JP2004020470A - Non-destructive method and apparatus for determining quality of agricultural products - Google Patents

Non-destructive method and apparatus for determining quality of agricultural products Download PDF

Info

Publication number
JP2004020470A
JP2004020470A JP2002178293A JP2002178293A JP2004020470A JP 2004020470 A JP2004020470 A JP 2004020470A JP 2002178293 A JP2002178293 A JP 2002178293A JP 2002178293 A JP2002178293 A JP 2002178293A JP 2004020470 A JP2004020470 A JP 2004020470A
Authority
JP
Japan
Prior art keywords
quality
vegetables
correction
transport
fruits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002178293A
Other languages
Japanese (ja)
Inventor
Sakiko Takada
高田 咲子
Nobuaki Tanaka
田中 伸明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Agricultural Equipment Co Ltd filed Critical Yanmar Agricultural Equipment Co Ltd
Priority to JP2002178293A priority Critical patent/JP2004020470A/en
Publication of JP2004020470A publication Critical patent/JP2004020470A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently determine the quality level of each of the fruit and vegetables, by correcting non-destructive quality estimation data for all fruit and vegetables by correction data which are obtained in one conveyance path and in which the sizes and so forth are measured. <P>SOLUTION: A quality measurement means 8 is provided to all conveyance paths 3a and 3b-3f, and a corrective measurement means 9 is provided to only one conveyance path 3a in a conveyance means 3. After acquiring the correction data by the corrective measurement means 9, the fruit and vegetables are conveyed by the plurality of conveyance paths 3a and 3b-3f. The quality estimation data for each of the fruit and vegetables are acquired by the quality measurement means 8 disposed to all conveyance paths. A quality estimation value obtained by the quality estimation data is corrected by the correction data. The quality level of each of the fruit and vegetables is determined on the basis of the obtained quality correction estimation value. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、みかん、メロン、スイカ等の青果物の内部品質等を連続的に測定して品質を判定する農産物非破壊品質判定方法及び装置に関し、特に、品質推定値に及ぼす、青果物の大きさ、青果物本体・測定環境の温度等の影響をなくすための技術に関する。
【0002】
【従来の技術】
従来より、青果物の分類や選別を行う選果装置の構成としては、搬送手段に複数の搬送経路を並設し、該搬送経路を連続的に送られてくる青果物の内部品質を、搬送経路途中に設けた非破壊品質判定装置により迅速に測定し、この測定結果から品質レベルを判定して、下流側の選別装置等において実際の分類や選別を行うものが、知られている。
そして、このような非破壊品質判定装置においては、例えば、比較的透過力の強い赤外光等の光を青果物に照射し、青果物を透過又は反射してきた検出光を分析して、近赤外線中で糖分等の成分の存在及びその量の変化に対して影響が認められる波長(以下「帰属波長」とする)の吸光度を測定することにより、青果物を破壊することなく内部成分の種類や濃度を迅速に推定していた。ここで、吸光度とは、平行光線が物体中を通過する時,入射光強度をI0 、透過光強度をIとする場合に、log10(I0 /I)で表わされる物体の光吸収の強さをいい、光の波長によって異なる。
しかしながら、この吸光度は、青果物の大きさや、品温や、測定装置近傍の気温等から大きな影響を受けるため、実用的な推定精度を得るには、その影響を確実に除去する必要がある。
このため、従来の非破壊品質判定装置では、温度や検体の大きさの影響の大きな近赤外等の光を用いる場合はもとより、一般に、品質推定用データを取得する品質測定装置に加えて、青果物の大きさ等を測定して補正用データを取得する補正用測定装置、及び補正式による計算等を行う演算装置を設けて、品質推定精度の向上を図っている。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの品質測定装置、補正用測定装置、演算装置等の機能を有する非破壊品質判定装置は、一体として、あるいはそれぞれ別体として、全ての搬送経路に配設されていた。そのために、設備コストが高く、更には、保守管理の対象となる装置数が多いため、保守頻度が増して作業負担や交換部品代が増加するばかりでなく、保守管理に時間が取られて選果処理効率も低下する、という問題があった。加えて、各搬送経路毎に異なる補正用データを測定して品質推定値を補正していたため、品質レベル判定の際に搬送経路の違いによる誤差が大きく現れる場合がある、という問題もあった。
【0004】
【課題を解決するための手段】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
すなわち、請求項1においては、複数の搬送経路から成る搬送手段内の一搬送経路に設けた補正用測定手段により補正用データを取得した後、青果物を複数の搬送経路により搬送し、全ての搬送経路に配置した品質測定手段により各青果物の品質推定用データを取得し、該品質推定用データから求める品質推定値を前記補正用データにより補正し、得られた品質補正推定値に基づいて各青果物の品質レベルを判定するものである。
請求項2においては、青果物を搬送する搬送手段の複数の搬送経路の途中に、青果物の特定品質を推定するための品質推定用データを取得する品質測定手段と、求めた品質推定値を補正するための補正用データを取得する補正用測定手段とを備えた農作物非破壊品質判定装置において、前記品質測定手段は、全ての搬送経路に設ける一方、前記補正用測定手段は、搬送手段内の一搬送経路のみに設けたものである。
請求項3においては、前記品質測定手段には、近赤外等の光を照射する投光手段と、青果物を透過又は反射した検出光を受ける受光手段とを備え、該受光手段からの出力信号を品質推定用データとして解析し、糖度等の内部品質を推定するものである。
【0005】
【発明の実施の形態】
次に、本発明の実施例について説明する。
図1は本実施例に係る品質判定装置の全体構成を示す平面図、図2は品質測定ユニットの正面図、図3は補正用測定ユニットの正面図、図4は中央制御装置の構成ブロック図、図5は品質判定処理のフローチャート、図6は選果装置の構成を示す平面図である。
【0006】
なお、本実施例では、青果物中の糖成分の濃度(以下「糖度」とする)を近赤外分光法により測定して糖度レベルを判定する場合について説明しているが、他の内部品質について他の判定法を適用してもよく、特に限定されるものではない。
【0007】
まず、本発明に係る品質判定装置の全体構成について、図1、図6により説明する。
図1、図6に示すように、品質判定装置4は、選果装置1の搬送装置3内の複数の搬送経路3a・3b・・・3fの全てにそれぞれ付設された複数の品質測定ユニット8a・8b・・・8fと、該搬送経路3a・3b・・・3fのうちの一搬送経路(以下「マスター搬送経路」とする)3aにのみ付設された単一の補正用測定ユニット9と、該補正用測定ユニット9と前記品質測定ユニット8a・8b・・・8fからの出力信号を基にして、搬送経路3a・3b・・・3fを搬送される青果物10の糖度を算出する中央制御装置5とから構成されている。
【0008】
そして、このうちの中央制御装置5は、通信用光ファイバ等の通信ケーブル11を介して前記補正用測定ユニット9と接続され、更に、この補正用測定ユニット9は、途中で複数の枝ケーブル12a・12b・・・12fに分岐した通信ケーブル12を介して、前記品質測定ユニット8a・8b・・・8fと接続されており、各測定ユニット8a・8b・・・8f・9からの各種データ関連の出力信号が、リアルタイムで中央制御装置5に送信できるようにしている。
【0009】
なお、各品質測定ユニット8a・8b・・・8f内に演算装置を設け、糖度推定のための各種演算を、中央制御装置5ではなく各品質測定ユニット8a・8b・・・8f内で行う構成としてもよい。この場合は、各品質測定ユニット8a・8b・・・8f内において、中央制御装置5より送られてくる補正用データや各種プログラムデータに基づき、青果物の大きさや温度に係わる補正係数の算出、及び糖度推定式の作成を行い、測定した糖度推定用データをこの糖度推定式に入力して糖度推定値の算出が行われる。
【0010】
ここで、図6に示すように、前記選果装置1は、上手側から順に、収穫した青果物10を前記搬送装置3に供給する供給装置2と、青果物10を複数の搬送経路3a・3b・・・3f上に整列させて下手側に向かって運搬する搬送装置3と、該搬送経路3a・3b・・・3fの途中部に設けた本発明に係わる品質判定装置4と、該品質判定装置4からの情報に基づいて糖度レベルに応じた実際の選別操作を行う選別装置6と、該選別装置6と前記供給装置2の動作を制御・管理すると共に品質判定装置4の一部を構成する前記中央制御装置5とから構成されている。
【0011】
このうちの供給装置2は、投入シュート2aや整列部2bを備えており、投入シュート2aから投入された青果物10は、整列部2bにおいて略同一の大きさ毎に粗く分別して整列された後、各搬送経路3a・3b・・・3fの始端部上に載置される。
【0012】
搬送装置3は、搬送経路3a・3b・・・3fの搬送始端に設けた駆動プーリ13と、搬送終端に設けた従動プーリ14と、該従動プーリ14と前記駆動プーリ13との間に張設されたベルト15と、前記駆動プーリ13を回転駆動する電動モータ等の駆動装置16とを備え、該駆動装置16によってベルト15上側を一定速度で下流側に移動させるようにしている。
【0013】
なお、ベルト15に、軟質材や網状材、上面に凹み部を形成したU字状ベルトを用いたり、あるいは、台座を備えたフリートレイ式コンベアや、バケット式コンベアを用いることにより、青果物10の座りを良くして測定時の光の散乱を防ぎ、後述する近赤外光による吸光度の測定精度の向上を図ることもできる。
【0014】
選別装置6では、前記中央制御装置5からの指示信号に基づいて、ベルト15上の青果物10を、図示せぬピストン等の押し出し部材で、選別出口6aからベルト15の外に排出し、各選別出口6aの先に設けた箱詰め機6bによって、青果物10を自動的に梱包して出荷するのである。
【0015】
次に、品質判定装置4を構成する測定ユニット8・9及び中央制御装置5について、図1乃至図4により説明する。
図1、図2に示すように、品質測定ユニット8は、前記搬送経路3a・3b・・・の搬送方向(図1中の矢印方向)に対して左右水平方向の一側に設けられた投光装置17と、前記搬送装置3のベルト15上の青果物10を挟んで投光装置17の反対側に設けられた受光装置18と、外乱光の侵入を回避して暗室となるように投光装置17・受光装置18を覆うカバー20と、これら投光装置17・受光装置・カバー20を支持する基台19とから構成されている。なお、青果物10と受光装置18との間には、後述するキャリブレーションに用いる、石英やガラスから成る透明のリファレンス用セル26が立設されている。
【0016】
このうちの投光装置17は、電源21と、該電源21からの電力で近赤外線又は近赤外線を含んだ光を投光する赤外線ランプ・ハロゲンランプ等の発光体22とから構成されており、青果物10の糖度を推定するのに適した波長を有する近赤外線を、青果物10の略全体又は一部に対して照射するようにしている。
【0017】
なお、前記電源21は、通信ケーブル12を介して前記中央制御装置5と接続されており、搬送装置3内で品質測定ユニット8よりも上手側に設けた図示せぬ光電センサ等の検知センサからの電気信号と、ベルト15の移動速度とから、中央制御装置5が、青果物10が投光装置17前方を通過するタイミングを算出し、電源21に向けて発光信号を送って、発光体22が適正時期に発光するようにしている。
【0018】
受光装置18は、青果物10を透過した透過光を収束する集光器23と、透過光を可視光線と近赤外線とに分光する分光器24と、近赤外線中の糖分の帰属波長の吸光度を検出し電気信号として出力する光検出器25とから構成されると共に、該光検出器25は、通信ケーブル12により前記中央制御装置5と接続されている。これにより、青果物10の透過光の特定波長の吸光度を検出した後、検出結果は電気信号として中央制御装置5に入力される。
【0019】
また、図1、図3に示すように、補正用測定ユニット9は、前記マスター搬送経路3aにおいて、品質測定ユニット8aよりも上手側に配置されると共に、青果物10の品温と雰囲気温度を放射温度計等で検出し電気信号として出力する温度センサ28と、レンズ29aで集光した青果物10の反射光をCCD撮像素子29bで受光してイメージを検出し電気信号として出力するイメージセンサ29と、これら温度センサ28・イメージセンサ29を支持する基台27とから構成される。
【0020】
温度センサ28・イメージセンサ29は、いずれもマスター搬送経路3aの左右側方に配置された上で、前記通信ケーブル11を介して前記中央制御装置5に接続されており、青果物10の品温とイメージとを検出した後、検出結果は電気信号として中央制御装置5に入力される。
【0021】
さらに、図1、図4に示すように、中央制御装置5は、キーボード、タッチパネル、音声入力機器、マウスなどの入力装置30と、CRTディスプレイ、液晶ディスプレイなどの表示機器やレーザープリンタなどの印刷機器に代表される出力装置31と、糖度推定式作成プログラム等の各種プログラムを読み込むメインメモリ33と、該プログラムの指令を受けて各種処理を行うCPU(中央処理装置)32と、ハードディスクなどの記憶装置34と、通信インターフェース35とから構成され、該通信インターフェース35を介して前記通信ケーブル11・12に接続されている。
【0022】
このうちの記憶装置34内には、品質測定ユニット8a・8b・・・8fから送信されてきた糖分の帰属波長の吸光度データや、後述する糖度推定式より算出した推定糖度データや、前記入力装置30より入力されて糖度レベルの判定に用いる判定基準糖度や、推定した糖度レベルの実績値を蓄積する糖度データベース34aと、前記補正用測定ユニット9から送信された温度データや青果物10のイメージデータを蓄積する補正用データベース34bとを設け、更に、前記温度データから温度に係わる補正係数を算出する温度補正プログラム、イメージデータから青果物10の半径等の大きさを算出した上で大きさに係わる補正係数を算出するスケール算出・補正プログラム、これらの補正係数から各搬送経路毎の糖度推定式を作成する糖度推定式作成プログラムといった、品質推定プログラムデータベース34cも設けている。
【0023】
次に、このような品質判定装置4において、糖度レベルの品質判定処理の実際の手順について、図1乃至図5により説明する。
品質判定処理41においては、まず、複数の搬送経路3a・3b・・・3fに設けた各品質測定ユニット8a・8b・・・8fについて後述するキャリブレーションを行い(ステップ42)、測定誤差を小さくする。
【0024】
そして、単一のマスター搬送経路3aのみに、新たなロットの青果物10をいくつか流して、前記補正用測定ユニット9により、青果物10の品温や雰囲気温度、及び青果物10のイメージを検出して、推定糖度を補正するのに必要な温度やイメージから成る補正用データを取得する(ステップ43)。
【0025】
該補正用データは、通信ケーブル11を介して前記中央制御装置5に送信され(ステップ44)、記録装置34の補正用データベース34bに蓄積される。そして、この補正用データからは、前記品質推定プログラムデータベース34cよりメインメモリ33に読み込まれた温度補正プログラムやスケール算出・補正プログラムに基づいて、CPU32が各補正係数を算出する(ステップ45)。
【0026】
ここで、一般に、ロットが同じ場合は青果物10の品温は略同一であり、測定時期が同じ場合は搬送経路3a・3b・・・3fの雰囲気温度も略同一であることから、温度に関する補正係数は、搬送経路3a・3b・・・3fの全てに適用できるものと考えられる。また、前記整列部2bにより、青果物10の大きさは搬送経路3a・3b・・・3f毎に略同一の大きさに揃えてあり、例えば、搬送経路3aから搬送経路3fになるに従い順に直径が小さくなるというようにして分別されるため、大きさに関する補正係数は、比例計算などにより、マスター搬送経路3a以外の搬送経路3b・3c・・・3fについても容易に推定することができる。
【0027】
このようにして求めた、温度や青果物10の大きさに関する補正係数から、前記品質推定プログラムデータベース34cからメインメモリ33に読み込まれた糖度推定式作成プログラムに基づいて、CPU32が、各搬送経路毎の糖度推定式を作成するのである(ステップ46)。
【0028】
その後、前記供給装置2から各搬送経路3a・3b・・・3fに青果物10を流し、各品質測定ユニット8a・8b・・・8fにより、青果物10を透過した近赤外線中の糖分の帰属波長の吸光度を検出し、糖度を推定するのに必要な糖度推定用データを取得する(ステップ47)
【0029】
該糖度推定用データは、通信ケーブル11・12を介して前記中央制御装置5に送信され(ステップ48)、記録装置34の糖度データベース34aに蓄積される。そして、この糖度推定用データからは、前記品質推定プログラムデータベース34cよりメインメモリ33に読み込まれた糖度推定式に基づいて、CPU32が、温度や青果物10の大きさで補正した推定糖度を各搬送経路3a・3b・・・3fについて算出するのである(ステップ49)。
【0030】
そして、該推定糖度は、前記糖度データベース34aに蓄積されると共に、同じ糖度データベース34a内の判定基準糖度と比較され、糖度レベルが判定される(ステップ50)。なお、この判定基準糖度は、単一の糖度値でも、複数の糖度値でも、あるいは特定の糖度幅であってもよく、特に限定されない。
【0031】
判定された糖度レベルの実績は、糖度データベース34aに蓄積されると同時に、前記選別装置6に選別操作の指示信号として送信される。
【0032】
以上のようにして、複数の搬送経路3a・3b・・・3fから成る搬送手段である搬送装置3内の一搬送経路であるマスター搬送経路3aに設けた補正用測定手段である補正用測定ユニット9により補正用データを取得した後、青果物10を複数の搬送経路3a・3b・・・3fにより搬送し、全ての搬送経路3a・3b・・・3fに配置した品質測定手段である品質測定ユニット8a・8b・・・8fにより各青果物10の品質推定用データを取得し、該品質推定用データから求める品質推定値を前記補正用データにより補正し、得られた品質補正推定値に基づいて各青果物の品質レベルを判定するので、全ての搬送経路3a・3b・・・3fの品質推定値を同一の補正用データを基に補正することができ、品質レベル判定の搬送経路の違いによる誤差を小さくすることができるため、判定精度の大幅な向上を図ることができる。
【0033】
また、青果物10を搬送する搬送装置3の複数の搬送経路3a・3b・・・3fの途中に、青果物10の特定品質である糖度を推定するための品質推定用データを取得する品質測定手段と、求めた品質推定値を補正するための補正用データを取得する補正用測定手段とを備えた農作物非破壊品質判定装置において、前記品質測定手段である品質測定ユニット8a・8b・・・8fは、全ての搬送経路3a・3b・・・3fに設ける一方、前記補正用測定手段である補正用測定ユニット9は、搬送装置3内の一搬送経路であるマスター搬送経路3aのみに設けたので、補正用測定手段の配設数を大幅に減少させることができ、設備コストが安くて済む。更に、保守管理の対象も少なくなるため、保守頻度が減少して作業負担や交換部品代も減少する上、保守管理の時間を短くできて選果処理効率の向上も図ることができる。しかも、本発明では、わざわざ搬送装置3全体を稼動せずとも、マスター搬送経路3aのみを使用しての品質レベルの推定も可能であり、少量の青果物10の品質判定処理にも低コストで迅速に対応することができるのである。
【0034】
そして、前記品質測定手段である品質測定ユニット8a・8b・・・8fには、近赤外等の光を照射する投光手段である投光装置17と、青果物10を透過又は反射した検出光を受ける受光手段である受光装置18とを備え、該受光装置18からの出力信号を品質推定用データとして解析し、糖度等の内部品質を推定するので、温度や検体の大きさの影響が大きいために補正用測定手段が不可欠な、近赤外等の光を用いる場合であっても、該補正用測定手段の配設数を大幅に減少させることができるのである。
【0035】
次に、前記キャリブレーション42について、図2により説明する。
キャリブレーション42においては、前記リファレンス用セル26の中に純水を注入した後に、実際の青果物10測定時と同じ照射条件及び受光条件にて、前記投光装置17と受光装置18とを作動させ、前述した手順で糖度を推定し、この推定糖度が0パーセントとなるように、品質測定ユニット8の各測定装置や配線等の設定を調整する。そして、前記ステップ43以降では、リファレンス用セル26内の純水を排水した上で、青果物10の透過光の吸光度を測定するようにしている。
【0036】
これは、青果物10の大部分は水分であり、従来のキャリブレーションのように青果物10の内部成分に似せた疑似青果物を用いずとも、純水でリファレンスを取ることができるからである。すなわち、純水を品質測定ユニットのキャリブレーション用のリファレンスとして使用するので、従来の疑似青果物に比べて変性しにくく、使用可能期限が長くなり必要量が少なくて済み、また、単価も安く、薬品類の大幅なコストダウンを図ることができるのである。
【0037】
【発明の効果】
本発明は、以上のように構成したので、以下に示す効果を奏する。
すなわち、請求項1に示すように、複数の搬送経路から成る搬送手段内の一搬送経路に設けた補正用測定手段により補正用データを取得した後、青果物を複数の搬送経路により搬送し、全ての搬送経路に配置した品質測定手段により各青果物の品質推定用データを取得し、該品質推定用データから求める品質推定値を前記補正用データにより補正し、得られた品質補正推定値に基づいて各青果物の品質レベルを判定するので、全ての搬送経路の品質推定値を同一の補正用データを基に補正することができ、品質レベル判定の搬送経路の違いによる誤差を小さくすることができるため、判定精度の大幅な向上を図ることができる。
【0038】
請求項2のように、青果物を搬送する搬送手段の複数の搬送経路の途中に、青果物の特定品質を推定するための品質推定用データを取得する品質測定手段と、求めた品質推定値を補正するための補正用データを取得する補正用測定手段とを備えた農作物非破壊品質判定装置において、前記品質測定手段は、全ての搬送経路に設ける一方、前記補正用測定手段は、搬送手段内の一搬送経路のみに設けたので、補正用測定手段の配設数を大幅に減少させることができ、設備コストが安くて済む。更に、保守管理の対象も少なくなるため、保守頻度が減少して作業負担や交換部品代も減少する上、保守管理の時間を短くできて選果処理効率の向上も図ることができる。しかも、本発明では、わざわざ搬送手段全体を稼動せずとも、一搬送経路のみを使用しての品質レベルの推定も可能であり、少量の青果物の品質判定処理にも低コストで迅速に対応することができるのである。
【0039】
請求項3のように、請求項2記載の品質測定手段には、近赤外等の光を照射する投光手段と、青果物を透過又は反射した検出光を受ける受光手段とを備え、該受光手段からの出力信号を品質推定用データとして解析し、糖度等の内部品質を推定するので、温度や検体の大きさの影響が大きいために補正用測定手段が不可欠な、近赤外等の光を用いる場合であっても、該補正用測定手段の配設数を大幅に減少させることができるのである。
【図面の簡単な説明】
【図1】本実施例に係る品質判定装置の全体構成を示す平面図である。
【図2】品質測定ユニットの正面図である。
【図3】補正用測定ユニットの正面図である。
【図4】中央制御装置の構成ブロック図である。
【図5】品質判定処理のフローチャートである。
【図6】選果装置の構成を示す平面図である。
【符号の説明】
3 搬送手段
3a 一搬送経路
3a・3b・・・3f 搬送経路
8a・8b・・・8f 品質測定手段
9 補正用測定手段
10 青果物
17 投光手段
18 受光手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is tangerine, melon, watermelon and other produce non-destructive quality determination method and apparatus to determine the quality by continuously measuring the internal quality and the like of fruits and vegetables, in particular, on the quality estimate, the size of the fruits and vegetables, The present invention relates to technology for eliminating the influence of the temperature of the fruit and vegetable main body and the measurement environment.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a configuration of a fruit sorting device that performs sorting and sorting of fruits and vegetables, a plurality of transport paths are arranged side by side in a transport means, and the internal quality of fruits and vegetables that are continuously sent along the transport paths is determined along the transport path. There is known an apparatus which measures quickly by a non-destructive quality determination apparatus provided in the above, determines a quality level from the measurement result, and performs actual classification and selection in a downstream selection apparatus or the like.
In such a nondestructive quality determination device, for example, light such as infrared light having relatively strong transmitting power is irradiated on fruits and vegetables, and the detection light transmitted or reflected by the fruits and vegetables is analyzed, and the near infrared light is detected. By measuring the absorbance at wavelengths where the presence of components such as sugars and the amount of the components are affected (hereinafter referred to as “attributed wavelength”), the type and concentration of the internal components can be determined without destroying the fruits and vegetables. Quickly estimated. Here, the absorbance is the light absorption of an object represented by log 10 (I 0 / I) when the incident light intensity is I 0 and the transmitted light intensity is I when a parallel light beam passes through the object. Refers to the intensity, which depends on the wavelength of light
However, since the absorbance is greatly affected by the size of the fruits and vegetables, the product temperature, the temperature in the vicinity of the measuring device, and the like, it is necessary to reliably remove the influence in order to obtain a practical estimation accuracy.
For this reason, in the conventional nondestructive quality determination device, in addition to using light such as near-infrared light having a large influence of the temperature and the size of the sample, in general, in addition to the quality measurement device that acquires quality estimation data, A correction measuring device for measuring the size of fruits and vegetables to obtain correction data, and an arithmetic device for performing calculations and the like using a correction formula are provided to improve the quality estimation accuracy.
[0003]
[Problems to be solved by the invention]
However, the non-destructive quality determination devices having the functions of the quality measurement device, the correction measurement device, the arithmetic device, and the like have been disposed on all the transport paths as a single unit or as separate units. As a result, the equipment costs are high, and the number of devices subject to maintenance management is large, so not only the frequency of maintenance increases, the work load and replacement parts cost increase, but also time is required for maintenance management. There is a problem that the fruit processing efficiency also decreases. In addition, since the quality estimation value is corrected by measuring different correction data for each transport route, there is a problem that a large error due to a difference in the transport route may appear when determining the quality level.
[0004]
[Means for Solving the Problems]
The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.
In other words, in claim 1, after acquiring the correction data by the correction measuring means provided in one transport path in the transport means comprising a plurality of transport paths, the fruits and vegetables are transported through the plurality of transport paths, and all transports are performed. The quality estimation data of each vegetable is obtained by the quality measuring means arranged on the route, and the quality estimation value obtained from the quality estimation data is corrected by the correction data, and each vegetable is obtained based on the obtained quality correction estimation value. Is to determine the quality level.
In claim 2, quality measuring means for acquiring quality estimation data for estimating a specific quality of the fruits and vegetables in a plurality of transport paths of the transporting means for transporting the fruits and vegetables, and correcting the obtained quality estimation value. In the agricultural non-destructive quality determination device provided with a correction measuring means for acquiring correction data for quality control, the quality measuring means is provided on all transport paths, while the correction measuring means is provided in one of the transport means. It is provided only on the transport path.
In claim 3, the quality measuring means includes a light projecting means for irradiating light such as near-infrared light, and a light receiving means for receiving detection light transmitted or reflected by the fruits and vegetables, and an output signal from the light receiving means. Is analyzed as quality estimation data to estimate internal quality such as sugar content.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, examples of the present invention will be described.
FIG. 1 is a plan view showing the overall configuration of a quality determination device according to the present embodiment, FIG. 2 is a front view of a quality measurement unit, FIG. 3 is a front view of a correction measurement unit, and FIG. FIG. 5 is a flowchart of the quality determination process, and FIG. 6 is a plan view showing the configuration of the fruit selection device.
[0006]
In this embodiment, the case where the concentration of the sugar component in the fruits and vegetables (hereinafter referred to as “sugar content”) is measured by near-infrared spectroscopy to determine the sugar content level is described. Other determination methods may be applied and are not particularly limited.
[0007]
First, the overall configuration of the quality determination device according to the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 6, the quality determination device 4 includes a plurality of quality measurement units 8 a attached to all of the plurality of transport paths 3 a, 3 b,. 8b... 8f and a single correction measuring unit 9 attached only to one of the transport paths 3a, 3b... 3f (hereinafter referred to as “master transport path”) 3a; Central control device for calculating the sugar content of the fruits and vegetables 10 transported on the transport routes 3a, 3b... 3f based on the output signals from the correction measuring unit 9 and the quality measuring units 8a, 8b. 5 is comprised.
[0008]
The central control device 5 is connected to the correction measurement unit 9 via a communication cable 11 such as a communication optical fiber. The correction measurement unit 9 further includes a plurality of branch cables 12a. .. 12f are connected to the quality measuring units 8a, 8b... 8f via the communication cable 12 and are connected to various data from the measuring units 8a, 8b. Can be transmitted to the central controller 5 in real time.
[0009]
In addition, an arithmetic unit is provided in each of the quality measuring units 8a, 8b,..., 8f, and various calculations for estimating the sugar content are performed in each of the quality measuring units 8a, 8b,. It may be. In this case, in each of the quality measuring units 8a, 8b,..., 8f, based on the correction data and various program data sent from the central control device 5, calculation of correction coefficients related to the size and temperature of the fruits and vegetables, and A sugar content estimation formula is created, and the measured sugar content estimation data is input to the sugar content estimation formula to calculate a sugar content estimated value.
[0010]
Here, as shown in FIG. 6, the fruit sorting device 1 includes a supply device 2 that supplies the harvested fruits and vegetables 10 to the transport device 3 in order from the skill side, and a fruit and vegetables 10 that are transported through a plurality of transport paths 3a, 3b. ..The transport device 3 arranged on the 3f and transported toward the lower side, the quality determination device 4 according to the present invention provided in the middle of the transport paths 3a, 3b... 3f, and the quality determination device And a part of the quality judging device 4 which controls and manages the operation of the sorting device 6 and the supply device 2 which perform an actual sorting operation according to the sugar content level based on the information from the device 4. And the central control unit 5.
[0011]
The supply device 2 includes a charging chute 2a and an aligning unit 2b, and the fruits and vegetables 10 supplied from the charging chute 2a are roughly separated and aligned at substantially the same size in the aligning unit 2b. It is placed on the start end of each of the transport paths 3a, 3b,.
[0012]
The transport device 3 includes a drive pulley 13 provided at the transport start end of the transport paths 3a, 3b,... 3f, a driven pulley 14 provided at the transport end, and a tension between the driven pulley 14 and the drive pulley 13. And a driving device 16 such as an electric motor for driving the driving pulley 13 to rotate. The driving device 16 moves the upper side of the belt 15 downstream at a constant speed.
[0013]
The belt 15 is made of a soft material, a net-like material, a U-shaped belt having a concave portion formed on the upper surface, or a free tray type conveyor having a pedestal, or a bucket type conveyor. The sitting can be improved to prevent light scattering at the time of measurement, and the measurement accuracy of absorbance by near-infrared light described later can be improved.
[0014]
In the sorting device 6, the fruits and vegetables 10 on the belt 15 are discharged from the sorting outlet 6a to the outside of the belt 15 by a pushing member such as a piston (not shown) based on the instruction signal from the central control device 5, and each sorting is performed. The fruits and vegetables 10 are automatically packed and shipped by the box packing machine 6b provided at the end of the exit 6a.
[0015]
Next, the measurement units 8 and 9 and the central control device 5 that constitute the quality judgment device 4 will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the quality measuring unit 8 is provided on one side in the horizontal direction in the left and right direction with respect to the transport direction of the transport paths 3a, 3b,. A light device 17; a light receiving device 18 provided on the opposite side of the light projecting device 17 with the fruits and vegetables 10 on the belt 15 of the conveying device 3; and a light projecting device so as to avoid a disturbance light and enter a dark room. It comprises a cover 20 that covers the device 17 and the light receiving device 18 and a base 19 that supports the light projecting device 17 and the light receiving device and the cover 20. In addition, a transparent reference cell 26 made of quartz or glass, which is used for calibration described later, is provided upright between the fruits and vegetables 10 and the light receiving device 18.
[0016]
The light projecting device 17 includes a power source 21 and a luminous body 22 such as an infrared lamp or a halogen lamp that projects near-infrared light or light containing near-infrared light with power from the power source 21. Near-infrared light having a wavelength suitable for estimating the sugar content of the fruits and vegetables 10 is applied to substantially all or a part of the fruits and vegetables 10.
[0017]
The power supply 21 is connected to the central control device 5 via the communication cable 12 and is connected to a detection sensor such as a photoelectric sensor (not shown) provided on the upper side of the quality measurement unit 8 in the transport device 3. The central control device 5 calculates the timing at which the fruits and vegetables 10 pass in front of the light emitting device 17 from the electric signal of the belt 15 and the moving speed of the belt 15, sends a light emission signal to the power supply 21, and Light is emitted at the right time.
[0018]
The light receiving device 18 includes a condenser 23 that converges the transmitted light transmitted through the fruits and vegetables 10, a spectroscope 24 that disperses the transmitted light into visible light and near-infrared light, and detects the absorbance at the assigned wavelength of sugar in near-infrared light. And a photodetector 25 that outputs an electric signal. The photodetector 25 is connected to the central control device 5 by a communication cable 12. As a result, after detecting the absorbance of the specific wavelength of the transmitted light of the fruits and vegetables 10, the detection result is input to the central control device 5 as an electric signal.
[0019]
As shown in FIG. 1 and FIG. 3, the correction measurement unit 9 is arranged on the master transport path 3a on the better side than the quality measurement unit 8a, and radiates the product temperature and the ambient temperature of the fruits and vegetables 10. A temperature sensor 28 which detects with a thermometer or the like and outputs it as an electric signal, an image sensor 29 which receives reflected light of the fruits and vegetables 10 condensed by a lens 29a by a CCD image sensor 29b, detects an image and outputs the image as an electric signal, It comprises a temperature sensor 28 and a base 27 that supports the image sensor 29.
[0020]
Each of the temperature sensor 28 and the image sensor 29 is disposed on the left and right sides of the master transport path 3a, and is connected to the central control device 5 via the communication cable 11. After detecting the image, the detection result is input to the central controller 5 as an electric signal.
[0021]
Further, as shown in FIGS. 1 and 4, the central control device 5 includes an input device 30 such as a keyboard, a touch panel, a voice input device, and a mouse, a display device such as a CRT display and a liquid crystal display, and a printing device such as a laser printer. , A main memory 33 that reads various programs such as a sugar content estimation formula creation program, a CPU (central processing unit) 32 that performs various processes in response to instructions from the programs, and a storage device such as a hard disk 34, and a communication interface 35, and are connected to the communication cables 11 and 12 via the communication interface 35.
[0022]
In the storage device 34, the absorbance data of the attributed wavelength of the sugar transmitted from the quality measuring units 8a, 8b,... 8f, the estimated sugar content data calculated by a sugar content estimation formula described later, and the input device The sugar content database 34a that stores the reference sugar content and the actual value of the estimated sugar content that are input from the device 30 and determines the sugar content level, and the temperature data and the image data of the fruits and vegetables 10 transmitted from the correction measurement unit 9 A temperature correction program for calculating a correction coefficient relating to temperature from the temperature data; a correction coefficient relating to the size after calculating the size such as the radius of the fruits and vegetables 10 from the image data; Scale calculation / correction program which calculates the sugar content for each transport route from these correction factors Such as estimation formula creation program, it is also provided quality estimation program database 34c.
[0023]
Next, an actual procedure of the quality determination processing of the sugar content level in the quality determination device 4 will be described with reference to FIGS.
In the quality determination process 41, first, the below-described calibration is performed for each of the quality measurement units 8a, 8b,... 8f provided on the plurality of transport paths 3a, 3b,. I do.
[0024]
Then, some fruits and vegetables 10 of a new lot are flown only into the single master transport path 3a, and the correction measurement unit 9 detects the temperature of the fruits and vegetables, the ambient temperature, and the image of the fruits and vegetables 10. Then, correction data including a temperature and an image necessary for correcting the estimated sugar content is obtained (step 43).
[0025]
The correction data is transmitted to the central control device 5 via the communication cable 11 (step 44), and is stored in the correction database 34b of the recording device 34. From the correction data, the CPU 32 calculates each correction coefficient based on the temperature correction program and the scale calculation / correction program read into the main memory 33 from the quality estimation program database 34c (step 45).
[0026]
Here, in general, when the lot is the same, the temperature of the fruits and vegetables 10 is substantially the same, and when the measurement time is the same, the ambient temperatures of the transport routes 3a, 3b,. The coefficients are considered to be applicable to all of the transport paths 3a, 3b,. Also, the size of the fruits and vegetables 10 is adjusted to be substantially the same for each of the transport routes 3a, 3b,... 3f by the alignment unit 2b. For example, the diameter of the fruits and vegetables 10 increases in order from the transport route 3a to the transport route 3f. Since it is classified as being smaller, the correction coefficient relating to the size can be easily estimated for the transport routes 3b, 3c,..., 3f other than the master transport route 3a by proportional calculation or the like.
[0027]
Based on the correction coefficients for the temperature and the size of the fruits and vegetables 10 obtained in this manner, the CPU 32 determines the transport rate for each transport route based on the sugar content estimation formula creation program read from the quality estimation program database 34c into the main memory 33. A sugar content estimation formula is created (step 46).
[0028]
Then, fruits and vegetables 10 are flown from the supply device 2 to each of the transport paths 3a, 3b,... 3f, and the quality measurement units 8a, 8b,. The absorbance is detected, and the sugar content estimation data necessary for estimating the sugar content is obtained (step 47).
[0029]
The sugar content estimation data is transmitted to the central control device 5 via the communication cables 11 and 12 (step 48), and is stored in the sugar content database 34a of the recording device 34. From the sugar content estimation data, the CPU 32 corrects the estimated sugar content based on the sugar content estimation formula read into the main memory 33 from the quality estimation program database 34c based on the temperature and the size of the fruit or vegetable 10 in each transport route. .., 3f (step 49).
[0030]
Then, the estimated sugar content is stored in the sugar content database 34a, and is compared with a determination reference sugar content in the same sugar content database 34a to determine the sugar content level (step 50). The determination reference sugar content may be a single sugar content value, a plurality of sugar content values, or a specific sugar content range, and is not particularly limited.
[0031]
The result of the determined sugar content level is stored in the sugar content database 34a and, at the same time, transmitted to the sorting device 6 as an instruction signal of a sorting operation.
[0032]
As described above, the correction measurement unit, which is the correction measurement unit provided on the master transport path 3a, which is one of the transport paths in the transport device 3, which is the transport unit including the plurality of transport paths 3a, 3b,. 9, the fruits and vegetables 10 are transported by a plurality of transport paths 3a, 3b,..., 3f, and the quality measuring unit is a quality measuring means disposed on all transport paths 3a, 3b,. 8a, 8b,... 8f to obtain quality estimation data of each fruit and vegetable 10, correct the quality estimation value obtained from the quality estimation data with the correction data, and based on the obtained quality correction estimation value, Since the quality level of the fruits and vegetables is determined, the quality estimation values of all the transport routes 3a, 3b,... 3f can be corrected based on the same correction data. Because by it is possible to reduce an error, it is possible to greatly improve the determination accuracy.
[0033]
A quality measuring means for acquiring quality estimation data for estimating the sugar content, which is a specific quality of the fruits and vegetables 10, in the middle of the plurality of transport routes 3a, 3b,... 3f of the transportation device 3 for transporting the fruits and vegetables 10. , A quality measuring unit 8a, 8b,... 8f, which is a non-destructive quality determination device for crops, comprising: a correction measuring means for acquiring correction data for correcting the obtained quality estimation value. , 3f, while the correction measuring unit 9 as the correction measuring means is provided only in the master transport path 3a, which is one transport path in the transport device 3. The number of correction measuring means can be greatly reduced, and the equipment cost can be reduced. Further, since the number of objects for maintenance management is reduced, the frequency of maintenance is reduced, the work load and replacement parts cost are reduced, and the time for maintenance management can be shortened, and the efficiency of fruit sorting can be improved. In addition, according to the present invention, it is possible to estimate the quality level using only the master transport path 3a without having to operate the entire transport apparatus 3, and the quality determination processing of a small amount of fruits and vegetables 10 can be performed quickly and at low cost. It is possible to respond to.
[0034]
The quality measuring units 8a, 8b,..., 8f serving as the quality measuring means are provided with a light projecting device 17, which is a light projecting means for irradiating light such as near-infrared light, and a detection light transmitted or reflected by the fruit or vegetable 10. And a light receiving device 18 for receiving the light, the output signal from the light receiving device 18 is analyzed as quality estimation data, and the internal quality such as the sugar content is estimated. Therefore, even in the case of using light such as near-infrared light, for which correction measurement means is indispensable, the number of correction measurement means provided can be greatly reduced.
[0035]
Next, the calibration 42 will be described with reference to FIG.
In the calibration 42, after injecting pure water into the reference cell 26, the light projecting device 17 and the light receiving device 18 are operated under the same irradiation conditions and light receiving conditions as those of the actual measurement of the fruit and vegetable 10. Then, the sugar content is estimated by the above-described procedure, and the settings of the measuring devices, the wiring, and the like of the quality measuring unit 8 are adjusted so that the estimated sugar content becomes 0%. After the step 43, the pure water in the reference cell 26 is drained, and then the absorbance of the transmitted light of the fruit and vegetable 10 is measured.
[0036]
This is because most of the fruits and vegetables 10 are water, and the reference can be made with pure water without using a pseudo fruits and vegetables similar to the internal components of the fruits and vegetables 10 as in the conventional calibration. In other words, since pure water is used as a reference for calibration of the quality measurement unit, it is less likely to be denatured than conventional artificial fruits and vegetables, has a longer useful life and requires less amount, and has a lower unit price, The cost can be greatly reduced.
[0037]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
That is, as described in claim 1, after acquiring the correction data by the correction measuring means provided in one transport path in the transport means comprising a plurality of transport paths, the fruits and vegetables are transported through the multiple transport paths, and The quality estimation means of each vegetable is obtained by the quality measuring means arranged on the transport path of the product, and the quality estimation value obtained from the quality estimation data is corrected by the correction data, and based on the obtained quality correction estimation value. Since the quality level of each fruit and vegetable is determined, the quality estimation values of all transport routes can be corrected based on the same correction data, and errors due to differences in the transport route of quality level determination can be reduced. Thus, the accuracy of determination can be greatly improved.
[0038]
As in claim 2, a quality measuring means for acquiring quality estimation data for estimating a specific quality of the fruits and vegetables in a plurality of transport routes of the transportation means for transporting the fruits and vegetables, and correcting the obtained quality estimation value. In the agricultural non-destructive quality determination device including a correction measuring means for acquiring correction data for performing, the quality measuring means is provided in all transport paths, while the correction measuring means is provided in the transport means Since only one transfer path is provided, the number of correction measurement units can be significantly reduced, and equipment costs can be reduced. Further, since the number of objects for maintenance management is reduced, the frequency of maintenance is reduced, the work load and replacement parts cost are reduced, and the time for maintenance management can be shortened, and the efficiency of fruit sorting can be improved. Moreover, in the present invention, it is possible to estimate the quality level using only one transport route without having to operate the entire transport means, and to quickly respond to the quality determination processing of a small amount of fruits and vegetables at low cost. You can do it.
[0039]
As in claim 3, the quality measuring means according to claim 2 includes a light projecting means for irradiating light such as near-infrared light, and a light receiving means for receiving detection light transmitted or reflected by fruits and vegetables. Since the output signal from the means is analyzed as quality estimation data and the internal quality such as sugar content is estimated, the influence of temperature and the size of the sample is large, so that near-infrared light etc. Is used, the number of the measuring means for correction can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a plan view illustrating an overall configuration of a quality determination device according to an embodiment.
FIG. 2 is a front view of the quality measuring unit.
FIG. 3 is a front view of a correction measurement unit.
FIG. 4 is a configuration block diagram of a central control device.
FIG. 5 is a flowchart of a quality determination process.
FIG. 6 is a plan view showing a configuration of a fruit sorting device.
[Explanation of symbols]
3 Conveying Means 3a One Conveying Path 3a, 3b ... 3f Conveying Path 8a, 8b ... 8f Quality Measuring Means 9 Correction Measuring Means 10 Fruit and Vegetables 17 Light Emitting Means 18 Light Receiving Means

Claims (3)

複数の搬送経路から成る搬送手段内の一搬送経路に設けた補正用測定手段により補正用データを取得した後、青果物を複数の搬送経路により搬送し、全ての搬送経路に配置した品質測定手段により各青果物の品質推定用データを取得し、該品質推定用データから求める品質推定値を前記補正用データにより補正し、得られた品質補正推定値に基づいて各青果物の品質レベルを判定することを特徴とする農産物非破壊品質判定方法。After acquiring the correction data by the correction measuring means provided on one transport path in the transport means comprising a plurality of transport paths, the fruits and vegetables are transported by the multiple transport paths, and the quality measuring means disposed on all the transport paths. Acquiring quality estimation data of each fruit and vegetable, correcting the quality estimation value obtained from the quality estimation data with the correction data, and determining the quality level of each fruit and vegetable based on the obtained quality correction estimation value. Characteristic non-destructive quality judgment method for agricultural products. 青果物を搬送する搬送手段の複数の搬送経路の途中に、青果物の特定品質を推定するための品質推定用データを取得する品質測定手段と、求めた品質推定値を補正するための補正用データを取得する補正用測定手段とを備えた農作物非破壊品質判定装置において、前記品質測定手段は、全ての搬送経路に設ける一方、前記補正用測定手段は、搬送手段内の一搬送経路のみに設けたことを特徴とする農作物非破壊品質判定装置。In the middle of a plurality of transport routes of transport means for transporting fruits and vegetables, quality measuring means for acquiring quality estimation data for estimating specific quality of fruits and vegetables, and correction data for correcting the obtained quality estimated value are provided. In the non-destructive quality determination apparatus for crops provided with the measuring means for correction to acquire, the quality measuring means is provided on all transport paths, while the measuring means for correction is provided only on one transport path in the transport means. A non-destructive agricultural product quality judging device characterized in that: 前記品質測定手段には、近赤外等の光を照射する投光手段と、青果物を透過又は反射した検出光を受ける受光手段とを備え、該受光手段からの出力信号を品質推定用データとして解析し、糖度等の内部品質を推定することを特徴とする請求項2記載の農作物非破壊品質判定装置。The quality measuring means includes a light emitting means for irradiating light such as near-infrared light, and a light receiving means for receiving detection light transmitted or reflected by fruits and vegetables, and an output signal from the light receiving means as quality estimation data. 3. The non-destructive quality determination apparatus for agricultural products according to claim 2, wherein the apparatus analyzes and estimates internal quality such as sugar content.
JP2002178293A 2002-06-19 2002-06-19 Non-destructive method and apparatus for determining quality of agricultural products Pending JP2004020470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178293A JP2004020470A (en) 2002-06-19 2002-06-19 Non-destructive method and apparatus for determining quality of agricultural products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178293A JP2004020470A (en) 2002-06-19 2002-06-19 Non-destructive method and apparatus for determining quality of agricultural products

Publications (1)

Publication Number Publication Date
JP2004020470A true JP2004020470A (en) 2004-01-22

Family

ID=31176058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178293A Pending JP2004020470A (en) 2002-06-19 2002-06-19 Non-destructive method and apparatus for determining quality of agricultural products

Country Status (1)

Country Link
JP (1) JP2004020470A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174030A (en) * 2013-03-11 2014-09-22 Mitsui Kinzoku Instrumentations Technology Corp Spectrometry apparatus and spectrometry method
JP2016114567A (en) * 2014-12-18 2016-06-23 ヤンマー株式会社 Quality sorting device
WO2020075000A1 (en) * 2018-10-10 2020-04-16 株式会社半導体エネルギー研究所 Inspection device and method for operating inspection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174030A (en) * 2013-03-11 2014-09-22 Mitsui Kinzoku Instrumentations Technology Corp Spectrometry apparatus and spectrometry method
JP2016114567A (en) * 2014-12-18 2016-06-23 ヤンマー株式会社 Quality sorting device
WO2020075000A1 (en) * 2018-10-10 2020-04-16 株式会社半導体エネルギー研究所 Inspection device and method for operating inspection device
JPWO2020075000A1 (en) * 2018-10-10 2021-10-14 株式会社半導体エネルギー研究所 Inspection device and operation method of inspection device
US11900642B2 (en) 2018-10-10 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Inspection device and method for operating inspection device

Similar Documents

Publication Publication Date Title
US8446582B2 (en) System and method for analyzing fluids
JPH06288903A (en) Light transmission detector for inspecting internal quality of vegetables and fruits
JP2001037367A (en) Automatic selection system for egg and detection system for defective egg
KR20110081668A (en) Nondestructive sorting apparatus for fruit
NZ515737A (en) Side multiple-lamp on-line inside quality inspecting device
JP2007303940A (en) Device and method for inspecting internal quality of vegetables and fruits
JP2008014873A (en) Device for determining internal quality
JP2004020470A (en) Non-destructive method and apparatus for determining quality of agricultural products
JP2007069061A (en) Sorting system of vegetables and fruits
JP5386114B2 (en) Fruit and vegetable quality judgment device
JPH1019772A (en) Saccharinity measuring instrument for fruit
JPH1015499A (en) Inspection apparatus for fruits
US8811569B2 (en) Method and apparatus for estimating the dry mass flow rate of a biological material
JP2007044659A (en) Vegetable and fruit sorting system
JP7375277B2 (en) Internal quality inspection equipment for fruits and vegetables
JP2001289784A (en) Method and device for determining pericarp quality of produce
JP2004045038A (en) Noncontact moisture content meter
JP2012078206A (en) Apparatus and method for determining quality of fruit and vegetable
JP2004101241A (en) Apparatus for nondestructively determining quality of agricultural product
JP2004004077A (en) System for measuring internal quality of agricultural product
JP2020165779A (en) Device and method for inspecting fruits and vegetables, fruit and vegetable inspection device with freshness preservation feature, and fruit and vegetable inspection method for preserving freshness
JP2003185576A (en) Nondestructive quality decision apparatus for agricultural products
JP2003156438A (en) Non-destructive determining device for quality of agricultural product
JP6393567B2 (en) Method and apparatus for testing sperm egg
JPH11337480A (en) Apparatus and method for measuring quality in fruits and vegetables