【0001】
【発明の属する技術分野】
本発明は、例えば汚泥集約処理場から発生する汚泥処理返流水の処理方法に関するものであり、さらに詳しくは汚泥処理返流水中に存在する窒素、主にアンモニア性窒素とリンを効率よく除去する汚泥処理返流水の処理方法に関する。
【0002】
【従来の技術】
汚泥処理の経済性、エネルギ−回収及び資源化と利用に当たっての効率性や処理場の立地条件等から、複数箇所からの汚泥を集約して処理する自治体が増えている。一般に大規模になると、集約処理はスケ−ルメリットが働き、建設コスト及び維持管理コストが有利になる。汚泥集約処理の各プロセスで生じる濃縮分離液、脱水分離液等の排水(以下、この水を「返流水」と称す)は、処理することなく隣接する下水処理場の沈砂池又は最初沈殿池の流入側に移送されていた。
【0003】
しかし、汚泥集約処理場から排出される返流水量は、数千m3/日〜数万m3/日発生し、隣接する下水処理場流入水の数十%になる場合があり、また、汚泥集約処理場から排出される返流水質は、窒素(アンモニア性窒素)、リンが高濃度に含有されているため、返流水が移送される下水処理場では、良好な活性汚泥処理を行うための運転管理が困難となっている。特に、放流先に窒素、リン規制がある場合は、従来の標準活性汚泥法を高度処理法(凝集剤添加循環式硝化脱窒法、嫌気−無酸素−好気活性汚泥法)に変更する必要がある。よって、近年、返流水を単独処理、つまりその処理水質を下水処理場の流入水程度まで処理する方法と直接放流が可能な程度まで処理する方法のどちらかを採用する汚泥集約処理場が増えてきている。
【0004】
返流水の単独処理方法としては、従来、窒素を対象とした循環式硝化脱窒法、リンを対象とした凝集沈殿法、またはこれらを組み合わせた方法が導入されていた。
【0005】
【発明が解決しようとする課題】
しかしながら、汚泥集約処理場から排出される返流水中の窒素、リン濃度はそれぞれ数百mg/L、数十mg/L以上(特に汚泥集約処理方法に嫌気性消化法が採用されている処理場では、返流水中のリン濃度が数百mg/L以上)含有しているため、従来法である窒素を除去する循環式硝化脱窒法では24時間以上の滞留時間が必要であり敷地面積が課題となっていた。また、従来法であるリンを除去する凝集沈殿法では添加する凝集剤の費用や発生する凝沈汚泥の処分方法、処分費用等が課題となっていた。
【0006】
また、現在導入されている処理方法は返流水中に窒素(アンモニア性窒素)、リンが高濃度に含有されているため、高度な運転管理が必要である。特に窒素、リンを直接放流が可能な程度まで処理する必要がある汚泥集約処理場では、処理水質の安定性を維持するためより高度な運転管理が課題となっていた。
【0007】
本発明は、比較的短時間でコストが安く、しかも運転管理が容易である、汚泥集約処理場から排出される返流水中の窒素(アンモニア性窒素)、リンを除去、回収する処理方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、このような課題を解決するために鋭意検討の結果、汚泥集約処理場から発生する汚泥処理返流水を処理する方法において、返流水中に高濃度に含有している窒素(アンモニア性窒素)とリンを、造粒脱リン法つまりマグネシウム化合物を添加することによりリン酸マグネシウムアンモニウムとして除去、回収した後、その処理水中に残存する窒素とリンを担体添加活性汚泥法により処理することで、返流水を下水処理場の流入水または直接放流が可能な程度まで処理できることを見出し、本発明に到達した。
【0009】
すなわち、本発明は、汚泥処理返流水にマグネシウム化合物を添加して該返流水中に含有する窒素とリンからリン酸マグネシウムアンモニウム粒子を形成した後、該リン酸マグネシウムアンモニウム粒子を除去、回収し、その処理水中に残存する窒素とリンを担体添加活性汚泥法により除去することを特徴とする汚泥処理返流水の処理方法を要旨とするものである。
本発明においては、好ましくは、リン酸マグネシウムアンモニウム粒子を形成した後、該リン酸マグネシウムアンモニウム粒子を除去、回収するに際し、該リン酸マグネシウムアンモニウム粒子を含む処理水を液体サイクロンに送り、微細粒径のリン酸マグネシウムアンモニウムの流出を防止しながら除去、回収するものであり、さらに好ましくは、担体添加活性汚泥法により処理された水にさらに凝集剤処理を行うものである。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
先ず、返流水中に高濃度に含有している窒素(主にアンモニア性窒素)とリンを、造粒脱リン法つまりマグネシウム化合物を添加することによりリン酸マグネシウムアンモニウムとして除去、回収する技術(工程)について説明する。この造粒脱リン工程は、リン含有排水に対して従来行われていた方法が良好に用いられる(特許第2578136号公報参照)。
【0011】
ここで用いられるマグネシウム化合物としては、特に限定されないが、水酸化マグネシウム、塩化マグネシウム、酢酸マグネシウム等の水中でイオン化するマグネシウム塩が用いられ、海水中のマグネシウムイオンを利用することも可能である。マグネシウム化合物の添加量としては、返流水中のリン酸イオンとのモル比が0.5〜3となるようにすることが好ましく、さらに好ましくは、0.8〜1.3である。
【0012】
本発明においては、マグネシウム化合物を添加した際に、返流水のpHを苛性ソ−ダのようなアルカリ剤を添加してpH8〜11に調整することが望ましい。さらに、この造粒脱リン工程においては、曝気により装置本体内を攪拌混合することが望ましい。
【0013】
この造粒脱リン工程により、返流水中に含まれていたリン酸イオンの80〜90%、アンモニアイオンの15〜25%が除去され、リン酸マグネシウムアンモニウムの固体粒子として生成される。窒素とリンが除去された処理水は装置本体上部より排出される。装置内に生成してくるリン酸マグネシウムアンモニウムは5〜14日間装置本体内に滞留し、粒径0.5〜1.0mm程度にまで造粒した後、装置本体下部より引き抜くことにより固体粒子として回収され、化成肥料として有効利用される。
【0014】
なお、回収するリン酸マグネシウムアンモニウムの回収率を上げるためには、上記造粒脱リン工程後段に液体サイクロン工程を併設させることが望ましい。液体サイクロンとしては、例えば特開平8−155469号公報に記載されたようなものが挙げられる。液体サイクロン工程を併設することにより、二工程全体でリン酸イオンの85〜95%、アンモニアイオンの20〜30%が除去され、リン酸マグネシウムアンモニウムの固体粒子として生成される。
【0015】
特に、返流水中に高濃度の浮遊物質(SS=500mg/L以上)を含む場合、造粒脱リン工程でのリン酸マグネシウムアンモニウム結晶の成長を浮遊物質が阻害し、生成するリン酸マグネシウムアンモニウム固体粒子が微細化する傾向があり、微細化した結晶は造粒脱リン装置から流出しやすく、リン酸マグネシウムアンモニウム回収率を低下させる傾向があった。しかし、液体サイクロンを併設することにより、微細化した結晶の流出を防止し、リン酸マグネシウムアンモニウムの回収率を維持することが可能である。なお、液体サイクロンで回収した微細なリン酸マグネシウムアンモニウム粒子は、そのまま回収しても良いが、造粒脱リン装置へ戻し種汚泥として使用することも可能である。
【0016】
次に、上記工程を経た返流水は、次工程である担体添加活性汚泥法に供給される。担体添加活性汚泥法に適用される活性汚泥法は、返流水水質や処理水質の目標値により方法を選定する。窒素、リンを同時除去したい場合には嫌気無酸素好気法(A2O法)、窒素を主体として除去したい場合には循環式硝化脱窒法(循環法)を選定するがいずれも担体を利用するものである。
【0017】
ここで用いられる担体は、微生物を担持できるものであれば特に限定されない。
具体的には、(財)下水道新技術推進機構発行の「担体利用処理法技術マニュアル−1994年度版−」に担体の種類として記載されているものなどを用いることができる。担体添加に関しては、A2O法における嫌気槽、無酸素槽、好気槽、循環法における無酸素槽、好気槽それぞれに関して担体の添加が可能である。返流水水質、処理水質の目標値や、敷地面積、全体建設費等を考慮して担体を添加する槽及び担体の添加率を選定する。なお、特に処理水質のリン濃度が厳しい場合(T−P=1mg/L以下)には、凝集剤(PAC、硫酸バンド、塩化鉄等)添加工程を併設することが望ましい。
【0018】
【実施例】
以下、本発明を実施例により具体的に説明する。
実施例において用いた、汚泥集約処理場から発生した汚泥処理返流水の窒素、リン濃度の平均値は表1の通りであった。
【0019】
【表1】
【0020】
実施例1
実効容積450Lのリン酸マグネシウムアンモニウム造粒塔の底部に、420L/hrの流量で上記返流水を供給した。空気による攪拌を行いながら、10%の水酸化マグネシウムを返流水中のリン酸と等モルになるように造粒塔内部に注入し、また48%の苛性ソーダを造粒塔内内部に注入して、造粒塔内部のpHを8.8に調整した。造粒塔底部には、直径0.3〜1.0mmのリン酸マグネシウムアンモニウムの固体粒子が生成、蓄積された。この固体粒子は1〜2週間の間隔で造粒塔より引く抜き、回収した。
【0021】
次に、造粒脱リン工程処理水を循環法(好気槽担体添加)に供給した。循環法(好気槽担体添加)を適用した装置は、無酸素槽+好気槽からなりそれぞれの滞留時間は12時間、12時間、循環比1.5とした。無酸素槽の攪拌方式はパドル方式、好気槽の攪拌は全面ばっき方式とし、担体の分離装置としては3mm目幅のスクリ−ンを設置した。なお、好気槽への担体の添加率は20%投入した。実験に使用した担体は異形断面柱状でポリエステル繊維製の担体を用いた。
造粒脱リン工程+循環法(好気槽担体添加)を上記表1の返流水に適用した結果(平均値)を表2に示す。
その結果、造粒脱リン工程を経た処理水及び循環法による担体添加活性汚泥法による処理を経た処理水の水質は表2に示した通りであった。
【0022】
【表2】
【0023】
上記処理水の結果より、隣接下水処理場の全体処理水量を考慮する必要があるが、隣接下水処理場の沈砂池又は最初沈殿池の流入側に移送可能な処理水質であった。
【0024】
実施例2
実効容積450Lのリン酸マグネシウムアンモニウム造粒塔の底部に、420L/hrの流量で上記返流水を供給した。空気による攪拌を行いながら、10%の水酸化マグネシウムを返流水中のリン酸と等モルになるように造粒塔内部に注入し、また48%の苛性ソーダを造粒塔内内部に注入して、造粒塔内部のpHを8.8に調整した。造粒塔底部には、直径0.3〜1.0mmのリン酸マグネシウムアンモニウムの固体粒子が生成、蓄積された。この固体粒子は1〜2週間の間隔で造粒塔より引く抜き、回収した。
【0025】
次に、造粒脱リン工程処理水をA2O法(無酸素槽、好気槽担体添加)に供給した。A2O法(無酸素槽、好気槽担体添加)を適用した装置は、嫌気槽+無酸素槽+好気槽からなりそれぞれの滞留時間は4時間、6時間、12時間、循環比1.5とした。嫌気槽、無酸素槽の攪拌方式はパドル方式、好気槽の攪拌は全面ばっき方式とし、担体の分離装置としては3mm目幅のスクリ−ンを設置した。なお、無酸素槽、好気槽への担体の添加率は20%投入した。実験に使用した担体は異形断面柱状でポリエステル繊維製の担体を用いた。
造粒脱リン工程+A2O法(無酸素槽、好気槽担体添加)を上記表1の返流水に適用した結果(平均値)を表3に示す。
その結果、造粒脱リン工程を経た処理水及びA2O法による担体添加活性汚泥法による処理を経た処理水の水質は表2に示した通りであった。
【0026】
【表3】
【0027】
上記処理水の結果より、隣接下水処理場の沈砂池又は最初沈殿池の流入側に移送可能であり、及び直接放流が可能な処理水質であった。
【0028】
実施例3
実効容積450Lのリン酸マグネシウムアンモニウム造粒塔の底部に、420L/hrの流量で上記返流水を供給した。空気による攪拌を行いながら、10%の水酸化マグネシウムを返流水中のリン酸と等モルになるように造粒塔内部に注入し、また48%の苛性ソーダを造粒塔内内部に注入して、造粒塔内部のpHを8.8に調整した。造粒塔底部には、直径0.3〜1.0mmのリン酸マグネシウムアンモニウムの固体粒子が生成、蓄積された。この固体粒子は1〜2週間の間隔で造粒塔より引く抜き、回収した。
【0029】
次に、造粒脱リン工程処理水を液体サイクロンへ1.62m3/hrで供給した。ここで、使用した液体サイクロンのサイクロン円筒部の直径は204mm、高さ210mm、サイクロン円錐部の高さ560mmで円錐部20度、処理水入口の直径は51mm、上流上昇管の直径は53mmである。下流出口より、引き抜いたリン酸マグネシウムアンモニウムの微粒子は造粒脱リン工程に返流した。
【0030】
次に、液体サイクロン工程処理水をA2O法(無酸素槽、好気槽担体添加)に供給した。A2O法(無酸素槽、好気槽担体添加)を適用した装置は、嫌気槽+無酸素槽+好気槽からなりそれぞれの滞留時間は4時間、6時間、12時間、循環比1.5とした。嫌気槽、無酸素槽の攪拌方式はパドル方式、好気槽の攪拌は全面ばっき方式とし、担体の分離装置としては3mm目幅のスクリ−ンを設置した。なお、無酸素槽、好気槽への担体の添加率は20%投入した。実験に使用した担体は異形断面柱状でポリエステル繊維製の担体を用いた。
【0031】
次に、A2O法処理水を凝集剤添加工程に供給した。凝集剤としてPACをA2O法処理水中のリン濃度(T−P=約5mg/L)に対してモル数で2倍になるように添加した。
造粒脱リン工程+液体サイクロン工程+A2O法(無酸素槽、好気槽担体添加)+凝集剤添加工程を上記表1の返流水に適用した結果(平均値)を表4に示すその結果、造粒脱リン工程を経た処理水、液体サイクロンにより処理を行った処理水、A2O法による処理を経た処理水及び凝集剤添加処理を経た処理水の水質は表4に示した通りであった。
【0032】
【表4】
【0033】
上記処理水の結果より、隣接下水処理場の沈砂池又は最初沈殿池の流入側に移送可能であり、及び直接放流が可能な水質であった。
【0034】
【発明の効果】
本発明の汚泥処理返流水の処理方法によれば、返流水中に高濃度に含有している窒素(アンモニア性窒素)とリンを除去、回収し、その処理水質を下水処理場の流入水または直接放流が可能な程度まで処理することが可能である。
【図面の簡単な説明】
【図1】本発明の実施例1での処理工程を示す工程図である。
【図2】本発明の実施例2での処理工程を示す工程図である。
【図3】本発明の実施例3での処理工程を示す工程図である。
【符号の説明】
1.返流水
2.造粒脱リン工程
3.液体サイクロン工程
4.循環法(担体添加)
5.A2O法(担体添加)
6.凝集剤添加工程
7.下水処理場の沈砂池又は最初沈殿池の流入側
8.直接放流[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating sludge treatment return water generated from, for example, a sludge concentration treatment plant, and more particularly to sludge for efficiently removing nitrogen, mainly ammonia nitrogen and phosphorus, present in sludge treatment return water. The present invention relates to a method for treating return water.
[0002]
[Prior art]
Due to the economics of sludge treatment, the efficiency in energy recovery and resource utilization and utilization, and the location conditions of treatment plants, local governments that collect and treat sludge from multiple locations are increasing. In general, when the scale is large, the aggregation process has a scale advantage, and the construction cost and the maintenance cost are advantageous. The wastewater (hereinafter referred to as “return water”) such as concentrated separated liquid and dewatered separated liquid generated in each process of sludge concentration treatment is treated in the sedimentation basin or the first sedimentation basin of the adjacent sewage treatment plant without treatment. Had been transferred to the inflow side.
[0003]
However, the amount of return water discharged from the sludge intensive treatment plant is generated in the range of several thousand m 3 / day to several tens of thousands m 3 / day, and may be several tens% of the inflow water of the adjacent sewage treatment plant. The return water quality discharged from the sludge intensive treatment plant contains nitrogen (ammonia nitrogen) and phosphorus in high concentration, so in the sewage treatment plant where the return water is transferred, to perform good activated sludge treatment It is difficult to manage operation. In particular, when the discharge destination has nitrogen and phosphorus regulations, it is necessary to change the conventional standard activated sludge method to an advanced treatment method (circulating nitrification denitrification method with flocculant, anaerobic-anoxic-aerobic activated sludge method). is there. Therefore, in recent years, the number of sludge intensive treatment plants adopting either the method of treating the return water alone, that is, the method of treating the treated water quality to the level of the influent water of the sewage treatment plant or the method of treating the treated water to the extent that it can be directly discharged has increased. ing.
[0004]
As a method for treating the return water alone, a circulation nitrification denitrification method for nitrogen, a coagulation sedimentation method for phosphorus, or a method combining these methods has been introduced.
[0005]
[Problems to be solved by the invention]
However, the concentrations of nitrogen and phosphorus in the return water discharged from the sludge intensive treatment plant are several hundred mg / L and tens of mg / L or more, respectively (particularly, treatment plants where anaerobic digestion is used as the sludge intensive treatment method). In this case, the concentration of phosphorus in the return water is several hundred mg / L or more. Therefore, the conventional method of removing nitrogen by the circulating nitrification and denitrification method requires a residence time of 24 hours or more, and the site area is an issue. It was. In addition, the coagulation sedimentation method for removing phosphorus, which is a conventional method, has had problems in terms of the cost of a coagulant to be added, the disposal method of the generated coagulated sludge, the disposal cost, and the like.
[0006]
In addition, the currently introduced treatment method requires high operation management because the return water contains high concentrations of nitrogen (ammoniacal nitrogen) and phosphorus. Especially in sludge intensive treatment plants where it is necessary to treat nitrogen and phosphorus to the extent that they can be directly discharged, more advanced operation management has been an issue in order to maintain the stability of treated water quality.
[0007]
The present invention provides a processing method for removing and recovering nitrogen (ammoniacal nitrogen) and phosphorus in return water discharged from a sludge intensive treatment plant, which is relatively inexpensive in a relatively short time and easy in operation management. The purpose is to do.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve such problems, and as a result, in a method of treating sludge treatment return water generated from a sludge concentration treatment plant, nitrogen (ammonia) contained in the return water at a high concentration. Nitrogen) and phosphorus are removed and recovered as magnesium ammonium phosphate by a granulation dephosphorization method, that is, by adding a magnesium compound, and then nitrogen and phosphorus remaining in the treated water are treated by a carrier-added activated sludge method. Thus, the present inventors have found that the return water can be treated to the extent that it can be fed into the sewage treatment plant or directly discharged.
[0009]
That is, the present invention is to form a magnesium ammonium phosphate particles from nitrogen and phosphorus contained in the sludge treatment return water by adding a magnesium compound to the sludge treatment return water, then remove and recover the magnesium ammonium phosphate particles, The gist of the present invention is a method for treating sludge-treated return water, which comprises removing nitrogen and phosphorus remaining in the treated water by a carrier-added activated sludge method.
In the present invention, preferably, after forming the magnesium ammonium phosphate particles, when removing and recovering the magnesium ammonium phosphate particles, the treated water containing the magnesium ammonium phosphate particles is sent to a liquid cyclone, And removing the magnesium ammonium phosphate while preventing it from flowing out. More preferably, water treated by the activated sludge method with a carrier is further subjected to a coagulant treatment.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
First, a technique of removing and recovering nitrogen (mainly ammoniacal nitrogen) and phosphorus contained in high concentration in the return water as magnesium ammonium phosphate by a granulation dephosphorization method, that is, by adding a magnesium compound (process) ) Will be described. In this granulation dephosphorization step, a method conventionally performed on phosphorus-containing wastewater is favorably used (see Japanese Patent No. 2578136).
[0011]
The magnesium compound used here is not particularly limited, but a magnesium salt that can be ionized in water such as magnesium hydroxide, magnesium chloride, or magnesium acetate is used, and magnesium ion in seawater can be used. The amount of the magnesium compound to be added is preferably such that the molar ratio to the phosphate ions in the return water is 0.5 to 3, and more preferably 0.8 to 1.3.
[0012]
In the present invention, when the magnesium compound is added, it is desirable to adjust the pH of the return water to pH 8 to 11 by adding an alkaline agent such as caustic soda. Furthermore, in this granulation dephosphorization step, it is desirable to stir and mix the inside of the apparatus body by aeration.
[0013]
By this granulation dephosphorization step, 80 to 90% of the phosphate ions and 15 to 25% of the ammonia ions contained in the return water are removed, and solid particles of magnesium ammonium phosphate are produced. The treated water from which nitrogen and phosphorus have been removed is discharged from the upper part of the apparatus main body. Magnesium ammonium phosphate generated in the device stays in the device main body for 5 to 14 days, granulates to a particle size of about 0.5 to 1.0 mm, and then is pulled out from the lower portion of the device as solid particles. Collected and effectively used as chemical fertilizer.
[0014]
In order to increase the recovery rate of magnesium ammonium phosphate to be recovered, it is desirable to add a liquid cyclone step after the above-mentioned granulation dephosphorization step. Examples of the hydrocyclone include those described in JP-A-8-155469. By adding a hydrocyclone step, 85 to 95% of phosphate ions and 20 to 30% of ammonia ions are removed in the entire two steps, and solid particles of magnesium ammonium phosphate are produced.
[0015]
In particular, when the return water contains a high concentration of suspended solids (SS = 500 mg / L or more), the suspended solids inhibit the growth of magnesium ammonium phosphate crystals in the granulation and dephosphorization step, and the generated magnesium ammonium phosphate The solid particles tended to be refined, and the refined crystals tended to flow out of the granulation and dephosphorization device, tending to lower the magnesium ammonium phosphate recovery rate. However, by adding a hydrocyclone, it is possible to prevent the outflow of fine crystals and maintain the recovery rate of magnesium ammonium phosphate. The fine magnesium ammonium phosphate particles recovered by the liquid cyclone may be recovered as they are, but may be returned to a granulation dephosphorizer and used as seed sludge.
[0016]
Next, the return water that has passed through the above step is supplied to the carrier-added activated sludge method that is the next step. The activated sludge method applied to the carrier-added activated sludge method is selected according to the target value of the return water quality and the treated water quality. If you want to remove nitrogen and phosphorus at the same time, choose the anaerobic anoxic aerobic method (A 2 O method). If you want to remove mainly nitrogen, choose the circulating nitrification denitrification method (circulation method). Is what you do.
[0017]
The carrier used here is not particularly limited as long as it can support microorganisms.
Specifically, those described as "types of carriers" in "Technical Manual for Treatment of Carrier Utilization-1994 Edition" issued by Sewerage New Technology Promotion Organization can be used. Regarding the addition of the carrier, the carrier can be added to each of the anaerobic tank, the anoxic tank, and the aerobic tank in the A 2 O method, and the anoxic tank and the aerobic tank in the circulation method. The tank to which the carrier is to be added and the carrier addition rate are selected in consideration of the target value of the return water quality and the treated water quality, the site area, and the overall construction cost. In addition, especially when the concentration of phosphorus in the treated water quality is severe (TP = 1 mg / L or less), it is desirable to add a coagulant (PAC, sulfate band, iron chloride, etc.) addition step.
[0018]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
Table 1 shows the average nitrogen and phosphorus concentrations of the sludge treatment return water generated from the sludge concentration treatment plant used in the examples.
[0019]
[Table 1]
[0020]
Example 1
The return water was supplied at a flow rate of 420 L / hr to the bottom of a magnesium ammonium phosphate granulation tower having an effective volume of 450 L. While stirring with air, 10% magnesium hydroxide was injected into the granulation tower so as to be equimolar to phosphoric acid in the return water, and 48% caustic soda was injected into the granulation tower. The pH inside the granulation tower was adjusted to 8.8. Solid particles of magnesium ammonium phosphate having a diameter of 0.3 to 1.0 mm were generated and accumulated at the bottom of the granulation tower. The solid particles were pulled out of the granulation tower at intervals of one to two weeks and collected.
[0021]
Next, the water treated in the granulation dephosphorization step was supplied to the circulation method (aerobic tank carrier addition). The apparatus to which the circulation method (aerobic tank carrier addition) was applied was composed of an anoxic tank and an aerobic tank, and the respective residence times were 12 hours, 12 hours, and the circulation ratio was 1.5. The stirring method of the oxygen-free tank was a paddle method, the stirring of the aerobic tank was a full-surface stirring method, and a screen having a width of 3 mm was installed as a carrier separating device. The rate of addition of the carrier to the aerobic tank was 20%. The carrier used in the experiment was a carrier made of polyester fiber having a columnar shape with a modified cross section.
Table 2 shows the results (average value) of the results obtained by applying the granulated dephosphorization step + circulation method (addition of aerobic tank carrier) to the return water in Table 1 above.
As a result, the quality of the treated water after the granulation dephosphorization step and the treated water after the treatment with the carrier-added activated sludge method by the circulation method were as shown in Table 2.
[0022]
[Table 2]
[0023]
From the results of the treated water, it is necessary to consider the total treated water volume of the adjacent sewage treatment plant.
[0024]
Example 2
The return water was supplied at a flow rate of 420 L / hr to the bottom of a magnesium ammonium phosphate granulation tower having an effective volume of 450 L. While stirring with air, 10% magnesium hydroxide was injected into the granulation tower so as to be equimolar to phosphoric acid in the return water, and 48% caustic soda was injected into the granulation tower. The pH inside the granulation tower was adjusted to 8.8. Solid particles of magnesium ammonium phosphate having a diameter of 0.3 to 1.0 mm were generated and accumulated at the bottom of the granulation tower. The solid particles were pulled out of the granulation tower at intervals of one to two weeks and collected.
[0025]
Next, the water treated for the granulation dephosphorization step was supplied to the A 2 O method (oxygen-free tank, aerobic tank carrier added). An apparatus to which the A 2 O method (oxygen-free tank, aerobic tank carrier addition) is applied, and consists of an anaerobic tank + anoxic tank + aerobic tank, and each residence time is 4 hours, 6 hours, 12 hours, and a circulation ratio is 1 .5. The stirring method for the anaerobic tank and the oxygen-free tank was a paddle method, the stirring for the aerobic tank was a full-surface stirring method, and a screen having a width of 3 mm was installed as a carrier separating device. The rate of addition of the carrier to the anoxic tank and the aerobic tank was 20%. The carrier used in the experiment was a carrier made of polyester fiber having a columnar shape with a modified cross section.
Table 3 shows the results (average value) of the results of applying the granulation dephosphorization step + A 2 O method (adding an oxygen-free tank and aerobic tank carrier) to the return water in Table 1 above.
As a result, the quality of the treated water after the granulation dephosphorization step and the treated water after the treatment with the carrier-added activated sludge method by the A 2 O method were as shown in Table 2.
[0026]
[Table 3]
[0027]
According to the results of the above treated water, the treated water quality was such that it could be transferred to the inflow side of the sand basin or the first settling basin of the adjacent sewage treatment plant and could be directly discharged.
[0028]
Example 3
The return water was supplied at a flow rate of 420 L / hr to the bottom of a magnesium ammonium phosphate granulation tower having an effective volume of 450 L. While stirring with air, 10% magnesium hydroxide was injected into the granulation tower so as to be equimolar to phosphoric acid in the return water, and 48% caustic soda was injected into the granulation tower. The pH inside the granulation tower was adjusted to 8.8. Solid particles of magnesium ammonium phosphate having a diameter of 0.3 to 1.0 mm were generated and accumulated at the bottom of the granulation tower. The solid particles were pulled out of the granulation tower at intervals of one to two weeks and collected.
[0029]
Next, the water treated in the granulation dephosphorization step was supplied to the liquid cyclone at 1.62 m 3 / hr. Here, the diameter of the cyclone cylindrical portion of the used hydrocyclone is 204 mm, the height is 210 mm, the height of the cyclone cone is 560 mm, the cone is 20 degrees, the diameter of the treated water inlet is 51 mm, and the diameter of the upstream riser is 53 mm. . From the downstream outlet, the extracted magnesium ammonium phosphate fine particles were returned to the granulation dephosphorization step.
[0030]
Next, the water treated in the liquid cyclone step was supplied to the A 2 O method (oxygen-free tank, aerobic tank carrier added). An apparatus to which the A 2 O method (oxygen-free tank, aerobic tank carrier addition) is applied, and consists of an anaerobic tank + anoxic tank + aerobic tank, and each residence time is 4 hours, 6 hours, 12 hours, and a circulation ratio is 1 .5. The stirring method for the anaerobic tank and the oxygen-free tank was a paddle method, the stirring for the aerobic tank was a full-surface stirring method, and a screen having a width of 3 mm was installed as a carrier separating device. The rate of addition of the carrier to the anoxic tank and the aerobic tank was 20%. The carrier used for the experiment was a carrier made of a polyester fiber having a columnar shape with an irregular cross section.
[0031]
Next, the A 2 O method-treated water was supplied to the coagulant addition step. The PAC as a coagulant was added to a 2-fold moles relative to A 2 O method processing phosphorus concentration in the water (T-P = about 5 mg / L).
The results (average value) obtained by applying the granulation dephosphorization step + liquid cyclone step + A 2 O method (addition of oxygen-free tank and aerobic tank carrier) + coagulant addition step to the return water in Table 1 above are shown in Table 4. As a result, as shown in Table 4, the treated water subjected to the granulation dephosphorization step, the treated water treated by the liquid cyclone, the treated water treated by the A 2 O method, and the treated water treated by the coagulant addition treatment are as shown in Table 4. Met.
[0032]
[Table 4]
[0033]
From the results of the above treated water, the water quality was such that it could be transferred to the inflow side of the sand basin or the first settling basin of the adjacent sewage treatment plant, and could be directly discharged.
[0034]
【The invention's effect】
According to the method for treating sludge treatment return water of the present invention, nitrogen (ammonia nitrogen) and phosphorus contained in the return water in high concentrations are removed and recovered, and the treated water quality is treated as influent water or wastewater from a sewage treatment plant. Processing can be performed to the extent that direct discharge is possible.
[Brief description of the drawings]
FIG. 1 is a process chart showing processing steps in Embodiment 1 of the present invention.
FIG. 2 is a process chart showing processing steps in Embodiment 2 of the present invention.
FIG. 3 is a process chart showing processing steps in Embodiment 3 of the present invention.
[Explanation of symbols]
1. Return water2. 2. Granulation dephosphorization step 3. hydrocyclone process Circulation method (addition of carrier)
5. A 2 O method (carrier addition)
6. Coagulant addition step7. 7. Inflow side of sedimentation basin or first settling basin of sewage treatment plant Direct release