JP2004020596A - Reversible image display medium and image forming method using the same - Google Patents

Reversible image display medium and image forming method using the same Download PDF

Info

Publication number
JP2004020596A
JP2004020596A JP2002171415A JP2002171415A JP2004020596A JP 2004020596 A JP2004020596 A JP 2004020596A JP 2002171415 A JP2002171415 A JP 2002171415A JP 2002171415 A JP2002171415 A JP 2002171415A JP 2004020596 A JP2004020596 A JP 2004020596A
Authority
JP
Japan
Prior art keywords
light
wavelength
photochromic compound
image display
photosensitive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002171415A
Other languages
Japanese (ja)
Other versions
JP4148398B2 (en
Inventor
Ikue Kawashima
川島 伊久衞
Hiroyuki Takahashi
高橋 裕幸
Shigenobu Hirano
平野 成伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002171415A priority Critical patent/JP4148398B2/en
Publication of JP2004020596A publication Critical patent/JP2004020596A/en
Application granted granted Critical
Publication of JP4148398B2 publication Critical patent/JP4148398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reverse image display medium which enables color display and repeated use in image display and deletion, and to provide an image forming method including an emitting method which uses less light emission energy. <P>SOLUTION: The medium is constructed of photosensitive layers 2, 4 and 6 and light blocking layers 3 and 5, which are alternately stuck on a support substrate 1. The photosensitive layers have three kinds of photochromic compounds A, B and C of different color-development hues and threshold wavelengths, and the light-blocking layers block light for developing the colors of the photochromic compounds. The photosensitive layers 2, 4, and 6 have the threshold wavelength λ1, λ2, and λ3, respectively, and the relationship between the threshold wavelengths is λ1>λ2>λ3. The light-blocking layer 3 blocks light which has a wavelength shorter than λ2 but longer than λ3 whereas the light-blocking layer 5 blocks light which has a wavelength shorter than λ3. The photosensitive layers 2, 4, and 6 containing the photochromic compounds performing color display are subjected to the process of emitting light the quantity of which corresponds to the density of each pixel after color development. Images are formed with the photochromic compounds which respectively have maximum absorption wavelengths in color development which are in the range of 600 nm or more to less than 700 nm, in the range of 500 nm or more to less than 600 nm, and in the range of 400 nm or more to less than 500 nm. The process of decoloring the entire image display area from a colored state is provided, which allows the repeated use of the medium. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光照射によりカラー画像情報の書き込みと消去の繰り返しが可能な可逆画像表示媒体及び該画像表示媒体を用いた画像形成方法に関するものである。
【0002】
【従来の技術】
オフィスにおける紙の消費の増大にともない、紙に替わるメディアとして、画像の記録・消去が繰り返しできる可逆画像表示媒体に関する研究が注目されている。この中で、多色画像の書き換えが可能なカラー可逆画像表示媒体についても幾つかの提案がなされている。
【0003】
例えば、特開平11−24027号公報はコレステリック液晶化合物を用いるカラー画像形成方法に関するもので、該コレステリック液晶化合物は、螺旋状分子配列に起因した選択反射色を示すため、加熱温度に応じて様々な色を表示させることによる画像形成方法を提案している。
【0004】
また、特開平5−271649号公報は、光照射により可逆的な色変化を起こすフォトクロミック化合物を用いたカラー可逆画像表示媒体に関するもので、黄橙色、赤色、青紫色を発色する3種類のフォトクロミック性ジアリールエテン化合物を混合して、紫外光を照射することでカラー画像表示をする方法を提案している。
【0005】
さらに、特開平7−199401号公報においては、イエロー、マゼンタ、シアンを発色する3種類のフォトクロミック性フルギド化合物を用いたカラー可逆画像表示媒体を提案している。
【0006】
【発明が解決しようとする課題】
ところで、特開平5−271649号公報や特開平7−199401号公報で提案されている光の吸収によって色を表示するフォトクロミック化合物を用いる方式は、特開平11−24027号公報で提案されている光の選択反射によって色を表示するコレステリック液晶化合物を用いる方式に比べて白反射率が高く又、表示色の濃度が高いなど画像表示特性としては優れた特徴を持っている。
【0007】
しかしながら、フォトクロミック化合物の消色状態から発色状態へ変化させる波長領域中で最も波長の長い光、言いかえるとフォトクロミック化合物の消色状態における光吸収が生じる閾値波長はフォトクロミック化合物によって異なり、しかも閾値波長よりも短い波長の光に対してはどの波長の光に対しても光照射によって発色する場合がほとんどである。したがって3種類のフォトクロミック化合物を特定の紫外線波長領域の紫外光だけで独立に発色することを利用する特開平5−271649号公報で提示された画像表示方式は十分といえるものではない。
【0008】
一方、1種類の紫外線で全色発色させた後に可視光線で選択的に消色する特開平7−199401号公報で提案されている画像表示方式は、例えば紙の代替として使用する場合、オフィスで作成される文書の多くは白地に黒文字で書かれており、平均的な原稿率(紙面全体に占める文字面積の割合)は10%以下であるため、全面発色させた媒体のほとんどの領域に可視光線を照射して消色させることになる。そのため画像を表示させるための光照射エネルギーの無駄が多い。
【0009】
上記のエネルギーの無駄を回避する方法としては、紫外線による全面発色ではなく画像を表示する画素だけを紫外線で選択的に発色させ、その後、画素の色濃度に応じて画素毎に消色させるための可視光線をフォトクロミック化合物毎の感度波長領域の光で順次照射する方法が考えられる。
【0010】
しかしこの方法においても画像の背景を特定の色にして、その上に文字を表示させるような場合、画像表示媒体を全面発色させた後に、ほとんどの領域に背景色以外の可視光線を照射して消色させる必要があるため光照射エネルギーの無駄が多いと言う欠点がある。
【0011】
そこで本発明は上記の課題を解決するためになされたもので、カラー画像表示ができ、かつ画像表示させるための光照射エネルギーの少ないカラー可逆画像表示媒体及び新たな光照射方法を用いた可逆画像形成方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
前記の課題を解決するために、請求項1に記載の発明は、支持基板上に発色の色相が異なる3種類のフォトクロミック化合物を個別に含んだ感光層を積層し多色表示を行う可逆画像表示媒体において、該3種類の消色状態のフォトクロミック化合物は発色状態に遷移する閾値波長がそれぞれ異なり、かつ積層された最下部の感光層とその上に位置する感光層との間、及び最上部の感光層とその下に位置する感光層との間にフォトクロミック化合物を発色させるための光を遮光する遮光層が設けられていることを最も主要な特徴とするものである。
【0013】
請求項2に記載の発明は、消色状態において光吸収により発色状態に遷移する光の閾値波長が最も長いフォトクロミック化合物の閾値波長をλ1、次に消色状態において光吸収により発色状態に遷移する光に閾値波長が長いフォトクロミック化合物の閾値波長をλ2、消色状態において光吸収により発色状態に遷移する光の閾値波長が最も短いフォトクロミック化合物の閾値波長をλ3としたとき、前記可逆画像表示媒体の最下部の感光層はλ1の閾値波長を持つフォトクロミック化合物Aであり、その上に位置する感光層はλ2の閾値波長を持つフォトクロミック化合物Bであり、最上部の感光層はλ3の閾値波長を持つフォトクロミック化合物Cであることを主要な特徴とするものである。
【0014】
請求項3に記載の発明は、前記最下部の感光層とその上に位置する感光層との間に設けられた遮光層はλ1よりも短くλ2よりも長い波長領域内の少なくとも一部の波長の光を透過しλ2よりも短くλ3よりも長い波長領域内の少なくとも一部の波長の光を遮光する特性を有し、最上部の感光層とその下に位置する感光層との間に設けられた遮光層はλ1よりも短くλ3よりも長い波長領域内の少なくとも一部の波長の光を透過しλ3よりも短い波長領域の少なくとも一部の波長の光を遮光する特性を有することを主要な特徴とするものである。
【0015】
請求項4に記載の発明は、前記発色の色相が異なる3種類のフォトクロミック化合物は、発色状態における極大吸収波長が600nm以上700nm未満の範囲にあるフォトクロミック化合物A、発色状態における極大吸収波長が500nm以上600nm未満の範囲にあるフォトクロミック化合物B、発色状態における極大吸収波長が400nm以上500nm未満に有るフォトクロミック化合物Сであることを主要な特徴とするものである。
【0016】
請求項5に記載の発明は、消色状態の可逆画像表示媒体において、λ1の閾値を持つフォトクロミック化合物を所望の発色後の濃度に応じた光量でλ1よりも短くλ2よりも長い波長の光線を可逆画像表示媒体の画素毎に照射する工程I、λ2の閾値を持つフォトクロミック化合物を所望の発色後の濃度に応じた光量でλ2よりも短くλ3よりも長い波長の光線を可逆画像表示媒体の画素毎に照射する工程II、λ3の閾値を持つフォトクロミック化合物を所望の発色後の濃度に応じた光量でλ3よりも短い波長の光線を可逆画像表示媒体の画素毎に照射する工程IIIを施す画像形成方法を主要な特徴とするものである。
【0017】
請求項6に記載の発明は、請求項5に記載の画素毎に照射する3つの工程I、II、IIIを施す工程に代えて、画素毎に照射する工程として、請求項1〜3のいずれかに記載の可逆画像表示媒体の2つの遮光層を透過するλ3よりも短い波長の光を可逆画像表示媒体の画素毎に照射する1つの工程により前記3つの感光層を同時に発色させる工程を施すことを主要な特徴とするものである。
【0018】
請求項7、8、9、10に記載の発明は、フォトクロミック化合物を含む感光層に光を照射する光源として蛍光管、蛍光管と光学フィルターの構成、レーザー、発光ダイオードなどを用いることを主要な特徴とするものである。
【0019】
請求項11に記載の発明は、請求項5又は請求項6に記載の可逆画像表示媒体の画素毎に照射する工程Iを施す前工程として白色光を可逆画像表示媒体全面に照射することにより全てのフォトクロミック化合物を含む感光層を消色状態にする工程を施すことを主要な特徴とするものである。
【0020】
【発明の実施の形態】
以下、図に基づき本発明の実施の形態を詳細に説明する。図1は本発明に係る可逆画像表示媒体を構成する層の断面図を示し、支持基板1に感光層を保持するフォトクロミック化合物Aを含んだ感光層2が形成され、その上部に後述する照射する工程IIの波長の光を遮光する遮光層3が形成される。さらにその上部にはフォトクロミック化合物Bを含んだ感光層4が形成され、その上に後述する照射する工程IIIの波長の光を遮光する遮光層5が形成される。さらにその上部にはフォトクロミック化合物Cを含んだ感光層6が形成される。
【0021】
上記構成の可逆画像表示媒体に対して選択発色させ画像を形成するプロセスを、図2で説明する。最初にフォトクロミック化合物Aの最終的な発色後の濃度に応じた光量でλ1よりも短くλ2よりも長い波長の光線を可逆画像表示媒体の画素毎に照射する工程Iを最初に行う。該工程Iによりフォトクロミック化合物Aに対して所望の発色濃度を与える。該工程Iで用いた波長の光に対してはフォトクロミック化合物B及びCは発色感度を持たないため発色しない。
【0022】
次にフォトクロミック化合物Bの最終的な発色後の濃度に応じた光量でλ2よりも短くλ3よりも長く、且つ遮光層3で吸収される波長の光線を画像表示媒体の画素毎に照射する工程IIを行う。該工程IIによりフォトクロミック化合物Bに対して所望の発色濃度を与える。該工程IIで用いた波長の光に対してはフォトクロミック化合物Cは発色感度を持たないため発色しない。またフォトクロミック化合物Aは工程IIの光が遮光層3によって遮光されるため発色しない。
【0023】
最後にフォトクロミック化合物Cの最終的な発色後の濃度に応じた光量でλ3よりも短く、且つ遮光層5で吸収される波長の光線を画像表示媒体の画素毎に照射する工程IIIを行う。該工程IIIによりフォトクロミック化合物Cに対して所望の発色濃度を与える。フォトクロミック化合物A及びBは工程IIIの光が遮光層5によって遮光されるため発色しない。
【0024】
上記の特徴を持つフォトクロミック化合物の構成、並びフォトクロミック化合物を発色させるための光を照射する3つの工程により、3種類の異なる色相を有するフォトクロミック化合物を選択的に発色させることができ、更に画像形成を行う際の消色過程の必要が無いことにより、光照射エネルギーの無駄がない画像形成が実現できる。
【0025】
例えば薄い青を背景とした黒色文字文書の画像を形成する場合、本発明においては照射する3つの工程I、II、IIIにおいて文字を形成する画素にのみ強い紫外線を照射する。薄い青を背景とする部分には照射する工程Iにおいて背景となる領域に弱い光を照射しフォトクロミック化合物Aを薄いシアン濃度で発色させ、照射する工程IIにおいて背景となる領域に弱い光を照射しフォトクロミック化合物Bを薄いマゼンタ濃度で発色させ、これにより薄い青の背景画像を形成する。
【0026】
一方、特開平7−199401号公報で提案されている方法を用いた場合においては、まず可逆画像表示媒体全面を黒色に発色させる。その後に青の背景部分の画像を作るために400nm以上500nm未満の波長範囲の光を照射することによりフォトクロミック化合物Cを消色する。但しこのままでは背景色が濃い青になっているため、背景色を薄い青にするために500nm以上600nm未満の波長範囲の光及び600nm以上700nm未満の波長範囲の光を適切な光強度で照射しフォトクロミック化合物A及びフォトクロミック化合物Bの発色濃度を低減させる。仮に黒文字の原稿率が10%、消色感度と発色感度が等しいと仮定した場合は、画像形成に必要なエネルギーは本発明の光照射方法に比べ20倍以上になる。
【0027】
また上記の光照射エネルギーの無駄を回避する方法として、紫外線による全面発色ではなく画像を表示する画素だけを紫外線で選択的に発色させ、その後画素の色濃度に応じて画素毎に消色させるための可視光をフォトクロミック化合物毎の感度波長領域の光で順次照射する方法においても、薄い青の背景を得るためにはフォトクロミック化合物A、B、Cを共に弱く発色させることで背景を薄いグレーに発色させた後に400nm以上500nm未満の波長範囲の光を照射することによりフォトクロミック化合物Cを消色する。したがって、本発明に比べて画像形成に必要な光照射エネルギーは多くなる。
【0028】
上記の説明においては光を照射する工程Iから光を照射する工程IIIまでを順次行った場合の例を挙げているが、光を照射する工程IからIIIは光を照射する工程の順番を入れ替えても良い。尚、オフィスで使われる文書には白黒文字のみの文書または白黒文字の多い文書が多い。このような文書の場合、前記の光を照射する工程IからIIIの3つの工程を順次重ね合わせて黒発色を行うよりも一回の光を照射する工程で3つの感光層を同時に発色させたほうが、光を照射する工程の数も少なく、また3色の色ずれの心配もない。従って、光を照射する工程IからIIIとは別の光を照射する工程として2つの遮光層を透過し、λ3よりも短い波長の光線を可逆画像表示媒体に画素毎に光を照射することにより3つの感光層を同時に発色させる工程を施しても良い。
【0029】
更には、フォトクロミック化合物A、B、Cの発色状態の光吸収を起こす波長スペクトルが大きく重なっていても従来技術の様に選択的な消色を行う必要が無いためフォトクロミック化合物の発色状態のスペクトル幅が広く選択的に消色できない場合においても所望の色相が得られる。
【0030】
以下に本発明を更に詳細に説明する。反射率の高い白色表示のために、支持基板は表面が白色であることが望ましいが、用途に応じて着色していても良い。また、支持基板は紙やフィルムなどの比較的薄い媒体が好ましいがこれに限定されるものではない。
【0031】
支持基板上の感光層には、紫外線照射により発色状態となり、可視光照射により消色状態になるフォトクロミック化合物が含まれる。該フォトクロミック化合物は、発色状態が熱に安定であり、光のみによって色変化を起こすP型化合物と、発色状態が熱に不安定であり光だけでなく熱によっても色変化を起こすT型化合物とがあるが、本発明ではP型化合物を用いることが特に望ましい。
【0032】
P型化合物の代表的なものとしては、フルギド系化合物、ジアリールエテン系化合物などがあり、フルカラー画像を記録再現したい場合には、3原色であるイエロー、マゼンタ、シアンを発色するフォトクロミック化合物が必要である。イエロー発色化合物としては、例えば、「2−[1−(3,5−ジメチル−4−イソオキサゾリル)エチリデン]−3−イソプロピリデンコハク酸無水物」、「2−[1−(5−メチル−2−フェニル−4−オキサゾリル)エチリデン]−3−イソプロピリデンコハク酸無水物」、「2−[1−(2−フェニル−5−メチル−4−オキサゾリル)ステアリリデン]−3−イソプロピリデンコハク酸無水物」などを挙げることができる。当該化合物は発色状態での極大吸収波長は430nmから460nm程度である。
【0033】
マゼンタ発色化合物としては、例えば、「2−[1−(2,5−ジメチル−1−フェニルピラゾリル)エチリデン]−3−イソプロピリデンコハク酸無水物」、「2−[1−(3−メトキシ−5−メチル−1−フェニル−4−ピラゾリル)エチリデン]−3−イソプロピリデンコハク酸無水物」、「2−[1−(2−メチル−5−スチリル−3−チエニル)エチリデン]−3−イソプロピリデンコハク酸無水物」などを挙げることができる。当該化合物の発色状態での極大吸収波長は550nmから560nm程度である。
【0034】
シアン発色化合物としては、例えば、「2−[1−(1,2,5−トリメチル−3−ピロリル)エチリデン]−3−イソプロピリデンコハク酸無水物」、「2−[2,6−ジメチル−3,5−ビス(P−ジメチルアミノスチリル)ベンジリデン]−3−イソプロピリデンコハク酸無水物」などを挙げることができる。当該化合物の発色状態での極大吸収波長は640nm程度である。
【0035】
感光層に含まれるフォトクロミック化合物はアクリル系樹脂、塩化ビニル樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂あるいはウレタン樹脂に分散してもよいし、マイクロカプセル中に封入されていても良い。
【0036】
感光層間に設けられる遮光層、該遮光層に含まれる物質としては、例えば、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、インドール系色素などを挙げることができる。更に必要に応じて、感光層の劣化を防止する保護膜としてポリビニルアルコールの薄膜層を最上部の感光層上に設けた画像表示媒体としても良い。
【0037】
【実施例】
次に、実施例により本発明を更に具体的に説明する。
(実施例1)
フォトクロミック化合物Aとして1,2−ビス(6−(4−N,N−ジエチルアミノフェニルアゾ)−2−メチルベンゾ〔B〕チオフェン−3−イル)−3,3,4,4,5,5−ヘキサフルオロシクロペンテン[以下PC1と略す]、フォトクロミック化合物Bとして1,2−ジシアノ−1,2−ビス(2,4,5−トリメチル−3−チエニル)エテン[以下PC2と略す]、フォトクロミック化合物Cとして1,2−ビス(5−エトキシ−2−メチルチアゾール)−3,3,4,4,5,5−ヘキサフルオロシクロペンテン[以下PC3と略す]を用いた。
【0038】
PC1〜PC3の発色状態における極大吸収波長はそれぞれ610nm、540nm、475nmであった。上記のフォトクロミック化合物の消色状態においてピーク波長450nm半値幅20nmの光を照射するとPC3は発色反応を示したが、PC1、PC2はほとんど発色反応を示さなかった。また上記のフォトクロミック化合物の消色状態においてピーク波長400nm半値幅20nmの光を照射するとPC1、PC2は発色反応を示したが、PC3はほとんど発色反応を示さなかった。また水銀灯の365nmの輝線を照射すると全てのフォトクロミック化合物が発色反応を示した。
【0039】
遮光層3に含まれる遮光物質としてオリエント化学工業製BONASORB UA−3901[以下S1と略す]、遮光層5に含まれる遮光物質として2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール[以下S2と略す]を用いた。PC1、PC2、PC3の3種類のフォトクロミック化合物は、それぞれポリスチレン中に10wt%分散し感光液とした。該感光液は白色ポリエチレンテレフタレートの支持基板(厚さ0.5mm)上にPC1、続いてPC2更にPC3をそれぞれ含有する感光液を順次スピンコート法により積層型の感光層を形成した。該積層型の感光層の厚みは約60μmであった。さらに最上部の感光層の表面に保護膜としてポリビニルアルコールの薄膜(2μm)を塗布して、可逆画像表示媒体を作成した。
【0040】
(実施例2)
実施例1で作成した可逆画像表示媒体の消色状態に対して、キセノンランプと干渉フィルターから抽出したピーク波長450nm半値幅20nmの光(1mW/cm)を100秒間照射したところ濃いシアン色に発色した。これはPC1が選択的に発色したものと推定される。
【0041】
(実施例3)
実施例1で作成した可逆画像表示媒体の消色状態に対して、キセノンランプと干渉フィルターから抽出したピーク波長400nm半値幅20nmの光(1mW/cm)を100秒間照射したところ濃いマゼンタ色に発色した。これはPC2が選択的に発色したものと推定される。
【0042】
(実施例4)
実施例1で作製した可逆画像表示媒体の消色状態に対して、水銀灯の365nmの輝線(10mW/cm)を10秒間照射したところ濃いイエロー色に発色した。これはPC3が選択的に発色したものと推定される。
【0043】
(実施例5)
実施例1で作製した可逆画像表示媒体の消色状態に対して、キセノンランプと干渉フィルターから抽出したピーク波長450nm半値幅20nmの光(1mW/cm)を100秒間照射し、その後キセノンランプと干渉フィルターから抽出したピーク波長400nm半値幅20nmの光(1mW/cm)を100秒間照射し、最後に水銀灯の365nmの輝線(10mW/cm)を10秒間照射したところ黒色に発色した。これは3種類全てのフォトクロミック化合物が発色したものと推定される。
【0044】
(実施例6)
実施例2から5で発色した3種類のフォトクロミック化合物を含む可逆画像表示媒体に対してキセノンランプの480nm以上の波長の光(100,000ルクス)を100秒間照射したところ、実施例2から5の全ての実施例でフォトクロミック化合物が消色状態となった可逆画像表示媒体が得られた。
【0045】
【発明の効果】
以上説明したように、請求項1によれば、支持基板上に発色の色相が異なる3種類フォトクロミック化合物を個別に含んだ感光層を積層し多色表示を行う可逆画像表示媒体において、3種類の消色状態のフォトクロミック化合物は発色状態に遷移する閾値波長がそれぞれ異なり、かつ積層された最下部の感光層とその上に位置する感光層との間及び最上部の感光層とその下に位置する感光層との間にフォトクロミック化合物を発色させるための光を遮光する遮光層が設けることにより3種類のフォトクロミック化合物を選択的に発色させて画像形成に必要な光照射エネルギーを少なくすることが可能となった。
【0046】
請求項2によれば、消色状態において光吸収により発色状態に遷移する光の閾値波長が最も長いフォトクロミック化合物の閾値波長をλ1、次に消色状態において光吸収により発色状態に遷移する光の閾値波長が長いフォトクロミック化合物の閾値波長をλ2、消色状態において光吸収により発色状態に遷移する光の閾値波長が最も短いフォトクロミック化合物の閾値波長をλ3としたとき、最下部の感光層はλ1の閾値波長を持つフォトクロミック化合物、その上に位置する感光層はλ2の閾値波長を持つフォトクロミック化合物とすることで、遮光層としては特定の波長以下の光を全て吸収する材料を用いることが可能となった。
【0047】
請求項3によれば、最下部の感光層とその上に位置する感光層との間に設けられた遮光層はλ1よりも短くλ2よりも長い波長領域内の少なくとも一部の波長の光を透過しλ2よりも短くλ3よりも長い波長領域内の少なくとも一部の波長の光を遮光する特性を有し最上部の感光層とその下に位置する感光層との間に設けられた遮光層はλ1よりも短くλ3よりも長い波長領域内の少なくとも一部波長の光を透過しλ3よりも短い波長領域の少なくとも一部の波長の光を遮光する特性を有する層構成としたことで3種類のフォトクロミック化合物を選択的に発色させることが可能となった。
【0048】
請求項4によれば、3種類のフォトクロミック化合物は、発色状態における極大吸収波長が600nm以上700nm未満の範囲にあるフォトクロミック化合物、発色状態における極大吸収波長が500nm以上600nm未満の範囲にあるフォトクロミック化合物、発色状態における極大吸収波長が400nm以上500nm未満の範囲にあるフォトクロミック化合物を選択とすることでフルカラーの可逆画像表示媒体が可能となった。
【0049】
請求項5によれば、λ1の閾値を持つフォトクロミック化合物を所望の発色後の濃度に応じた光量でλ1よりも短くλ2よりも長い波長の光を可逆画像表示媒体の画素毎に照射する工程I、λ2の閾値を持つフォトクロミック化合物を所望の発色後の濃度に応じた光量でλ2よりも短くλ3よりも長い波長の光を可逆画像表示媒体の画素毎に照射する工程II、λ3の閾値を持つフォトクロミック化合物を所望の発色後の濃度に応じた光量でλ3よりも短い波長の光を可逆画像表示媒体の画素毎に照射する工程IIIを施すことで3種類のフォトクロミック化合物を選択的に発色させカラー画像形成に必要な光照射エネルギーを少なくすることが可能となった。
【0050】
請求項6によれば、請求項5に記載の照射工程のIからIIIを施す照射方法に代えて、2つの遮光層を透過し、λ3よりも短い波長の光を可逆画像表示媒体の画素毎に照射することにより3つの感光層を同時に発色させる工程を行うことにより、白黒文字のみの文書または白黒文字の多い文書の場合には工程の数を少なく出来、また3色の色ずれも小さくすることが可能となった。
【0051】
請求項7によれば、光の照度または照射時間を変えることにより色濃度を変化させることが出来るので、容易に中間階調の制御をすることが可能となった。
【0052】
請求項8によれば、光源に蛍光管と光学フィルターを構成することで、光学フィルターの形成条件、または光学フィルターの交換設置等により、容易に照射波長の調整が可能となった。
【0053】
請求項9、10によれば、光源にレーザー又は発光ダイオードを施すことでフィルター等の光吸収部材が不必要になり、光の利用効率が高くなることにより書き込みエネルギーの低減、書き込み時間の短縮が可能となると同時に小型で高出力の光源を用いた可逆画像表示方法により高解像度、高速書き込み並びに画像形成装置の小型化などが可能となった。
【0054】
請求項11によれば、フォトクロミック化合物を選択的に発色させる光源とは別に、光源に白色光を設けて可逆画像表示媒体全面に白色光を照射する工程を施すことにより、短時間で表示された画像を全部消去することが可能となった。
【図面の簡単な説明】
【図1】本発明の1実施の形態における可逆画像表示媒体の層構成を示す断面図である。
【図2】本発明の1実施の形態における可逆画像表示媒体を構成する3種類フォトクロミック化合物を画像形成のため3回の光照射工程により消色状態から発色状態に遷移した状況を示す吸収スペクトルである。
【符号の説明】
1 支持基板
2 フォトクロミック化合物Aを含んだ感光層
3 遮光層D
4 フォトクロミック化合物Bを含んだ感光層
5 遮光層E
6 フォトクロミック化合物Cを含んだ感光層
7 第一の光照射工程I
8 第二の光照射工程II
9 第三の光照射工程III
10 λ1の閾値波長を持つフォトクロミック化合物A
11 λ2の閾値波長を持つフォトクロミック化合物B
12 λ3の閾値波長を持つフォトクロミック化合物C
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reversible image display medium capable of repeating writing and erasing of color image information by light irradiation, and an image forming method using the image display medium.
[0002]
[Prior art]
With the increase in paper consumption in offices, research on a reversible image display medium capable of repeatedly recording and erasing images has been attracting attention as a medium replacing paper. Among them, some proposals have been made on a color reversible image display medium capable of rewriting a multicolor image.
[0003]
For example, JP-A No. 11-24027 relates to a color image forming method using a cholesteric liquid crystal compound, and the cholesteric liquid crystal compound exhibits a selective reflection color caused by a helical molecular arrangement, so that various cholesteric liquid crystal compounds vary depending on a heating temperature. An image forming method by displaying colors has been proposed.
[0004]
Japanese Patent Application Laid-Open No. Hei 5-271649 relates to a color reversible image display medium using a photochromic compound which causes a reversible color change upon irradiation with light, and has three types of photochromic properties that emit yellow-orange, red and blue-violet colors. A method of displaying a color image by mixing a diarylethene compound and irradiating ultraviolet light has been proposed.
[0005]
Furthermore, Japanese Patent Application Laid-Open No. Hei 7-199401 proposes a color reversible image display medium using three types of photochromic fulgide compounds that emit yellow, magenta, and cyan.
[0006]
[Problems to be solved by the invention]
By the way, the method using a photochromic compound that displays a color by absorbing light proposed in JP-A-5-271649 and JP-A-7-199401 is disclosed in JP-A-11-24027. And has excellent characteristics in image display characteristics such as a high white reflectance and a high display color density, as compared with a system using a cholesteric liquid crystal compound which displays colors by selective reflection.
[0007]
However, the threshold wavelength at which light absorption occurs in the wavelength region where the photochromic compound changes from the decolored state to the colored state, ie, the light absorption in the decolored state of the photochromic compound, differs depending on the photochromic compound, and more than the threshold wavelength. In most cases, light of a short wavelength is colored by irradiation with light of any wavelength. Therefore, the image display system disclosed in JP-A-5-271649, which utilizes the fact that three types of photochromic compounds are independently colored only by ultraviolet light in a specific ultraviolet wavelength region, is not satisfactory.
[0008]
On the other hand, the image display system proposed in Japanese Patent Application Laid-Open No. 7-199401, in which all colors are developed with one kind of ultraviolet light and then selectively erased with visible light, is used in offices, for example, when used as a substitute for paper. Most of the documents created are written in black letters on a white background, and the average manuscript ratio (the ratio of the character area to the entire surface of the paper) is 10% or less. It will be decolored by irradiating light rays. Therefore, there is much waste of light irradiation energy for displaying an image.
[0009]
As a method of avoiding the waste of the energy described above, only pixels for displaying an image are selectively colored with ultraviolet rays instead of full-color coloring with ultraviolet rays, and thereafter, the color is erased for each pixel according to the color density of the pixels. A method of sequentially irradiating visible light with light in a sensitivity wavelength region for each photochromic compound is conceivable.
[0010]
However, even in this method, when the background of the image is set to a specific color and characters are displayed thereon, the entire area of the image display medium is colored, and then visible light other than the background color is applied to almost all areas. There is a drawback that light irradiation energy is wasted because it is necessary to erase the color.
[0011]
Therefore, the present invention has been made to solve the above-described problems, and is capable of displaying a color image, and a color reversible image display medium with low light irradiation energy for displaying an image, and a reversible image using a new light irradiation method. An object is to provide a forming method.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 provides a reversible image display in which a photosensitive layer individually containing three types of photochromic compounds having different coloring hues is laminated on a supporting substrate to perform multicolor display. In the medium, the three types of photochromic compounds in the decolored state have different threshold wavelengths for transitioning to the color-developed state, respectively, and are located between the laminated lowermost photosensitive layer and the photosensitive layer located thereon, and the uppermost photosensitive layer. The most main feature of the present invention is that a light-shielding layer for shielding light for coloring a photochromic compound is provided between the photosensitive layer and the photosensitive layer located thereunder.
[0013]
According to a second aspect of the present invention, the threshold wavelength of the photochromic compound having the longest threshold wavelength of the light that transitions to the colored state by light absorption in the decolored state is λ1, and then the light transitions to the colored state in the decolored state by light absorption. When the threshold wavelength of the photochromic compound having a long threshold wavelength for light is λ2, and the threshold wavelength of the shortest photochromic compound for transitioning to a colored state by light absorption in the decolored state is λ3, the reversible image display medium The lowermost photosensitive layer is a photochromic compound A having a threshold wavelength of λ1, the upper photosensitive layer is a photochromic compound B having a threshold wavelength of λ2, and the uppermost photosensitive layer has a threshold wavelength of λ3. The main feature is that it is a photochromic compound C.
[0014]
The light-shielding layer provided between the lowermost photosensitive layer and the photosensitive layer located above the lowermost photosensitive layer may have at least some wavelengths within a wavelength range shorter than λ1 and longer than λ2. And has a characteristic of blocking light of at least a part of the wavelength within a wavelength range shorter than λ2 and longer than λ3, and is provided between the uppermost photosensitive layer and the photosensitive layer located thereunder. The light-shielding layer provided has a characteristic of transmitting light of at least some wavelengths in a wavelength region shorter than λ1 and longer than λ3 and shielding light of at least some wavelengths in a wavelength region shorter than λ3. Characteristic.
[0015]
In the invention according to claim 4, the three types of photochromic compounds having different color hues are a photochromic compound A having a maximum absorption wavelength in a color development state of 600 nm or more and less than 700 nm, and a maximum absorption wavelength in a color development state of 500 nm or more. The main feature is that the photochromic compound B is in a range of less than 600 nm, and the photochromic compound С has a maximum absorption wavelength in a color-developed state of 400 nm or more and less than 500 nm.
[0016]
According to a fifth aspect of the present invention, in the colorless reversible image display medium, a photochromic compound having a threshold value of λ1 is irradiated with a light beam having a wavelength shorter than λ1 and longer than λ2 with an amount of light corresponding to a desired density after color development. Step I of irradiating each pixel of the reversible image display medium with a photochromic compound having a threshold value of λ2 by applying a light having a wavelength corresponding to a concentration after desired color development and having a wavelength shorter than λ2 and longer than λ3 to a pixel of the reversible image display medium. Image forming step of irradiating each pixel of the reversible image display medium with a step II of irradiating a photochromic compound having a threshold value of λ3 with a light amount corresponding to a desired density after color development and a wavelength shorter than λ3 for each pixel of the reversible image display medium Method is the main feature.
[0017]
According to a sixth aspect of the present invention, there is provided any one of the first to third aspects as a step of irradiating each pixel instead of performing the three steps I, II, and III of irradiating each pixel according to the fifth aspect. A step of irradiating each pixel of the reversible image display medium with light having a wavelength shorter than λ3 that passes through the two light-shielding layers of the reversible image display medium to simultaneously develop the three photosensitive layers. This is the main feature.
[0018]
The invention according to claims 7, 8, 9 and 10 mainly uses a fluorescent tube, a configuration of a fluorescent tube and an optical filter, a laser, a light emitting diode, or the like as a light source for irradiating light to a photosensitive layer containing a photochromic compound. It is a feature.
[0019]
According to an eleventh aspect of the present invention, as a pre-process of performing the step I of irradiating each pixel of the reversible image display medium according to the fifth or sixth aspect, white light is irradiated on the entire surface of the reversible image display medium. The main feature of the present invention is to provide a step of bringing the photosensitive layer containing the photochromic compound into a decolored state.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a layer constituting a reversible image display medium according to the present invention. A photosensitive layer 2 containing a photochromic compound A for holding a photosensitive layer is formed on a support substrate 1, and an upper portion of the photosensitive layer 2 is irradiated with light as described later. The light-shielding layer 3 for shielding the light having the wavelength of the step II is formed. Further, a photosensitive layer 4 containing the photochromic compound B is formed thereon, and a light-shielding layer 5 for shielding light having a wavelength of the irradiation step III to be described later is formed thereon. Further, a photosensitive layer 6 containing the photochromic compound C is formed thereon.
[0021]
A process of forming an image by selectively coloring the reversible image display medium having the above configuration will be described with reference to FIG. First, a step I of irradiating each pixel of the reversible image display medium with a light beam having a light amount corresponding to the concentration after the final color development of the photochromic compound A and having a wavelength shorter than λ1 and longer than λ2 is performed. The step I gives the photochromic compound A a desired coloring density. The photochromic compounds B and C do not develop color with respect to the light having the wavelength used in the step I because they do not have color development sensitivity.
[0022]
Next, a step II of irradiating each pixel of the image display medium with a light beam having a light amount corresponding to the density after the final color development of the photochromic compound B, shorter than λ2 and longer than λ3, and having a wavelength absorbed by the light shielding layer 3. I do. Step II provides the photochromic compound B with a desired color density. The photochromic compound C does not develop color with respect to the light having the wavelength used in the step II because it does not have color sensitivity. Further, the photochromic compound A does not develop color because the light in the step II is shielded by the light shielding layer 3.
[0023]
Finally, a step III of irradiating each pixel of the image display medium with a light beam having a light amount corresponding to the density of the photochromic compound C after the final coloring and shorter than λ3 and having a wavelength absorbed by the light shielding layer 5 is performed. Step III provides the photochromic compound C with a desired color density. The photochromic compounds A and B do not develop color because the light of step III is blocked by the light blocking layer 5.
[0024]
With the configuration of the photochromic compound having the above characteristics and the three steps of irradiating light for coloring the photochromic compound, photochromic compounds having three different hues can be selectively colored, and further image formation can be achieved. Since there is no need for the decoloring process at the time of performing, image formation without waste of light irradiation energy can be realized.
[0025]
For example, when forming an image of a black character document against a light blue background, in the present invention, in the three irradiation steps I, II, and III, only the pixels forming the characters are irradiated with strong ultraviolet rays. In the step I of irradiating a portion with a light blue background, a weak region is irradiated with weak light to irradiate the photochromic compound A with a light cyan concentration in the step I of irradiating, and in the step II of irradiating, weak light is irradiated to the region of the background. The photochromic compound B is colored at a light magenta density, thereby forming a light blue background image.
[0026]
On the other hand, when the method proposed in JP-A-7-199401 is used, first, the entire surface of the reversible image display medium is colored black. Thereafter, the photochromic compound C is decolored by irradiating light in a wavelength range of 400 nm or more and less than 500 nm to form an image of a blue background portion. However, since the background color is dark blue in this state, light of a wavelength range of 500 nm or more and less than 600 nm and light of a wavelength range of 600 nm or more and less than 700 nm are irradiated at an appropriate light intensity in order to make the background color light blue. The coloring density of the photochromic compound A and the photochromic compound B is reduced. Assuming that the original rate of black characters is 10% and the erasing sensitivity and the coloring sensitivity are equal, the energy required for image formation is 20 times or more as compared with the light irradiation method of the present invention.
[0027]
Also, as a method of avoiding the waste of light irradiation energy described above, only pixels for displaying an image are selectively colored with ultraviolet rays instead of full-color coloring with ultraviolet rays, and thereafter, each pixel is erased according to the color density of the pixels. In the method of sequentially irradiating the visible light with light in the sensitivity wavelength range of each photochromic compound, in order to obtain a light blue background, the background is colored light gray by weakly developing the photochromic compounds A, B and C together. After that, the photochromic compound C is decolorized by irradiating light in a wavelength range of 400 nm or more and less than 500 nm. Therefore, the light irradiation energy required for image formation is increased as compared with the present invention.
[0028]
In the above description, an example is given in which the steps from the step I of irradiating light to the step III of irradiating light are sequentially performed, but the steps I to III of irradiating light interchange the order of the steps of irradiating light. May be. In addition, many documents used in offices include only black and white characters or many black and white characters. In the case of such a document, the three light-sensitive layers were simultaneously colored in a single light irradiation step, rather than in the above-described three light irradiation steps I to III, which were sequentially superimposed to perform black light emission. In this case, the number of steps of irradiating light is small, and there is no fear of color shift of three colors. Therefore, by irradiating a light beam having a wavelength shorter than λ3 to the reversible image display medium for each pixel by transmitting light through the two light-shielding layers as a step of irradiating light different from the steps I to III of irradiating light. A step of simultaneously coloring three photosensitive layers may be performed.
[0029]
Further, even if the wavelength spectra of the photochromic compounds A, B, and C that cause light absorption in the color-developed state are largely overlapped, it is not necessary to perform selective decoloring as in the prior art, so that the spectral width of the photochromic compound in the color-developed state The desired hue can be obtained even when the color cannot be erased selectively.
[0030]
Hereinafter, the present invention will be described in more detail. For a white display having a high reflectance, the surface of the supporting substrate is preferably white, but may be colored according to the application. Further, the support substrate is preferably a relatively thin medium such as paper or film, but is not limited to this.
[0031]
The photosensitive layer on the supporting substrate contains a photochromic compound which becomes a colored state by irradiation with ultraviolet light and becomes a decolored state by irradiation with visible light. The photochromic compound includes a P-type compound whose color development state is stable to heat and changes color only by light, and a T-type compound whose color formation state is unstable to heat and changes color not only by light but also heat. However, in the present invention, it is particularly desirable to use a P-type compound.
[0032]
Typical P-type compounds include fulgide-based compounds and diarylethene-based compounds. To record and reproduce a full-color image, a photochromic compound that develops three primary colors, yellow, magenta, and cyan, is required. . Examples of the yellow coloring compound include "2- [1- (3,5-dimethyl-4-isoxazolyl) ethylidene] -3-isopropylidene succinic anhydride" and "2- [1- (5-methyl-2)". -Phenyl-4-oxazolyl) ethylidene] -3-isopropylidene succinic anhydride "," 2- [1- (2-phenyl-5-methyl-4-oxazolyl) stearylidene] -3-isopropylidene succinic anhydride And the like. The compound has a maximum absorption wavelength in a color-developing state of about 430 nm to 460 nm.
[0033]
Examples of the magenta coloring compound include "2- [1- (2,5-dimethyl-1-phenylpyrazolyl) ethylidene] -3-isopropylidene succinic anhydride" and "2- [1- (3-methoxy- 5-methyl-1-phenyl-4-pyrazolyl) ethylidene] -3-isopropylidenesuccinic anhydride "," 2- [1- (2-methyl-5-styryl-3-thienyl) ethylidene] -3-isopropylidene Ridensuccinic anhydride "and the like. The maximum absorption wavelength of the compound in a color-developing state is about 550 nm to 560 nm.
[0034]
Examples of the cyan coloring compound include “2- [1- (1,2,5-trimethyl-3-pyrrolyl) ethylidene] -3-isopropylidene succinic anhydride” and “2- [2,6-dimethyl- 3,5-bis (P-dimethylaminostyryl) benzylidene] -3-isopropylidene succinic anhydride ". The maximum absorption wavelength of the compound in the color development state is about 640 nm.
[0035]
The photochromic compound contained in the photosensitive layer may be dispersed in an acrylic resin, a vinyl chloride resin, a polyester resin, a polyamide resin, a polyolefin resin or a urethane resin, or may be encapsulated in microcapsules.
[0036]
Examples of the light-shielding layer provided between the photosensitive layers and the substance contained in the light-shielding layer include 2- (5-methyl-2-hydroxyphenyl) benzotriazole and 2- (3,5-di-t-butyl-2-). (Hydroxyphenyl) benzotriazole, indole dyes and the like. Further, if necessary, an image display medium may be provided in which a thin layer of polyvinyl alcohol is provided on the uppermost photosensitive layer as a protective film for preventing deterioration of the photosensitive layer.
[0037]
【Example】
Next, the present invention will be described more specifically with reference to examples.
(Example 1)
1,2-bis (6- (4-N, N-diethylaminophenylazo) -2-methylbenzo [B] thiophen-3-yl) -3,3,4,4,5,5-hexa as photochromic compound A Fluorocyclopentene (hereinafter abbreviated as PC1), 1,2-dicyano-1,2-bis (2,4,5-trimethyl-3-thienyl) ethene (hereinafter abbreviated as PC2) as photochromic compound B, and 1 as photochromic compound C , 2-bis (5-ethoxy-2-methylthiazole) -3,3,4,4,5,5-hexafluorocyclopentene [hereinafter abbreviated as PC3] was used.
[0038]
The maximum absorption wavelengths of PC1 to PC3 in the colored state were 610 nm, 540 nm, and 475 nm, respectively. When the photochromic compound was irradiated with light having a peak wavelength of 450 nm and a half width of 20 nm in the decolored state of the photochromic compound, PC3 showed a color-forming reaction, but PC1 and PC2 hardly showed a color-forming reaction. Further, when the photochromic compound was irradiated with light having a peak wavelength of 400 nm and a half width of 20 nm in the decolored state of the photochromic compound, PC1 and PC2 showed a coloring reaction, but PC3 hardly showed a coloring reaction. When irradiated with a 365-nm bright line from a mercury lamp, all the photochromic compounds showed a coloring reaction.
[0039]
As a light-shielding substance contained in the light-shielding layer 3, BONASORB UA-3901 (hereinafter abbreviated as S1) manufactured by Orient Chemical Industries, and as a light-shielding substance contained in the light-shielding layer 5, 2- (5-methyl-2-hydroxyphenyl) benzotriazole [hereinafter S2] Abbreviation]. Three types of photochromic compounds, PC1, PC2, and PC3, were each dispersed in polystyrene at 10 wt% to form a photosensitive solution. The photosensitive solution was formed by laminating a photosensitive solution containing PC1, followed by PC2 and then PC3 on a white polyethylene terephthalate support substrate (thickness: 0.5 mm) sequentially by spin coating to form a laminated photosensitive layer. The thickness of the laminated photosensitive layer was about 60 μm. Further, a thin film of polyvinyl alcohol (2 μm) was applied as a protective film on the surface of the uppermost photosensitive layer to prepare a reversible image display medium.
[0040]
(Example 2)
With respect to the decolored state of the reversible image display medium created in Example 1, light (1 mW / cm) having a peak wavelength of 450 nm and a half value width of 20 nm extracted from a xenon lamp and an interference filter was used. 2 ) For 100 seconds, a deep cyan color was formed. This is presumed that PC1 has selectively developed color.
[0041]
(Example 3)
With respect to the decolored state of the reversible image display medium created in Example 1, light having a peak wavelength of 400 nm and a half-value width of 20 nm (1 mW / cm) extracted from a xenon lamp and an interference filter was used. 2 ) For 100 seconds, a deep magenta color developed. This is presumed that PC2 selectively developed color.
[0042]
(Example 4)
With respect to the decolored state of the reversible image display medium manufactured in Example 1, a bright line of 365 nm (10 mW / cm) of a mercury lamp was used. 2 ) For 10 seconds, a deep yellow color developed. This is presumed that the PC3 selectively developed color.
[0043]
(Example 5)
With respect to the decolored state of the reversible image display medium manufactured in Example 1, light having a peak wavelength of 450 nm and a half value width of 20 nm (1 mW / cm) extracted from a xenon lamp and an interference filter was used. 2 ) For 100 seconds, and then a light having a peak wavelength of 400 nm and a half width of 20 nm (1 mW / cm) extracted from a xenon lamp and an interference filter. 2 ) For 100 seconds, and finally a 365 nm bright line (10 mW / cm) of a mercury lamp. 2 ) Was irradiated for 10 seconds to develop a black color. This is presumed that all three types of photochromic compounds developed color.
[0044]
(Example 6)
When a reversible image display medium containing the three types of photochromic compounds developed in Examples 2 to 5 was irradiated with light (100,000 lux) of a wavelength of 480 nm or more from a xenon lamp for 100 seconds, the reversible image display medium of Examples 2 to 5 In all examples, reversible image display media in which the photochromic compound was in the decolored state were obtained.
[0045]
【The invention's effect】
As described above, according to the first aspect, in a reversible image display medium that performs multicolor display by laminating photosensitive layers individually containing three types of photochromic compounds having different color hues on a supporting substrate, The photochromic compounds in the decolored state have different threshold wavelengths for transitioning to the colored state, and are located between the lowermost photosensitive layer and the photosensitive layer located thereon and between the lowermost photosensitive layer and the uppermost photosensitive layer. By providing a light-shielding layer for shielding light for coloring the photochromic compound between the photosensitive layer and the photosensitive layer, three types of photochromic compounds can be selectively colored to reduce light irradiation energy required for image formation. became.
[0046]
According to the second aspect, the threshold wavelength of the photochromic compound having the longest threshold wavelength of the light that transitions to the colored state by light absorption in the decolored state is λ1, and the threshold wavelength of the light that transits to the colored state by light absorption in the decolored state When the threshold wavelength of a photochromic compound having a long threshold wavelength is λ2, and the threshold wavelength of a photochromic compound having a shortest threshold wavelength of light that transitions to a colored state by light absorption in a decolored state is λ3, the lowermost photosensitive layer is λ1. By using a photochromic compound having a threshold wavelength and a photosensitive layer positioned thereon as a photochromic compound having a threshold wavelength of λ2, it is possible to use a material that absorbs all light of a specific wavelength or less as a light shielding layer. Was.
[0047]
According to the third aspect, the light-shielding layer provided between the lowermost photosensitive layer and the photosensitive layer located thereover emits light of at least a part of the wavelength within the wavelength range shorter than λ1 and longer than λ2. A light-shielding layer provided between the uppermost photosensitive layer and the photosensitive layer located therebelow, having a characteristic of blocking light of at least a part of the wavelength within a wavelength range shorter than λ2 and longer than λ3; Are three types of layers having a characteristic of transmitting light of at least a part of wavelength in a wavelength region shorter than λ1 and longer than λ3 and blocking light of at least part of wavelength in a wavelength region shorter than λ3. It has become possible to selectively develop the color of the photochromic compound.
[0048]
According to claim 4, the three types of photochromic compounds are a photochromic compound having a maximum absorption wavelength in a colored state in a range of 600 nm or more and less than 700 nm, a photochromic compound having a maximum absorption wavelength in a colored state in a range of 500 nm or more and less than 600 nm, By selecting a photochromic compound having a maximum absorption wavelength in the color-developing state in the range of 400 nm or more and less than 500 nm, a full-color reversible image display medium has become possible.
[0049]
According to the fifth aspect, a step I of irradiating a photochromic compound having a threshold value of λ1 with light having a wavelength corresponding to a desired density after color development and having a wavelength shorter than λ1 and longer than λ2 for each pixel of the reversible image display medium. Irradiating each pixel of the reversible image display medium with a photochromic compound having a threshold value of λ2 and irradiating light of a wavelength shorter than λ2 and longer than λ3 to each pixel with an amount of light corresponding to the density after desired color development. By performing the step III of irradiating each pixel of the reversible image display medium with the photochromic compound by irradiating each pixel of the reversible image display medium with light of a wavelength shorter than λ3 at a light amount corresponding to a desired density after color development, color is obtained. Light irradiation energy required for image formation can be reduced.
[0050]
According to claim 6, instead of the irradiation method of performing the steps I to III in the irradiation step according to claim 5, light having a wavelength shorter than λ3 is transmitted through the two light-shielding layers for each pixel of the reversible image display medium. Irradiating the three photosensitive layers at the same time, thereby reducing the number of steps in the case of a document having only black and white characters or a document having many black and white characters, and also reducing the color shift of three colors. It became possible.
[0051]
According to the seventh aspect, since the color density can be changed by changing the illuminance or irradiation time of light, it is possible to easily control the intermediate gradation.
[0052]
According to the eighth aspect, by configuring the light source with a fluorescent tube and an optical filter, it is possible to easily adjust the irradiation wavelength by forming conditions of the optical filter, replacing and installing the optical filter, and the like.
[0053]
According to the ninth and tenth aspects, by applying a laser or a light emitting diode to the light source, a light absorbing member such as a filter becomes unnecessary, and the light use efficiency is increased, thereby reducing the writing energy and the writing time. At the same time, a reversible image display method using a small, high-output light source has enabled high resolution, high-speed writing, and downsizing of the image forming apparatus.
[0054]
According to the eleventh aspect, separately from the light source for selectively coloring the photochromic compound, the white light is provided to the light source and the entire surface of the reversible image display medium is irradiated with the white light, so that the display is performed in a short time. It is now possible to delete all images.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a layer configuration of a reversible image display medium according to an embodiment of the present invention.
FIG. 2 is an absorption spectrum showing a state in which three types of photochromic compounds constituting a reversible image display medium according to one embodiment of the present invention have transitioned from a decolored state to a colored state by three light irradiation steps for image formation. is there.
[Explanation of symbols]
1 Support substrate
2 Photosensitive layer containing photochromic compound A
3 Shading layer D
4 Photosensitive layer containing photochromic compound B
5 Shading layer E
6. Photosensitive layer containing photochromic compound C
7 First light irradiation step I
8 Second light irradiation step II
9 Third light irradiation step III
Photochromic compound A having a threshold wavelength of 10 λ1
Photochromic compound B having a threshold wavelength of 11 λ2
Photochromic compound C having a threshold wavelength of 12 λ3

Claims (11)

支持基板上に少なくとも発色の色相が異なる3種類のフォトクロミック化合物を個別に含んだ感光層を積層し多色表示を行う可逆画像表示媒体において、該3種類の消色状態のフォトクロミック化合物は発色状態に遷移する閾値波長がそれぞれ異なり、かつ積層された最下部の感光層とその上に位置する感光層との間、及び最上部の感光層とその下に位置する感光層との間にフォトクロミック化合物を発色させるための光を遮光する遮光層が設けられていることを特徴とする可逆画像表示媒体。In a reversible image display medium that performs multicolor display by laminating photosensitive layers individually containing at least three types of photochromic compounds having different color hues on a support substrate, the three types of photochromic compounds in a decolored state are in a colored state. The transition threshold wavelengths are different, respectively, and the photochromic compound is formed between the laminated lowermost photosensitive layer and the photosensitive layer located thereon, and between the uppermost photosensitive layer and the photosensitive layer located thereunder. A reversible image display medium, comprising a light-blocking layer that blocks light for coloring. 前記フォトクロミック化合物を含んだ感光層の消色状態において光吸収により発色状態に遷移する光の閾値波長が最も長いフォトクロミック化合物の閾値波長をλ1、次に消色状態において光吸収により発色状態に遷移する光の閾値波長が長いフォトクロミック化合物の閾値波長をλ2、消色状態において光吸収により発色状態に遷移する光の閾値波長が最も短いフォトクロミック化合物の閾値波長をλ3としたとき、最下部の感光層はλ1の閾値波長を持つフォトクロミック化合物含んだ感光層であり、その上に位置する感光層はλ2の閾値波長を持つフォトクロミック化合物を含んだ感光層であり、最上部の感光層はλ3の閾値波長を持つフォトクロミック化合物を含んだ感光層であることを特徴とする請求項1に記載の可逆画像表示媒体。In the decolored state of the photosensitive layer containing the photochromic compound, the threshold wavelength of the light that transitions to the colored state by light absorption in the decolored state is λ1, and the threshold wavelength of the photochromic compound is the longest. When the threshold wavelength of a photochromic compound having a long threshold wavelength of light is λ2, and the threshold wavelength of a photochromic compound having a shortest threshold wavelength of light that transits to a colored state by light absorption in a decolored state is λ3, the lowermost photosensitive layer is A photosensitive layer containing a photochromic compound having a threshold wavelength of λ1, a photosensitive layer located thereon is a photosensitive layer containing a photochromic compound having a threshold wavelength of λ2, and the uppermost photosensitive layer has a threshold wavelength of λ3. The reversible image display medium according to claim 1, wherein the medium is a photosensitive layer containing a photochromic compound. 前記の最下部の感光層とその上に位置する感光層との間に設けられた遮光層はλ1よりも短くλ2よりも長い波長領域内の少なくとも一部の波長の光を透過しλ2よりも短くλ3よりも長い波長領域内の少なくとも一部の波長の光を遮光する特性を有し、最上部の感光層とその下に位置する感光層との間に設けられた遮光層はλ1よりも短くλ3よりも長い波長領域内の少なくとも一部の波長の光を透過しλ3よりも短い波長領域の少なくとも一部の波長の光を遮光する特性を有することを特徴とする請求項1又は2に記載の可逆画像表示媒体。The light-shielding layer provided between the lowermost photosensitive layer and the photosensitive layer located thereon transmits light of at least some wavelengths in a wavelength region shorter than λ1 and longer than λ2 and transmits light of a wavelength shorter than λ2. The light-shielding layer provided between the uppermost photosensitive layer and the photosensitive layer located thereunder has a characteristic of blocking light of at least a part of the wavelength within a wavelength region shorter than λ3. 3. The light-emitting device according to claim 1, wherein the light-transmitting light has a characteristic of transmitting light of at least a part of the wavelength in a wavelength region shorter than λ3 and blocking light of at least a part of the wavelength in a wavelength region shorter than λ3. The reversible image display medium according to the above. 前記発色相が異なる3種類のフォトクロミック化合物は、それぞれの発色状態に置ける極大吸収波長が600nm以上700nm未満の範囲にあるフォトクロミック化合物A、発色状態における極大吸収波長が500nm以上600nm未満の範囲にあるフォトクロミック化合物B、発色状態における極大吸収波長が400nm以上500nm未満の範囲にあるフォトクロミック化合物Cであることを特徴とする請求項1〜3のいずれかに記載の可逆画像表示媒体。The three types of photochromic compounds having different color hues are a photochromic compound A having a maximum absorption wavelength in a color development state of 600 nm or more and less than 700 nm, and a photochromic compound having a maximum absorption wavelength in a color development state of 500 nm or more and less than 600 nm. The reversible image display medium according to any one of claims 1 to 3, wherein the compound B is a photochromic compound C having a maximum absorption wavelength in a colored state of 400 nm or more and less than 500 nm. 消色状態の可逆画像表示媒体において、λ1の閾値を持つフォトクロミック化合物を所望の発色後の濃度に応じた光量でλ1よりも短くλ2よりも長い波長の光線を可逆画像表示媒体の画素毎に照射する工程I、λ2の閾値を持つフォトクロミック化合物を所望の発色後の濃度に応じた光量でλ2よりも短くλ3よりも長い波長の光線を可逆画像表示媒体の画素毎に照射する工程II、λ3の閾値を持つフォトクロミック化合物を所望の発色後の濃度に応じた光量でλ3よりも短い波長の光線を可逆画像表示媒体の画素毎に照射する工程IIIを施すことを特徴とする請求項1〜4のいずれかに記載の可逆画像表示媒体を用いた画像形成方法。In a reversible image display medium in a decolored state, a photochromic compound having a threshold of λ1 is irradiated with a light beam having a wavelength corresponding to a desired density after color development and having a wavelength shorter than λ1 and longer than λ2 for each pixel of the reversible image display medium. Irradiating a photochromic compound having a threshold value of λ2 with light having a wavelength corresponding to a concentration after desired color development and having a wavelength shorter than λ2 and longer than λ3 for each pixel of the reversible image display medium. 5. The method according to claim 1, wherein a step III of irradiating a photochromic compound having a threshold value with a light beam having a wavelength corresponding to a desired color density and a wavelength shorter than λ3 to each pixel of the reversible image display medium is performed. An image forming method using the reversible image display medium according to any one of the above. 請求項5に記載の画素毎に照射する3つの工程I、II、IIIを施す工程に代えて、画素毎に照射する工程として、請求項1〜3のいずれかに記載の可逆画像表示媒体の2つの遮光層を透過するλ3よりも短い波長の光を可逆画像表示媒体の画素毎に照射する1つの工程により前記3つの感光層を同時に発色させる工程を施すことを特徴とする画像形成方法。The reversible image display medium according to any one of claims 1 to 3, wherein the step of irradiating each pixel is performed instead of the step of performing the three steps I, II, and III of irradiating each pixel according to claim 5. An image forming method, wherein a step of irradiating each pixel of a reversible image display medium with light having a wavelength shorter than λ3 transmitted through two light-shielding layers to simultaneously develop the three photosensitive layers is performed. フォトクロミック化合物を含む感光層に光を照射する光源に蛍光管が含まれることを特徴とする請求項5又は6に記載の画像形成方法。The image forming method according to claim 5, wherein the light source that irradiates the photosensitive layer containing the photochromic compound with light includes a fluorescent tube. フォトクロミック化合物を含む感光層に光を照射する光源に蛍光管と光学フィルターから構成される光学要素が含まれていることを特徴とする請求項5又は6に記載の画像形成方法。The image forming method according to claim 5, wherein the light source that irradiates the photosensitive layer containing the photochromic compound with light includes an optical element including a fluorescent tube and an optical filter. フォトクロミック化合物を含む感光層に光を照射する光源にレーザーが含まれることを特徴とする請求項5又は6に記載の画像形成方法。7. The image forming method according to claim 5, wherein a laser is included as a light source for irradiating the photosensitive layer containing the photochromic compound with light. フォトクロミック化合物を含む感光層に光を照射する光源に発光ダイオードが含まれることを特徴とする請求項5又は6に記載の画像形成方法。7. The image forming method according to claim 5, wherein the light source for irradiating the photosensitive layer containing the photochromic compound with light includes a light emitting diode. 可逆画像表示媒体の画素毎に照射する工程Iを施す前工程として白色光を可逆画像表示媒体全面に照射することによりフォトクロミック化合物を含む感光層全てを消色状態にする工程を施すことを特徴とする請求項5又は6に記載の画像形成方法。A step of irradiating white light to the entire surface of the reversible image display medium to bring all the photosensitive layers containing the photochromic compound into a decolored state is performed as a pre-process before applying the step I of irradiating each pixel of the reversible image display medium. The image forming method according to claim 5 or 6, wherein:
JP2002171415A 2002-06-12 2002-06-12 Reversible image display medium and image forming method using the image display medium Expired - Fee Related JP4148398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171415A JP4148398B2 (en) 2002-06-12 2002-06-12 Reversible image display medium and image forming method using the image display medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171415A JP4148398B2 (en) 2002-06-12 2002-06-12 Reversible image display medium and image forming method using the image display medium

Publications (2)

Publication Number Publication Date
JP2004020596A true JP2004020596A (en) 2004-01-22
JP4148398B2 JP4148398B2 (en) 2008-09-10

Family

ID=31171286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171415A Expired - Fee Related JP4148398B2 (en) 2002-06-12 2002-06-12 Reversible image display medium and image forming method using the image display medium

Country Status (1)

Country Link
JP (1) JP4148398B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096097A1 (en) * 2004-03-31 2005-10-13 Jsr Corporation Display medium and displaying method
JP2005319761A (en) * 2004-05-11 2005-11-17 Ricoh Co Ltd Three-dimensional molding displaying reversible image, its manufacturing method and imaging method
JP2008176039A (en) * 2007-01-18 2008-07-31 Ricoh Co Ltd Image display medium, image forming method and device
US20130095435A1 (en) * 2010-06-30 2013-04-18 3M Innovative Properties Company Multi-layer articles capable of forming color images and methods of forming color images
US20130095434A1 (en) * 2010-06-30 2013-04-18 3M Innovative Properties Company Multi-layer articles capable of forming color images and method of forming color images
US11453231B2 (en) 2018-06-20 2022-09-27 Kabushiki Kaisha Toshiba Recording medium and recording device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096097A1 (en) * 2004-03-31 2005-10-13 Jsr Corporation Display medium and displaying method
JP2005319761A (en) * 2004-05-11 2005-11-17 Ricoh Co Ltd Three-dimensional molding displaying reversible image, its manufacturing method and imaging method
JP2008176039A (en) * 2007-01-18 2008-07-31 Ricoh Co Ltd Image display medium, image forming method and device
US20130095435A1 (en) * 2010-06-30 2013-04-18 3M Innovative Properties Company Multi-layer articles capable of forming color images and methods of forming color images
US20130095434A1 (en) * 2010-06-30 2013-04-18 3M Innovative Properties Company Multi-layer articles capable of forming color images and method of forming color images
US8975011B2 (en) * 2010-06-30 2015-03-10 3M Innovative Properties Company Multi-layer articles capable of forming color images and method of forming color images
US8975012B2 (en) * 2010-06-30 2015-03-10 3M Innovative Properties Company Multi-layer articles capable of forming color images and methods of forming color images
US11453231B2 (en) 2018-06-20 2022-09-27 Kabushiki Kaisha Toshiba Recording medium and recording device

Also Published As

Publication number Publication date
JP4148398B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4014389B2 (en) Reversible image display medium, method and apparatus
JP4148398B2 (en) Reversible image display medium and image forming method using the image display medium
JP4146661B2 (en) Reversible image display medium and image forming method
JP4132939B2 (en) Multicolor image forming apparatus and multicolor image forming method
JP4358612B2 (en) Reversible image display medium and image forming method using the image display medium
JP4230270B2 (en) Reversible full-color image forming method
JP4136628B2 (en) Reversible image display medium and image forming method
JP4023591B2 (en) Reversible image recording medium and recording method thereof
JP4127790B2 (en) Reversible image recording medium and recording method
JP2004326048A (en) Image display medium and image forming method
JP4368539B2 (en) Multicolor image display method and apparatus
JP3994022B2 (en) Reversible image recording medium and recording method thereof
JP2004348110A (en) Image display medium and image forming method
JP3893277B2 (en) Reversible image display medium, image display method, and image forming apparatus
JP2005031613A (en) Reversible image display medium and image forming method
JP3979568B2 (en) Multicolor image display method and apparatus
JP2007047191A (en) Reversible image display medium
JP4497886B2 (en) Information recording method, information recording medium and information recording apparatus for concealing confidential information
JP4012729B2 (en) Multicolor image display method and multicolor image display apparatus
JP2003170627A (en) Multicolor imaging apparatus
JP4420840B2 (en) Confidential information display medium
JP2009221385A (en) Photochromic composition, image display medium, image formation device, and image erasure device
JP2009221384A (en) Photochromic composition, image display medium and image-forming device as well as image-erasing device
JP4080312B2 (en) Reversible image display medium and manufacturing method thereof
JP2003222971A (en) Method for displaying multicolor image, and multicolor image display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050714

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees