JP2004020535A - Container for determining particle aggregation - Google Patents

Container for determining particle aggregation Download PDF

Info

Publication number
JP2004020535A
JP2004020535A JP2002180135A JP2002180135A JP2004020535A JP 2004020535 A JP2004020535 A JP 2004020535A JP 2002180135 A JP2002180135 A JP 2002180135A JP 2002180135 A JP2002180135 A JP 2002180135A JP 2004020535 A JP2004020535 A JP 2004020535A
Authority
JP
Japan
Prior art keywords
container
particle aggregation
reaction
separation layer
fluid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002180135A
Other languages
Japanese (ja)
Other versions
JP4090797B2 (en
Inventor
Toyohiro Tamai
玉井 豊廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002180135A priority Critical patent/JP4090797B2/en
Publication of JP2004020535A publication Critical patent/JP2004020535A/en
Application granted granted Critical
Publication of JP4090797B2 publication Critical patent/JP4090797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a container for determining particle aggregation allowing easy and accurate determination of a pattern of an aggregate based on immunological reaction, from a vertical direction and allowing mass specimen treatment by an automatic analyzer. <P>SOLUTION: This container for determining particle aggregation that makes an immunological analysis based on the aggregate produced by aggregation reaction including reaction of particle for aggregation and a specimen including an antibody or an antigen, has a transparent container body formed with a specimen storage part so that at least a part of a bottom face forms a slant face; a spacer arranged in the specimen storage part so as to form a clearance to the bottom face of the specimen storage part; and a flowable separation layer formed in the layer clearance and including insoluble particles for separating the aggregate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、生物学的分析に用いる容器に関するものであり、抗原抗体結合等による凝集反応、特に赤血球を用いた凝集反応により、被検物質を定性的あるいは定量的に判定するための粒子凝集判定用容器に関する。
【0002】
【従来の技術】
従来、抗原または抗体の有無を判定する方法として、抗原または抗体を結合させたラテックスや抗原が既に存在する赤血球に抗体または抗原を一定時間反応させ、ラテックスまたは赤血球の凝集パターンにより判定する受身凝集法が知られている。
【0003】
上述の凝集パターンにより判定する受身凝集法の判定は、古くから試験管を反応容器として用いていた。この方法は、試験管内で赤血球とそれに反応する抗体を混合し、形成された赤血球−抗体の凝集物を自然沈降或いは遠心により一度沈殿させた後、試験管を振り揺らすことにより沈殿物をほぐして判定する方法である。この方法によれば、沈殿物がほぐれなければ陽性、ほぐれれば陰性であることを示す。しかしながら、実際にはこれらの中間の反応(弱陽性)も存在するが、この方法では肉眼で検出するのは困難である。また、試験管を使用する場合は試験管数が増大し、多数の検体を扱う場合には最適な方法とはいえない。
【0004】
そこで、大量検査を行う場合は、たとえばV底やU底のウェルを多数備えたマイクロプレートに代表される反応容器を用いる。この方法においては、上述した方法と同様に、各ウェル内で赤血球とそれに反応する抗体を混合し、形成された赤血球−抗体の凝集物を自然沈降により沈殿させる。このとき、赤血球−抗体の凝集が生じていれば、反応容器の底面に凝集物が捕捉され、赤血球が底面に広がったようなパターンが得られる(陽性)。一方、凝集が生じなければ赤血球は反応容器の底面の最下部に集まる(陰性)。また、この中間の反応(弱陽性)も検出できる。この方法では反応容器であるマイクロプレートの底面における凝集物の捕捉を、マイクロプレートの上或いは下より目視、或いは光学的に検出することができるので大量検体処理に適している。マイクロプレート底面における凝集物の捕捉は、底面の状態に大きく左右される。凝集物は底面に安定に付着しなければならないが、何も加工を施していない平滑な底面では弱い凝集はすぐに滑り落ちてしまい、偽陰性となってしまう。そこで、特公昭61−44268号、および特公昭63−60854号に述べられているように反応容器の底面に凹凸を作ったり、底面を粗面にしたりすることで、凝集物の捕捉をある程度は向上できる。しかしながら、ウェル底面のみによる凝集物の捕捉には限度がある。また、この方法では血球を自然沈降させるため、時間がかかる。
【0005】
近年、これらの凝集物を更に効率よく捕捉する容器が考案されており、これを使用した受身凝集法を一般にマイクロカラム凝集法と呼んでいる。
【0006】
Y.Lapierreらは特公平8−7215号において、カード上に配置した細長いマイクロ反応容器に、10〜200μmのポリマー粒子やガラス粒子に代表される不溶性粒子を充填し、遠心によって効率よく赤血球の凝集物と非凝集物を区別できる反応容器を考案している。また、EP725276ではガラスビーズを用いた同様な反応容器が考案されている。いずれの方法も不溶性粒子が充填された細長いマイクロ反応容器が板状のプラスチック板に複数個埋め込まれたようになっており、マイクロ反応容器を垂直方向に立てた状態で使用する。通常、不溶性粒子は抗A抗体や抗B抗体或いは抗ヒトグロブリン血清といった赤血球と反応する試薬(抗血清)に分散されている。不溶性粒子に抗体や抗原等の免疫学的反応をする物質を結合させて、赤血球をこれらの活性化された不溶性粒子に捕捉する方法もWO9531731に述べられている。
【0007】
分析に際しては、垂直に立てたマイクロ反応容器の上部開口から液体サンプルを注入するが、開口部はロート状になっていて反応槽として使用する。ここで、反応槽と不溶性粒子層とは、液体サンプルと不溶性粒子層とが反応前に接しないように、空気で隔離されている。反応させた後に遠心を行い、比重の関係により血球(およびそれに結合した抗体)のみを不溶性粒子槽に移動させて凝集物を不溶性粒子で捕捉する。そして側面から不溶性粒子による凝集物の捕捉を目視、或いは光学的に検出する。凝集物が不溶性粒子の上にある場合は強陽性反応を示し、凝集物が不溶性粒子の中層に存在する場合は弱陽性反応を示し、凝集物が下にある場合は陰性を示す。
【0008】
ここで、不規則性抗体などの中には、赤血球上の抗原と反応しても凝集を起こさないものも存在する(不完全抗体)。このような抗体を検出する場合には、抗原抗体反応をさせた後に、2次抗体として抗グロブリン抗体(クームス血清)を添加することにより抗体を架橋し、赤血球の凝集を生じさせる(間接抗グロブリン試験(IAT))。しかしながら通常、血漿等の検体中には試薬である赤血球に結合する抗体以外にも複数種の抗体が含まれるため、2次抗体が他の抗体にも結合してしまう。これを防ぐためには、赤血球上の抗原に目的の抗体を結合させた後に、遠心、洗浄操作を繰り返し、赤血球を洗浄して余分な抗体を除去する(B/F分離)必要がある。このような複雑な操作を機械によって自動化することは難しい。しかしながら、マイクロカラム凝集法においては、不溶性粒子層に抗グロブリン抗体を含有させておき、隔離された反応槽で赤血球−抗体の反応を行った後、遠心分離を行う。すると、比重の影響により血球(およびそれに結合した抗体)のみが不溶性粒子層に移動し、そこで抗グロブリン抗体と反応し、凝集を形成する。したがって、この方法によれば、赤血球の洗浄(B/F分離)を行うことなくIATを実施できる。
【0009】
上述したような細長いマイクロ反応容器では、遠心分離法を用いることにより短時間で反応を終了させることができ、また陽性および陰性で凝集パターンの違いが明確であるため、判定が容易にできる。しかしながら、凝集パターンの展開が垂直方向であるということと、不溶性粒子層が不透明であるために上下方向から判定することは出来ず、横面から観察する必要がある。したがって何枚ものカードの凝集物を観察する際には、その都度カードを持ち上げて横面から判定しなければならず、このことは大量検体処理を自動分析機によって行わせる場合に、大きな障害となっている。また、このような問題の解決方法として、マイクロカラム凝集法を用いて大量検体処理を実施するために、底部の少なくとも一部が細くなっている容器に不溶性粒子を充填し、これをマイクロプレート状にしたものがドイツ特許第10061515号に開示されている。これによれば、陽性の場合は凝集物が平らに広がったパターンが得られ、陰性の場合は非凝集物が細くなった部分に集まったパターンが得られるため、上下方向からの観察が可能となる。しかしながら、不溶性粒子の中には不透明なものもあり、そのような場合、特に弱陽性の反応が起きた場合に、上下方向からの検出が正確にできなくなるという問題がある。
【0010】
【発明が解決しようとする課題】
従って本発明は、凝集パターンの判定が容易かつ正確にでき、また上下方向から観察可能であり、大量検体処理を自動分析機によって行うことが可能な粒子凝集判定用容器を提供しようとするものである。
【0011】
【課題を解決するための手段】
本発明の第1の態様における粒子凝集判定用容器は、抗体または抗原を含む検体と凝集用粒子との反応を含む凝集反応により生成する凝集物に基づいて免疫学的分析を行う粒子凝集判定用容器であって、底面の少なくとも一部が斜面をなすように検体収容部が形成された透明容器本体と、前記検体収容部の底面との間に層状の間隙を形成するように前記検体収容部内に配置されたスペーサーと、前記層状の間隙に形成された、凝集物を分離する不溶性粒子を含む流動性分離層とを具備したことを特徴とする。
【0012】
第1の態様の粒子凝集判定用容器においては、スペーサーの上部にスペーサーと一体化させた反応槽を設け、かつ反応槽の下部側面に小孔またはメッシュを設けることもできる。
【0013】
第1の態様の粒子凝集判定用容器においては、検体収容部の底面に形成された斜面の傾斜角度は、水平面から45°以上75°以下であることが好ましい。また、斜面の傾斜が深部に向かうほど増加していてもよい。さらに、斜面は粗面化されていてもよい。
【0014】
第1の態様の粒子凝集判定用容器においては、流動性分離層の厚さは、0.5〜2mmであることが好ましい。また、不溶性粒子は、粒径25〜200μmのガラスビーズまたは架橋ポリマーであることが好ましい。さらに、流動性分離層は、抗血清を含んでいてもよい。
【0015】
第1の態様の粒子凝集判定用容器においては、同一の透明容器本体に複数の検体収容部を形成することが好ましい。
【0016】
本発明の第2の態様における粒子凝集判定用容器は、抗体または抗原を含む検体と凝集用粒子との反応を含む凝集反応により生成する凝集物に基づいて免疫学的分析を行う粒子凝集判定用容器であって、互いに対向する内面どうしの間に層状の間隙を形成するようにそれぞれ傾斜して配置された底部透明板状部材および上部透明板状部材と、前記層状の間隙に形成された、凝集物を分離する不溶性粒子を含む流動性分離層とを具備したことを特徴とする。
【0017】
第2の態様の粒子凝集判定用容器においては、底部透明板状部材の内面の傾斜角度は、水平面から45°以上75°以下であることが好ましい。また、底部透明板状部材の内面は粗面化されていてもよい。
【0018】
第2の態様の粒子凝集判定用容器においても、流動性分離層の厚さは、0.5〜2mmであることが好ましい。また、不溶性粒子は、粒径25〜200μmのガラスビーズまたは架橋ポリマーであることが好ましい。さらに、流動性分離層は、抗血清を含んでいてもよい。
【0019】
【発明の実施の形態】
以下、本発明を図面を用いてより詳しく説明するが、本発明はこれらに限定されるものではない。
【0020】
図1は、本発明の第1の実施形態に係る粒子凝集判定用容器10の断面図である。透明容器本体たとえば透明樹脂からなるマイクロプレート11には、底面13の少なくとも一部が斜面をなすように検体収容部としてのウェル12が形成されている。ウェル12内には、ウェル底面13との間に層状の間隙を形成するように、ウェル底面13にほぼ平行に対向する下面を有するスペーサー14が配置されている(スペーサー14の支持部材は図示していない)。ウェル底面13とスペーサー14の下面との間の間隙には凝集物を分離する不溶性粒子を含む流動性分離層15が形成されている。流動性分離層15は、ウェル12の下方から凝集パターンの観察が容易にできるように、その上面がウェル底面13の斜面が始まる点とほぼ一致するように不溶性粒子の量を調整することが好ましい。
【0021】
スペーサー14は、容器に蓋を設けて蓋に固定する等して、スペーサー14とウェル底面13との間の間隔、すなわち流動性分離層15の厚さが調節される。流動性分離層15の厚さは0.5mm〜2mm程度が好ましい。スペーサー14上部のウェル12内部は反応槽として用いることができる。反応槽に収容された反応液と流動性分離層15とが接触することを防ぐため、スペーサー14は流動性分離層15の上方に張り出していることが好ましい。
【0022】
本発明において、流動性分離層15に使用される不溶性粒子は従来のマイクロカラム凝集法において通常使用されているものであれば良く、比重の大きい不溶性粒子が扱いやすいが、特に限定されるものではない。また、EP797097に記載される様な多孔物質を用いることもできる。好ましくはガラスビーズまたは架橋ポリマーを使用する。粒径は25〜200μmが好ましい。また、IATなどの試験項目によっては、不溶性粒子を抗血清中に浮遊させてもよい。
【0023】
図1のような構成のウェル12を同一マイクロプレート11に複数個形成することにより、多数の検体を同時に処理することができる。例えば、8×12のウェルを2次元的に配列したマイクロプレートが挙げられる。
【0024】
本発明の粒子凝集判定用容器の使用方法を次に示すが、これに限定するものではなく、多少の改変が可能である。また、ここでは受身凝集法について説明するが、本発明の容器の用途はこれに限定されるものではない。まず、抗原または抗体が結合したラテックスまたは赤血球などの凝集用粒子と、凝集用粒子上の抗原または抗体と結合する抗体または抗原を含む検体とを、図1に示すウェル12内のスペーサー14上部の空間(反応槽)で必要に応じて一定時間反応させるか、ウェル12の外部で一定時間反応させた後にウェル12に入れる。この反応液を遠心分離にかけると、反応液はウェル底面13とスペーサー14との間隙に入って流動性分離層15に接し、比重の関係により凝集用粒子(およびこれに結合した抗体または抗原)のみが流動性分離層15中に移動し、斜面をなすウェル底面13に沿って最下部へ向かって沈降する。強い凝集が起こった場合には、凝集物16が流動性分離層15内の上部に捕捉される(図2aおよび下から見た図3a)。比較的弱い凝集の場合には、凝集物16は流動性分離層15の中間部に捕捉される(図2bおよび下から見た図3b)。陰性の場合には、凝集用粒子は最下部に沈降する(図2cおよび下から見た図3c)。このように、ウェル12内にスペーサー14を設け、ウェル12底面の斜面に沿うように層状の流動性分離層15を設けることにより、不溶性粒子が不透明であっても、下側からの観察で容易に凝集物の捕捉を判定できる。
【0025】
図1においてはウェル12の底面13がV状の斜面をなし、その斜面の水平面からの傾斜角度が約65°である場合を示しているが、図4に示すように、底面13aの傾斜を深部に向かうほど増加するように連続的に変化させ、スペーサー14の下面を底面13aに対応させた形状としてもよい。
【0026】
通常市販されているマイクロプレートのウェルのV状底面は傾斜角度が約30°であるが、斜面2の傾斜が緩いと非凝集の粒子が底部に集まったときに薄く広がったようなパターンになってしまい、陰性の判断がしにくい。したがって図1に示す容器のウェル底面の斜面の傾斜角度は水平面から45°以上が好ましく、特に55°〜75°が好ましい。この場合、遠心条件は、斜面の角度と使用する不溶性粒子の種類にもよるが、70G〜300Gで5〜10分が好ましい。なお、陽性パターンを得るためには遠心Gは低い方が好ましいので、70G〜115Gで遠心することが最も好ましい。
【0027】
特公平8−7215やEP725276に述べられている細長いマイクロ反応容器では、壁面が垂直であるため凝集物の捕捉は100%粒子によっているが、本発明に係る容器では斜面をなす底面の傾斜角度が水平に近づくにつれ、凝集物の捕捉は底面の影響を受けるようになる。このため、図5に示すように、ウェル12の底面13bを粗面化してもよい。図5に示すウェル12の底面13bは例えば特公昭61−44268や特公昭63−60854に記載されるものと同様である。なお、図5ではスペーサーを省略している。ここでいう粗面とは、凝集物のみが捕捉される程度の凹凸を有する面である。したがって、図5に示したウェル底面13bのように規則的な凹凸を設けてもよいし、不規則な凹凸を有していても良い。
【0028】
また、図6に示すように、スペーサー14の上部にスペーサー14と一体化した反応槽を設けることもできる。この場合、各ウェル12に挿入される個々のスペーサー14は蓋状の保持部17により互いに連結され、スペーサー14上部に保持部17の垂直壁面によって囲まれた円筒状の反応槽18が設けられる。反応槽18の下部壁面には小孔またはメッシュ19が形成されている。なお、この小孔またはメッシュ19は、反応により生じた凝集物が透過でき、かつ反応液が遠心操作前に流出しない程度の大きさである。
【0029】
このような構成においては、保持部17により一体化されたスペーサー14をマイクロプレート11から取り外し、反応槽18内で検体と凝集用粒子を予め反応させてから、マイクロプレート11に取り付け、遠心操作を行う方法も可能である。このように、スペーサーの上部を反応槽として使用することで、IATの様な2段階の反応ステップの必要な試験項目においても、検体の移動が必要なく一つの反応容器で処理することが可能である。
【0030】
図7は、本発明の第2の実施形態に係る粒子凝集判定用容器30の断面図である。この粒子凝集判定用容器30は、たとえば平面形状が三角形の透明樹脂からなる底部透明板状部材31および上部透明板状部材32を、互いに対向する内面どうしの間に層状の間隙を形成するようにそれぞれ傾斜して配置し、この層状の間隙に凝集物を分離する不溶性粒子を含む流動性分離層33を形成したものである。なお、底部透明板状部材31および上部透明板状部材32の側面も同様の素材で覆われている。このような構成とすることにより、本発明の第1の実施形態と同様に、層状の流動性分離層33を形成することができる。なお、底部透明板状部材31および上部透明板状部材32の平面形状は三角形に限定されるものではないが、非凝集物の沈殿の確認が容易にできるように、深部に向かうほど幅が狭くなる形状であることが好ましい。
【0031】
底部透明板状部材31および上部透明板状部材32の内面は曲面を有していてもよく、例えば流動性分離層33が円筒形や円錐形であっても良い。底部透明板状部材31および上部透明板状部材32との間隔は0.5mm〜2mm程度が好ましく、流動性分離層33の上部は反応槽として使用することができる。底部透明板状部材31の内面の傾斜角度は水平面から45°〜75°が好ましい。底部透明板状部材31の内面は凝集物が付着するように粗面化しておいてもよい。
【0032】
不溶性粒子は試験項目に応じて抗血清に浮遊させておくことができる。使用する不溶性粒子は、上記第1の実施形態において説明したものと同様であり、比重の大きい不溶性粒子が扱いやすいが限定されるものではない。また、多孔性物質を使用することもできる。粒径は25〜200μmが好ましい。
【0033】
本実施形態の容器を使用するには、上記第1の実施形態において説明したのと同様に、流動性分離層33の上部(反応槽)に検体を分注し、必要に応じて一定時間反応させた後、遠心を行う。凝集用粒子は底部透明板状部材31と上部透明板状部材32との間隙の流動性分離層33中で斜面に沿って滑り落ちる。このとき、強陽性であれば、凝集物35が流動性分離層33上部に捕捉される(図8aおよび図9a)。比較的弱い凝集の場合には、凝集物35は流動性分離層33の中間に捕捉される(図8bおよび図9b)。陰性の場合には、凝集用粒子は流動性分離層33の最下部に沈降する(図8cおよび図9c)。
【0034】
本発明においては、短時間で所望の沈殿を達成するために、遠心分離法によりパターン形成することが好ましい。遠心の最適条件の決定は、使用する容器の形状、不溶性粒子の種類、分析対象それぞれについて確認しなければならない。その理由は、凝集物および凝集していない凝集用粒子、遊離している抗体および抗原ならびに不溶性粒子のそれぞれの比重、大きさ、形、変形性、安定性が影響力を有しており、それは計算によって得ることが困難であるからである。
【0035】
以上詳述したように本発明によれば、粒子の凝集判定を短時間で容易に行うことができ、しかも斜面に沿って凝集用粒子を沈降させることによって、粒子にかかる重力(遠心力)は斜面方向に分散されるため、弱い力で凝集用粒子を展開できるので、弱い凝集反応もより高感度に検出できる。また、上下方向からの判定が可能なために、この容器を同一基板上に2次元的に複数個形成することにより、従来問題となっていた大量検体処理を自動分析機により行うことができる。
【0036】
本発明の粒子凝集判定用容器を同一基板上に形成し、マイクロプレート状にした容器を用いて、凝集の有無を自動判定装置により判定する方法はいくつか考えられるが、その一例を以下に示す。
【0037】
図10は、自動判定装置81の一例を示す模式図である。この装置は、検査者の目視判定により近付けるために、CCDカメラ85を用いて反応パターンを1ウェルずつ走査するものである。マイクロプレート82の上部には、蛍光管83、および光散乱板84が設置されている。蛍光管83から放射された光は光散乱板84を通って光の分布が一様になるように散乱され、マイクロプレート82のウェルに照射される。マイクロプレート82の下部にはCCDカメラ85が設置され、ウェル内の凝集パターンを透過した光はCCDカメラ85で電気信号に変換される。電気信号に変換されたウェル内の画像情報は画像処理回路86に入力され、高速CPUにより凝集・非凝集を判定するために画像処理される。これを1ウェルずつ走査し、種々の判定パラメーターを用いて高速CPUにより自動判定することにより、大量の検体を自動的に処理することができる。
【0038】
ここで、凝集・非凝集を判定するためのパラメーターとしては、透過光量の変化から算出したウェル内各部(例えば、ウェルの中心から同心円状に中心部、内部、外周部の3部分に分ける)における凝集物の面積や、ウェル内各部における透過光量の比、およびウェル外の透過光量とウェル内各部の透過光量の比などを用いることができる。
【0039】
【実施例】
以下本発明を実施例により説明するが、本発明はそれらに限定されるものではない。
【0040】
<実施例1:容器底面の傾斜角度と遠心Gの最適化>
底面が種々の傾斜角度(30°、45°、60°、75°)の斜面をなすロート状容器を準備した。一方、不溶性粒子としてガラスビーズ(UB67LRS;(株)ユニオン)をBSA含有PBS溶液に懸濁させた懸濁液を調製した。それぞれのロート状容器に上記懸濁液を分注してガラスビーズを沈殿させた。次に、懸濁液の上部にA型ドナー血漿100μLおよび0.5%に希釈したA型血球(Ortho社アファーマジェン)100μLを分注し、36G〜570Gにおいて5分間遠心を行い、陰性パターンを観察した。この結果を表1に示す。
【0041】
【表1】

Figure 2004020535
【0042】
底面の傾斜角度が45°以下では、形成された陰性パターンが容器最下部で広がった形になり、好ましくなかった。また、底面の傾斜角度が75°以上では、容器最下部の陰性パターンを下方から観察するのが困難であった。
【0043】
上記とは別に陽性反応を観察したところ、遠心Gが450G以上では陽性反応が弱まる傾向にあった。
【0044】
以上の結果から、好ましい底面の傾斜角度は45°〜75°であり、試験に際しては70G〜300Gで5〜10分遠心することが好ましいと考えられた。以下の実施例においては、底面の傾斜角度が60°である容器を用い、70G、10分間の条件で遠心して検討することにした。
【0045】
<実施例2:血液型オモテ検査>
図1に示すように、マイクロプレート11に開口部の直径が約1cm、斜面をなす底面13の傾斜角度が60°であるウェル12を複数形成した。一方、不溶性粒子として粒径約100μmのガラスビーズ(UB67LRS;(株)ユニオン)を、抗A或いは抗B血清を含むBSA含有PBS溶液に懸濁させて懸濁液を調製した。各懸濁液をそれぞれのウェルに分注した後、スペーサー14をウェル12内に挿入し、ウェル底面13とスペーサー14の下面との間の間隙に層状の流動性分離層15を形成した。このとき、流動性分離層15の上面がウェル底面13の傾斜が始まる位置とほぼ一致するように懸濁液の量を調整した。
【0046】
次に、各ウェル12内に、生理食塩水で0.5%に希釈したA型血球(Ortho社アファーマジェン)或いはB型血球(Ortho社アファーマジェン)を100μL分注して、70Gで10分間遠心した。
【0047】
遠心後、各ウェル12の下方から凝集パターンを観察した。その結果、A型血球は、抗A血清と反応して図3(a)の様にガラスビーズ上に血球が凝集した陽性パターンを呈し、抗B血清と反応せず図3(c)の様な陰性パターンを呈した。逆に、B型血球は、抗A血清と反応せず図3(c)の様な陰性パターンを呈し、抗B血清と反応して図3(a)の様にガラスビーズ上に血球が凝集した陽性パターンを呈した。このように、オモテ検査の陽性、陰性が正しく判定された。
【0048】
<実施例3:血液型ウラ検査>
実施例2と同様に、図1に示すように、マイクロプレート11に開口部の直径が約1cm、斜面をなす底面13の傾斜角度が60°であるウェル12を複数形成した。一方、不溶性粒子として粒径約100μmのガラスビーズ(UB67LRS;(株)ユニオン)を、BSA/PBS溶液に懸濁させて懸濁液を調製した。この懸濁液をそれぞれのウェルに分注した後、スペーサー14をウェル12内に挿入し、ウェル底面13とスペーサー14の下面との間の間隙に層状の流動性分離層15を形成した。このとき、流動性分離層15の上面がウェル底面13の傾斜が始まる位置とほぼ一致するように懸濁液の量を調整した。
【0049】
次に、各ウェル12内に、生理食塩水で0.5%に希釈したA型血球或いはB型血球(Ortho社アファーマジェン)を100μL分注し、さらにB型ドナー由来のACD加血漿をBSA含有PBS溶液で2〜64倍に希釈したものを検体として100μL分注し、室温で5分間放置後、70Gで10分間遠心した。
【0050】
遠心後、各ウェル12の下方から凝集パターンを観察した。その結果、A型血球は図3(a)の様にガラスビーズ上に血球が凝集した陽性パターンを呈し、B型血球は図3(c)の様な陰性パターンを呈した。このように、B型ドナーのウラ検査は正しく判定された。
【0051】
このとき、各希釈検体の凝集パターンを2,1,w,0の4段階で評価した結果を表2に示した。なお、2は強陽性を、1,wは弱陽性を、0は陰性を示す。
【0052】
同じ希釈検体についてID−System NaClカード(DiaMed AG Switzerland Morat)、およびID−DiaCell A1,B血球(DiaMed AG Switzerland Morat)を使用して試験を行い、反応性を確認した。メーカーのマニュアルに従って、各希釈検体の凝集パターンを4,3,2,1,w,0の6段階で評価した結果を表2に示した。なお、4は強陽性を、3〜wは弱陽性を、0は陰性を示す。
【0053】
表2から、本実施例の粒子凝集判定用容器の方が、ID−Systemより希釈感度が高いことが分かった。
【0054】
【表2】
Figure 2004020535
【0055】
<実施例4:不規則抗体検査>
実施例2、3と同様に、図1に示すように、マイクロプレート11に開口部の直径が約1cm、斜面をなす底面13の傾斜角度が60°であるウェル12を複数形成した。一方、不溶性粒子として粒径約100μmのガラスビーズ(UB67LRS;(株)ユニオン)を、抗ヒトグロブリン試薬(Ortho社)に懸濁させて懸濁液を調製した。この懸濁液をそれぞれのウェルに分注した後、スペーサー14をウェル12内に挿入し、ウェル底面13とスペーサー14の下面との間の間隙に層状の流動性分離層15を形成した。このとき、流動性分離層15の上面がウェル底面13の傾斜が始まる位置とほぼ一致するように懸濁液の量を調整した。
【0056】
各ウェル12に、生理食塩水で0.5%に希釈したO型R1R1血球(Ortho社サージスクリーン)或いはO型rr血球(Ortho社サージスクリーン)を100μL分注し、更にドナー由来の抗D抗体保有血漿を100μL分注し、37℃で10分間インキュベートした後、70Gで10分間遠心した。
【0057】
遠心後、ウェルの下方から凝集パターンを観察した。O型R1R1血球は、図3(a)の様なガラスビーズの上に血球が凝集した陽性パターンを呈した。O型rr血球は、図3(c)の様な陰性パターンを呈した。このように、2段階の反応を要するIATも、洗浄操作を行わずに1つの容器内で行うことができた。
【0058】
【発明の効果】
以上詳述したように、本発明によれば、凝集パターンの判定が容易かつ正確にでき、また凝集パターンを上下方向から観察できる。さらに、本発明の容器をマイクロプレート状にすることにより、大量検体処理を自動分析機によって行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る粒子凝集判定用容器の断面図。
【図2】本発明の第1の実施形態に係る粒子凝集判定用容器を用いて試験を行った場合の、陽性(a)、弱陽性(b)、および陰性(c)反応のそれぞれの凝集パターンを横から見た図。
【図3】本発明の第1の実施形態に係る粒子凝集判定用容器を用いて試験を行った場合の、陽性(a)、弱陽性(b)、および陰性(c)反応のそれぞれ凝集パターンを下方から見た図。
【図4】本発明の第1の実施形態に係る粒子凝集判定用容器の変形例の断面図。
【図5】本発明の第1の実施形態に係る粒子凝集判定用容器の変形例の断面図。
【図6】本発明の第1の実施形態に係る粒子凝集判定用容器の変形例の断面図。
【図7】本発明の第2の実施形態に係る粒子凝集判定用容器の断面図。
【図8】本発明の第2の実施形態に係る粒子凝集判定用容器を用いて試験を行った場合の、陽性(a)、弱陽性(b)、および陰性(c)反応のそれぞれ凝集パターンを横から見た図。
【図9】本発明の第2の実施形態に係る粒子凝集判定用容器を用いて試験を行った場合の、陽性(a)、弱陽性(b)、および陰性(c)反応のそれぞれ凝集パターンを上方から見た図。
【図10】本発明の粒子凝集判定用容器に適用可能な、凝集・非凝集の自動判定装置の一例を示す模式図。
【符号の説明】
10…粒子凝集判定用容器
11…透明容器本体
12…検体収容部
13、13a、13b…底面
14…スペーサー
15…流動性分離層
16…凝集物
17…保持部
18…反応槽
19…小孔またはメッシュ
30…粒子凝集判定用容器
31…底部透明板状部材
32…上部透明板状部材
33…流動性分離層
35…凝集物
81…自動判定装置
82…マイクロプレート
83…蛍光管
84…光散乱板
85…CCDカメラ
86…画像処理回路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a container used for biological analysis, and a particle agglutination determination for qualitatively or quantitatively determining a test substance by an agglutination reaction due to antigen-antibody binding or the like, particularly an agglutination reaction using erythrocytes. For containers.
[0002]
[Prior art]
Conventionally, as a method for determining the presence or absence of an antigen or an antibody, a passive agglutination method in which a latex to which an antigen or an antibody is bound or a red blood cell in which an antigen is already present is reacted with an antibody or an antigen for a certain period of time and the latex or red blood cell aggregation pattern It has been known.
[0003]
For the determination of the passive agglutination method based on the agglutination pattern described above, a test tube has been used as a reaction vessel for a long time. In this method, erythrocytes and antibodies reacting therewith are mixed in a test tube, and the formed erythrocyte-antibody aggregate is precipitated once by natural sedimentation or centrifugation, and then the test tube is shaken to loosen the precipitate. This is a method of determining. According to this method, if the precipitate is not loosened, it is positive, and if it is loosened, it is negative. However, in reality, there is also an intermediate reaction between these (weak positive), but this method is difficult to detect with the naked eye. In addition, when test tubes are used, the number of test tubes increases, and this method cannot be said to be the optimal method when handling a large number of samples.
[0004]
Therefore, when performing a large-scale inspection, for example, a reaction vessel typified by a microplate having many V-bottom and U-bottom wells is used. In this method, red blood cells and an antibody reacting therewith are mixed in each well, and the formed red blood cell-antibody aggregate is precipitated by spontaneous precipitation in the same manner as described above. At this time, if red blood cell-antibody aggregation has occurred, the aggregate is captured on the bottom surface of the reaction vessel, and a pattern in which red blood cells spread on the bottom surface is obtained (positive). On the other hand, if no agglutination occurs, red blood cells will collect at the bottom of the bottom of the reaction vessel (negative). In addition, an intermediate reaction (weak positive) can be detected. In this method, the capture of aggregates on the bottom surface of the microplate, which is a reaction vessel, can be visually or optically detected from above or below the microplate. The capture of aggregates on the bottom surface of the microplate largely depends on the state of the bottom surface. The agglomerates must adhere stably to the bottom surface, but on a smooth untreated bottom surface, the weak agglomerates will quickly slide down, giving a false negative. Therefore, as described in JP-B-61-44268 and JP-B-63-60854, formation of irregularities on the bottom surface of the reaction vessel or roughening of the bottom surface allow the capture of aggregates to some extent. Can be improved. However, there is a limit to the capture of aggregates by the well bottom only. In addition, this method requires a long time because blood cells are spontaneously settled.
[0005]
In recent years, containers for more efficiently capturing these aggregates have been devised, and a passive aggregation method using the same is generally called a microcolumn aggregation method.
[0006]
Y. Lapierre et al. In Japanese Patent Publication No. Hei 8-7215, filled an elongated microreaction vessel placed on a card with insoluble particles represented by polymer particles or glass particles of 10 to 200 μm, and efficiently centrifuged to form red blood cell aggregates. We have devised a reaction vessel that can distinguish non-aggregates. In EP725276, a similar reaction vessel using glass beads has been devised. In each method, a plurality of elongated microreactors filled with insoluble particles are embedded in a plate-like plastic plate, and the microreactors are used in a state where they are set upright. Usually, the insoluble particles are dispersed in a reagent (antiserum) that reacts with red blood cells, such as anti-A antibody, anti-B antibody, or anti-human globulin serum. WO9531731 also describes a method in which an immunologically reactive substance such as an antibody or an antigen is bound to the insoluble particles and the red blood cells are captured by these activated insoluble particles.
[0007]
At the time of analysis, a liquid sample is injected from the upper opening of a vertically standing microreaction vessel, and the opening is funnel-shaped and used as a reaction tank. Here, the reaction tank and the insoluble particle layer are isolated by air so that the liquid sample and the insoluble particle layer do not come into contact with each other before the reaction. After the reaction, centrifugation is performed, and only the blood cells (and the antibodies bound thereto) are moved to the insoluble particle tank depending on the specific gravity, and the aggregates are captured by the insoluble particles. Then, the capture of the aggregates by the insoluble particles is visually or optically detected from the side surface. When the aggregate is above the insoluble particles, a strong positive reaction is shown. When the aggregate is present in the middle layer of the insoluble particles, a weak positive reaction is shown. When the aggregate is below, a negative reaction is shown.
[0008]
Here, some irregular antibodies and the like do not cause aggregation even when they react with antigens on erythrocytes (incomplete antibodies). When such an antibody is detected, after an antigen-antibody reaction is performed, the antibody is cross-linked by adding an anti-globulin antibody (Coombs serum) as a secondary antibody to cause red blood cell aggregation (indirect anti-globulin). Test (IAT)). However, usually, a sample such as plasma contains a plurality of types of antibodies in addition to an antibody that binds to a reagent, red blood cells, so that a secondary antibody also binds to another antibody. To prevent this, after binding the target antibody to the antigen on the red blood cells, it is necessary to repeat the centrifugation and washing operations to wash the red blood cells to remove excess antibodies (B / F separation). It is difficult to automate such a complicated operation by a machine. However, in the microcolumn agglutination method, an anti-globulin antibody is contained in the insoluble particle layer, and the erythrocyte-antibody reaction is performed in an isolated reaction tank, followed by centrifugation. Then, only the blood cells (and the antibodies bound thereto) move to the insoluble particle layer due to the effect of the specific gravity, where they react with the anti-globulin antibodies and form aggregates. Therefore, according to this method, IAT can be performed without performing washing (B / F separation) of red blood cells.
[0009]
In the elongated microreaction vessel as described above, the reaction can be completed in a short time by using the centrifugal separation method, and the difference between the positive and negative aggregation patterns is clear, so that the determination can be made easily. However, since the development of the aggregation pattern is in the vertical direction and the insoluble particle layer is opaque, it cannot be determined from the up and down directions, and it is necessary to observe from the side. Therefore, when observing aggregates of many cards, it is necessary to lift the card each time to make a judgment from the side, which is a major obstacle when performing large-volume sample processing by an automatic analyzer. Has become. In addition, as a solution to such a problem, in order to perform a large amount of sample processing using a microcolumn agglutination method, at least a part of a bottom portion is filled with insoluble particles in a container having a narrow bottom, and this is formed into a microplate. An alternative is disclosed in German Patent No. 10061515. According to this, when the pattern is positive, a pattern in which the aggregates are spread flat is obtained, and in the case of the negative, a pattern in which the non-aggregates are gathered in the thinned portion is obtained. Become. However, some of the insoluble particles are opaque, and in such a case, particularly when a weakly positive reaction occurs, there is a problem that detection from the vertical direction cannot be performed accurately.
[0010]
[Problems to be solved by the invention]
Therefore, the present invention aims to provide a container for particle aggregation determination that can easily and accurately determine the aggregation pattern, can be observed from above and below, and can perform a large amount of sample processing by an automatic analyzer. is there.
[0011]
[Means for Solving the Problems]
The container for particle aggregation determination according to the first aspect of the present invention is a particle aggregation determination container for performing an immunological analysis based on an aggregate generated by an aggregation reaction including a reaction between a specimen containing an antibody or an antigen and particles for aggregation. A container, wherein the sample container is formed such that a layered gap is formed between the transparent container body in which the sample container is formed so that at least a part of the bottom surface forms a slope, and the bottom surface of the sample container. And a fluid separation layer formed in the laminar gap and containing insoluble particles for separating agglomerates.
[0012]
In the container for judging particle aggregation according to the first embodiment, a reaction tank integrated with the spacer may be provided above the spacer, and a small hole or mesh may be provided on the lower side surface of the reaction tank.
[0013]
In the container for particle aggregation determination according to the first aspect, it is preferable that the inclination angle of the slope formed on the bottom surface of the specimen storage unit is not less than 45 ° and not more than 75 ° from the horizontal plane. Further, the slope of the slope may increase as going toward a deeper part. Further, the slope may be roughened.
[0014]
In the container for judging particle aggregation of the first embodiment, the thickness of the fluid separation layer is preferably 0.5 to 2 mm. Further, the insoluble particles are preferably glass beads or a crosslinked polymer having a particle size of 25 to 200 μm. Further, the fluid separation layer may contain antiserum.
[0015]
In the container for particle aggregation determination of the first aspect, it is preferable to form a plurality of specimen storage sections in the same transparent container body.
[0016]
The container for particle aggregation determination in the second aspect of the present invention is a particle aggregation determination container for performing an immunological analysis based on an aggregate generated by an agglutination reaction including a reaction between a specimen containing an antibody or an antigen and particles for agglutination. A container, wherein the bottom transparent plate-like member and the upper transparent plate-like member, each of which is arranged to be inclined so as to form a layered gap between the inner surfaces facing each other, formed in the layered gap, And a fluid separation layer containing insoluble particles for separating agglomerates.
[0017]
In the particle aggregation determining container according to the second aspect, the inclination angle of the inner surface of the bottom transparent plate member is preferably 45 ° or more and 75 ° or less from a horizontal plane. Further, the inner surface of the bottom transparent plate-shaped member may be roughened.
[0018]
Also in the container for judging particle aggregation according to the second aspect, the thickness of the fluid separation layer is preferably 0.5 to 2 mm. Further, the insoluble particles are preferably glass beads or a crosslinked polymer having a particle size of 25 to 200 μm. Further, the fluid separation layer may contain antiserum.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings, but the present invention is not limited thereto.
[0020]
FIG. 1 is a cross-sectional view of a container 10 for determining particle aggregation according to the first embodiment of the present invention. In a transparent container body, for example, a microplate 11 made of a transparent resin, a well 12 is formed as a specimen container so that at least a part of a bottom surface 13 forms an inclined surface. In the well 12, a spacer 14 having a lower surface substantially parallel to the well bottom surface 13 is disposed so as to form a layered gap with the well bottom surface 13 (a supporting member of the spacer 14 is shown in the drawing). Not). In a gap between the well bottom surface 13 and the lower surface of the spacer 14, a fluid separation layer 15 containing insoluble particles for separating aggregates is formed. The amount of the insoluble particles is preferably adjusted so that the upper surface of the fluid separation layer 15 substantially coincides with the point where the slope of the well bottom surface 13 starts so that the aggregation pattern can be easily observed from below the well 12. .
[0021]
The distance between the spacer 14 and the well bottom 13, that is, the thickness of the fluid separation layer 15 is adjusted by, for example, providing a lid on the container and fixing the spacer 14 to the lid. The thickness of the fluid separation layer 15 is preferably about 0.5 mm to 2 mm. The inside of the well 12 above the spacer 14 can be used as a reaction tank. It is preferable that the spacer 14 protrudes above the fluid separation layer 15 in order to prevent the reaction liquid contained in the reaction tank from coming into contact with the fluid separation layer 15.
[0022]
In the present invention, the insoluble particles used in the fluid separation layer 15 may be those usually used in a conventional microcolumn agglomeration method, and insoluble particles having a large specific gravity are easy to handle, but are not particularly limited. Absent. Further, a porous substance as described in EP7977097 can also be used. Preferably, glass beads or crosslinked polymers are used. The particle size is preferably from 25 to 200 μm. Further, depending on test items such as IAT, insoluble particles may be suspended in antiserum.
[0023]
By forming a plurality of wells 12 having the configuration shown in FIG. 1 in the same microplate 11, a large number of samples can be processed simultaneously. For example, there is a microplate in which 8 × 12 wells are two-dimensionally arranged.
[0024]
The method of using the container for judging particle aggregation of the present invention will be described below, but the present invention is not limited to this, and some modifications can be made. Although the passive coagulation method is described here, the use of the container of the present invention is not limited to this. First, agglutinating particles such as latex or red blood cells to which an antigen or an antibody is bound, and a sample containing an antibody or an antigen that binds to the antigen or the antibody on the agglutinating particles are placed on a spacer 14 in a well 12 shown in FIG. The reaction is carried out for a certain period of time in a space (reaction tank) as necessary, or the reaction is carried out outside the well 12 for a certain period of time and then put into the well 12. When this reaction solution is subjected to centrifugation, the reaction solution enters the gap between the well bottom surface 13 and the spacer 14 and comes into contact with the fluid separation layer 15, and due to the specific gravity relationship, the aggregating particles (and the antibody or antigen bound thereto). Only the particles move into the fluid separation layer 15 and settle down to the bottom along the sloped well bottom surface 13. If strong agglomeration occurs, agglomerates 16 are trapped in the upper part of the fluid separation layer 15 (FIG. 2a and FIG. 3a viewed from below). In the case of relatively weak agglomeration, the agglomerate 16 is trapped in the middle of the fluid separation layer 15 (FIG. 2b and FIG. 3b viewed from below). If negative, the flocculating particles settle at the bottom (FIG. 2c and FIG. 3c viewed from below). As described above, by providing the spacer 14 in the well 12 and providing the layered fluid separation layer 15 along the slope of the bottom surface of the well 12, even if the insoluble particles are opaque, they can be easily observed from below. The trapping of aggregates can be determined.
[0025]
FIG. 1 shows a case where the bottom surface 13 of the well 12 forms a V-shaped slope, and the slope angle of the slope from the horizontal plane is about 65 °, but as shown in FIG. The spacer 14 may be continuously changed so as to increase as it goes deeper, so that the lower surface of the spacer 14 may have a shape corresponding to the bottom surface 13a.
[0026]
The V-shaped bottom surface of a well of a commercially available microplate has an inclination angle of about 30 °. However, if the inclination angle of the inclined surface 2 is gentle, a pattern in which non-agglomerated particles are spread thinly when gathered at the bottom is obtained. It is difficult to judge negative. Therefore, the inclination angle of the slope of the well bottom surface of the container shown in FIG. 1 is preferably 45 ° or more from the horizontal plane, and particularly preferably 55 ° to 75 °. In this case, the centrifugation conditions are preferably 70 G to 300 G and 5 to 10 minutes, depending on the angle of the slope and the type of insoluble particles used. In order to obtain a positive pattern, the lower the centrifugation G, the better. Therefore, it is most preferable to centrifuge at 70 G to 115 G.
[0027]
In the elongated micro-reaction vessel described in Japanese Patent Publication No. 8-7215 and EP 725276, the trapping of the aggregates is performed by 100% particles because the wall is vertical, but in the vessel according to the present invention, the inclination angle of the bottom surface forming the slope is limited. As it approaches horizontal, the capture of aggregates becomes affected by the bottom surface. For this reason, as shown in FIG. 5, the bottom surface 13b of the well 12 may be roughened. The bottom surface 13b of the well 12 shown in FIG. 5 is the same as that described in, for example, JP-B-61-44268 and JP-B-63-60854. In FIG. 5, the spacer is omitted. Here, the rough surface is a surface having irregularities such that only aggregates are captured. Therefore, regular irregularities may be provided as in the well bottom surface 13b shown in FIG. 5, or irregular irregularities may be provided.
[0028]
Further, as shown in FIG. 6, a reaction tank integrated with the spacer 14 can be provided above the spacer 14. In this case, the individual spacers 14 inserted into the respective wells 12 are connected to each other by a lid-like holding portion 17, and a cylindrical reaction tank 18 surrounded by the vertical wall surface of the holding portion 17 is provided above the spacer 14. Small holes or meshes 19 are formed in the lower wall surface of the reaction tank 18. The small holes or mesh 19 have such a size that the aggregate generated by the reaction can pass therethrough and the reaction solution does not flow out before the centrifugation operation.
[0029]
In such a configuration, the spacer 14 integrated by the holding unit 17 is removed from the microplate 11, the specimen and the particles for agglutination are reacted in advance in the reaction tank 18, and then attached to the microplate 11, and the centrifugation operation is performed. A method of doing this is also possible. As described above, by using the upper part of the spacer as a reaction tank, even in a test item requiring two reaction steps such as IAT, it is possible to process in a single reaction vessel without moving a sample. is there.
[0030]
FIG. 7 is a cross-sectional view of the container 30 for particle aggregation determination according to the second embodiment of the present invention. The container 30 for particle aggregation determination has a bottom transparent plate-like member 31 and an upper transparent plate-like member 32 made of, for example, a transparent resin having a triangular planar shape so that a layered gap is formed between inner surfaces facing each other. The fluid separation layers 33 containing the insoluble particles for separating the agglomerates are formed in the laminar gaps. The side surfaces of the bottom transparent plate member 31 and the upper transparent plate member 32 are also covered with the same material. With such a configuration, the layered fluid separation layer 33 can be formed as in the first embodiment of the present invention. The planar shape of the bottom transparent plate-like member 31 and the upper transparent plate-like member 32 is not limited to a triangle, but the width becomes narrower toward the deeper portion so that the sedimentation of non-aggregate can be easily confirmed. Preferably, the shape is
[0031]
The inner surfaces of the bottom transparent plate member 31 and the upper transparent plate member 32 may have curved surfaces. For example, the fluid separation layer 33 may be cylindrical or conical. The distance between the bottom transparent plate member 31 and the upper transparent plate member 32 is preferably about 0.5 mm to 2 mm, and the upper part of the fluid separation layer 33 can be used as a reaction tank. The inclination angle of the inner surface of the bottom transparent plate-shaped member 31 is preferably 45 ° to 75 ° from the horizontal plane. The inner surface of the bottom transparent plate-shaped member 31 may be roughened so that aggregates adhere thereto.
[0032]
The insoluble particles can be suspended in the antiserum according to the test items. The insoluble particles to be used are the same as those described in the first embodiment, and the insoluble particles having a large specific gravity are easy to handle, but are not limited. In addition, a porous material can be used. The particle size is preferably from 25 to 200 μm.
[0033]
In order to use the container of the present embodiment, a sample is dispensed into the upper part (reaction tank) of the fluid separation layer 33 and the reaction is carried out for a certain period of time as necessary, as described in the first embodiment. Then, centrifuge. The particles for agglomeration slide down along the slope in the fluid separation layer 33 in the gap between the bottom transparent plate member 31 and the upper transparent plate member 32. At this time, if strongly positive, the aggregate 35 is captured on the upper part of the fluid separation layer 33 (FIGS. 8A and 9A). In the case of relatively weak agglomeration, the agglomerates 35 are trapped in the middle of the fluid separation layer 33 (FIGS. 8b and 9b). In the negative case, the coagulating particles settle at the bottom of the fluid separation layer 33 (FIGS. 8c and 9c).
[0034]
In the present invention, in order to achieve a desired precipitation in a short time, it is preferable to form a pattern by a centrifugal separation method. In determining the optimal conditions for centrifugation, it is necessary to confirm the shape of the vessel to be used, the type of insoluble particles, and the analysis target. The reason is that the specific gravity, size, shape, deformability, and stability of aggregates and non-aggregate particles, free antibodies and antigens, and insoluble particles have an influence. This is because it is difficult to obtain by calculation.
[0035]
As described above in detail, according to the present invention, it is possible to easily determine the aggregation of particles in a short time, and further, by causing the particles for aggregation to settle along the slope, the gravity (centrifugal force) applied to the particles is reduced. Since the particles for agglomeration can be developed with a weak force because they are dispersed in the slope direction, a weak agglutination reaction can be detected with higher sensitivity. In addition, since the determination can be made in the vertical direction, by forming a plurality of the containers two-dimensionally on the same substrate, the processing of a large number of samples, which has conventionally been a problem, can be performed by an automatic analyzer.
[0036]
Forming the container for particle aggregation determination of the present invention on the same substrate, using a microplate-shaped container, there are several methods for determining the presence or absence of aggregation by an automatic determination device, one example of which is shown below. .
[0037]
FIG. 10 is a schematic diagram illustrating an example of the automatic determination device 81. This apparatus scans a reaction pattern one well at a time using a CCD camera 85 in order to make it closer to visual judgment by an inspector. Above the microplate 82, a fluorescent tube 83 and a light scattering plate 84 are provided. The light emitted from the fluorescent tube 83 is scattered through the light scattering plate 84 so that the light distribution becomes uniform, and is radiated to the wells of the microplate 82. A CCD camera 85 is provided below the microplate 82, and light transmitted through the aggregation pattern in the well is converted into an electric signal by the CCD camera 85. The image information in the well converted into the electric signal is input to the image processing circuit 86, and subjected to image processing by a high-speed CPU to determine aggregation / non-aggregation. This is scanned one well at a time, and a high-speed CPU automatically determines using various determination parameters, whereby a large number of samples can be automatically processed.
[0038]
Here, as a parameter for judging agglutination / non-agglutination, each part in a well calculated from a change in the amount of transmitted light (for example, a center, an inner part, and an outer part are concentrically divided from the center of the well). The area of the aggregate, the ratio of the amount of transmitted light in each part in the well, and the ratio of the amount of transmitted light outside the well to the amount of transmitted light in each part in the well can be used.
[0039]
【Example】
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited thereto.
[0040]
<Example 1: Optimization of inclination angle of vessel bottom and centrifugal G>
A funnel-shaped container having a bottom surface having various inclined angles (30 °, 45 °, 60 °, 75 °) was prepared. On the other hand, a suspension was prepared by suspending glass beads (UB67LRS; Union Co., Ltd.) in PBS solution containing BSA as insoluble particles. The suspension was dispensed into each funnel-shaped container to precipitate glass beads. Next, 100 μL of type A donor plasma and 100 μL of type A blood cells (Ortho Apharmagen) diluted to 0.5% were dispensed on the upper part of the suspension, and centrifuged at 36 G to 570 G for 5 minutes to obtain a negative pattern. Was observed. Table 1 shows the results.
[0041]
[Table 1]
Figure 2004020535
[0042]
If the inclination angle of the bottom surface is 45 ° or less, the formed negative pattern spreads at the bottom of the container, which is not preferable. When the inclination angle of the bottom surface is 75 ° or more, it was difficult to observe the negative pattern at the bottom of the container from below.
[0043]
When a positive reaction was observed separately from the above, when the centrifugal G was 450 G or more, the positive reaction tended to weaken.
[0044]
From the above results, it was considered that the preferable inclination angle of the bottom surface was 45 ° to 75 °, and it was preferable to perform centrifugation at 70G to 300G for 5 to 10 minutes during the test. In the following examples, it was decided to use a container having a bottom surface with an inclination angle of 60 °, and centrifuge at 70 G for 10 minutes.
[0045]
<Example 2: Blood type face test>
As shown in FIG. 1, a plurality of wells 12 each having an opening having a diameter of about 1 cm and a slope 13 having a slope of 60 ° were formed in the microplate 11. On the other hand, glass beads (UB67LRS; Union Co., Ltd.) having a particle size of about 100 μm as insoluble particles were suspended in a PBS solution containing BSA containing anti-A or anti-B serum to prepare a suspension. After each suspension was dispensed into each well, the spacer 14 was inserted into the well 12, and a layered fluid separation layer 15 was formed in the gap between the well bottom surface 13 and the lower surface of the spacer 14. At this time, the amount of the suspension was adjusted so that the upper surface of the fluid separation layer 15 substantially coincided with the position where the inclination of the well bottom surface 13 started.
[0046]
Next, 100 μL of A-type blood cells (Ortho Apharmagen) or B-type blood cells (Ortho Apharmagen) diluted to 0.5% with physiological saline was dispensed into each well 12, and 70 G was added. Centrifuged for 10 minutes.
[0047]
After centrifugation, the aggregation pattern was observed from below each well 12. As a result, the type A blood cells reacted with the anti-A serum to exhibit a positive pattern in which blood cells were aggregated on the glass beads as shown in FIG. 3 (a), and did not react with the anti-B serum as shown in FIG. 3 (c). Negative pattern. Conversely, type B blood cells do not react with anti-A serum and exhibit a negative pattern as shown in FIG. 3 (c), and react with anti-B serum to aggregate blood cells on glass beads as shown in FIG. 3 (a). A positive pattern. Thus, the positive and negative of the frontal test were correctly determined.
[0048]
<Example 3: Blood type back test>
As in Example 2, as shown in FIG. 1, a plurality of wells 12 were formed in the microplate 11 in which the diameter of the opening was about 1 cm and the inclination angle of the inclined bottom surface 13 was 60 °. On the other hand, glass beads (UB67LRS; Union Co., Ltd.) having a particle size of about 100 μm as insoluble particles were suspended in a BSA / PBS solution to prepare a suspension. After this suspension was dispensed into each well, the spacer 14 was inserted into the well 12, and a layered fluid separation layer 15 was formed in the gap between the well bottom surface 13 and the lower surface of the spacer 14. At this time, the amount of the suspension was adjusted so that the upper surface of the fluid separation layer 15 substantially coincided with the position where the inclination of the well bottom surface 13 started.
[0049]
Next, 100 μL of A-type blood cells or B-type blood cells (Ortho Apharmagen) diluted to 0.5% with physiological saline was dispensed into each well 12, and ACD-added plasma derived from a B-type donor was further added. 100 μL of a sample diluted with a BSA-containing PBS solution 2- to 64-fold was dispensed, left at room temperature for 5 minutes, and then centrifuged at 70 G for 10 minutes.
[0050]
After centrifugation, the aggregation pattern was observed from below each well 12. As a result, type A blood cells exhibited a positive pattern in which blood cells were aggregated on glass beads as shown in FIG. 3 (a), and type B blood cells exhibited a negative pattern as shown in FIG. 3 (c). Thus, the back examination of the type B donor was correctly determined.
[0051]
At this time, the results of evaluating the aggregation pattern of each diluted sample in four stages of 2, 1, w, and 0 are shown in Table 2. 2 indicates strong positive, 1w indicates weak positive, and 0 indicates negative.
[0052]
The same diluted sample was tested using an ID-System NaCl card (DiaMed AG Switcherland Morat) and ID-DiaCell A1 and B blood cells (DiaMed AG Switcherland Morat) to confirm the reactivity. According to the manufacturer's manual, the results of evaluating the aggregation pattern of each diluted sample in six steps of 4, 3, 2, 1, w, and 0 are shown in Table 2. In addition, 4 shows a strong positive, 3-w shows a weak positive, and 0 shows a negative.
[0053]
From Table 2, it was found that the container for particle aggregation determination of the present example had higher dilution sensitivity than the ID-System.
[0054]
[Table 2]
Figure 2004020535
[0055]
<Example 4: Irregular antibody test>
As in Examples 2 and 3, as shown in FIG. 1, a plurality of wells 12 were formed in a microplate 11 in which the diameter of the opening was about 1 cm and the inclination angle of the inclined bottom surface 13 was 60 °. On the other hand, glass beads (UB67LRS; Union Co., Ltd.) having a particle size of about 100 μm as insoluble particles were suspended in an anti-human globulin reagent (Ortho) to prepare a suspension. After this suspension was dispensed into each well, the spacer 14 was inserted into the well 12, and a layered fluid separation layer 15 was formed in the gap between the well bottom surface 13 and the lower surface of the spacer 14. At this time, the amount of the suspension was adjusted so that the upper surface of the fluid separation layer 15 almost coincided with the position where the inclination of the well bottom surface 13 started.
[0056]
To each well 12, 100 μL of O-type R1R1 blood cells (Ortho Surge Screen) or O-type rr blood cells (Ortho Surge Screen) diluted to 0.5% with physiological saline is dispensed, and further, donor-derived anti-D antibody 100 μL of the retained plasma was dispensed, incubated at 37 ° C. for 10 minutes, and then centrifuged at 70 G for 10 minutes.
[0057]
After centrifugation, the aggregation pattern was observed from below the well. O-type R1R1 blood cells exhibited a positive pattern in which blood cells were aggregated on glass beads as shown in FIG. 3 (a). The O-type rr blood cells exhibited a negative pattern as shown in FIG. Thus, the IAT requiring a two-step reaction could be performed in one container without performing the washing operation.
[0058]
【The invention's effect】
As described above in detail, according to the present invention, the aggregation pattern can be easily and accurately determined, and the aggregation pattern can be observed from above and below. Further, by making the container of the present invention into a microplate shape, it becomes possible to perform a large amount of sample processing by an automatic analyzer.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a container for judging particle aggregation according to a first embodiment of the present invention.
FIG. 2 shows agglutination of positive (a), weakly positive (b), and negative (c) reactions when a test was performed using the container for judging particle aggregation according to the first embodiment of the present invention. The figure which looked at the pattern from the side.
FIG. 3 shows aggregation patterns of positive (a), weak positive (b), and negative (c) reactions when a test is performed using the container for determining particle aggregation according to the first embodiment of the present invention. FIG.
FIG. 4 is a cross-sectional view of a modified example of the particle aggregation determining container according to the first embodiment of the present invention.
FIG. 5 is a cross-sectional view of a modification of the container for judging particle aggregation according to the first embodiment of the present invention.
FIG. 6 is a cross-sectional view of a modified example of the particle aggregation determining container according to the first embodiment of the present invention.
FIG. 7 is a cross-sectional view of a container for determining particle aggregation according to a second embodiment of the present invention.
FIG. 8 shows aggregation patterns of positive (a), weakly positive (b), and negative (c) reactions when a test is performed using the container for determining particle aggregation according to the second embodiment of the present invention. The figure seen from the side.
FIG. 9 shows aggregation patterns of positive (a), weak positive (b), and negative (c) reactions when a test is performed using the container for determining particle aggregation according to the second embodiment of the present invention. FIG.
FIG. 10 is a schematic view showing an example of an automatic agglutination / non-agglomeration determination device applicable to the particle aggregation determination container of the present invention.
[Explanation of symbols]
10: Container for particle aggregation determination
11 ... Transparent container body
12: Sample storage unit
13, 13a, 13b ... bottom surface
14 ... Spacer
15: Flowable separation layer
16: Aggregate
17 ... holding part
18… Reaction tank
19 ... Small hole or mesh
30 ... container for particle aggregation determination
31 ... Bottom transparent plate-shaped member
32 ... Upper transparent plate-shaped member
33 ... Flowable separation layer
35 ... aggregate
81 ... Automatic judgment device
82 ... Microplate
83 ... Fluorescent tube
84 light scattering plate
85… CCD camera
86 ... Image processing circuit

Claims (15)

抗体または抗原を含む検体と凝集用粒子との反応を含む凝集反応により生成する凝集物に基づいて免疫学的分析を行う粒子凝集判定用容器であって、底面の少なくとも一部が斜面をなすように検体収容部が形成された透明容器本体と、前記検体収容部の底面との間に層状の間隙を形成するように前記検体収容部内に配置されたスペーサーと、前記層状の間隙に形成された、凝集物を分離する不溶性粒子を含む流動性分離層とを具備したことを特徴とする粒子凝集判定用容器。A particle aggregation determination container for performing an immunological analysis based on an aggregate formed by an agglutination reaction including a reaction between a sample containing an antibody or an antigen and agglutination particles, at least a part of the bottom surface of which is inclined. A transparent container body in which a sample storage part is formed, and a spacer arranged in the sample storage part so as to form a layered gap between the bottom surface of the sample storage part and the spacer formed in the layered space. And a fluid separation layer containing insoluble particles for separating agglomerates. 前記スペーサーの上部に前記スペーサーと一体化させた反応槽を設け、かつ前記反応槽の下部側面に小孔またはメッシュを設けたことを特徴とする請求項1記載の粒子凝集判定用容器。The container for particle aggregation determination according to claim 1, wherein a reaction tank integrated with the spacer is provided above the spacer, and a small hole or mesh is provided on a lower side surface of the reaction tank. 前記検体収容部の底面に形成された斜面の傾斜角度が、水平面から45°以上75°以下であることを特徴とする請求項1または2記載の粒子凝集判定用容器。The particle aggregation determination container according to claim 1, wherein an inclination angle of an inclined surface formed on a bottom surface of the specimen storage unit is 45 ° or more and 75 ° or less from a horizontal plane. 前記斜面の傾斜が深部に向かうほど増加することを特徴とする請求項1ないし3のいずれか1項記載の粒子凝集判定用容器。The container for particle aggregation determination according to any one of claims 1 to 3, wherein the inclination of the slope increases toward a deeper part. 前記斜面が粗面化されていることを特徴とする請求項1ないし4のいずれか1項記載の粒子凝集判定用容器。The container for particle aggregation determination according to any one of claims 1 to 4, wherein the slope is roughened. 前記流動性分離層の厚さが0.5〜2mmであることを特徴とする請求項1ないし5のいずれか1項記載の粒子凝集判定用容器。The particle aggregation determination container according to any one of claims 1 to 5, wherein the thickness of the fluid separation layer is 0.5 to 2 mm. 前記不溶性粒子が粒径25〜200μmのガラスビーズまたは架橋ポリマーであることを特徴とする請求項1ないし6のいずれか1項記載の粒子凝集判定用容器。The container for particle aggregation determination according to any one of claims 1 to 6, wherein the insoluble particles are glass beads or a crosslinked polymer having a particle size of 25 to 200 µm. 前記流動性分離層が抗血清を含むことを特徴とする請求項1ないし7のいずれか1項記載の粒子凝集判定用容器。The container for particle aggregation determination according to any one of claims 1 to 7, wherein the fluid separation layer contains antiserum. 同一の透明容器本体に複数の検体収容部を形成したことを特徴とする請求項1ないし8のいずれか1項記載の粒子凝集判定用容器。The container for particle aggregation determination according to any one of claims 1 to 8, wherein a plurality of specimen storage sections are formed in the same transparent container body. 抗体または抗原を含む検体と凝集用粒子との反応を含む凝集反応により生成する凝集物に基づいて免疫学的分析を行う粒子凝集判定用容器であって、互いに対向する内面どうしの間に層状の間隙を形成するようにそれぞれ傾斜して配置された底部透明板状部材および上部透明板状部材と、前記層状の間隙に形成された、凝集物を分離する不溶性粒子を含む流動性分離層とを具備したことを特徴とする粒子凝集判定用容器。A container for particle agglutination determination that performs immunological analysis based on agglutination produced by an agglutination reaction including a reaction between a specimen containing an antibody or an antigen and agglutination particles, and a layered layer between inner surfaces facing each other. A bottom transparent plate-like member and an upper transparent plate-like member, each of which is arranged to be inclined so as to form a gap, and a fluid separation layer containing insoluble particles for separating aggregates formed in the layered gap. A container for judging particle aggregation characterized by comprising: 前記底部透明板状部材の内面の傾斜角度が、水平面から45°以上75°以下であることを特徴とする請求項10記載の粒子凝集判定用容器。The container for particle aggregation determination according to claim 10, wherein the inclination angle of the inner surface of the bottom transparent plate member is 45 ° or more and 75 ° or less from a horizontal plane. 前記底部透明板状部材の内面が粗面化されていることを特徴とする請求項10または11記載の粒子凝集判定用容器。12. The container for judging particle aggregation according to claim 10, wherein an inner surface of the bottom transparent plate member is roughened. 前記流動性分離層の厚さが0.5〜2mmであることを特徴とする請求項10ないし12のいずれか1項記載の粒子凝集判定用容器。The particle aggregation determining container according to any one of claims 10 to 12, wherein the thickness of the fluid separation layer is 0.5 to 2 mm. 前記不溶性粒子が粒径25〜200μmのガラスビーズまたは架橋ポリマーであることを特徴とする請求項10ないし12のいずれか1項記載の粒子凝集判定用容器。The container for judging particle aggregation according to any one of claims 10 to 12, wherein the insoluble particles are glass beads or a crosslinked polymer having a particle size of 25 to 200 µm. 前記流動性分離層が抗血清を含むことを特徴とする請求項10ないし14のいずれか1項記載の粒子凝集判定用容器。15. The container for judging particle aggregation according to claim 10, wherein the fluid separation layer contains an antiserum.
JP2002180135A 2002-06-20 2002-06-20 Container for particle aggregation determination Expired - Fee Related JP4090797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180135A JP4090797B2 (en) 2002-06-20 2002-06-20 Container for particle aggregation determination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180135A JP4090797B2 (en) 2002-06-20 2002-06-20 Container for particle aggregation determination

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007110708A Division JP4469990B2 (en) 2007-04-19 2007-04-19 Container for particle aggregation determination

Publications (2)

Publication Number Publication Date
JP2004020535A true JP2004020535A (en) 2004-01-22
JP4090797B2 JP4090797B2 (en) 2008-05-28

Family

ID=31177355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180135A Expired - Fee Related JP4090797B2 (en) 2002-06-20 2002-06-20 Container for particle aggregation determination

Country Status (1)

Country Link
JP (1) JP4090797B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345807A (en) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd Reaction chip
JP2007322381A (en) * 2006-06-05 2007-12-13 Olympus Corp Container for determining particle agglutination
JP2013040788A (en) * 2011-08-11 2013-02-28 Atleta Inc Urine sampling container
US8620059B2 (en) 2007-12-13 2013-12-31 Fpinnovations Characterizing wood furnish by edge pixelated imaging
WO2022247944A1 (en) * 2021-05-28 2022-12-01 上海睿钰生物科技有限公司 Counting assembly and device, and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345807A (en) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd Reaction chip
JP2007322381A (en) * 2006-06-05 2007-12-13 Olympus Corp Container for determining particle agglutination
WO2007142174A1 (en) 2006-06-05 2007-12-13 Olympus Corporation Container for determining particle agglutination
US7807107B2 (en) 2006-06-05 2010-10-05 Beckman Coulter, Inc. Particle agglutination-evaluating container
US8620059B2 (en) 2007-12-13 2013-12-31 Fpinnovations Characterizing wood furnish by edge pixelated imaging
JP2013040788A (en) * 2011-08-11 2013-02-28 Atleta Inc Urine sampling container
WO2022247944A1 (en) * 2021-05-28 2022-12-01 上海睿钰生物科技有限公司 Counting assembly and device, and application thereof

Also Published As

Publication number Publication date
JP4090797B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
US4303616A (en) Agglutination analyzing vessel
US5256376A (en) Agglutination detection apparatus
US4466740A (en) Particle agglutination analyzing plate
AU724443B2 (en) Assays using reference microparticles
US9310286B2 (en) Patient sample classification based upon low angle light scattering
JP2013533469A (en) Methods and apparatus for detection of particle positional freedom in biological and chemical analysis and applications in immunodiagnostics
JP4469990B2 (en) Container for particle aggregation determination
JP4090797B2 (en) Container for particle aggregation determination
JP3157601B2 (en) Automatic blood analyzer
JP5008899B2 (en) Container for particle aggregation determination
WO2004111649A1 (en) Method for measuring substance having affinity
JP5017596B2 (en) Aggregation inspection method
JP3766575B2 (en) Analytical method and container for analysis using reactive fine particles
JP4054500B2 (en) Multi-item inspection method using nucleic acids such as antigens, antibodies and DNA as probes for detection
JP2010032327A (en) Detection method of substance to be detected, detector of substance to be detected, depth position measuring method and depth position measuring instrument
JPS6033403Y2 (en) Plate type particle aggregation determination container
JP5306901B2 (en) Blood type determination method and erythrocyte solid phase container therefor
JPH03216553A (en) Method and apparatus for immunoassay due to particles
JPS58754A (en) Vessel for decision of particle cohesion
JP5047702B2 (en) Red blood cell type determination method
JPH02296151A (en) Micro-titer plate
JP2009069070A (en) Detecting method of target material, and kit for detection
JP2002286719A (en) Method for analyzing and evaluating agglutination reaction using a plurality of parameters and vessel used for the method
JP2008256458A (en) Flocculation determining container and flocculation determination method using the same
JP2008185529A (en) Method and device for detecting substance to be detected

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees