JP2004024229A - METHOD FOR ENRICHING gamma-AMINOBUTYRIC ACID - Google Patents

METHOD FOR ENRICHING gamma-AMINOBUTYRIC ACID Download PDF

Info

Publication number
JP2004024229A
JP2004024229A JP2002271719A JP2002271719A JP2004024229A JP 2004024229 A JP2004024229 A JP 2004024229A JP 2002271719 A JP2002271719 A JP 2002271719A JP 2002271719 A JP2002271719 A JP 2002271719A JP 2004024229 A JP2004024229 A JP 2004024229A
Authority
JP
Japan
Prior art keywords
glutamic acid
aminobutyric acid
natural material
acid
enriching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002271719A
Other languages
Japanese (ja)
Inventor
Kimio Shibayama
柴山 喜美男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATAYAMA SHOKUHIN KK
Original Assignee
KATAYAMA SHOKUHIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATAYAMA SHOKUHIN KK filed Critical KATAYAMA SHOKUHIN KK
Priority to JP2002271719A priority Critical patent/JP2004024229A/en
Publication of JP2004024229A publication Critical patent/JP2004024229A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of improving the extent of enriching γ-aminobutyric acid by infiltrating glutamic acid into natural raw materials even on keeping the original shape of the natural material. <P>SOLUTION: This method for enriching γ-aminobutyric acid in the natural raw materials such as raw leaves, young buds, shoots, fruits, etc., of a plant is provided by treating the natural raw materials with a reduced pressure for degassing, then adding glutamic acid or a salt of glutamic acid to the natural raw materials and then producing γ-aminobutyric acid by decarboxylating glutamic acid. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、植物のγ−アミノ酪酸の富化方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、高齢化の進行,食生活習慣病の蔓延,生活環境の悪化等が懸念され、これに伴い、日常生活の中で健康への関心が非常に高まっている。従って、食生活においても食材に対する健康,安全,安心が強く求められ、健康の維持,促進に効果があると言われている成分を含む食品や特定保険用食品,飲料,医薬部外品の需要が増えている。
【0003】
ところで、健康の維持,促進に効果があると言われ、注目されている成分の一つにγ−アミノ酪酸(GABA)がある。このγ−アミノ酪酸は、血圧降下作用や精神安定作用があると言われている。
【0004】
このγ−アミノ酪酸は、生体内に普遍的に存在するグルタミン酸脱炭酸酵素によりグルタミン酸を脱炭酸して生成されるものである。
【0005】
そこで、このγ−アミノ酪酸の生成原理を利用し、且つ、お茶葉、桑葉,野菜,玄米,米麦胚芽,乳酸菌,酵母等の天然素材を用いてγ−アミノ酪酸を富化する方法が開発されている。
【0006】
一方、このように天然素材を用いてγ−アミノ酪酸を富化する場合、当然のことながら、グルタミン酸の含有量によってγ−アミノ酪酸の富化度合い(生成量の上昇度度合い)が制限される。従って、天然素材中のグルタミン酸からγ−アミノ酪酸を生成するという方法においては、γ−アミノ酪酸の富化度合いに限界が生じる。
【0007】
そこで、玄米,米麦胚芽,乳酸菌,酵母等を用いてγ−アミノ酪酸を富化する場合、反応系にグルタミン酸(若しくはグルタミン酸の塩類)を添加し、グルタミン酸を補填することによってγ−アミノ酪酸の富化度合いを高める技術(例えば、特開平3−236763号)が提案されている。
【0008】
ところで、このグルタミン酸の添加によって天然素材のγ−アミノ酪酸を富化する技術では、添加したグルタミン酸が天然素材中のグルタミン酸脱炭酸酵素と接触できるようにしなければならない。従って、前記特開平3−236763号では、トマト等の野菜類を磨砕した後にグルタミン酸ナトリウムを添加する方法を採用している。
【0009】
しかし、この磨砕等の天然素材を破壊する方法は、例えば、お茶葉等の場合、茶葉が原形を留めなくなるから、商品価値が低下してしまい、現実には実施できない。
【0010】
そこで、例えば、グルタミン酸を溶液とし、この溶液中に天然素材を浸漬することで天然素材中にグルタミン酸を可及的に多く浸透させる方法もあるが、この方法は、天然素材に浸透するグルタミン酸の量に限界があり、γ−アミノ酪酸の富化度合いが低い。
【0011】
本発明は、上記現状に鑑みて達成されたもので、天然素材の原型を保ったままでも該天然素材中にグルタミン酸を多く浸透させてγ−アミノ酪酸の富化度合いを高めることができる技術を提供するものである。
【0012】
【課題を解決するための手段】
本発明の要旨を説明する。
【0013】
植物の生葉,若芽,若枝,果実等の天然素材のγ−アミノ酪酸を富化する方法であって、天然素材を減圧脱気処理した後、該天然素材にグルタミン酸若しくはグルタミン酸の塩を加え、その後、このグルタミン酸を脱炭酸してγ−アミノ酪酸を生成することを特徴とするγ−アミノ酪酸の富化方法に係るものである。
【0014】
また、請求項1記載のγ−アミノ酪酸の富化方法において、グルタミン酸若しくはグルタミン酸の塩を溶液の状態で天然素材に加えることを特徴とするγ−アミノ酪酸の富化方法に係るものである。
【0015】
また、請求項1,2いずれか1項に記載のγ−アミノ酪酸の富化方法において、天然素材がうこぎであることを特徴とするγ−アミノ酪酸の富化方法に係るものである。
【0016】
また、植物の生葉,若芽,若枝,果実等の天然素材のγ−アミノ酪酸を富化する方法であって、天然素材を容器に入れた後、該容器を減圧して該天然素材中の気泡を除去し、続いて、該減圧状態の容器にグルタミン酸溶液若しくはグルタミン酸の塩の溶液を加え且つ減圧を解放することで前記により気泡が除去された部分に該グルタミン酸溶液若しくはグルタミン酸の塩の溶液を浸透させ、続いて、このグルタミン酸溶液若しくはグルタミン酸の塩の溶液中のグルタミン酸を脱炭酸してγ−アミノ酪酸を生成することを特徴とするγ−アミノ酪酸の富化方法に係るものである。
【0017】
【発明の作用及び効果】
本発明者らが繰り返した実験によれば、植物の生葉,若芽,若枝,果実等の天然素材には多くの気泡が含まれており、この気泡が添加するグルタミン酸と天然素材中のグルタミン酸脱炭酸酵素との接触を阻害していることが確認された。
【0018】
従って、この天然素材中の気泡を除去する為、天然素材を減圧脱気処理し、その後に該天然素材にグルタミン酸(若しくはグルタミン酸の塩)を添加したところ、天然素材中のγ−アミノ酪酸の含有量が増大することが確認された。
【0019】
本発明は上述のようにするから、γ−アミノ酪酸が高濃度に富化された食品等を得ることができる。
【0020】
【発明の実施の形態】
本発明の一実施例について、以下に説明する。
【0021】
植物の生葉,若芽,若枝,果実等の天然素材を減圧容器に入れる。尚、必要に応じて天然素材に適宜な前処理(殺菌等,グルタミン酸脱炭酸酵素の添加等)を施しても良い。
【0022】
続いて、減圧容器内を真空近くにまで減圧する。この減圧は、天然素材が原形を留める程度で、且つ、天然素材中の気泡が除去される程度(気泡部分が押し潰される程度)に設定する。具体的には、70Torr(約933Pa)以下とすると良い。
【0023】
この減圧状態を5分程維持し、天然素材中の気泡を閉塞する。
【0024】
続いて、減圧状態を維持したままの減圧容器にグルタミン酸(若しくはグルタミン酸の塩)の溶液(例えば、グルタミン酸水溶液)を、該減圧容器と外気圧との差圧を利用して投入する。尚、天然素材が液分の多いものであれば、例えば粉末状のグルタミン酸を減圧容器に投入する方法を採用しても良い。
【0025】
投入されたグルタミン酸溶液は、前記気泡が除去された部分(前記により押し潰された部分)に気液置換現象によって浸透する。
【0026】
また、このグルタミン酸溶液の浸透を良好に行う為、グルタミン酸の溶液を減圧容器に投入した後、減圧を解放するとともに(この減圧の解放によって、前記気泡が除去された部分が復元しようとする。)、この状態を10分以上維持する。
【0027】
続いて、所定時間放置し、天然素材中のグルタミン酸脱炭酸酵素により前記加えたグルタミン酸を脱炭酸してγ−アミノ酪酸を生成する。この際、グルタミン酸は天然素材の内部(前記気泡が除去された部分)に浸透しているから、グルタミン酸脱炭酸酵素と良好に接触して脱炭酸され、γ−アミノ酪酸となる。
【0028】
このγ−アミノ酪酸の脱炭酸は、グルタミン酸脱炭酸酵素の作用が良好に発揮されるように嫌気条件下で行う。また、この嫌気条件は、前記減圧容器に窒素ガスや不活性ガスを封入することにより作出しても良いし、また、前記減圧容器内を減圧したまま維持することにより作出しても良いし、また、前記グルタミン酸が浸透された天然素材を耐減圧性容器に移送し、この耐減圧性容器内を減圧することにより作出しても良い。
【0029】
尚、本実施例では、前記気泡を除去する為の減圧により、前記天然素材自体が酸素が少ない状態となっている。従って、天然素材自体が嫌気状態となっているといえ、これによってもグルタミン酸脱炭酸酵素の作用が良好に発揮されていると考えられる。
【0030】
γ−アミノ酪酸の脱炭酸の際、グルタミン酸脱炭酸酵素若しくはグルタミン酸脱炭酸酵素を含む食品材料(例えば、酵母)を添加しても良い。
【0031】
また、γ−アミノ酪酸の脱炭酸の際、グルタミン酸脱炭酸酵素が良好に作用するように、反応系の温度は20乃至45℃に維持する。
【0032】
以上の工程により得たγ−アミノ酪酸が富化された天然素材は、その用途に応じて種々の加工(例えば、お茶葉であれば製茶加工。)を施した後、製品として出荷する。また、例えば、乾燥,漬込み,冷凍等の保存工程を施しても良い。また、更に粉末や錠剤等に加工しても良い。
【0033】
本実施例は上述のようにするから、γ−アミノ酪酸が高濃度に富化された天然素材(食品素材)を得ることができる。
【0034】
以下、本実施例の実験結果について説明する。
【0035】
天然素材としてうこぎ葉を用いた。
【0036】
うこぎ葉には気泡が約30(cc/100g)含まれていた。
【0037】
先ず、予備実験として、うこぎ葉を減圧容器に入れて減圧し、続いて、該減圧容器に水を投入した後、減圧を解放して10分間保持し、うこぎ葉を取り出して重量を測定したところ、減圧容器に入れた後のうこぎ葉は重量が20%増加していた(減圧条件等は前記本実施例と同様)。即ち、減圧脱気処理により、気泡の約2/3を除去できることが確認された。
【0038】
続いて、実際にγ−アミノ酪酸を富化できるか否かを確認する実験を行った。
【0039】
グルタミン酸は、グルタミン酸ナトリウムの溶液を用いた。また、この溶液は、グルタミン酸が9%(重量)のものと18%(重量)のもとを作成した。前記予備実験により、9%(重量)の溶液を使用した場合にはうこぎ葉中のグルタミン酸濃度は1.5%(重量)以上、18%(重量)の溶液を使用した場合にはうこぎ葉中のグルタミン酸濃度は3.0%(重量)以上になる(表中では、夫々、グルソウ1.5%区、グルソウ3.0%区と記載。)。
【0040】
うこぎ葉1kgをネット袋に入れ(これにより、うこぎ葉がグルタミン酸の溶液から浮き上がらず、完全に沈む。)、これを減圧容器に入れた後、10Torr(約1333Pa)以下に減圧した。この減圧状態を5分間維持した後、前記グルタミン酸ナトリウムの溶液を減圧容器に投入し、更に減圧を解放して10分間放置し気液置換を行った。
【0041】
続いて、減圧容器からうこぎ葉を取り出し、酸素透過度の低いバリアフィルムに200gづつを密封状態で詰入した。また、バリアフィルム内には脱酸素剤も詰入した。これを30℃の恒温槽で保管し、グルタミン酸脱炭酸酵素の作用によりグルタミン酸を脱炭酸してγ−アミノ酪酸を生成した。
【0042】
30℃の恒温槽で保管した初日、2,5,14日後のグルタミン濃度及びγ−アミノ酪酸(GABA)濃度を測定し、γ−アミノ酪酸転換率(GABA転換率)を算出した。
【0043】
下記表1に結果を示す
【表1】

Figure 2004024229
【0044】
14日後に得られたうこぎ葉は、グルソウ1.5%区で約38mM、グルソウ3.0%区で約46mMの高濃度のγ−アミノ酪酸を含むものとなった。
【0045】
また、GABA転換率は、グルソウ1.5%区で約50%、グルソウ3.0%区で約32%であり、多くのグルタミン酸がγ−アミノ酪酸に転換されたことが確認された。
【0046】
また、うこぎ葉は原形を留めていた。
【0047】
以上の実験結果から、本実施例によればγ−アミノ酪酸が高濃度のうこぎ葉が得られることが確認された。
【0048】
同様に、お茶葉、桑葉等の他の天然素材で実験を行ったところ、いずれも高濃度のγ−アミノ酪酸を含むものが得られた。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for enriching γ-aminobutyric acid in plants.
[0002]
Problems to be solved by the prior art and the invention
In recent years, there are concerns about the progress of aging, the spread of eating habits, the deterioration of living environment, and the like, and with this, the interest in health in daily life has increased significantly. Therefore, the health, safety and security of the ingredients are also strongly demanded in the dietary life, and the demand for foods containing ingredients which are said to be effective in maintaining and promoting health, foods for specified insurance, beverages and quasi-drugs Is increasing.
[0003]
By the way, γ-aminobutyric acid (GABA) is said to be effective for maintaining and promoting health, and is one of the components that has been receiving attention. This γ-aminobutyric acid is said to have a blood pressure lowering effect and a tranquilizing effect.
[0004]
This γ-aminobutyric acid is produced by decarboxylating glutamic acid by a glutamic acid decarboxylase that is universally present in a living body.
[0005]
Therefore, a method of enriching γ-aminobutyric acid utilizing the principle of the production of γ-aminobutyric acid and using natural materials such as tea leaves, mulberry leaves, vegetables, brown rice, rice germ, lactic acid bacteria, yeast, etc. Is being developed.
[0006]
On the other hand, when γ-aminobutyric acid is enriched using a natural material as described above, the degree of γ-aminobutyric acid enrichment (the degree of increase in the amount of γ-aminobutyric acid) is naturally limited by the content of glutamic acid. . Therefore, in the method of producing γ-aminobutyric acid from glutamic acid in a natural material, there is a limit to the degree of γ-aminobutyric acid enrichment.
[0007]
Therefore, when enriching γ-aminobutyric acid using brown rice, wheat germ, lactic acid bacteria, yeast, etc., glutamic acid (or salts of glutamic acid) is added to the reaction system, and glutamic acid is supplemented to make γ-aminobutyric acid. A technique for increasing the degree of enrichment (for example, Japanese Patent Application Laid-Open No. 3-236766) has been proposed.
[0008]
By the way, in the technique of enriching γ-aminobutyric acid in a natural material by adding glutamic acid, it is necessary to make the added glutamic acid contact with glutamic acid decarboxylase in the natural material. Therefore, Japanese Patent Application Laid-Open No. Hei 3-236763 employs a method in which vegetables such as tomatoes are ground and then sodium glutamate is added.
[0009]
However, this method of destroying natural materials such as grinding is not practical in the case of tea leaves, for example, because the tea leaves no longer retain their original shape, which reduces the commercial value.
[0010]
Therefore, for example, there is a method in which glutamic acid is made into a solution and a natural material is immersed in this solution to allow glutamic acid to penetrate as much as possible into the natural material. And the degree of enrichment of γ-aminobutyric acid is low.
[0011]
The present invention has been achieved in view of the above situation, and a technique capable of increasing the degree of enrichment of γ-aminobutyric acid by allowing a large amount of glutamic acid to penetrate into a natural material while maintaining the original form of the natural material. To provide.
[0012]
[Means for Solving the Problems]
The gist of the present invention will be described.
[0013]
A method for enriching γ-aminobutyric acid in a natural material such as fresh leaves, shoots, shoots and fruits of a plant, which comprises subjecting the natural material to degassing under reduced pressure, adding glutamic acid or a salt of glutamic acid to the natural material, And a method for enriching γ-aminobutyric acid, which comprises decarboxylating this glutamic acid to produce γ-aminobutyric acid.
[0014]
The method for enriching γ-aminobutyric acid according to claim 1 is characterized in that glutamic acid or a salt of glutamic acid is added to a natural material in a solution state.
[0015]
Further, the method for enriching γ-aminobutyric acid according to any one of claims 1 and 2 relates to the method for enriching γ-aminobutyric acid, wherein the natural material is rabbit.
[0016]
A method of enriching γ-aminobutyric acid in a natural material such as fresh leaves, shoots, shoots, and fruits of a plant, wherein the natural material is placed in a container, and then the container is depressurized to remove air bubbles in the natural material. Then, a glutamic acid solution or a solution of a glutamic acid salt is added to the container under reduced pressure, and the reduced pressure is released, whereby the glutamic acid solution or the glutamic acid salt solution is permeated into the portion from which the bubbles have been removed. Then, the present invention relates to a method for enriching γ-aminobutyric acid, which comprises decarboxylating glutamic acid in the glutamic acid solution or the glutamic acid salt solution to produce γ-aminobutyric acid.
[0017]
Function and effect of the present invention
According to experiments repeated by the present inventors, natural materials such as fresh leaves, shoots, shoots, and fruits of plants contain many bubbles, and the glutamic acid added by these bubbles and the decarboxylation of glutamic acid in the natural material are added. It was confirmed that contact with the enzyme was inhibited.
[0018]
Therefore, in order to remove air bubbles in the natural material, the natural material was subjected to degassing under reduced pressure, and then glutamic acid (or a salt of glutamic acid) was added to the natural material. It was confirmed that the amount increased.
[0019]
Since the present invention is as described above, it is possible to obtain foods and the like enriched in γ-aminobutyric acid at a high concentration.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below.
[0021]
Natural materials such as fresh leaves, shoots, shoots and fruits of the plant are placed in a vacuum container. If necessary, the natural material may be subjected to an appropriate pretreatment (sterilization, etc., addition of glutamate decarboxylase, etc.).
[0022]
Subsequently, the pressure inside the depressurized container is reduced to near vacuum. This reduced pressure is set to such an extent that the natural material retains its original shape and to the extent that bubbles in the natural material are removed (the extent to which the bubble portion is crushed). Specifically, the pressure is preferably set to 70 Torr (about 933 Pa) or less.
[0023]
This depressurized state is maintained for about 5 minutes to close bubbles in the natural material.
[0024]
Subsequently, a solution of glutamic acid (or a glutamic acid salt) (for example, an aqueous solution of glutamic acid) is introduced into the depressurized container while maintaining the depressurized state by using a pressure difference between the depressurized container and the external pressure. If the natural material has a large liquid content, for example, a method in which powdery glutamic acid is charged into a vacuum container may be adopted.
[0025]
The introduced glutamic acid solution permeates into the portion from which the air bubbles have been removed (the portion crushed by the above) by a gas-liquid displacement phenomenon.
[0026]
Further, in order to make the glutamic acid solution permeate well, after the glutamic acid solution is put into the reduced pressure container, the reduced pressure is released (by the release of the reduced pressure, the portion from which the bubbles have been removed is restored). This state is maintained for 10 minutes or more.
[0027]
Subsequently, the mixture is left for a predetermined time, and the added glutamic acid is decarboxylated with glutamic acid decarboxylase in a natural material to produce γ-aminobutyric acid. At this time, since glutamic acid has penetrated into the inside of the natural material (the portion from which the air bubbles have been removed), the glutamic acid comes into good contact with glutamic acid decarboxylase and is decarboxylated, resulting in γ-aminobutyric acid.
[0028]
The decarboxylation of γ-aminobutyric acid is carried out under anaerobic conditions so that the action of glutamate decarboxylase is favorably exhibited. The anaerobic condition may be created by enclosing a nitrogen gas or an inert gas in the decompression container, or may be created by maintaining the inside of the decompression container under reduced pressure, Alternatively, the natural material impregnated with glutamic acid may be transferred to a decompression-resistant container, and may be produced by reducing the pressure in the decompression-resistant container.
[0029]
In this embodiment, the natural material itself is in a state of low oxygen due to the reduced pressure for removing the air bubbles. Therefore, it can be said that the natural material itself is in an anaerobic state, and it is considered that the action of glutamate decarboxylase is favorably exhibited also by this.
[0030]
At the time of decarboxylation of γ-aminobutyric acid, a glutamate decarboxylase or a food material containing glutamate decarboxylase (eg, yeast) may be added.
[0031]
In addition, the temperature of the reaction system is maintained at 20 to 45 ° C. so that glutamic acid decarboxylase works well during the decarboxylation of γ-aminobutyric acid.
[0032]
The natural material enriched in γ-aminobutyric acid obtained by the above steps is subjected to various processes (for example, tea processing for tea leaves) according to its use, and then shipped as a product. Further, for example, a storage step such as drying, immersion, and freezing may be performed. Further, it may be further processed into a powder or a tablet.
[0033]
In this embodiment, as described above, a natural material (food material) in which γ-aminobutyric acid is enriched at a high concentration can be obtained.
[0034]
Hereinafter, the experimental results of this example will be described.
[0035]
Saw leaf is used as a natural material.
[0036]
The umbilical leaf contained about 30 (cc / 100 g) of air bubbles.
[0037]
First, as a preliminary experiment, eel leaves were placed in a decompression container and depressurized. Subsequently, after water was put into the depressurization container, the decompression was released and maintained for 10 minutes, and the eel leaves were taken out and weighed. The weight of the sorghum leaves after being placed in the decompression container was increased by 20% (the decompression conditions and the like were the same as in the above-mentioned Example). That is, it was confirmed that about 2/3 of the bubbles could be removed by the vacuum degassing treatment.
[0038]
Subsequently, an experiment was performed to confirm whether or not γ-aminobutyric acid can be actually enriched.
[0039]
As the glutamic acid, a solution of sodium glutamate was used. The solutions were prepared with 9% (by weight) and 18% (by weight) glutamic acid. According to the preliminary experiment, the concentration of glutamic acid in sorghum leaves is 1.5% (weight) or more when a 9% (weight) solution is used, and the glutamic acid concentration is 18% (weight) when a solution of 18% (weight) is used. The glutamic acid concentration becomes 3.0% (weight) or more (in the table, they are described as 1.5% for gluso and 3.0% for gluso, respectively).
[0040]
1 kg of sorghum leaves were placed in a net bag (the sorghum leaves did not float out of the glutamic acid solution but completely settled), and after being placed in a vacuum container, the pressure was reduced to 10 Torr (about 1333 Pa) or less. After maintaining the reduced pressure state for 5 minutes, the solution of sodium glutamate was charged into a reduced pressure container, the reduced pressure was released, and the mixture was allowed to stand for 10 minutes to perform gas-liquid replacement.
[0041]
Subsequently, the eel leaves were taken out of the vacuum container, and 200 g each of the leaves were sealed in a barrier film having a low oxygen permeability in a sealed state. An oxygen scavenger was also filled in the barrier film. This was stored in a thermostat at 30 ° C., and glutamic acid was decarboxylated by the action of glutamate decarboxylase to produce γ-aminobutyric acid.
[0042]
The glutamine concentration and the γ-aminobutyric acid (GABA) concentration were measured on the first day, 2, 5, and 14 days after storage in a thermostat at 30 ° C., and the γ-aminobutyric acid conversion rate (GABA conversion rate) was calculated.
[0043]
The results are shown in Table 1 below.
Figure 2004024229
[0044]
14 days later, the sorghum leaves contained a high concentration of γ-aminobutyric acid of about 38 mM in the 1.5% section of glucose and about 46 mM in the 3.0% section of glucose.
[0045]
Also, the GABA conversion rate was about 50% in the 1.5% section of gluso and about 32% in the 3.0% section of gluso, confirming that a large amount of glutamic acid was converted to γ-aminobutyric acid.
[0046]
Also, the leaves of the sorghum remained in their original form.
[0047]
From the above experimental results, it was confirmed that according to the present example, elite leaves having a high concentration of γ-aminobutyric acid could be obtained.
[0048]
Similarly, when experiments were conducted using other natural materials such as tea leaves and mulberry leaves, those containing high concentrations of γ-aminobutyric acid were obtained.

Claims (4)

植物の生葉,若芽,若枝,果実等の天然素材のγ−アミノ酪酸を富化する方法であって、天然素材を減圧脱気処理した後、該天然素材にグルタミン酸若しくはグルタミン酸の塩を加え、その後、このグルタミン酸を脱炭酸してγ−アミノ酪酸を生成することを特徴とするγ−アミノ酪酸の富化方法。A method of enriching γ-aminobutyric acid in a natural material such as fresh leaves, shoots, shoots, and fruits of a plant, comprising subjecting the natural material to degassing under reduced pressure, adding glutamic acid or a salt of glutamic acid to the natural material, A method for enriching γ-aminobutyric acid, comprising decarboxylating this glutamic acid to produce γ-aminobutyric acid. 請求項1記載のγ−アミノ酪酸の富化方法において、グルタミン酸若しくはグルタミン酸の塩を溶液の状態で天然素材に加えることを特徴とするγ−アミノ酪酸の富化方法。The method for enriching γ-aminobutyric acid according to claim 1, wherein glutamic acid or a salt of glutamic acid is added to the natural material in a solution state. 請求項1,2いずれか1項に記載のγ−アミノ酪酸の富化方法において、天然素材がうこぎであることを特徴とするγ−アミノ酪酸の富化方法。The method for enriching γ-aminobutyric acid according to any one of claims 1 and 2, wherein the natural material is corn. 植物の生葉,若芽,若枝,果実等の天然素材のγ−アミノ酪酸を富化する方法であって、天然素材を容器に入れた後、該容器を減圧して該天然素材中の気泡を除去し、続いて、該減圧状態の容器にグルタミン酸溶液若しくはグルタミン酸の塩の溶液を加え且つ減圧を解放することで前記により気泡が除去された部分に該グルタミン酸溶液若しくはグルタミン酸の塩の溶液を浸透させ、続いて、このグルタミン酸溶液若しくはグルタミン酸の塩の溶液中のグルタミン酸を脱炭酸してγ−アミノ酪酸を生成することを特徴とするγ−アミノ酪酸の富化方法。A method for enriching γ-aminobutyric acid in a natural material such as fresh leaves, shoots, shoots, and fruits of a plant. After the natural material is placed in a container, the container is depressurized to remove air bubbles in the natural material. Then, a glutamic acid solution or a solution of a glutamic acid salt is added to the container in a reduced pressure state, and the pressure is released to allow the glutamic acid solution or the glutamic acid salt solution to permeate the portion from which the bubbles have been removed, Subsequently, γ-aminobutyric acid is produced by decarboxylating glutamic acid in the glutamic acid solution or the glutamic acid salt solution to produce γ-aminobutyric acid.
JP2002271719A 2002-04-30 2002-09-18 METHOD FOR ENRICHING gamma-AMINOBUTYRIC ACID Pending JP2004024229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002271719A JP2004024229A (en) 2002-04-30 2002-09-18 METHOD FOR ENRICHING gamma-AMINOBUTYRIC ACID

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002129037 2002-04-30
JP2002271719A JP2004024229A (en) 2002-04-30 2002-09-18 METHOD FOR ENRICHING gamma-AMINOBUTYRIC ACID

Publications (1)

Publication Number Publication Date
JP2004024229A true JP2004024229A (en) 2004-01-29

Family

ID=31190010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002271719A Pending JP2004024229A (en) 2002-04-30 2002-09-18 METHOD FOR ENRICHING gamma-AMINOBUTYRIC ACID

Country Status (1)

Country Link
JP (1) JP2004024229A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037262A1 (en) * 2005-09-28 2007-04-05 Mercian Corporation Process for producing fruit with enhanced ϝ-aminobutyric acid content
WO2010140348A1 (en) * 2009-06-01 2010-12-09 国立大学法人広島大学 PROCESS FOR PRODUCTION OF γ-AMINOBUTYRIC ACID
JP2019050758A (en) * 2017-09-14 2019-04-04 農業生産法人株式会社 熱帯資源植物研究所 METHOD FOR PREPARING DRIED PAPAYA RICH IN γ-AMINOBUTYRIC ACID, METHOD FOR PREPARING PAPAYA POWDER RICH IN γ-AMINOBUTYRIC ACID, AND METHOD FOR PREPARING PAPAYA RICH IN γ-AMINOBUTYRIC ACID
CN116235946A (en) * 2023-03-23 2023-06-09 岭南师范学院 Method for nondestructively enriching moringa oleifera leaf gamma-aminobutyric acid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037262A1 (en) * 2005-09-28 2007-04-05 Mercian Corporation Process for producing fruit with enhanced ϝ-aminobutyric acid content
JPWO2007037262A1 (en) * 2005-09-28 2009-04-09 メルシャン株式会社 Method for producing fruit with increased γ-aminobutyric acid content
WO2010140348A1 (en) * 2009-06-01 2010-12-09 国立大学法人広島大学 PROCESS FOR PRODUCTION OF γ-AMINOBUTYRIC ACID
JP5626915B2 (en) * 2009-06-01 2014-11-19 国立大学法人広島大学 Method for producing γ-aminobutyric acid
JP2019050758A (en) * 2017-09-14 2019-04-04 農業生産法人株式会社 熱帯資源植物研究所 METHOD FOR PREPARING DRIED PAPAYA RICH IN γ-AMINOBUTYRIC ACID, METHOD FOR PREPARING PAPAYA POWDER RICH IN γ-AMINOBUTYRIC ACID, AND METHOD FOR PREPARING PAPAYA RICH IN γ-AMINOBUTYRIC ACID
JP6999156B2 (en) 2017-09-14 2022-01-18 農業生産法人株式会社 熱帯資源植物研究所 Method for preparing γ-aminobutyric acid-enriched dried papaya, and method for preparing γ-aminobutyric acid-enriched papaya powder
CN116235946A (en) * 2023-03-23 2023-06-09 岭南师范学院 Method for nondestructively enriching moringa oleifera leaf gamma-aminobutyric acid

Similar Documents

Publication Publication Date Title
US20090087528A1 (en) Method of Improving the Biocidal Efficacy of Dry Ice
WO2006042222B1 (en) Carbonated protein drink and method of making
JP2011139687A (en) Highly flavored ornithine-containing alcohol-free malt beverage
CN111713490A (en) Chlorine dioxide disinfection gel and preparation method thereof
CN107258894A (en) A kind of preservation method of large cherry
JP2004024229A (en) METHOD FOR ENRICHING gamma-AMINOBUTYRIC ACID
CN102078011B (en) Method for preparing instant sea cucumber capable of being stored at normal temperature
CN102318644B (en) Method for preparing material slowly releasing chlorine dioxide and application thereof
EP3672415B1 (en) Preservation of brown shrimp
JP2009039082A (en) METHOD FOR PRODUCING MUSHROOM CONTAINING MUCH gamma-AMINOBUTYRIC ACID, MUSHROOM CONTAINING MUCH gamma-AMINOBUTYRIC ACID, FOOD RAW MATERIAL CONTAINING MUCH gamma-AMINOBUTYRIC ACID AND FOODSTUFF ENRICHED WITH gamma-AMINOBUTYRIC ACID
CN103734841A (en) Fabrication method of anti-alcohol beverage
KR101740147B1 (en) Method of reducing biogenic amines
KR100238456B1 (en) A method for long-term storage of kimchi
CN111418755A (en) Food fresh-keeping liquid and preparation method thereof
JP2010148380A (en) Reduced coenzyme q10-containing egg
RU2146483C1 (en) Method for production of adaptive composition
RU2146482C1 (en) Method of preparing adaptive composition
EP3569070A1 (en) Capsule containing pyrroloquinoline quinone or salt thereof and branched chain amino acid
JP2005198578A (en) METHOD FOR PRODUCING gamma-AMINOBUTYRIC ACID AND FERMENTED LIQUID YIELDED THEREBY
RU2157647C1 (en) Food additive and method of preparation thereof, biologically-active food additive and method of preparation thereof, foodstuff and method of preparation thereof
RU2135030C1 (en) Method of production of nutrient mixture for organism adaptation at stress state
RU2135031C1 (en) Method of production of adaptogenic mixture
RU2146479C1 (en) Method of preparing nutritive composition with adaptive properties
RU2146481C1 (en) Method of preparing nutritive composition for adaptation of body against stress situation
KR20140045128A (en) Preparation method of artemisia capillaris extract using deep seawater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080908