JP2004022212A - Magnetic neutral line electrical discharge plasma treatment device - Google Patents
Magnetic neutral line electrical discharge plasma treatment device Download PDFInfo
- Publication number
- JP2004022212A JP2004022212A JP2002172017A JP2002172017A JP2004022212A JP 2004022212 A JP2004022212 A JP 2004022212A JP 2002172017 A JP2002172017 A JP 2002172017A JP 2002172017 A JP2002172017 A JP 2002172017A JP 2004022212 A JP2004022212 A JP 2004022212A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic neutral
- discharge plasma
- generating means
- processing apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- ing And Chemical Polishing (AREA)
- Plasma Technology (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、プラズマを利用して基板、ターゲット等の被処理物にエッチング、スパッタリング、コーティング、CVD等の処理を行うようにした放電プラズマ処理装置に関するものである。
【0002】
【従来の技術】
磁気中性線放電プラズマ処理装置についてはこれまでに、日本国特許第2705897号及び同第3177573号においてその存在が確立され、有効性が認められて産業上の実績もあがってきた。この磁気中性線放電(Magnetic NeutralLine Discharge: NLDとも略称される)プラズマ方式がもつ他方式にない特徴は主として二つある。
【0003】
一つの特徴は、生成させるプラズマの大きさや位置に関して時空間制御性をもっていることにあり、すなわち、時間的にも、空間的にも必要とするプラズマの大きさや位置を自由に変化できることにある。それはもともと磁気中性線というものは真空チャンバ内に容易に設置できるため、その形にそってプラズマが生成されるからであり、この自由度は他方式に見られない。別の特徴は、NLD方式でできるプラズマの生成過程で電子が磁場ゼロを含む領域内でrf電場を受けてエネルギーを得つつ何回も横切る結果齎らされるカオス的加熱によって、プラズマは低圧気体条件のもと、注入するパワーを増やしても電子群の内部エネルギー、3/2k neTe(ここにne: 電子密度、Te: 同温度、k: ボルツマン常数)の上昇は専ら密度の増加に集中して、温度は殆ど低温の侭保たれることにより、表面処理に不必要な高温成分が少なく、密度の増加によって処理速度がすすむことである。これら二つの特徴により磁気中性線放電プラズマ処理装置は、益々精密加工精度の要求されるマイクロレンズや光導波路等のガラス加工や低誘電率材料のエッチング等の分野における超微細化工において抜群の性能を誇っている現状である。
【0004】
添付図面の図6にはこれまで数多くの円盤状基板表面を処理する目的で製造された誘導磁場型磁気中性線放電プラズマ処理装置の概念図である。円筒形真空チャンバAの外に同軸上に設置された上、中、下三つのコイルB、C、Dに流す電流を加減することにより真空チャンバA内に円形磁気中性線Eが形成される。プラズマの生成にはセラミックの如き絶縁性の円筒真空壁Fの外側に捲いたrfコイルGに流す励起電流によって発生する方位角方向の誘導電場によって円形磁気中性線Eを芯としたドーナツ型のプラズマが生成される。その際、ドーナツプラズマの径や上下位置は三つのコイルB、C、Dに流す電流の組合わせにより、たとえ処理中においても自由に制御され得る。
【0005】
このようにして生成される磁気中性線放電プラズマのもつプラズマそのものの特徴は、[]0004]において前述したように低圧気体を用いて高密度・低温のプラズマが生成されるところにあり、この特徴は各種処理加工に極めて適したもので、この他方式にみられない特徴を保ちながら装置性能の向上を図ることが強く要望されている。
【0006】
【発明が解決しようとする課題】
上記のような抜群の性能を示しているにもかかわらず、処理装置としての使い易さ、手入れ調整期間の短縮という視点からは磁気中性線放電プラズマ処理装置にも改善すべきところがある。
【0007】
すなわち、図6に示すような従来の三磁場コイル系処理装置においては、プラズマ処理装置の他の構成部品の配列などの観点から磁場コイルの数を可及的に少なくして装置の軽量化、軽装化及び省エネルギー化を計ることが現実的に求められている。
【0008】
また、図6に示すような従来の円形磁気中性線放電プラズマ処理装置の場合、円形に磁気中性線に沿って電場を印加するには原理上、円筒形磁器容器を真空チャンバの側壁としその外側に高周波(rf)用ワンターンコイルを巻かざるを得なかった。しかし、数十cmの直径をもつ肉厚の円筒磁器容器は高価であり、真空側の内面をいかに平滑にしても、特殊ガスとの親和力による吸着除去又は防止に対策をたてる必要があった。しかもセラミックスのような強固で真空耐性がある壁材料は高価であって装置自体の価格を高めることになり、装置が大型化すればするほどこの傾向が顕著に現れる。
【0009】
そこで、本発明は、磁場発生手段の構成を改善して装置の長手方向寸法すなわちプラズマを生成する真空チャンバ部分の長手方向寸法を可及的に短くして軽量化及び軽装化を計った磁気中性線放電プラズマ処理装置を提供することを第1の目的としている。
【0010】
本発明の第2の目的は、軽量化及び軽装化を計ると共に、セラミックのような高価な壁材料を使用せずに装置のコストを低減化できる磁気中性線放電プラズマ処理装置を提供することにある。
【0011】
【課題を解決するための手段】
上記の第1の目的を達成するために、本発明によれば、真空チャンバ内に連続して存在する磁場ゼロの位置の連がりによって形成される磁気中性線を生成する磁場発生手段と、真空チャンバ内に生成された磁気中性線に対して高周波電場を加えて磁気中性線を含む空間に放電プラズマを発生させる電場発生手段とを有し、真空チャンバ内においてプラズマを利用して被処理物を処理する放電プラズマ処理装置において、磁場発生手段が装置の軸線に沿って第1の端がN極で第2の端がS極となるように構成された筒形磁石とその外側に筒形磁石と同軸に設けた定電流コイルとから成り、定電流コイルに流す電流値を変えることにより、筒形磁石と定電流コイルとによって形成される環状磁気中性線の径を任意に設定できるようにしたことを特徴としている。
【0012】
閉曲磁気中性線形式とその大きさ及び鉛直方向の位置の精密な制御には、構成上3コイル系が必要なことは日本国特許第2705897号に記載された通りであるが、鉛直方向の位置制御の必要性は被処理物表面に至るまでの距離の制御にあるので、その鉛直位置制御は被処理面の設定高さにより行うことができる。そうすることにより、本発明では従来の3コイル系に代えて1磁場コイル系を採用して、閉曲磁気中性線の大きさを制御できるようにしたことにより、装置全体の軽量化、軽装化がもたらされる。
【0013】
本発明の第1の目的を達成する装置においては、真空チャンバ内に生成される磁気中性線に対して高周波電場を加えて磁気中性線を含む空間に放電プラズマを発生させる電場発生手段としては誘導型、容量型のいずれの形式のものでもよい。
【0014】
磁場発生手段は好ましくは、被処理物の表面と同形状の円形、多角形又は楕円形の軸対称に構成され得る。
【0015】
また、磁場発生手段は直流、商業周波数を含む交流又は直流と商業周波数を含む交流との合成によって構成され得る。
【0016】
本発明の第2の目的を達成するために、電場発生手段は、磁場発生手段によって真空チャンバ内に生成される磁気中性線と直角を含む傾斜角方向に高周波電場を加えるように真空チャンバ内に配置される。
【0017】
電場発生手段は好ましくは、被処理物の表面と同形状の円形、多角形又は楕円形の軸対称に構成され得る。
【0018】
高周波電場発生手段は、一つの実施の形態では形成される磁気中性線を挿んで配置される一対の電極から成り得る。その場合、各電極は円板状、穴あき円板状又は環状に構成され得る。
【0019】
本発明の第2の目的を達成する装置においては、磁気中性線に直角を含む傾斜角方向に高周波電場を加えることにより磁気中性線を内に含む周囲の空間に磁気中性線放電プラズマを発生させるものである。従って、この方式では印加する高周波電場の向きは形成されている磁気中性線と平行に沿うものではなく磁気中性線を挿む向きとなるので閉曲中性線の場合、その外側に閉曲中性線に沿って高周波コイルを巻く必要がなく、このことは、誘導電場型が閉曲中性線の外側に高周波コイルを設置するのに必要とする空間を設ける必要がなくなり、閉曲中性線の上下又は左右方向の空間を利用できるようになるだけでなく、例えば真空容器外からの誘導電場印加に避けられないセラミックのような絶縁物による真空壁の存在から開放されることになる。一つの実施の形態により高周波電場発生手段が磁気中性線を挿んで上下に配置される一対の電極空成る場合、これら電極間に高周波電場を印加するので、このような電場の印加方式を本明細書では“容量電場型”と定義する。
【0020】
代りに、電場発生手段は、被処理物の表面と同形状の円形、多角形又は楕円形の軸対称に形成され、磁気中性線に沿って高周波電場を加えるように構成され得る。
【0021】
【発明の実施の形態】
以下添付図面の図1〜図5を参照して本発明の実施の形態について説明する。
【0022】
図1には本発明による磁気中性線放電プラズマ処理装置の一つの実施の形態を示している。図1において、1は真空チャンバであり、プラズマ生成部2と基板処理部3を備えている。真空チャンバ1のプラズマ生成部2の外側には、図示したように、真空チャンバの軸線に沿って第1の端がN極で第2の端がS極となるように構成された筒形磁石4が配置され、この筒形磁石4の外側に筒形磁石4と同軸に定電流コイル5が設けられている。定電流コイル5は電流設定回路6を介して定電流電源7に接続されている。筒形磁石4及び定電流コイル5は、真空チャンバ1のプラズマ生成部2内に連続して存在する磁場ゼロの位置の連がりによって形成された磁気中性線8を生成する。そして定電流コイル5に流す電流値を電流設定回路6により変えることにより、筒形磁石4と定電流コイル5とによって形成される環状磁気中性線8の径を任意に設定できるように構成されている。
【0023】
ところで、図1には示されていないが、当然、真空チャンバ1のプラズマ生成部2内に生成される磁気中性線8に対して高周波電場を加えて磁気中性線8を含む空間に放電プラズマを発生させる電場発生手段が設けられ、この電場発生手段としては例えば、図6に示すような誘導型のものを採用することができる。その場合には、筒形磁石4の内側に高周波アンテナコイルとして配置することができる。
【0024】
図2には本発明による磁気中性線放電プラズマ処理装置の別の実施の形態を示している。この例では、磁気中性線に対して高周波電場を加えて磁気中性線を含む空間に放電プラズマを発生させる電場発生手段として容量型のものを用いている。
【0025】
この場合も図1の場合と同様に、真空チャンバ1は、プラズマ生成部2と基板処理部3を備えている。真空チャンバ1のプラズマ生成部2の外側には、図示したように、真空チャンバの軸線に沿って第1の端がN極で第2の端がS極となるように構成された筒形磁石4が配置され、この筒形磁石4の外側に筒形磁石4と同軸に定電流コイル5が設けられている。定電流コイル5は電流設定回路6を介して定電流電源7に接続されている。筒形磁石4及び定電流コイル5は、真空チャンバ1のプラズマ生成部2内に連続して存在する磁場ゼロの位置の連がりによって形成された磁気中性線8を生成する。そして定電流コイル5に流す電流値を電流設定回路6により変えることにより、筒形磁石4と定電流コイル5とによって形成される環状磁気中性線8の径を任意に設定できるように構成されている。
【0026】
また、真空チャンバ1のプラズマ生成部2内において磁気中性線8を上下に挟む位置に一対の電極9、10が配置され、これらの電極9、10は磁気中性線8に対して直角に高周波電場を加えるようにされ、そして装置の適用に応じて図3に示すような円板状又は図4に示すような環状、或いは図5に示すような穴明き円板状に構成される。この場合、図示例ではいずれも外形が円形であるが、装置の適用に応じて外形又は輪郭を多角形又は楕円形に形成することができる。
【0027】
真空チャンバ1のプラズマ生成部2内に配置された一対の電極9、10はそれぞれ高周波電源11、12に接続され、これら電極間に高周波電場を印加するようにされている。このような “容量電場型”においては、高周波放電中に直流成分が含まれていると、上下電極9、10間の絶縁破壊を招き、機器損傷につながる恐れがある。そのため、本発明においてはこのような事態を阻止するために、各電極9、10は図面に符号13で示すようにそれぞれ絶縁体で被覆されている。また、各電極9、10の形状については処理技術の内容に応じて変わるものであり、CVDなどでは円板状のものが選択され、スパッタのためのターゲット等の第3面に必要とするものには環状のものが選択されて処理すべき基板からの溶射路をつくるようにされ得る。
【0028】
また、各電極9、10は、図示例では真空チャンバ1のプラズマ生成部2内に生成される磁気中性線8を含む平面に対して上下に平行に配置されているが、当然装置の適用に応じて磁気中性線8に対して傾斜角方向に高周波電場を加えるように配置することもできる。
【0029】
【発明の効果】
以上説明してきたように、本発明によれば、真空チャンバ内に連続して存在する磁場ゼロの位置の連がりによって形成された磁気中性線を生成する磁場発生手段と、真空チャンバ内に生成される磁気中性線に対して高周波電場を加えて磁気中性線を含む空間に放電プラズマを発生させる電場発生手段とを有し、真空チャンバ内においてプラズマを利用して被処理物を処理する放電プラズマ処理装置において、磁場発生手段を、装置の軸線に沿って第1の端がN極で第2の端がS極となるように構成された筒形磁石とその外側に筒形磁石と同軸に設けた定電流コイルとで構成しているので、装置の軽量化及び軽装化が計られ、装置の組付けやメンテナンスが容易となるという効果が得られる。
【0030】
また、磁気中性線に対して高周波電場を加えて磁気中性線を含む空間に放電プラズマを発生させる電場発生手段を、磁場発生手段によって真空チャンバ内に生成される磁気中性線と直角を含む傾斜角方向に高周波電場を加えるように真空チャンバ内に配置した場合には、真空チャンバの外側に閉曲中性線に沿って高周波コイルを巻く必要がなく、このことは、真空チャンバに絶縁体壁を用いずに不透鋼などの金属を用いることができるようになり、装置のコスト低減を図ることができる。その結果、放電プラズマ装置としてもつその応用範囲を改良し拡大することが可能となる。
【図面の簡単な説明】
【図1】本発明による磁気中性線放電プラズマ処理装置の一実施の形態の構成を示す概略縦断面図。
【図2】本発明による磁気中性線放電プラズマ処理装置の別の実施の形態の構成を示す概略縦断面図。
【図3】図2に示す磁気中性線放電プラズマ処理装置に用いられる電場発生手段を成す円板状電極を示す概略斜視図。
【図4】図2に示す磁気中性線放電プラズマ処理装置に用いられる電場発生手段を成す環状電極を示す概略斜視図。
【図5】図2に示す磁気中性線放電プラズマ処理装置における電場発生手段を成す穴明き円板状電極を示す概略斜視図。
【図6】従来の誘導電場型円形磁気中性線放電プラズマ処理装置の構成の例を示す概略縦断面図。
【符号の説明】
1 :真空チャンバ
2 :プラズマ生成部
3 :基板処理部
4 :筒形磁石
5 :定電流コイル
6 :電流設定回路
7 :定電流電源
8 :磁気中性線
9 :電極
10:電極
11:高周波電源
12:高周波電源
13:絶縁体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a discharge plasma processing apparatus that performs processing such as etching, sputtering, coating, and CVD on an object to be processed such as a substrate and a target using plasma.
[0002]
[Prior art]
The existence of a magnetic neutral-ray discharge plasma processing apparatus has been established in Japanese Patent Nos. 2,058,897 and 3,177,573, and its effectiveness has been recognized and industrial results have been obtained. The magnetic neutral loop discharge: wherein no other method has the (Magnetic N eutral L ine D ischarge NLD also abbreviated) plasma method are mainly two.
[0003]
One feature is that it has spatio-temporal control over the size and position of the plasma to be generated, that is, it can freely change the required size and position of the plasma both temporally and spatially. This is because a magnetic neutral wire can be easily installed in a vacuum chamber, and a plasma is generated along its shape. This degree of freedom is not found in other systems. Another feature is that during the plasma generation process that can be performed by the NLD method, the electrons are subjected to the rf electric field in the region including the zero magnetic field, and the energy is crossed many times while obtaining the energy. Under the conditions, even if the power to be injected is increased, the increase in the internal energy of the electron group, 3 / 2kneTe (where ne: electron density, Te: the same temperature, k: Boltzmann constant) concentrates exclusively on the increase in density. In addition, since the temperature is kept almost at a low temperature, there are few high-temperature components unnecessary for the surface treatment, and the processing speed is increased by increasing the density. Due to these two features, the magnetic neutral line discharge plasma processing equipment has outstanding performance in ultra-fine processing in fields such as glass processing of micro lenses and optical waveguides and etching of low dielectric constant materials, which require increasingly precise processing accuracy. It is a state of pride.
[0004]
FIG. 6 of the accompanying drawings is a conceptual diagram of an induction magnetic field type magnetic neutral ray discharge plasma processing apparatus manufactured for the purpose of processing many disk-shaped substrate surfaces. A circular magnetic neutral wire E is formed in the vacuum chamber A by adjusting the current flowing through the upper, middle, and lower coils B, C, and D that are coaxially installed outside the cylindrical vacuum chamber A. . To generate the plasma, a doughnut-shaped donut centered on a circular magnetic neutral line E is generated by an azimuthally induced electric field generated by an excitation current flowing through an rf coil G wound on the outside of an insulating cylindrical vacuum wall F such as ceramic. A plasma is generated. At this time, the diameter and the vertical position of the donut plasma can be freely controlled even during processing, by a combination of currents flowing through the three coils B, C, and D.
[0005]
The characteristic of the plasma itself of the magnetic neutral line discharge plasma thus generated is that high-density and low-temperature plasma is generated using a low-pressure gas as described in [] 0004]. The features are extremely suitable for various types of processing, and there is a strong demand for improving the performance of the apparatus while maintaining features not found in other methods.
[0006]
[Problems to be solved by the invention]
Despite the outstanding performance as described above, there is a need to improve the magnetic neutral discharge plasma processing apparatus from the viewpoint of ease of use as the processing apparatus and shortening of the maintenance adjustment period.
[0007]
That is, in the conventional three-magnetic-field coil processing apparatus as shown in FIG. 6, the number of magnetic field coils is reduced as much as possible from the viewpoint of the arrangement of other components of the plasma processing apparatus, and the weight of the apparatus is reduced. It is realistically required to reduce the weight and energy consumption.
[0008]
In addition, in the case of a conventional circular magnetic neutral ray discharge plasma processing apparatus as shown in FIG. 6, in order to apply an electric field along the magnetic neutral line in a circular shape, in principle, a cylindrical porcelain container is used as a side wall of the vacuum chamber. A one-turn coil for high frequency (rf) had to be wound around the outside. However, a thick cylindrical porcelain container having a diameter of several tens of cm is expensive, and no matter how smooth the inner surface on the vacuum side, it is necessary to take measures to remove or prevent adsorption by affinity with a special gas. . In addition, strong and vacuum-resistant wall materials such as ceramics are expensive and increase the price of the device itself. This tendency becomes more pronounced as the size of the device increases.
[0009]
In view of the above, the present invention has been developed to improve the configuration of the magnetic field generating means to shorten the longitudinal dimension of the apparatus, that is, the longitudinal dimension of the vacuum chamber portion for generating plasma as much as possible to reduce the weight and weight of the magnet. A first object is to provide a glow discharge plasma processing apparatus.
[0010]
A second object of the present invention is to provide a magnetic neutral beam discharge plasma processing apparatus capable of reducing the weight of the apparatus and reducing the cost of the apparatus without using an expensive wall material such as ceramic while reducing the weight and weight. It is in.
[0011]
[Means for Solving the Problems]
In order to achieve the first object, according to the present invention, there is provided a magnetic field generating means for generating a magnetic neutral line formed by a series of positions of zero magnetic field which are continuously present in a vacuum chamber; Means for generating a discharge plasma in a space containing the magnetic neutral line by applying a high-frequency electric field to the magnetic neutral line generated in the vacuum chamber; In a discharge plasma processing apparatus for processing an object to be processed, a magnetic field generating means includes a cylindrical magnet configured so that a first end is an N pole and a second end is an S pole along an axis of the apparatus, and a magnetic field is generated outside the cylindrical magnet. Consisting of a cylindrical magnet and a constant current coil provided coaxially, the diameter of the annular magnetic neutral wire formed by the cylindrical magnet and the constant current coil can be set arbitrarily by changing the current flowing through the constant current coil. It is special that It is set to.
[0012]
Although it is described in Japanese Patent No. 2705897 that a three-coil system is necessary for precise control of the form of the closed magnetic neutral wire, its size, and the position in the vertical direction, as described in Japanese Patent No. Since the necessity of the position control is to control the distance to the surface of the object to be processed, the vertical position control can be performed by the set height of the surface to be processed. As a result, the present invention employs a one-field coil system instead of the conventional three-coil system to control the size of the closed magnetic neutral line, thereby reducing the weight of the entire apparatus and reducing the weight of the apparatus. Is brought about.
[0013]
In an apparatus for achieving the first object of the present invention, as an electric field generating means for generating a discharge plasma in a space including a magnetic neutral line by applying a high-frequency electric field to a magnetic neutral line generated in a vacuum chamber. May be of an inductive type or a capacitive type.
[0014]
Preferably, the magnetic field generating means may be configured to have a circular, polygonal or elliptical axial symmetry having the same shape as the surface of the workpiece.
[0015]
Further, the magnetic field generating means may be constituted by a direct current, an alternating current including a commercial frequency or a combination of a direct current and an alternating current including a commercial frequency.
[0016]
In order to achieve the second object of the present invention, the electric field generating means is provided in the vacuum chamber so as to apply a high-frequency electric field in a tilt angle direction including a right angle with a magnetic neutral line generated in the vacuum chamber by the magnetic field generating means. Placed in
[0017]
Preferably, the electric field generating means may be configured to have a circular, polygonal or elliptical axial symmetry having the same shape as the surface of the workpiece.
[0018]
In one embodiment, the high-frequency electric field generating means may be composed of a pair of electrodes arranged to insert the formed magnetic neutral line. In that case, each electrode may be formed in a disk shape, a perforated disk shape, or an annular shape.
[0019]
In a device for achieving the second object of the present invention, a high-frequency electric field is applied to a magnetic neutral line in a tilt angle direction including a right angle to the magnetic neutral line to cause a magnetic neutral discharge plasma to be generated in a surrounding space including the magnetic neutral line. Is generated. Therefore, in this method, the direction of the applied high-frequency electric field is not parallel to the formed magnetic neutral line, but the direction in which the magnetic neutral line is inserted. There is no need to wind a high-frequency coil along the curved neutral line, which eliminates the need for the induction electric field to provide the space required for installing the high-frequency coil outside the closed neutral line. In addition to being able to use the space in the vertical and horizontal directions of the neutral wire, it is possible to be free from the presence of vacuum walls made of insulating materials such as ceramics, which are inevitable for applying an induction electric field from outside the vacuum vessel. Become. According to one embodiment, when the high-frequency electric field generating means includes a pair of electrodes arranged above and below by inserting a magnetic neutral line, a high-frequency electric field is applied between these electrodes. In the specification, it is defined as "capacitive electric field type".
[0020]
Alternatively, the electric field generating means may be formed to have a circular, polygonal or elliptical axial symmetry having the same shape as the surface of the object to be processed, and to apply a high-frequency electric field along the magnetic neutral line.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0022]
FIG. 1 shows an embodiment of a magnetic neutral ray discharge plasma processing apparatus according to the present invention. In FIG. 1,
[0023]
By the way, although not shown in FIG. 1, naturally, a high-frequency electric field is applied to the magnetic neutral line 8 generated in the
[0024]
FIG. 2 shows another embodiment of the magnetic neutral ray discharge plasma processing apparatus according to the present invention. In this example, a capacitive electric field generating means for applying a high-frequency electric field to the magnetic neutral line to generate discharge plasma in a space including the magnetic neutral line is used.
[0025]
Also in this case, as in the case of FIG. 1, the
[0026]
Further, a pair of
[0027]
A pair of
[0028]
In the illustrated example, the
[0029]
【The invention's effect】
As described above, according to the present invention, a magnetic field generating means for generating a magnetic neutral line formed by a series of positions of zero magnetic field continuously present in a vacuum chamber, and a magnetic field generating means for generating a magnetic neutral line in the vacuum chamber Means for generating a discharge plasma in a space containing the magnetic neutral line by applying a high-frequency electric field to the magnetic neutral line to be processed, and processing the workpiece using the plasma in the vacuum chamber In the discharge plasma processing apparatus, the magnetic field generating means includes a cylindrical magnet having a first end having an N pole and a second end having an S pole along the axis of the apparatus, and a cylindrical magnet provided outside the cylindrical magnet. Since it is constituted by a constant current coil provided coaxially, the weight and weight of the device can be reduced, and the effect of assembling and maintaining the device can be obtained easily.
[0030]
In addition, the electric field generating means for generating a discharge plasma in a space including the magnetic neutral line by applying a high-frequency electric field to the magnetic neutral line is formed at a right angle to the magnetic neutral line generated in the vacuum chamber by the magnetic field generating means. When placed in the vacuum chamber so as to apply a high-frequency electric field in the direction of the included tilt angle, it is not necessary to wind a high-frequency coil along a closed neutral line outside the vacuum chamber, which means that the vacuum chamber is insulated. Metal such as impermeable steel can be used without using a body wall, and the cost of the device can be reduced. As a result, the application range of the discharge plasma device can be improved and expanded.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a configuration of an embodiment of a magnetic neutral ray discharge plasma processing apparatus according to the present invention.
FIG. 2 is a schematic longitudinal sectional view showing the configuration of another embodiment of the magnetic neutral ray discharge plasma processing apparatus according to the present invention.
FIG. 3 is a schematic perspective view showing a disk-shaped electrode constituting an electric field generating means used in the magnetic neutral ray discharge plasma processing apparatus shown in FIG.
FIG. 4 is a schematic perspective view showing an annular electrode constituting an electric field generating means used in the magnetic neutral ray discharge plasma processing apparatus shown in FIG.
FIG. 5 is a schematic perspective view showing a perforated disk-shaped electrode constituting an electric field generating means in the magnetic neutral ray discharge plasma processing apparatus shown in FIG. 2;
FIG. 6 is a schematic longitudinal sectional view showing an example of the configuration of a conventional induction electric field type circular magnetic neutral beam discharge plasma processing apparatus.
[Explanation of symbols]
1: vacuum chamber 2: plasma generation unit 3: substrate processing unit 4: cylindrical magnet 5: constant current coil 6: current setting circuit 7: constant current power supply 8: magnetic neutral wire 9: electrode 10: electrode 11: high frequency power supply 12: High frequency power supply 13: Insulator
Claims (12)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002172017A JP2004022212A (en) | 2002-06-12 | 2002-06-12 | Magnetic neutral line electrical discharge plasma treatment device |
DE10326135.4A DE10326135B4 (en) | 2002-06-12 | 2003-06-06 | A discharge plasma processing system |
TW092115746A TWI270939B (en) | 2002-06-12 | 2003-06-10 | Discharge plasma processing system |
US10/457,519 US6885154B2 (en) | 2002-06-12 | 2003-06-10 | Discharge plasma processing system |
KR1020030037773A KR101051979B1 (en) | 2002-06-12 | 2003-06-12 | Discharge Plasma Processing Equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002172017A JP2004022212A (en) | 2002-06-12 | 2002-06-12 | Magnetic neutral line electrical discharge plasma treatment device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004022212A true JP2004022212A (en) | 2004-01-22 |
Family
ID=31171727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002172017A Pending JP2004022212A (en) | 2002-06-12 | 2002-06-12 | Magnetic neutral line electrical discharge plasma treatment device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004022212A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008007784A1 (en) * | 2006-07-14 | 2008-01-17 | Ulvac, Inc. | Capacitive-coupled magnetic neutral line plasma sputtering system |
-
2002
- 2002-06-12 JP JP2002172017A patent/JP2004022212A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008007784A1 (en) * | 2006-07-14 | 2008-01-17 | Ulvac, Inc. | Capacitive-coupled magnetic neutral line plasma sputtering system |
JP4945566B2 (en) * | 2006-07-14 | 2012-06-06 | 株式会社アルバック | Capacitively coupled magnetic neutral plasma sputtering system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920004912B1 (en) | Plasma apparatus | |
JP2866815B2 (en) | Flat plasma generator using fluctuating magnetic poles | |
US6523493B1 (en) | Ring-shaped high-density plasma source and method | |
US5795429A (en) | Plasma processing apparatus | |
KR100797206B1 (en) | Uniform gas distribution in large area plasma source | |
US8736177B2 (en) | Compact RF antenna for an inductively coupled plasma ion source | |
US7163602B2 (en) | Apparatus for generating planar plasma using concentric coils and ferromagnetic cores | |
JPH10130834A (en) | Method for decreasing sputtering of coil at icp source | |
KR101063763B1 (en) | Plasma generation system | |
JP2005146416A (en) | Ionized physical vapor deposition apparatus using helical magnetic-resonant coil | |
JPH0627325B2 (en) | Magnetron sputtering apparatus using the same pole piece for coupling different confining magnetic fields to different targets exposed to different discharges. | |
KR101051979B1 (en) | Discharge Plasma Processing Equipment | |
KR20190049589A (en) | Plasma processing apparatus | |
JPH04254580A (en) | Method and device for coating substrate using magnetron cathode | |
JPH06235063A (en) | Sputtering cathode | |
US20020092619A1 (en) | Discharge plasma processing device | |
JP2004022212A (en) | Magnetic neutral line electrical discharge plasma treatment device | |
JP2012514128A (en) | Arc evaporator and operating method of arc evaporator | |
JP2004022211A (en) | Discharge plasma treatment device | |
KR20110006070U (en) | Magnetized inductively coupled plasma processing apparatus | |
JPH09186000A (en) | Plasma processing device | |
JP3823069B2 (en) | Magnetic neutral discharge plasma processing equipment | |
JP2000208298A (en) | Inductive coupling type plasma generator | |
JP3666999B2 (en) | Plasma processing equipment | |
KR100297887B1 (en) | Generator of inductively coupled plasma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060313 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060524 |