JP2004025746A - Laminated structure and separation and recovery method therefor - Google Patents

Laminated structure and separation and recovery method therefor Download PDF

Info

Publication number
JP2004025746A
JP2004025746A JP2002188585A JP2002188585A JP2004025746A JP 2004025746 A JP2004025746 A JP 2004025746A JP 2002188585 A JP2002188585 A JP 2002188585A JP 2002188585 A JP2002188585 A JP 2002188585A JP 2004025746 A JP2004025746 A JP 2004025746A
Authority
JP
Japan
Prior art keywords
heat
laminated structure
insulating material
foamed resin
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002188585A
Other languages
Japanese (ja)
Inventor
Shinichi Maeda
前田 慎一
Keitaro Sugio
杉尾 圭太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP2002188585A priority Critical patent/JP2004025746A/en
Publication of JP2004025746A publication Critical patent/JP2004025746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated structure which is prevented from being deteriorated with the elapse of time during use and separated efficiently and certainly at the time of recovery, and a separation and recovery method therefor. <P>SOLUTION: A heating releasable coating layer is provided between the hard plate and foamed resin heat insulating material layer of the laminated structure. The heating releasable coating is based on organic emulsion coating and contains 3-15 wt.% of thermally expansible hollow fine particles and 5-10 wt.% of an aqueous isocyanate. Further, the coating amount per a unit area of the heating releasable coating is 100-300 g/m<SP>2</SP>. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、硬質板と発泡系樹脂断熱材とを積層してなる積層構造体及びそれを用いた分離回収方法に関する。
【0002】
【従来の技術】
建築分野では、発泡系樹脂断熱材が自己接着性に優れていること及び貼り合わせ加工が容易であることから、硬質板と発泡系樹脂断熱材とを積層してなる積層構造体が広く使用されている。
【0003】
一方、近年は、包装容器リサイクル法、家電リサイクル法、建設リサイクル法等の法律により様々な製品等のリサイクルが義務付けられるようになってきており、上記の積層構造体を分離回収してリサイクルする必要性が高まってきている。
【0004】
そのため、従来はこのような積層構造体を分離回収する場合、作業者が発泡系樹脂断熱材層を物理的に硬質板から剥がして分離回収していた。しかし、作業者が発泡系樹脂断熱材層を物理的に硬質板から剥がす作業には多大な労力を要し、また、硬質板から発泡系樹脂断熱材層を完全に剥がすことは困難であるという問題点があった。
【0005】
特開平2002−127290号公報には、このような問題を解決するための積層構造体としてポリマー含有水分散液と熱膨張性微粒中空体とからなる水性接着剤組成物を用いて基材と多孔質体とを接着してなるものが開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、同公報に開示されているような積層構造体においては、使用中における接着性の経時劣化が充分に防止されず、剥離予定温度(積層構造体の分離回収時に接着剤組成物を加熱して剥離するための設計温度)未満の温度であっても使用中に硬質板から発泡系樹脂断熱材層が剥離してしまうという問題があった。すなわち、例えば、同公報記載の積層構造体を屋根材として使用する場合、夏場には太陽光により約80℃近くの温度まで加熱されることがあり、この状態が長時間続くと硬質板から発泡系樹脂断熱材層が剥離してしまう可能性があった。
【0007】
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、使用中における接着性の経時劣化を充分に防止しつつ、回収時においては効率良く且つ確実に硬質板から発泡系樹脂断熱材層を分離可能な積層構造体及びそれを用いた分離回収方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の積層構造体は、加熱剥離型塗料層を介して硬質板と発泡系樹脂断熱材層とを積層してなる積層構造体であって、加熱剥離型塗料は、有機系エマルジョン塗料を主成分とし且つ熱膨張性中空微粒子を3〜15重量%及び水性イソシアネートを5〜10重量%含有するものであり、加熱剥離型塗料層を構成する単位面積当りの塗料量が100〜300g/mであることを特徴とするものである。
【0009】
また、本発明の積層構造体の分離回収方法は、加熱剥離型塗料層が剥離予定温度以上の温度となるように上記本発明の積層構造体を加熱する工程と、加熱後に硬質板と発泡系樹脂断熱材層とを分離して回収する工程と、を含むことを特徴とする方法である。
【0010】
本発明においては、硬質板と発泡系樹脂断熱材層とを積層接着するための加熱剥離型塗料層中には3〜15重量%の熱膨張性中空微粒子が含有されているため、分離回収時に積層構造体を所定温度(剥離予定温度)以上に加熱することにより熱膨張性中空微粒子が発泡して接着強度が充分小さくなり硬質板と発泡系樹脂断熱材層とを容易に且つ確実に剥離して分離することが可能となる。ここで、熱膨張性中空微粒子の含有量が3重量%未満であると、回収時に熱膨張性中空微粒子が発泡しても接着強度が充分に低下せず、硬質板と発泡系樹脂断熱材層との完全な分離が行い難くなり、他方、熱膨張性中空微粒子の含有量が15重量%を超えると、更なる添加効果がなくなり却ってコストアップとなる。
【0011】
また、本発明に係る加熱剥離型塗料には5〜10重量%の水性イソシアネートが含有されているため、水性イソシアネート中の反応基(イソシアネート基)と有機系エマルジョン塗料中の樹脂分の官能基及び/又は水等とが反応して硬化することによって、加熱剥離型塗料の塗膜強度を強靭にすることができ、熱膨張性中空微粒子の発泡が抑制され、使用中における接着性の経時劣化が充分に防止される。ここで、水性イソシアネートの含有量が5重量%未満であると、水性イソシアネートによる強靭化が不充分で使用中に接着性の経時劣化を招くこととなりやすく、他方、水性イソシアネートの含有量が10重量%を超えると、水性イソシアネートと有機系エマルジョン塗料との相溶性が悪化して液分離し易くなる。
【0012】
また、加熱剥離型塗料層を構成する単位面積当りの塗料量は100〜300g/mである。単位面積当りの塗料量が100g/m未満であると、熱膨張性中空微粒子の発泡効果が小さいために接着が強く、硬質板と発泡系樹脂断熱材層との分離が確実に行い難くなる。他方、単位面積当りの塗料量が300g/mを超えると、加熱剥離型塗料層の厚さが厚くなって、塗料自体の強度がもろくなったり、硬質板と発泡系樹脂断熱材層との接着性が不充分になり衝撃や振動で剥離したりしやすくなる。なお、ここでいう塗料量は、加熱剥離型塗料層を構成する単位面積当りの塗料中の目付量を基準とする。
【0013】
このように、本発明によれば、通常の使用時において積層構造体が剥離予定温度未満の温度に加熱されてしまった場合であっても、その際に熱膨張性中空微粒子の一部が発泡して硬質板と発泡系樹脂断熱材層とが分離してしまう事態を確実に回避することができる。一方、分離回収時においては、剥離予定温度以上の温度に加熱することにより、熱膨張性中空微粒子が発泡して接着強度が充分小さくなり、硬質板と発泡系樹脂断熱材層との分離を容易且つ確実に行うことができ、分離作業の効率を高めることができる。
【0014】
【発明の実施の形態】
以下、本発明に係る好適な実施形態について詳細に説明する。
【0015】
先ず、本発明の積層構造体の好適な一実施形態について説明する。積層構造体は、硬質板と発泡系樹脂断熱材層とを加熱剥離型塗料層を介して積層してなるものであって、例えば建築材として好適に用いられるものである。
【0016】
硬質板は、発泡系樹脂断熱材層を保持するための基材であり、特に制限されないが、建築用に使用されている硬質板は、主に木質系硬質板、無機系硬質板及び金属板の3種類に分類されている。木質系硬質板としては、合板、MDF(Medium density Fiberboard(中繊維板))、OSB(Oriented strand Board(配向性木質ボード))、パーティクルボード、インシュレーションボード等が挙げられる。また、無機系硬質板としては、石膏ボード、ケイ酸カルシウム板、木毛セメント板、押出成形セメント板、レンガ、タイル等が挙げられる。また、金属板としては、一般カラー鋼板、ガルバニュム鋼板、銅板、アルミ板、ステンレス鋼板等が挙げられる。硬質板の厚さは、特に制限されないが、一般的に0.27〜0.8mm程度が好ましい。
【0017】
発泡系樹脂断熱材層は、積層構造体が建築材として用いられる場合、その断熱性により屋内外間等における熱の伝導を防止するための断熱材として機能するものであり、例えば、熱硬化性樹脂である硬質ウレタンフォーム、ウレタン変成イソシアヌレートフォーム、カルボジイミドフォーム、イミドフォーム、フェノールフォーム、尿素フォーム、エポキシフォーム等からなるものが挙げられる。発泡系樹脂断熱材層の厚さも、特に制限されないが、一般的に10〜100mm程度が好ましい。
【0018】
加熱剥離型塗料層は、有機系エマルジョン塗料を主成分とし且つ3〜15重量%の熱膨張性中空微粒子及び5〜10重量%の水性イソシアネートを含有する加熱剥離型塗料からなっている。このような有機系エマルジョン塗料としては、有機系ポリマーを含有する分散液である。有機系ポリマーとしては、アクリル系ポリマー、ウレタン系ポリマー、エチレン・酢酸ビニル共重合体系ポリマー、塩ビ・酢酸ビニル共重合体系ポリマー、合成ゴムラテックス等が挙げられる。また、有機系エマルジョン塗料の分散媒としては水が用いられる。有機系エマルジョン塗料における有機系ポリマーの濃度は、特に制限されないが、25〜45重量%程度であることが好ましい。
【0019】
熱膨張性中空微粒子は、熱可塑性のプラスチックからなる中空体であって、内部に液状のガスが封入されているものが好ましく、所定温度(剥離予定温度)以上の温度に加熱されると内部のガス圧が急激に上昇して発泡するものである。封入されるガスとしては、沸点が常温より高い(例えば40〜70℃)液化炭化水素、ペンタン類、ヘキサン類等が挙げられる。また、熱可塑性のプラスチックとしては、アクリロニトリル、メチルメタアクリレート等のアクリル系樹脂、メラミン樹脂が挙げられる。
【0020】
また、熱膨張性中空微粒子の発泡倍率は、特には制限されないが、5〜30倍程度であることが好ましく、発泡開始温度は120〜140℃程度であることが好ましい。なお、加熱剥離型塗料の剥離予定温度とは、回収時における積層構造体の加熱設定温度であり、発泡開始温度から発泡開始温度+30℃の範囲内に設定されることが好ましい。
【0021】
ここで、熱膨張性中空微粒子の含有量が3重量%未満であると、回収時に熱膨張性中空微粒子が発泡しても接着強度が充分に低下せず、硬質板と発泡系樹脂断熱材層との完全な分離が行い難くなり、他方、熱膨張性中空微粒子の含有量が15重量%を超えると、更なる添加効果がなくなり却ってコストアップとなる。
【0022】
また、熱膨張性中空微粒子の平均粒径は、10〜30μmであることが好ましい。平均粒径が10μm未満であると、発泡膨張径が小さく接着強度低下に貢献しにくくなる傾向があり、他方、平均粒径が30μmを超えると、有機系エマルジョ塗料への分散性が悪く分離してしまい、加熱剥離型塗料層の厚さが均一になり難い傾向がある。
【0023】
本発明において、加熱剥離型塗料に添加される水性イソシアネートは、加熱剥離型塗料層を硬化させる架橋材として機能するものであり、それにより加熱剥離型塗料の塗膜強度を強靭にすることができる。なお、一般的なイソシアネートは水と分離してしまうものであるが、水性イソシアネートは安定した混合液を形成するものである。このような水性イソシアネートとしては、有機系エマルジョン塗料に含まれる樹脂分の官能基及び/又は水等と、水性イソシアネート中の反応基(イソシアネート基)とが反応して加熱剥離型塗料層を硬化させるものであることが好ましい。
【0024】
ここで、水性イソシアネートの含有量が5重量%未満であると、水性イソシアネートによる強靭化が不充分で使用中に接着性の経時劣化を招くこととなりやすく、他方、水性イソシアネートの含有量が10重量%を超えると、水性イソシアネートと有機系エマルジョン塗料との相溶性が悪化して液分離し易くなる。
【0025】
本発明の加熱剥離型塗料においては、単位面積当りの塗料量が100g/m〜300g/mとなっている。単位面積当りの塗料量が100g/m未満であると、熱膨張性中空微粒子の発泡効果が小さいために接着が強く、硬質板と発泡系樹脂断熱材層との分離が確実に行い難くなる。他方、単位面積当りの塗料量が300g/mを超えると、加熱剥離型塗料層の厚さが厚くなって、塗料自体の強度がもろくなったり、硬質板と発泡系樹脂断熱材層との接着性が不充分になり衝撃や振動で剥離したりしやすくなる。
【0026】
このような構成を有する積層構造体は、例えば、以下のようにして製造される。先ず、硬質板上に加熱剥離型塗料を塗布して、加熱剥離型塗料層を形成する。塗布方法としては、例えば、刷毛塗り、ローラー塗り、エアスプレー等が挙げられる。次に、発泡系樹脂断熱材を加熱剥離型塗料層上に積層し、加熱剥離型塗料層の接着性により発泡系樹脂断熱材を硬質板に固定して、発泡系樹脂断熱材層を形成する。このとき、発泡系樹脂断熱材層の自重又はプレス加工等により、加熱剥離型塗料層を介して発泡系樹脂断熱材層を硬質板に対して固定するようにしてもよい。このようにして、硬質板と発泡系樹脂断熱材層とが加熱剥離型塗料層を介して接着された積層構造体が得られる。
【0027】
このようにして得られた積層構造体の加熱剥離型塗料層中には、前述の水性イソシアネートが含有されているため、使用中に加熱された場合であっても熱膨張性中空微粒子の発泡が抑制されることとなる。
【0028】
次に、積層構造体の好適な分離回収方法について説明する。先ず、使用後に回収された積層構造体を、剥離予定温度以上の温度(例えば120〜140℃)の温度範囲内で所定時間(例えば1〜3分間)保持する。これにより、加熱剥離型塗料に含有される熱膨張性中空微粒子の内部のガス圧が急激に上昇し、熱膨張性中空微粒子が発泡する。これにより、加熱剥離型塗料全体が発泡し、加熱剥離型塗料層の接着強度が充分小さくなり、積層構造体は硬質板と発泡系樹脂断熱材層とが確実に分離できる状態になる。この状態であれば、作業者等が硬質板から発泡系樹脂断熱材層を簡単に剥がすことができ、容易に分離回収されることとなる。しかも、このとき、硬質板上への発泡系樹脂断熱材の残存が充分に防止され、また、加熱剥離型塗料層は硬質板又は発泡系樹脂断熱材層のいずれか一方にのみ付着して剥離されるため、積層構造体はリサイクル性に優れることとなる。
【0029】
なお、回収された積層構造体は、使用中における加熱により、水性イソシアネートが加熱剥離型塗料層を硬化させて、熱膨張性中空微粒子が発泡し難くなっている可能性があるが、熱膨張性中空微粒子は本来30〜40倍まで発泡するものであり、加熱剥離型塗料の発泡倍率が5〜10倍程度に減少したとしても回収時には硬質板と発泡系樹脂断熱材層との間の接着強度が充分に低下し、容易且つ確実に分離することが可能である。
【0030】
以上、本発明の好適な実施形態を具体的に説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態においては流動性を有する塗料を塗布することによって加熱剥離型塗料層を形成していたが、これに限らず、予め塗料をシート状等の成形体に成形しておきその成形体を硬質板上に載置することによって加熱剥離型塗料層を形成するようにしてもよい。また、上記実施形態においては硬質板と発泡系樹脂断熱材層との間に加熱剥離型塗料層のみが介在されていたが、これに限らず、硬質板と発泡系樹脂断熱材層との間には、加熱剥離型塗料層以外の他の層(例えば、加熱剥離型塗料層以外の接着剤層)が介在されていてもよい。
【0031】
また、上記実施形態においては予め成形された発泡系樹脂断熱材層を加熱剥離型塗料層上に積層して発泡系樹脂断熱材層を形成するようにしていたが、これに限らず、発泡系樹脂断熱材をスプレー等により加熱剥離型塗料層上に吹き付けて発泡系樹脂断熱材層を形成してもよい。また、上記実施形態においては硬質板上に加熱剥離型塗料層を設けその上に発泡系樹脂断熱材層を設けるようにして積層構造体を製造しているが、これに限らず、加熱剥離型塗料層と発泡系樹脂断熱材層とを一体化した後に硬質板に一体化したものを貼り付けることにより、積層構造体を製造してもよい。
【0032】
さらに、上記実施形態においては積層構造体として硬質板と発泡系樹脂断熱材層との間に加熱剥離型塗料層が介在された3層構造のものを説明したが、これに限らず、硬質板の両面に加熱剥離型塗料層を介して発泡系樹脂断熱材層が積層された5層構造からなる積層構造体であってもよいし、逆に、発泡系樹脂断熱材層の両面に加熱剥離型塗料層を介して硬質板が積層された5層構造からなる積層構造体であってもよい。
【0033】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0034】
各実施例及び各比較例で用いた加熱剥離型塗料はそれぞれ以下の組成を有するものである。
加熱剥離型塗料A・・・コニシボンドCVC1100(3重量%熱膨張性中空微粒子(平均粒径20μm)包含エチレン酢酸ビニル系エマルジョン)(コニシ社製)+5重量%ウッドキュア300(水性イソシアネート、ジフェニルメタンジイソシアネート)(日本ポリウレタン社製)
加熱剥離型塗料B・・・5重量%エクスパンセル054(熱膨張性中空微粒子、平均粒径25μm)(エクスパンセル社製)含有アクリルエマルジョンAC100(大豊塗料社製)+6重量%ウッドキュア300(日本ポリウレタン社製)
加熱剥離型塗料C・・・6重量%エクスパンセル820(熱膨張性中空微粒子、平均粒径25μm)(エクスパンセル社製)含有アクリルエマルジョンAC100(大豊塗料社製)+6重量%ウッドキュア300(日本ポリウレタン社製)
加熱剥離型塗料D・・・5重量%エクスパンセル054(エクスパンセル社製)含有アクリルエマルジョンAC100(大豊塗料社製)である。
加熱剥離型塗料E・・・5重量%エクスパンセル054(エクスパンセル社製)含有アクリルエマルジョンAC100(大豊塗料社製)+1重量%ウッドキュア300(日本ポリウレタン社製)
加熱剥離型塗料F・・・5重量%エクスパンセル054(エクスパンセル社製)含有アクリルエマルジョンAC100(大豊塗料社製)+15重量%ウッドキュア300(日本ポリウレタン社製)。
【0035】
また、実施例及び比較例において得られた積層構造体を用いて、以下の通常使用時における接着性耐久試験、耐衝撃性試験、及び分離回収時における剥離試験を行った。
【0036】
(接着性耐久試験)
積層構造体を屋根材として使用した場合には、積層構造体の温度が80℃近くまで上昇することを想定し、積層構造体を80℃の温度条件下で7時間保持し、膨れ剥がれの状態を観察した。
【0037】
(耐衝撃性試験)
硬質板面を上にして水平に置いたパネルにナス型おもり1kgを高さ1.5mから落球させて、貫通孔や剥がれや反り等を目視する(JISA1302)。目視によって硬質板と発泡系樹脂断熱材の界面で剥離が確認されなかったものを良好とし、わずかでも剥離しているものを不可とした。
【0038】
(剥離試験)
積層構造体を120℃のギヤオーブン内に1〜3分間(実施例1,2及び比較例1については1分間、実施例3,5については3分間)保持した後、手作業により硬質板から発泡系樹脂断熱材層を剥離せしめた。その際における硬質板の剥離状態及び発泡系樹脂断熱材層の剥離状態を以下の基準により評価した。
良好:発泡系樹脂断熱材が硬質板に残存せず完全に剥離された場合
不良:剥離することができなかった場合又は完全に剥離できず発泡系樹脂断熱材が硬質板に残存してしまった場合
また、80℃の加熱により剥離が発生してしまったもの及び衝撃により剥離してしまったものについては、この試験を行わなかった。
【0039】
(実施例1)
一般カラー鋼板(厚さ0.27mm)に加熱剥離型塗料Aを100g/m(固形分重量基準)となるように塗布した後、硬質ウレタンフォーム(厚さ15mm)及びアルミ蒸着クラフト紙を順次積層し、圧着により一体化せしめて金属サイディングパネル(15mm厚×400mm幅×1000mm長)を得た。なお、加熱剥離型塗料中の各含有量は以下のとおりである。
熱膨張性中空微粒子含有量・・・・・3重量%
水性イソシアネート含有量・・・・・5重量%
【0040】
この得られた積層構造体を用いて、接着性耐久試験を行ったところ、外観上剥離は確認されなかった。また、耐衝撃性試験を行ったところ、剥離は確認されず、実用上問題がなかった。さらに、剥離試験を行ったところ、加熱剥離型塗料が一般カラー鋼板に残存することなく、一般カラー鋼板と硬質ウレタンフォームとを容易且つ確実に分離できた。結果を表1に示す。
【0041】
(実施例2)
ステンレス鋼板(厚さ0.5mm)の両面に加熱剥離型塗料Bを200g/m(固形分重量基準)となるように塗布した後、熱成形設備を用いてステンレス鋼板の両面に硬質ウレタンフォーム(厚さ30mm)を注入発泡させてパネルを得た。なお、加熱剥離型塗料中の各含有量は以下のとおりである。
熱膨張性中空微粒子含有量・・・・・5重量%
水性イソシアネート含有量・・・・・6重量%
【0042】
この得られた積層構造体を用いて、接着性耐久試験を行ったところ、外観上剥離は確認されなかった。また、耐衝撃性試験を行ったところ、剥離は確認されず、実用上問題がなかった。さらに、剥離試験を行ったところ、加熱剥離型塗料がステンレス鋼板に残存することなく、ステンレス鋼板から両面に積層された硬質ウレタンフォームを容易且つ確実に分離できた。結果を表1に示す。
【0043】
(実施例3)
ケイ酸カルシウム板(厚さ10mm)に加熱剥離型塗料Cを300g/m(固形分重量基準)となるように塗布した後、ブチルゴム接着剤を介してフェノールフォーム(厚さ25mm)を積層し、圧着により一体化せしめてパネルを得た。なお、加熱剥離型塗料中の各含有量は以下のとおりである。
熱膨張性中空微粒子含有量・・・・・6重量%
水性イソシアネート含有量・・・・・6重量%
【0044】
この得られた積層構造体を用いて、接着性耐久試験を行ったところ、外観上剥離は確認されなかった。また、耐衝撃性試験を行ったところ、剥離は確認されず、実用上問題がなかった。さらに、剥離試験を行ったところ、加熱剥離型塗料がケイ酸カルシウム板に残存することなく、ケイ酸カルシウム板とフェノールフォームとを容易且つ確実に分離できた。結果を表1に示す。
【0045】
(比較例1)
加熱剥離型塗料の塗布量を60g/mとし、発泡系樹脂断熱材をウレタン変形イソシアヌレートフォームに変更した以外は実施例1と同様にして金属サイディングパネルを得た。なお、加熱剥離型塗料中の各含有量は以下のとおりである。
熱膨張性中空微粒子含有量・・・・・3重量%
水性イソシアネート含有量・・・・・5重量%
【0046】
この得られた積層構造体を用いて、接着性耐久試験を行ったところ、外観上剥離は確認されなかった。また、耐衝撃性試験を行ったところ、剥離は確認されず、実用上問題がなかった。しかし、剥離試験を行ったところ、剥がれる個所と剥がれない個所があり、ウレタン変形イソシアヌレートフォームと一般カラー鋼板との分離は容易且つ確実なものとは言えなかった。結果を表1に示す。
【0047】
(比較例2)
加熱剥離型塗料の塗布量を350g/mに、発泡系樹脂断熱材をウレタン変形イソシアヌレートフォームに変更した以外は実施例1と同様にして金属サイディングパネルを得た。なお、加熱剥離型塗料中の各含有量は以下のとおりである。
熱膨張性中空微粒子含有量・・・・・3重量%
水性イソシアネート含有量・・・・・5重量%
【0048】
この得られた積層構造体を用いて、接着性耐久試験を行ったところ、外観上剥離は確認されなかった。しかし、耐衝撃性試験を行ったところ、ウレタン変形イソシアヌレートフォームと一般カラー鋼板とは、一般的な衝撃によって剥離してしまい実用上に耐えうるものでなかった。結果を表1に示す。
【0049】
(比較例3)
加熱剥離型塗料層として加熱剥離型塗料Dを用いた点、一般カラー鋼板の厚さを0.5mmに変更した以外は実施例1と同様にして金属サイディングパネルを得た。なお、加熱剥離型塗料中の各含有量は以下のとおりである。
熱膨張性中空微粒子含有量・・・・・3重量%
水性イソシアネート含有量・・・・・0重量%
【0050】
この得られた積層構造体を用いて、接着性耐久試験を行ったところ、加熱により一部の熱膨張性中空微粒子が発泡し、カラー鋼板とウレタンフォームとが一部剥離してしまった。この結果を表1に示す。
【0051】
(比較例4)
加熱剥離型塗料層として加熱剥離型塗料Eを用いた点、一般カラー鋼板の厚さを0.5mmに変更した以外は実施例1と同様にして金属サイディングパネルを得た。なお、加熱剥離型塗料中の各含有量は以下のとおりである。
熱膨張性中空微粒子含有量・・・・・5重量%
水性イソシアネート含有量・・・・・1重量%
【0052】
この得られた積層構造体を用いて、接着性耐久試験を行ったところ、比較例4と同様に、加熱により一部の熱膨張性中空微粒子が発泡し、カラー鋼板とウレタンフォームとが一部剥離しまった。この結果を表1に示す。
【0053】
(比較例5)
加熱剥離型塗料層として加熱剥離型塗料Fを用いた以外は比較例4と同様にして金属サイディングパネルを得た。なお、加熱剥離型塗料中の各含有量は以下のとおりである。
熱膨張性中空微粒子含有量・・・・・5重量%
水性イソシアネート含有量・・・・・15重量%
【0054】
この得られた積層構造体を用いて、接着性耐久試験を行ったところ、外観上剥離は確認されなかった。また、耐衝撃性試験を行ったところ、剥離は確認されず、実用上問題がなかった。しかし、剥離試験を行ったところ、剥がれる個所と剥がれない個所があり、一般カラー鋼板とウレタンフォームとの分離は容易且つ確実なものとは言えなかった。この結果を表1に示す。
【0055】
【表1】

Figure 2004025746
【0056】
表1に示した結果から明らかなように、単位面積当りの塗料量が100〜300g/mの範囲内であって、含有される熱膨張性中空微粒子の含有量が3〜15重量%で且つ水性イソシアネートの含有量が5〜10重量%である加熱剥離型塗料を用いた本発明の積層構造体にあっては、使用中に想定される加熱において加熱剥離型塗料層の接着性の劣化は確認されず実用上問題が無かったこと、及び剥離時において硬質板に加熱剥離型塗料が残存せず効率良く且つ確実に硬質板から発泡系樹脂断熱材層を分離回収可能であることがわかった。さらに、耐衝撃性が充分に確保されていることがわかった。
【0057】
【発明の効果】
以上、詳細に説明したとおり、本発明によれば、使用中における接着性の経時劣化を充分に防止しつつ、回収時においては効率良く且つ確実に硬質板から発泡系樹脂断熱材層を分離することができる積層構造体を得ることが可能となり、このような積層構造体を用いれば、回収時において硬質板と発泡系樹脂断熱材層との間に介在される加熱剥離型塗料層の接着強度を充分に低下せしめることが可能となる。従って、本発明の積層構造体及び積層構造体の分離回収方法は、積層構造体のリサイクル技術として非常に有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a laminated structure formed by laminating a hard plate and a foamed resin heat insulating material, and a separation and recovery method using the same.
[0002]
[Prior art]
In the field of construction, a laminated structure formed by laminating a hard plate and a foamed resin insulation material is widely used because the foamed resin insulation material has excellent self-adhesiveness and is easy to be bonded. ing.
[0003]
On the other hand, in recent years, recycling of various products, etc., has become mandatory by laws such as the Packaging Container Recycling Law, the Home Appliance Recycling Law, and the Construction Recycling Law. The nature is increasing.
[0004]
Therefore, conventionally, when separating and collecting such a laminated structure, an operator physically peels off the foamed resin heat insulating material layer from the hard plate and separates and collects it. However, it is said that an operator requires a great deal of labor to physically peel off the foamed resin insulation layer from the hard plate, and it is difficult to completely peel off the foamed resin insulation layer from the hard plate. There was a problem.
[0005]
Japanese Patent Application Laid-Open No. 2002-127290 discloses a method for solving such a problem by using a water-based adhesive composition comprising a polymer-containing aqueous dispersion and a heat-expandable fine-grained hollow body as a laminated structure to form a porous base material. A structure obtained by bonding a base material is disclosed.
[0006]
[Problems to be solved by the invention]
However, in the laminated structure disclosed in the publication, the deterioration with time of the adhesive property during use is not sufficiently prevented, and the temperature at which the adhesive composition is to be peeled off (when the adhesive composition is heated at the time of separating and collecting the laminated structure). However, there is a problem that the foamed resin heat-insulating material layer is peeled off from the hard plate during use even at a temperature lower than the design temperature for peeling. That is, for example, when the laminated structure described in the publication is used as a roofing material, it may be heated to a temperature of about 80 ° C. by sunlight in summer, and if this state continues for a long time, foaming from a hard plate may occur. There was a possibility that the system resin heat insulating material layer was peeled off.
[0007]
The present invention has been made in view of the above-mentioned problems of the related art, and efficiently and reliably insulates a foamed resin from a hard plate at the time of recovery while sufficiently preventing the adhesive property from deteriorating during use. It is an object of the present invention to provide a laminated structure capable of separating a material layer and a separation and recovery method using the same.
[0008]
[Means for Solving the Problems]
The laminated structure of the present invention is a laminated structure obtained by laminating a hard plate and a foamed resin heat insulating material layer via a heat-peelable paint layer, and the heat-peelable paint is mainly an organic emulsion paint. And 3 to 15% by weight of heat-expandable hollow fine particles and 5 to 10% by weight of aqueous isocyanate as a component. The amount of the coating per unit area constituting the heat-peelable coating layer is 100 to 300 g / m2. 2 It is characterized by being.
[0009]
Further, the method for separating and recovering the laminated structure of the present invention includes a step of heating the laminated structure of the present invention so that the heat-peelable paint layer has a temperature equal to or higher than a scheduled peeling temperature; Separating and collecting the resin heat insulating material layer.
[0010]
In the present invention, the heat-peelable paint layer for laminating and bonding the hard plate and the foamed resin heat-insulating material layer contains 3 to 15% by weight of the heat-expandable hollow fine particles. When the laminated structure is heated to a predetermined temperature (expected peeling temperature) or higher, the heat-expandable hollow fine particles are foamed and the adhesive strength is sufficiently reduced, so that the hard plate and the foamed resin heat insulating material layer are easily and reliably peeled off. And can be separated. Here, when the content of the heat-expandable hollow fine particles is less than 3% by weight, even if the heat-expandable hollow fine particles are foamed at the time of recovery, the adhesive strength is not sufficiently reduced, and the hard plate and the foamed resin heat insulating material layer When the content of the heat-expandable hollow microparticles exceeds 15% by weight, the effect of further addition is lost and the cost is rather increased.
[0011]
Further, since the heat-peelable paint according to the present invention contains 5 to 10% by weight of an aqueous isocyanate, a reactive group (isocyanate group) in the aqueous isocyanate and a functional group of a resin component in the organic emulsion paint are used. By reacting and / or curing with water or the like, the coating strength of the heat-peelable paint can be strengthened, the foaming of the heat-expandable hollow fine particles is suppressed, and the adhesive property during use is deteriorated with time. It is sufficiently prevented. Here, when the content of the aqueous isocyanate is less than 5% by weight, the toughening by the aqueous isocyanate is insufficient, and the adhesion tends to deteriorate with time during use. On the other hand, the content of the aqueous isocyanate is 10% by weight. %, The compatibility between the aqueous isocyanate and the organic emulsion paint deteriorates, and the liquid is easily separated.
[0012]
The amount of paint per unit area constituting the heat-peelable paint layer is 100 to 300 g / m. 2 It is. 100 g / m of paint per unit area 2 If it is less than 30, the bonding effect is strong because the foaming effect of the heat-expandable hollow fine particles is small, and it is difficult to reliably separate the hard plate and the foamed resin heat insulating material layer. On the other hand, the amount of paint per unit area is 300 g / m 2 Exceeding the thickness, the thickness of the heat-peelable paint layer becomes thicker, the strength of the paint itself becomes weak, and the adhesiveness between the hard plate and the foamed resin insulation layer becomes insufficient, and it peels off by impact or vibration. It becomes easier. Here, the amount of the paint is based on the basis weight in the paint per unit area constituting the heat-peelable paint layer.
[0013]
As described above, according to the present invention, even when the laminated structure has been heated to a temperature lower than the expected peeling temperature during normal use, a part of the thermally expandable hollow fine particles is foamed at that time. As a result, a situation in which the hard plate and the foamed resin heat insulating material layer are separated can be reliably avoided. On the other hand, at the time of separation and recovery, by heating to a temperature higher than the scheduled peeling temperature, the heat-expandable hollow fine particles are foamed and the adhesive strength is sufficiently reduced, so that the hard plate and the foamed resin heat insulating material layer can be easily separated. In addition, the separation operation can be performed reliably, and the efficiency of the separation operation can be increased.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments according to the present invention will be described in detail.
[0015]
First, a preferred embodiment of the laminated structure of the present invention will be described. The laminated structure is formed by laminating a hard plate and a foamed resin heat insulating material layer via a heat-peelable paint layer, and is suitably used as, for example, a building material.
[0016]
The hard plate is a base material for holding the foamed resin insulation material layer, and is not particularly limited. Hard plates used for construction are mainly wood-based hard plates, inorganic hard plates, and metal plates. Are classified into three types. Examples of the wood-based hard board include plywood, MDF (Medium Density Fiberboard (medium fiber board)), OSB (Oriented strand Board (oriented wood board)), particle board, and insulation board. Examples of the inorganic hard plate include a gypsum board, a calcium silicate plate, a wool cement plate, an extruded cement plate, a brick, a tile, and the like. Examples of the metal plate include a general color steel plate, a galvanized steel plate, a copper plate, an aluminum plate, and a stainless steel plate. The thickness of the hard plate is not particularly limited, but is generally preferably about 0.27 to 0.8 mm.
[0017]
When the laminated structure is used as a building material, the foamed resin heat insulating material layer functions as a heat insulating material for preventing heat conduction between indoors and outdoors due to its heat insulating property. And rigid urethane foam, urethane modified isocyanurate foam, carbodiimide foam, imide foam, phenol foam, urea foam, epoxy foam and the like. The thickness of the foamed resin heat-insulating material layer is not particularly limited, but is generally preferably about 10 to 100 mm.
[0018]
The heat-peelable paint layer is composed of a heat-peelable paint mainly composed of an organic emulsion paint and containing 3 to 15% by weight of thermally expandable hollow fine particles and 5 to 10% by weight of aqueous isocyanate. Such an organic emulsion paint is a dispersion containing an organic polymer. Examples of the organic polymer include an acrylic polymer, a urethane polymer, an ethylene / vinyl acetate copolymer polymer, a vinyl chloride / vinyl acetate copolymer polymer, and a synthetic rubber latex. Water is used as a dispersion medium for the organic emulsion paint. The concentration of the organic polymer in the organic emulsion paint is not particularly limited, but is preferably about 25 to 45% by weight.
[0019]
The heat-expandable hollow microparticles are preferably hollow bodies made of a thermoplastic plastic, in which a liquid gas is sealed. The gas pressure rises rapidly and foams. Examples of the gas to be sealed include liquefied hydrocarbons having a boiling point higher than normal temperature (for example, 40 to 70 ° C.), pentanes, hexanes, and the like. Examples of the thermoplastic plastic include acrylic resins such as acrylonitrile and methyl methacrylate, and melamine resins.
[0020]
The expansion ratio of the heat-expandable hollow fine particles is not particularly limited, but is preferably about 5 to 30 times, and the expansion start temperature is preferably about 120 to 140 ° C. The temperature at which the heat-peelable paint is to be peeled is the temperature at which the laminated structure is heated at the time of recovery, and is preferably set within the range from the foaming start temperature to the foaming start temperature + 30 ° C.
[0021]
Here, when the content of the heat-expandable hollow fine particles is less than 3% by weight, even if the heat-expandable hollow fine particles are foamed at the time of recovery, the adhesive strength is not sufficiently reduced, and the hard plate and the foamed resin heat insulating material layer When the content of the heat-expandable hollow microparticles exceeds 15% by weight, the effect of further addition is lost and the cost is rather increased.
[0022]
The average particle diameter of the heat-expandable hollow fine particles is preferably from 10 to 30 μm. When the average particle size is less than 10 μm, the expanded foam diameter tends to be small and it is difficult to contribute to the decrease in the adhesive strength. On the other hand, when the average particle size exceeds 30 μm, the dispersibility in the organic emulsion coating is poor and separation occurs. This tends to make it difficult for the thickness of the heat-peelable paint layer to become uniform.
[0023]
In the present invention, the aqueous isocyanate added to the heat-peelable paint serves as a cross-linking agent for curing the heat-peelable paint layer, and can thereby increase the strength of the heat-peelable paint. . In addition, a general isocyanate separates from water, whereas an aqueous isocyanate forms a stable mixed solution. As such an aqueous isocyanate, a functional group and / or water contained in the resin contained in the organic emulsion paint reacts with a reactive group (isocyanate group) in the aqueous isocyanate to cure the heat-peelable paint layer. Preferably, it is
[0024]
Here, when the content of the aqueous isocyanate is less than 5% by weight, the toughening by the aqueous isocyanate is insufficient, and the adhesion tends to deteriorate with time during use. On the other hand, the content of the aqueous isocyanate is 10% by weight. %, The compatibility between the aqueous isocyanate and the organic emulsion paint deteriorates, and the liquid is easily separated.
[0025]
In the heat-peelable paint of the present invention, the amount of paint per unit area is 100 g / m. 2 ~ 300g / m 2 It has become. 100 g / m of paint per unit area 2 If it is less than 30, the bonding effect is strong because the foaming effect of the heat-expandable hollow fine particles is small, and it is difficult to reliably separate the hard plate and the foamed resin heat insulating material layer. On the other hand, the amount of paint per unit area is 300 g / m 2 Exceeding the thickness, the thickness of the heat-peelable paint layer becomes thicker, the strength of the paint itself becomes weak, and the adhesiveness between the hard plate and the foamed resin insulation layer becomes insufficient, and it peels off by impact or vibration. It becomes easier.
[0026]
The laminated structure having such a configuration is manufactured, for example, as follows. First, a heat-peelable paint is applied on a hard plate to form a heat-peelable paint layer. Examples of the coating method include brush coating, roller coating, air spray, and the like. Next, the foamed resin heat insulating material is laminated on the heat-peelable paint layer, and the foamed resin heat-insulating material is fixed to the hard plate by the adhesiveness of the heat-peelable paint layer to form a foamed resin heat insulator layer. . At this time, the foamed resin heat insulating material layer may be fixed to the hard plate via the heat-peelable paint layer by the weight of the foamed resin heat insulating material layer or press working. In this way, a laminated structure in which the hard plate and the foamed resin heat insulating material layer are bonded via the heat-peelable paint layer is obtained.
[0027]
Since the above-mentioned aqueous isocyanate is contained in the heat-peelable coating layer of the laminated structure obtained in this way, even when heated during use, the foaming of the heat-expandable hollow fine particles may occur. It will be suppressed.
[0028]
Next, a preferred method of separating and collecting the laminated structure will be described. First, the laminated structure collected after use is held for a predetermined time (for example, 1 to 3 minutes) within a temperature range of a temperature (for example, 120 to 140 ° C.) higher than the scheduled peeling temperature. As a result, the gas pressure inside the heat-expandable hollow fine particles contained in the heat-peelable paint rapidly increases, and the heat-expandable hollow fine particles foam. As a result, the entire heat-peelable paint is foamed, the adhesive strength of the heat-peelable paint layer is sufficiently reduced, and the laminated structure is in a state where the hard plate and the foamed resin heat insulating material layer can be reliably separated. In this state, an operator or the like can easily peel off the foamed resin heat insulating material layer from the hard plate, and can easily be separated and collected. In addition, at this time, the foamed resin heat insulating material is sufficiently prevented from remaining on the hard plate, and the heat-peelable paint layer adheres to only one of the hard plate and the foamed resin heat insulating layer and peels off. Therefore, the laminated structure has excellent recyclability.
[0029]
In addition, although the collected laminated structure may be hardened by heating during use, the aqueous isocyanate cures the heat-peelable paint layer, and the thermally expandable hollow fine particles may not be easily foamed. The hollow fine particles originally foam up to 30 to 40 times, and even when the expansion ratio of the heat-peelable paint is reduced to about 5 to 10 times, the adhesive strength between the hard plate and the foam-based resin heat insulating material layer at the time of recovery. Is sufficiently reduced, and separation can be easily and reliably performed.
[0030]
As described above, the preferred embodiments of the present invention have been specifically described, but the present invention is not limited to the above embodiments. For example, in the above embodiment, the heat-peelable paint layer is formed by applying a paint having fluidity. However, the present invention is not limited to this. The heat-peelable paint layer may be formed by placing the body on a hard plate. In the above embodiment, only the heat-peelable paint layer was interposed between the hard plate and the foamed resin heat insulating material layer. However, the present invention is not limited to this. A layer other than the heat-peelable paint layer (for example, an adhesive layer other than the heat-peelable paint layer) may be interposed.
[0031]
Further, in the above embodiment, the foamed resin heat insulating material layer is formed by laminating the foamed resin heat insulating material layer formed in advance on the heat-peelable paint layer. However, the present invention is not limited to this. The foamed resin heat insulating material layer may be formed by spraying the resin heat insulating material on the heat-peelable paint layer by spraying or the like. Further, in the above embodiment, the laminated structure is manufactured by providing the heat-peelable paint layer on the hard plate and providing the foamed resin heat insulating material layer thereon, but the invention is not limited to this. The laminated structure may be manufactured by integrating the paint layer and the foamed resin heat insulating material layer and then attaching the integrated one to the hard plate.
[0032]
Furthermore, in the above embodiment, the laminated structure has a three-layer structure in which a heat-peelable paint layer is interposed between a hard plate and a foamed resin heat insulating material layer. However, the present invention is not limited to this. May be a laminated structure having a five-layer structure in which a foamed resin heat insulating material layer is laminated on both surfaces of the foamed resin heat insulating material layer via a heat-peelable paint layer. It may be a laminated structure having a five-layer structure in which hard plates are laminated via a mold paint layer.
[0033]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0034]
The heat-peelable paints used in each of the examples and comparative examples have the following compositions.
Heat-peelable coating material A: Konishi Bond CVC1100 (3% by weight of thermally expandable hollow fine particles (average particle size: 20 μm) containing ethylene vinyl acetate emulsion) (manufactured by Konishi) + 5% by weight of Wood Cure 300 (aqueous isocyanate, diphenylmethane diisocyanate) (Manufactured by Nippon Polyurethane)
Heat-peelable paint B: 5% by weight EXPANCEL 054 (thermally expandable hollow fine particles, average particle size 25 μm) (manufactured by EXPANCEL) containing acrylic emulsion AC100 (manufactured by Taiho Paint) + 6% by weight wood cure 300 (Manufactured by Nippon Polyurethane)
Heat-peelable paint C: 6% by weight Expancel 820 (thermally expandable hollow fine particles, average particle diameter 25 μm) (Expancel) -containing acrylic emulsion AC100 (Daiho Paint) + 6% by weight wood cure 300 (Manufactured by Nippon Polyurethane)
Heat-peelable coating material D: Acrylic emulsion AC100 (manufactured by Taiho Paint Co.) containing 5% by weight of Expancel 054 (manufactured by Expancel).
Heat-peelable paint E: 5% by weight EXPANCEL 054 (manufactured by EXPANCEL) containing acrylic emulsion AC100 (manufactured by Taiho Paints) + 1% by weight wood cure 300 (manufactured by Nippon Polyurethane)
Heat-peelable paint F: 5% by weight EXPANCEL 054 (manufactured by Expancel) -containing acrylic emulsion AC100 (manufactured by Taiho Paint Co., Ltd.) + 15% by weight wood cure 300 (manufactured by Nippon Polyurethane).
[0035]
Using the laminated structures obtained in Examples and Comparative Examples, the following adhesive durability test during normal use, impact resistance test, and peel test during separation and recovery were performed.
[0036]
(Adhesion durability test)
When the laminated structure is used as a roofing material, the laminated structure is held at a temperature of 80 ° C. for 7 hours under the assumption that the temperature of the laminated structure will rise to nearly 80 ° C., and the state of the swelling and peeling is obtained. Was observed.
[0037]
(Impact resistance test)
A 1 kg eggplant-shaped weight is dropped from a height of 1.5 m on a panel placed horizontally with the hard plate surface facing upward, and the through holes, peeling, warping, and the like are visually observed (JISA1302). A sample in which peeling was not visually confirmed at the interface between the hard plate and the foamed resin heat insulating material was evaluated as good, and a sample which was slightly peeled was evaluated as unacceptable.
[0038]
(Peeling test)
After holding the laminated structure in a 120 ° C. gear oven for 1 to 3 minutes (1 minute for Examples 1 and 2 and Comparative Example 1 and 3 minutes for Examples 3 and 5), the laminated structure was manually removed from the hard plate. The foamed resin heat insulating material layer was peeled off. At that time, the peeled state of the hard plate and the peeled state of the foamed resin heat insulating material layer were evaluated according to the following criteria.
Good: When the foamed resin insulation material is completely removed without remaining on the hard plate
Poor: When peeling was not possible, or when complete peeling was not possible and foamed resin insulation remained on the hard plate
This test was not carried out for those having peeled off by heating at 80 ° C. and those having peeled off by impact.
[0039]
(Example 1)
100 g / m of heat-peelable paint A on general color steel plate (thickness 0.27 mm) 2 (Based on the solid content weight), then rigid urethane foam (thickness 15 mm) and aluminum vapor-deposited kraft paper are sequentially laminated and integrated by pressure bonding to form a metal siding panel (15 mm thick x 400 mm width x 1000 mm length). ) Got. The respective contents in the heat-peelable paint are as follows.
Content of heat-expandable hollow fine particles ... 3% by weight
Aqueous isocyanate content ... 5% by weight
[0040]
When an adhesion durability test was performed using the obtained laminated structure, no peeling was observed in appearance. Further, when an impact resistance test was performed, no peeling was confirmed, and there was no practical problem. Further, when a peeling test was performed, the heat-peelable paint could be easily and reliably separated from the general color steel sheet and the hard urethane foam without remaining on the general color steel sheet. Table 1 shows the results.
[0041]
(Example 2)
200 g / m2 of heat-peelable paint B on both sides of stainless steel plate (thickness 0.5 mm) 2 (Based on the weight of solid content), and a rigid urethane foam (thickness: 30 mm) was injected and foamed on both surfaces of a stainless steel plate using thermoforming equipment to obtain a panel. The respective contents in the heat-peelable paint are as follows.
Content of heat-expandable hollow fine particles ... 5% by weight
Aqueous isocyanate content ... 6% by weight
[0042]
When an adhesion durability test was performed using the obtained laminated structure, no peeling was observed in appearance. Further, when an impact resistance test was performed, no peeling was confirmed, and there was no practical problem. Further, when a peeling test was conducted, the hard urethane foam laminated on both sides could be easily and reliably separated from the stainless steel plate without the heat-peelable paint remaining on the stainless steel plate. Table 1 shows the results.
[0043]
(Example 3)
300 g / m of heat-peelable paint C on a calcium silicate plate (10 mm thick) 2 Then, a phenol foam (thickness: 25 mm) was laminated via a butyl rubber adhesive and integrated by pressing to obtain a panel. The respective contents in the heat-peelable paint are as follows.
Content of heat-expandable hollow fine particles ... 6% by weight
Aqueous isocyanate content ... 6% by weight
[0044]
When an adhesion durability test was performed using the obtained laminated structure, no peeling was observed in appearance. Further, when an impact resistance test was performed, no peeling was confirmed, and there was no practical problem. Further, when a peeling test was performed, the calcium silicate plate and the phenol foam could be easily and reliably separated from each other without the heat-peelable paint remaining on the calcium silicate plate. Table 1 shows the results.
[0045]
(Comparative Example 1)
The coating amount of the heat-peelable paint is 60 g / m 2 A metal siding panel was obtained in the same manner as in Example 1 except that the foamed resin heat insulating material was changed to urethane-deformed isocyanurate foam. The respective contents in the heat-peelable paint are as follows.
Content of heat-expandable hollow fine particles ... 3% by weight
Aqueous isocyanate content ... 5% by weight
[0046]
When an adhesion durability test was performed using the obtained laminated structure, no peeling was observed in appearance. Further, when an impact resistance test was performed, no peeling was confirmed, and there was no practical problem. However, when a peeling test was conducted, there were places where the urethane-deformed isocyanurate foam was peeled off and places where the urethane-deformed isocyanurate foam was not peeled off. Table 1 shows the results.
[0047]
(Comparative Example 2)
350 g / m 2 Then, a metal siding panel was obtained in the same manner as in Example 1, except that the foamed resin heat insulating material was changed to a urethane modified isocyanurate foam. The respective contents in the heat-peelable paint are as follows.
Content of heat-expandable hollow fine particles ... 3% by weight
Aqueous isocyanate content ... 5% by weight
[0048]
When an adhesion durability test was performed using the obtained laminated structure, no peeling was observed in appearance. However, when an impact resistance test was conducted, the urethane deformed isocyanurate foam and the general color steel sheet were peeled off by a general impact and were not practically endurable. Table 1 shows the results.
[0049]
(Comparative Example 3)
A metal siding panel was obtained in the same manner as in Example 1 except that the heat-peelable paint layer D was used as the heat-peelable paint layer, and the thickness of the general color steel sheet was changed to 0.5 mm. The respective contents in the heat-peelable paint are as follows.
Content of heat-expandable hollow fine particles ... 3% by weight
Aqueous isocyanate content: 0% by weight
[0050]
When an adhesion durability test was performed using the obtained laminated structure, a part of the thermally expandable hollow fine particles was foamed by heating, and the colored steel sheet and the urethane foam were partially peeled off. Table 1 shows the results.
[0051]
(Comparative Example 4)
A metal siding panel was obtained in the same manner as in Example 1, except that the heat-peelable paint layer E was used as the heat-peelable paint layer, and the thickness of the general color steel sheet was changed to 0.5 mm. The respective contents in the heat-peelable paint are as follows.
Content of heat-expandable hollow fine particles ... 5% by weight
Aqueous isocyanate content 1% by weight
[0052]
When an adhesion durability test was performed using the obtained laminated structure, as in Comparative Example 4, a part of the thermally expandable hollow fine particles was foamed by heating, and a part of the color steel sheet and the urethane foam were partially expanded. Peeled off. Table 1 shows the results.
[0053]
(Comparative Example 5)
A metal siding panel was obtained in the same manner as in Comparative Example 4, except that the heat-peelable paint layer F was used as the heat-peelable paint layer. The respective contents in the heat-peelable paint are as follows.
Content of heat-expandable hollow fine particles ... 5% by weight
Aqueous isocyanate content: 15% by weight
[0054]
When an adhesion durability test was performed using the obtained laminated structure, no peeling was observed in appearance. Further, when an impact resistance test was performed, no peeling was confirmed, and there was no practical problem. However, when a peeling test was performed, there were places that peeled off and places that did not peel off, and it was not easy and reliable to separate the general color steel sheet from the urethane foam. Table 1 shows the results.
[0055]
[Table 1]
Figure 2004025746
[0056]
As is clear from the results shown in Table 1, the coating amount per unit area is 100 to 300 g / m. 2 Wherein the content of the heat-expandable hollow fine particles is 3 to 15% by weight and the content of the aqueous isocyanate is 5 to 10% by weight. In the structure, the adhesiveness of the heat-peelable paint layer was not deteriorated by heating assumed during use, and there was no practical problem.The heat-peelable paint remained on the hard plate during peeling. It has been found that the foamed resin heat insulating material layer can be efficiently and reliably separated and recovered from the hard plate without performing. Furthermore, it was found that the impact resistance was sufficiently ensured.
[0057]
【The invention's effect】
As described in detail above, according to the present invention, the foamed resin heat insulating material layer is efficiently and reliably separated from the hard plate at the time of recovery while sufficiently preventing the adhesive property from deteriorating during use. It is possible to obtain a laminated structure that can be used. When such a laminated structure is used, the adhesive strength of the heat-peelable paint layer interposed between the hard plate and the foamed resin heat insulating material layer at the time of recovery can be obtained. Can be sufficiently reduced. Therefore, the laminated structure and the method for separating and recovering the laminated structure according to the present invention are very useful as a technique for recycling the laminated structure.

Claims (2)

加熱剥離型塗料層を介して硬質板と発泡系樹脂断熱材層とを積層してなる積層構造体であって、
前記加熱剥離型塗料は、有機系エマルジョン塗料を主成分とし且つ熱膨張性中空微粒子を3〜15重量%及び水性イソシアネートを5〜10重量%含有するものであり、前記加熱剥離型塗料層を構成する単位面積当りの塗料量が100〜300g/mであることを特徴とする積層構造体。
A laminated structure formed by laminating a hard plate and a foam-based resin heat insulating material layer via a heat-peelable paint layer,
The heat-peelable paint contains an organic emulsion paint as a main component and contains 3 to 15% by weight of thermally expandable hollow fine particles and 5 to 10% by weight of an aqueous isocyanate. A laminated structure having a coating amount per unit area of 100 to 300 g / m 2 .
前記加熱剥離型塗料層が剥離予定温度以上の温度となるように請求項1記載の積層構造体を加熱する工程と、
加熱後に前記硬質板と前記発泡系樹脂断熱材層とを分離して回収する工程と、を含むことを特徴とする積層構造体の分離回収方法。
A step of heating the laminated structure according to claim 1, wherein the heat-peelable paint layer has a temperature equal to or higher than a scheduled peeling temperature.
Separating and collecting the hard plate and the foamed resin heat insulating material layer after heating.
JP2002188585A 2002-06-27 2002-06-27 Laminated structure and separation and recovery method therefor Pending JP2004025746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188585A JP2004025746A (en) 2002-06-27 2002-06-27 Laminated structure and separation and recovery method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188585A JP2004025746A (en) 2002-06-27 2002-06-27 Laminated structure and separation and recovery method therefor

Publications (1)

Publication Number Publication Date
JP2004025746A true JP2004025746A (en) 2004-01-29

Family

ID=31183298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188585A Pending JP2004025746A (en) 2002-06-27 2002-06-27 Laminated structure and separation and recovery method therefor

Country Status (1)

Country Link
JP (1) JP2004025746A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222344A (en) * 2006-02-22 2007-09-06 Matsushita Electric Works Ltd Kitchen counter
CN102848689A (en) * 2012-09-04 2013-01-02 东莞加力特彩钢板风管有限公司 Color steel plate production apparatus and color steel plate produced by the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222344A (en) * 2006-02-22 2007-09-06 Matsushita Electric Works Ltd Kitchen counter
CN102848689A (en) * 2012-09-04 2013-01-02 东莞加力特彩钢板风管有限公司 Color steel plate production apparatus and color steel plate produced by the same

Similar Documents

Publication Publication Date Title
CN1990539B (en) Adhesive composition
US9482004B2 (en) Method for producing a panel sandwich
US10450741B2 (en) Construction boards with coated inorganic facer
WO2005118275A2 (en) Improved structural and other composite materials and methods for making same
JP2009513437A (en) Panel structure
JPH01317754A (en) Form composite body and manufacture thereof
CA2640701C (en) Wood panel with water vapor-permeable polyester layer
KR101979065B1 (en) A board for indoor interior materials and the manufacturing method of the board and the indoor interior materials comprising the board
US10618256B2 (en) Porcelain laminate and procedure for manufacturing it
US6099680A (en) Method for creating a bond enhancement layer for thermoplastic urethane panels
JP2004025746A (en) Laminated structure and separation and recovery method therefor
KR20060035677A (en) A board which insided honeycomb and insulation construction
JPH0370785A (en) Tacky waterproof sheet and waterproof structure using thereof
RU175358U1 (en) Composite material
WO2004024645A2 (en) Method of making a foamed glass composite panel and use therefor
JP2838982B2 (en) Fireproof panel
JP2010101128A (en) Structure and method for reinforcing slate roof
JP2000087470A (en) Composite board
JP2010095879A (en) Woody decorative floor member and method for remodeling woody decorative floor
JP3043988B2 (en) Manufacturing method of wood veneer
JP2004025642A (en) Separation and recovery structure of foamed resin heat insulating material
JP4008863B2 (en) Insulation board manufacturing method
JP3615662B2 (en) Flooring
JP2950779B2 (en) Concrete formwork panel
JP3814674B2 (en) Stone for makeup