer. Ammonia (9.4 g, 0.55 mol) and triisopropylchlorosilane (96.4 g, 0.50 mol) were fed simultaneously at 25 ° C. over 1 hour. After the feed was completed, the reaction solution was stirred at 50 ° C. for 5 hours. Thereafter, the reaction solution was cooled to room temperature, and the resulting ammonium chloride was filtered off and distilled. 102.0 g of triisopropylsilyl acrylate was obtained as a fraction having a boiling point of 89-90 ° C./0.67 kPa (yield 89%).
[0019]
[Example 2]
In a flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, methacrylic acid (43.9 g, 0.51 mol) and 2,6-di-tert-butyl-4-methylphenol (0.11 g) were added. Ammonia (9.4 g, 0.55 mol) and triisopropylchlorosilane (96.4 g, 0.50 mol) were fed simultaneously at 25 ° C. over 1 hour. After the feed was completed, the reaction solution was stirred at 50 ° C. for 5 hours. Thereafter, the reaction solution was cooled to room temperature, and the resulting ammonium chloride was filtered off and distilled. 109.5 g of triisopropylsilyl methacrylate was obtained as a fraction having a boiling point of 89-90 ° C./0.67 kPa (yield 90%).
[0020]
[Example 3]
Acrylic acid (36.8 g, 0.51 mol), triisopropylchlorosilane (96.4 g, 0.50 mol), 2,6-di-tert were placed in a flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer. -Butyl-4-methylphenol (0.11 g) was charged, and ammonia (9.4 g, 0.55 mol) was fed at 25 ° C. over 1 hour. After the feed was completed, the reaction solution was stirred at 50 ° C. for 5 hours. Thereafter, the reaction solution was cooled to room temperature, water (75 g) was added to the reaction solution, the resulting hydrochloride was dissolved, and after removing the aqueous layer, the organic layer was distilled. 108.3 g of triisopropylsilyl acrylate was obtained as a fraction having a boiling point of 89-90 ° C./0.67 kPa (yield 95%).
[0021]
[Example 4]
In a flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, methacrylic acid (43.9 g, 0.51 mol), triisopropylchlorosilane (96.4 g, 0.50 mol), 2,6-di-tert -Butyl-4-methylphenol (0.11 g) was charged, and ammonia (9.4 g, 0.55 mol) was fed at 25 ° C. over 1 hour. After the feed was completed, the reaction solution was stirred at 50 ° C. for 5 hours. Thereafter, the reaction solution was cooled to room temperature, water (75 g) was added to the reaction solution, the resulting hydrochloride was dissolved, and after removing the aqueous layer, the organic layer was distilled. 115.3 g of triisopropylsilyl methacrylate was obtained as a fraction having a boiling point of 110 to 111 ° C./1.3 kPa (yield: 95%).
[0022]
[Comparative Example 1]
Production method of triisopropylsilyl acrylate using triethylamine In a flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, acrylic acid (36.8 g, 0.51 mol), toluene (50 ml), 2,6- Di-t-butyl-4-methylphenol (0.11 g) was charged, and triethylamine (55.7 g, 0.55 mol) was added dropwise at 25 ° C. over 1 hour. After completion of the dropwise addition, triisopropylchlorosilane (96.4 g, 0.50 mol) was added dropwise at 25 ° C. over 1 hour. 120 ml of toluene had to be added because the salt formed during the addition made stirring difficult. After the addition was completed, the reaction solution was stirred at 50 ° C. for 5 hours. Thereafter, the reaction solution was cooled to room temperature, and the resulting triethylamine hydrochloride was separated by filtration and distilled. 101.8 g of triisopropylsilyl acrylate was obtained as a fraction having a boiling point of 110-111 ° C./1.3 kPa (89% yield).
[0023]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, by using inexpensive and industrially available ammonia as a hydrochloric acid scavenger, it is possible to efficiently and efficiently produce silyl (meth) acrylate without substantially using a solvent and with good yield. Can be.

Claims (4)

下記一般式(1)
SiCl                     (1)
(式中、R、R、Rは、互いに同一又は異なる炭素数1〜10の1価炭化水素基を示す。)
で示されるクロロシラン化合物と、アクリル酸又はメタクリル酸とを反応させ、下記一般式(2)
Figure 2004026660
(式中、R、R、Rは上と同じであり、Rは水素原子又はメチル基を示す。)
で示されるシリル(メタ)アクリレート化合物を製造する方法において、上記反応をアンモニアの存在下で行うことを特徴とする、上記一般式(2)で示されるシリル(メタ)アクリレート化合物の製造方法。
The following general formula (1)
R 1 R 2 R 3 SiCl (1)
(In the formula, R 1 , R 2 , and R 3 represent the same or different monovalent hydrocarbon groups having 1 to 10 carbon atoms.)
Is reacted with acrylic acid or methacrylic acid to obtain the following general formula (2)
Figure 2004026660
(In the formula, R 1 , R 2 , and R 3 are the same as above, and R 4 represents a hydrogen atom or a methyl group.)
A method for producing a silyl (meth) acrylate compound represented by the general formula (2), wherein the reaction is carried out in the presence of ammonia.
実質的に溶媒を使用しない、請求項1記載のシリル(メタ)アクリレート化合物の製造方法。The method for producing a silyl (meth) acrylate compound according to claim 1, wherein substantially no solvent is used. 下記一般式(1)
SiCl                     (1)
で示されるクロロシラン化合物のR、R、R置換基が、互いに同一又は異なるα位に炭化水素基を有する炭素数3〜10の1価の分岐状炭化水素基又は炭素数3〜10の1価の環状炭化水素基である、請求項1又は2記載のシリル(メタ)アクリレート化合物の製造方法。
The following general formula (1)
R 1 R 2 R 3 SiCl (1)
Wherein the R 1 , R 2 , and R 3 substituents of the chlorosilane compound represented by the formula ( 1) are the same or different, and each have a hydrocarbon group at the α-position. The method for producing a silyl (meth) acrylate compound according to claim 1, wherein the monovalent cyclic hydrocarbon group is a monovalent cyclic hydrocarbon group.
アクリル酸又はメタクリル酸とクロロシラン化合物との混合液にアンモニアをフィードして行う、請求項1〜3のいずれか1項記載のシリル(メタ)アクリレート化合物の製造方法。The method for producing a silyl (meth) acrylate compound according to any one of claims 1 to 3, wherein ammonia is fed to a mixed solution of acrylic acid or methacrylic acid and a chlorosilane compound.
JP2002180859A 2002-06-21 2002-06-21 Method for producing silyl (meth) acrylate compound Expired - Fee Related JP4178369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180859A JP4178369B2 (en) 2002-06-21 2002-06-21 Method for producing silyl (meth) acrylate compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180859A JP4178369B2 (en) 2002-06-21 2002-06-21 Method for producing silyl (meth) acrylate compound

Publications (3)

Publication Number Publication Date
JP2004026660A true JP2004026660A (en) 2004-01-29
JP2004026660A5 JP2004026660A5 (en) 2005-05-26
JP4178369B2 JP4178369B2 (en) 2008-11-12

Family

ID=31177847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180859A Expired - Fee Related JP4178369B2 (en) 2002-06-21 2002-06-21 Method for producing silyl (meth) acrylate compound

Country Status (1)

Country Link
JP (1) JP4178369B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512219A (en) * 2008-12-16 2012-05-31 ビーエーエスエフ ソシエタス・ヨーロピア Silylation of monocarboxylic acids
JP2013520452A (en) * 2010-02-25 2013-06-06 エボニック デグサ ゲーエムベーハー Carboxy-functionalized silicon-containing precursor compounds of various organic carboxylic acids
JP5434913B2 (en) * 2008-05-16 2014-03-05 旭硝子株式会社 Polymerizable compound, photocurable composition, optical element and optical head device
CN103709190A (en) * 2014-01-08 2014-04-09 浙江胡涂硅有限公司 Method for preparing triisopropyl silicon acrylate
JP2016501951A (en) * 2012-12-19 2016-01-21 ヨトゥン アーエス Silyl ester copolymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434913B2 (en) * 2008-05-16 2014-03-05 旭硝子株式会社 Polymerizable compound, photocurable composition, optical element and optical head device
JP2012512219A (en) * 2008-12-16 2012-05-31 ビーエーエスエフ ソシエタス・ヨーロピア Silylation of monocarboxylic acids
JP2013520452A (en) * 2010-02-25 2013-06-06 エボニック デグサ ゲーエムベーハー Carboxy-functionalized silicon-containing precursor compounds of various organic carboxylic acids
JP2016501951A (en) * 2012-12-19 2016-01-21 ヨトゥン アーエス Silyl ester copolymer
CN103709190A (en) * 2014-01-08 2014-04-09 浙江胡涂硅有限公司 Method for preparing triisopropyl silicon acrylate

Also Published As

Publication number Publication date
JP4178369B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JPH04288089A (en) Process for producing organosilane containing methacryloxy group or acryloxy group
JP2002338582A (en) Method for producing organosilane having unsaturated carbonyloxy organic group
JP4178369B2 (en) Method for producing silyl (meth) acrylate compound
JP3128193B2 (en) Method for producing alkoxysilane compound
JPH10182667A (en) Preparation of acyloxysilane
JPH03197486A (en) Production of organosiloxane having alkoxysilyl group
KR20020089197A (en) Process for the preparation of trialkylsilylated carboxylate monomers, the obtained trialkylsilylated carboxylate monomers and their use in anti-fouling coatings
JP2775239B2 (en) Catalytic alkylation method
EP1238980B1 (en) Silyl (meth)acrylates having bulky substituent group and preparation thereof
JPH10139784A (en) Production of vinylsilyl group-containing silicone compound
JP2932143B2 (en) Method for producing polysilane
JP4362270B2 (en) Method for producing triorganosilyl unsaturated carboxylate
EP2182000B1 (en) Silyl (meth)acrylate compound containing a siloxy group having a bulky substituent and its production method
JP4055433B2 (en) Silyl (meth) acrylate compound having bulky substituent and method for producing the same
JP2005047852A (en) Method for producing 1-organoxytetrasiloxane
JP5278040B2 (en) Siloxy group-containing silyl (meth) acrylate compound having bulky substituent and method for producing the same
JP3874073B2 (en) Method for producing chlorosilane compound having texyl group
JP2880903B2 (en) Method for producing organosilicon compound
JP2558164B2 (en) Novel cyclic organopolysiloxane and method for producing the same
JP3520738B2 (en) Method for producing silyl enol ethers
JP4081571B2 (en) Method for producing triorganosilylcarboxylate compound
JP2000327685A (en) Production of silylated aniline derivative
JP2797931B2 (en) Method for purifying (meth) acryl-functional alkoxysilane
JP3442285B2 (en) Method for producing N-substituted (meth) acrylamide
JP2004210753A (en) Method for manufacturing alkoxysilane compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4178369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees