JP2004020376A - Cooler for nuclear reactor - Google Patents

Cooler for nuclear reactor Download PDF

Info

Publication number
JP2004020376A
JP2004020376A JP2002175586A JP2002175586A JP2004020376A JP 2004020376 A JP2004020376 A JP 2004020376A JP 2002175586 A JP2002175586 A JP 2002175586A JP 2002175586 A JP2002175586 A JP 2002175586A JP 2004020376 A JP2004020376 A JP 2004020376A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
air
reactor
tube group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002175586A
Other languages
Japanese (ja)
Inventor
Tadahiko Suzuta
鈴田 忠彦
Takashi Naito
内藤 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002175586A priority Critical patent/JP2004020376A/en
Publication of JP2004020376A publication Critical patent/JP2004020376A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooler for reactor superior in cooling efficiency for efficiently removing decay heat in LOCA(loss-of-coolant accident) occurrence. <P>SOLUTION: Heat conduction pipe bundles 33a and 33b consisting of a multitude of heat conduction pipes 34 are arranged by turns and arranged obliquely toward the lower end 25a of a partition member 25 from near the bottom surface 37 so as to spatially block an air flow-out path 24 in a connection part 26. Tank water 38 is stored to the level almost covering the heat conduction pipes 34. The heat conduction pipes 34 of the heat conduction pipe bundles 33a and 33b in submerged state are cooled by the tank water 38. The heat conduction pipes 34 exposed over the upper surface of the tank water 38 because of the tank water 38 evaporation and water level lowering, are cooled by the air flow flowing in the air inlet 21 and flowing out of an air outlet 23. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、原子炉用冷却器に係り、とくに、炉心を冷却する1次冷却材及び1次冷却材を冷却する冷却系統を原子炉容器内に一体化して内蔵した冷却系統一体型原子炉の崩壌熱除去装置に用いられ、崩壊熱によって加熱された1次冷却材を冷却して加熱される2次冷却材を冷却する冷却器に関する。
【0002】
【従来の技術】
冷却系統一体型原子炉の崩壊熱除去装置に用いられ、蒸気発生器により蒸発した2次冷却水を冷却する冷却器として、本出願人により平成13年7月30日に出願された特願2001−230042に記載されているものがある。この冷却器1は、図5及び6に示されるように、伝熱管2が貫通した有底筒状のタンク3から構成しており、通常はこのタンク3内にタンク水4を貯えている。タンク3は、仕切板5によってその内部が、伝熱管2が貫通している領域と、そうでない領域とに区分され、これらの領域はタンク底部側において連通している。
【0003】
原子炉において1次冷却材喪失事故(Loss of Coolant Accident。以下「LOCA」と称する)が発生すると、1次冷却水の熱は図示しない蒸気発生器において2次冷却水と熱交換され、1次冷却水が冷却されるとともに、2次冷却水は蒸気となって、蒸気発生器から冷却器1内の伝熱管2に導入される。伝熱管2の内側を流れる蒸気が、伝熱管2の周囲のタンク水4によって冷却され凝縮して水に戻される。この水が自重によって伝熱管2内を落下することによって蒸気発生器に再び供給され、原子炉容器の内部を冷却するために用いられる。
さらに、冷却器1のタンク水4は、伝熱管2の内部を流れる蒸気から熱を受け、沸騰して蒸発しタンク水4の水位が下がっていく。タンク水4の水面から上側に露出した伝熱管2に大気が直接あたり、図6に示されるように、伝熱管2全体が大気の流れによって空気冷却されることになる。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した冷却器1では、タンク水4を用いて2次冷却水を水冷する場合、大量のタンク水4が必要である。また、伝熱管2はタンクの底部まで配置されていないので、タンク水4のすべてを有効に利用して水冷することができなかった。さらに、大気による空冷においても効率的な冷却をおこなうことができなかった。
【0005】
この発明はこのような課題を解決するためになされたもので、LOCA発生時の崩壊熱の除去を効率よく行うために、冷却効率に優れた原子炉用冷却器を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る原子炉用冷却器は、原子炉の炉心を冷却し崩壊熱により加熱された1次冷却材との熱交換を行って2次冷却材を蒸発させる蒸気発生器に接続されて、蒸発した2次冷却材を冷却し凝縮して蒸気発生器に戻して、崩壊熱を除去する原子炉用冷却器において、仕切部材と、この仕切部材により画され且つ仕切部材の下方の連通部で互いに連通する第1及び第2の縦通路と、2次冷却材が内部を流れる複数の伝熱管を有する伝熱管群とを備え、この伝熱管群は、連通部において、第1の縦通路を空間的に塞ぐように、第1の縦通路の底面近傍から仕切部材の下端に向かって、斜めに配置されたことを特徴とするものである。
【0007】
伝熱管群の最上部の伝熱管は、仕切部材の下端近傍に配置され、最下部の伝熱管は、第1の縦通路の底面近傍に配置されてもよい。
冷却器は、伝熱管群の伝熱管をほぼ覆うような高さまで、第1及び第2の縦通路内に冷却水が貯えられ、蒸発した2次冷却材が伝熱管群の伝熱管に導入されると、第1及び第2の縦通路内の冷却水により2次冷却材を凝縮するとともに、冷却水が蒸発して水位が下がり冷却水の上面から露出した伝熱管は、第2の縦通路から第1の縦通路に流入する気流によって冷却されてもよい。
第2の縦通路には、空気を外部から取り入れる空気流入口が設けられ、第1の縦通路には、空気流入口から取り入れ伝熱管群を通過した空気を外部に流出する空気流出口が設けられ、空気流出口は、空気流入口よりも高い位置に配置されてもよい。
空気流入口及び空気流出口には、それぞれ開閉用扉が設けられてもよい。
伝熱管群の伝熱管は、蒸気発生器から2次冷却材が導入される入口側が、伝熱管により冷却された2次冷却材を蒸気発生器に排出する出口側よりも上方に設けられ、伝熱管は、全体にわたって、入口側から出口側に向かって下向きに傾斜して配置されてもよい。
伝熱管の一部は、他の部分よりも傾斜が急な熱膨張吸収部を備えてもよい。
冷却器の伝熱管群は、複数設けられ、2つの蒸気発生器にそれぞれ接続され得る第1及び第2の伝熱管群に区分され、第1の伝熱管群と第2の伝熱管群とは、鉛直方向及び水平方向にそれぞれ交互に配置されてもよい。
【0008】
【発明の実施の形態】
以下に、この発明の実施の形態を図面に基づいて説明する。
実施の形態1.
この発明の実施の形態に係る原子炉用冷却器10が用いられた冷却系統一体型原子炉の崩壊熱除去装置の構成を示す配置図である。
原子炉容器11内には、1次冷却水12に浸された状態の炉心13と2つの蒸気発生器14とが設けられている。蒸気発生器14は、複数の伝熱管から構成され、炉心13で発生した核分裂によるエネルギーによって加熱された1次冷却水12と、主蒸気配管7内を流れる2次冷却水15との間で熱交換を行う。
【0009】
主蒸気配管7には、タービン20,ポンプ16,バルブ17a,17bが設けられている。
主蒸気配管7の途中、蒸気発生器14とバルブ17aとの間及び蒸気発生器14とバルブ17bとの間には、主蒸気配管7から分岐して、LOCA発生時に、2次冷却水15を冷却器10に導入して、再度を主蒸気配管7に戻す導入管19a,19b,19c,19dが設けられている。
導入管19a及び19bの途中には、バルブ18aが設けている。導入管19c及び19dの途中には、バルブ18bが設けている。これらのバルブ17a,17b,18a,18bを開閉することによって通常時の運転状態からLOCA発生時の運転状態に切り替えられる。
【0010】
冷却器10は、蒸気発生器14よりも高い位置に配置しており、図2に示されるように、高さの異なる2つの直方体が隣接した形状であり、背の低い直方体の内部には、上方にある空気流入口21を介して外部の大気が流入する空気流入通路22が形成されている。また、背の高い直方体の内部には、上方にある空気流出口23を介して空気が外部に流出する空気流出通路24が形成されている。
ここで、空気流出通路24は第1の縦通路、空気流入通路22は第2の縦通路を構成し、これらは、仕切部材25により画され、仕切部材25の下方の連通部26で互いに連通している。
【0011】
空気流出口23は、図2〜4に示されるように、空気流出通路24の上部の両側面、前面及び後面にそれぞれ設けられ、各空気流出口23にはシリンダ27により平行移動する開閉扉28が設けられている。また、空気流入口21は、空気流入通路22の上部の両側面、前面及び上面にそれぞれ設けられ、各空気流入口にもシリンダ27により平行移動する開閉扉28が設けられている。
なお、冷却器10内を流れる空気の圧力損失を少なくし且つ空気が後述する伝熱管34を通過する速度を高めるのに適した駆動力を与えるように、空気流出通路24の側面の空気流出口23と、空気流入通路22の側面の空気流入口21との間には、約5m程度の高低差が設けられている。
【0012】
図2及び3に示されるように、冷却器10の後面には、それぞれが導入管19aに接続される複数の第1入口ヘッダ31aが設けられ、冷却器10の前面に向かって斜めに延びている。また、それぞれが導入管19cに接続される複数の第1出口ヘッダ32aが設けられ、冷却器10の前面に向かって斜めに延びている。同様に、冷却器10の後面には、それぞれが導入管19bに接続される複数の第2入口ヘッダ31b、それぞれが導入管19dに接続される複数の第2出口ヘッダ32bが設けられ、冷却器10の前面に向かって斜めに延びている。
【0013】
第1入口ヘッダ31aと第1出口ヘッダ32aとの間には、図3に示されるように、左右方向に延び且つ内部を2次冷却水15が流れる多数の伝熱管34からなる第1の伝熱管群33aが配置され、第1入口ヘッダ31a及び第1出口ヘッダ32aを介して、一方の蒸気発生器14に接続されている。
第2入口ヘッダ31bと第2出口ヘッダ32bとの間には、同様に左右方向に延びる多数の伝熱管34からなる第2の伝熱管群33bが配置され、第2入口ヘッダ31b及び第2出口ヘッダ32bを介して、他方の蒸気発生器14に接続されている。また、それぞれ異なる蒸気発生器14に接続されるこれらの伝熱管群33aと伝熱管群33bとは、水平方向及び上下方向に交互に配置されている。
【0014】
伝熱管群33a、33bの各伝熱管34は、入口ヘッダ31a、31b側(IN側)から出口ヘッダ32a、32b側(OUT側)まで全体にわたって、出口ヘッダ32a、32bに向かって下向きに傾斜している。また、各伝熱管34のほぼ中央付近には、他の部分に比べさらに、傾斜が急になった熱膨張吸収部36が形成されている。
【0015】
一方、図2に示されるように、一つの伝熱管群33a,33bは、5段50列の伝熱管34から構成され、伝熱管34の外周には、熱交換効率を高めるべく板状の冷却フィン35が図2の紙面垂直方向に多数積層して設けられている。
また、伝熱管群33a、33bは、空気流出通路24の底面37から仕切部材25の下端25aに向かって、底面37に対して30度の角度で斜めに配置されている。
これらの伝熱管群33a、33bは、連通部26において、空気流出通路24を空間的に塞ぐように斜めに配置され、連通部26から空気流出通路24の上方に抜ける空気がほとんど、伝熱管群33a、33bを通過するように構成されている。
また、LOCA発生前には、冷却水であるタンク水38が、すべての伝熱管34をほぼ覆うように、仕切部材25の下端25aまで満たされている。
【0016】
次に、この発明の実施の形態に係る原子炉用冷却器10が用いられた冷却系統一体型原子炉の崩壊熱除去装置の動作を説明する。
図1に示されるように、原子炉の通常運転時には、バルブ18a,18bを閉じ、バルブ17a,17bを開状態にして運転する。
核分裂エネルギーによって加熱された炉心3が1次冷却水12によって冷却され、1次冷却水12自身は加熱され高温水となる。高温水となった1次冷却水12は、蒸気発生器14において、ポンプ6から供給される2次冷却水15と熱交換し、1次冷却水12が冷却されるとともに2次冷却水15は蒸気となって、主蒸気配管7を介してタービン20に導かれ、タービン20を回転させ発電がなされる。
【0017】
一方、原子炉においてLOCAが発生すると、崩壊熱除去動作が開始され、バルブ17a,17bを閉じ、バルブ18a,18bを開状態になる。また、冷却器10において、タンク水38の蒸発、外部からの異物の侵入を防ぐために通常運転時には閉じている空気流入口21、空気流出口23が、シリンダ27の動作により開閉扉28が移動して空気流入口21、空気流出口23が開口する。
LOCAによって原子炉容器1内の1次冷却水12の温度は上昇するが、1次冷却水12の熱が蒸気発生器14において蒸気の発生に利用されることにより1次冷却水12は冷却される。
【0018】
2つの蒸気発生器14で生成された蒸気は、導入管19a,19bを通って冷却器10まで上昇し、対応する入口ヘッダ31a,31bを介して伝熱管群33a,33bの伝熱管34内に導入される。伝熱管34内の蒸気は、伝熱管34の周囲にあるタンク水38によって冷却され、凝縮して伝熱管34内に落下する。伝熱管34は出口ヘッダ32a,32bに向かって傾斜しているので、凝縮して液化した2次冷却水15は伝熱管34内を出口ヘッダ32a,32b側に重力によって流れて、出口ヘッダ32a,32bより排出されて対応する導入管19c,19dを介してそれぞれの蒸気発生器14に戻され、原子炉容器1の内部を冷却するために再度用いられる。
【0019】
一方、図2に示されるように、伝熱管34内の蒸気を冷却、凝縮させるのに利用されたタンク水38は、蒸気から熱を受け、徐々に沸騰し蒸発してしまう。
タンク水38が蒸発するにつれてタンク水38の水位は下がる。しかしながら、伝熱管34は底面37近傍まで配置されているので、タンク水38がほぼ全部なくなるまで伝熱管34に直接触れているため、冷却効率が高い状態で、タンク水38による水冷が維持される。そのため、タンク水38が有効利用され、最小限のタンク水38量で効率的に伝熱管34を水冷することができる。
また、タンク水38の水位が下がると、開口した空気流入口21から流入した空気のほとんどは、水面から露出した伝熱管群33a,33bを通過する。タンク水38がほとんど沸騰して蒸発すると、伝熱管群33a,33b全体が空気流入口21から流入した空気によって冷却される。
【0020】
空気流出口23と空気流入口21との間には、適度な高低差が設けられているので、空気が伝熱管34を通過する速度が大きく、空冷による冷却効率が高められる。また、ほとんどの空気が伝熱管群33a,33bを通過するので、これによっても空冷による冷却効率が高められる。さらに、伝熱管群33a,33bは、空気の流れに対して矢印のように垂直に近い方向を向いているので、一層空冷による冷却効率が高められる。
また、それぞれ異なる蒸気発生器14に接続された伝熱管群33a,33bが、冷却器の上下方向及び左右方向に交互に配置されているので、タンク水38の水位が徐々に下がっていく過程において、2つの蒸気発生器14にはほぼ均等な割合で液化した2次冷却水15が戻されることになり、それぞれの蒸気発生器14において、1次冷却水12をバランスよく冷却することができる。さらに、万一、一方の蒸気発生器14に戻される2次冷却水15が漏洩しても、残りの蒸気発生器14に戻される2次冷却水15によって崩壊熱が適切に除去される。
【0021】
なお、冷却器10の各伝熱管34には蒸気が導入され、伝熱管34は、入口ヘッダ31a,31bと出口ヘッダ32a,32bとの間に挟まれた状態で熱膨張することになる。しかしながら、各伝熱管34に形成された傾斜が急になった熱膨張吸収部36により、入口ヘッダ31a,31bから延びる伝熱管34の直線部分と、出口ヘッダ32a,32bから延びる伝熱管34の直線部分との間に、オフセットが形成されているので、それぞれの直線部分において熱膨張による伸びが妨げられることがない。そのため、伝熱管34にかかる圧縮応力が急増せず、伝熱管34が座屈し破損してしまうことがない。
【0022】
【発明の効果】
この発明によれば、原子炉用冷却器は、原子炉の炉心を冷却し崩壊熱により加熱された1次冷却材との熱交換を行って2次冷却材を蒸発させる蒸気発生器に接続されて、蒸発した2次冷却材を冷却し凝縮して蒸気発生器に戻して、崩壊熱を除去する原子炉用冷却器において、仕切部材の下方の連通部で第2の縦通路と連通する第1の縦通路の底面近傍から仕切部材の下端に向かって、伝熱管群が斜めに配置されているので、冷却効率に優れているので、LOCA発生時の崩壊熱の除去を効率よく行うことができる。
【0023】
また、この発明によれば、伝熱管群の最上部の伝熱管は、仕切部材の下端近傍に配置され、最下部の伝熱管は、第1の縦通路の底面近傍に配置されているので、冷却器内の冷却水がほぼ全部なくなるまで、伝熱管に冷却水が直接触れて効率的に伝熱管を水冷できる。
さらに、この発明によれば、冷却器は、伝熱管群の伝熱管をほぼ覆うような高さまで、第1及び第2の縦通路内に冷却水が貯えられ、蒸発した2次冷却材が伝熱管群の伝熱管に導入されると、第1及び第2の縦通路内の冷却水により2次冷却材を凝縮するとともに、冷却水が蒸発して水位が下がり冷却水の上面から露出した伝熱管は、第2の縦通路から第1の縦通路に流入する気流によって冷却されるようにしたので、最小限の冷却水量で伝熱管を水冷するとともに、冷却水の上面から露出した伝熱管を効率よく空冷できる。
【0024】
また、この発明によれば、空気流出口は空気流入口よりも高い位置に配置されているので、空気が伝熱管を通過する速度を大きくすることができ、空冷による冷却効率が高められる。
さらに、この発明によれば、空気流入口及び空気流出口には、それぞれ開閉用扉が設けられているので、原子炉の通常運転時における、冷却器内の冷却水の蒸発、外部からの異物の侵入を防止できる。
【0025】
また、この発明によれば、伝熱管は、全体にわたって、入口側から出口側に向かって下向きに傾斜して配置されているので、蒸気が冷却されて凝縮した2次冷却材は、伝熱管内を重力によって出口側に向かって流れることができる。
さらに、この発明によれば、伝熱管の一部は、他の部分よりも傾斜が急な熱膨張吸収部を備えているので、熱膨張により伝熱管が破損することがない。
また、この発明によれば、伝熱管群は、複数設けられ、2つの蒸気発生器にそれぞれ接続され得る第1及び第2の伝熱管群に区分され、第1の伝熱管群と第2の伝熱管群とは、鉛直方向及び水平方向にそれぞれ交互に配置されているので、2つの蒸気発生器において、1次冷却材をバランスよく冷却することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態に係る原子炉用冷却器が用いられた冷却系統一体型原子炉の崩壊熱除去装置の構成を示す配置図である。
【図2】実施の形態に係る原子炉用冷却器の側面断面図である。
【図3】実施の形態に係る原子炉用冷却器の正面図である。
【図4】実施の形態に係る原子炉用冷却器の平面図である。
【図5】従来の原子炉用冷却器の水冷時の構造を示す側面図である。
【図6】従来の原子炉用冷却器の空冷時の構造を示す側面図である。
【符号の説明】
10…冷却器、12…1次冷却水、13…炉心、14…蒸気発生器、15…2次冷却材、21…空気流入口、22…空気流入通路(第2の縦通路)、23…空気流出口、24…空気流出通路(第1の縦通路)、25…仕切部材、25a…仕切部材の下端、26…連通部、28…開閉用扉、33a,33b…伝熱管群、34…伝熱管、36…熱膨張吸収部、37…底面、38…タンク水(冷却水)。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reactor cooler, and more particularly to a cooling system integrated type reactor in which a primary coolant for cooling a reactor core and a cooling system for cooling the primary coolant are integrated into a reactor vessel. The present invention relates to a cooler that is used in a decay heat removal device and cools a primary coolant that is heated by decay heat and cools a secondary coolant that is heated.
[0002]
[Prior art]
Japanese Patent Application No. 2001-301980 filed by the present applicant as a cooler used for a decay heat removal device of a cooling system integrated reactor and for cooling secondary cooling water evaporated by a steam generator. -230042. As shown in FIGS. 5 and 6, the cooler 1 is composed of a bottomed cylindrical tank 3 through which a heat transfer tube 2 penetrates, and usually stores tank water 4 in the tank 3. The inside of the tank 3 is divided by a partition plate 5 into a region through which the heat transfer tube 2 penetrates and a region where the heat transfer tube 2 does not penetrate, and these regions communicate with each other on the tank bottom side.
[0003]
When a primary coolant loss accident (Loss of Coolant Accident, hereinafter referred to as “LOCA”) occurs in a nuclear reactor, the heat of the primary coolant is exchanged with the secondary coolant in a steam generator (not shown), and the primary coolant is exchanged. As the cooling water is cooled, the secondary cooling water becomes steam and is introduced from the steam generator to the heat transfer tube 2 in the cooler 1. The steam flowing inside the heat transfer tube 2 is cooled and condensed by the tank water 4 around the heat transfer tube 2 and returned to water. This water is supplied to the steam generator again by dropping in the heat transfer tube 2 by its own weight, and is used to cool the inside of the reactor vessel.
Further, the tank water 4 of the cooler 1 receives heat from the steam flowing inside the heat transfer tube 2, boils and evaporates, and the water level of the tank water 4 decreases. The air directly hits the heat transfer tube 2 exposed above the water surface of the tank water 4, and the entire heat transfer tube 2 is air-cooled by the flow of the air as shown in FIG.
[0004]
[Problems to be solved by the invention]
However, in the above-described cooler 1, when the secondary cooling water is water-cooled using the tank water 4, a large amount of the tank water 4 is required. Further, since the heat transfer tube 2 is not disposed to the bottom of the tank, it was not possible to effectively use all of the tank water 4 and perform water cooling. Furthermore, efficient cooling cannot be performed even by air cooling with air.
[0005]
The present invention has been made to solve such a problem, and an object of the present invention is to provide a reactor cooler having excellent cooling efficiency in order to efficiently remove decay heat when LOCA occurs. .
[0006]
[Means for Solving the Problems]
The reactor cooler according to the present invention is connected to a steam generator that cools the reactor core, performs heat exchange with the primary coolant heated by decay heat, and evaporates the secondary coolant, In a reactor cooler for cooling and condensing the evaporated secondary coolant and returning it to the steam generator to remove decay heat, a partition member and a communication portion defined by the partition member and below the partition member communicate with each other. A first and a second vertical passage communicating with each other, and a heat transfer tube group having a plurality of heat transfer tubes through which the secondary coolant flows, wherein the heat transfer tube group has a first vertical passage in a communication portion. It is characterized by being disposed obliquely from the vicinity of the bottom surface of the first vertical passage to the lower end of the partition member so as to spatially close.
[0007]
The uppermost heat exchanger tube of the heat exchanger tube group may be arranged near the lower end of the partition member, and the lowermost heat exchanger tube may be arranged near the bottom surface of the first vertical passage.
In the cooler, cooling water is stored in the first and second vertical passages to a height substantially covering the heat transfer tubes of the heat transfer tube group, and the evaporated secondary coolant is introduced into the heat transfer tubes of the heat transfer tube group. Then, while the secondary coolant is condensed by the cooling water in the first and second vertical passages, the cooling water evaporates, the water level decreases, and the heat transfer tube exposed from the upper surface of the cooling water is connected to the second vertical passage. May be cooled by an airflow flowing into the first vertical passage from the air passage.
The second vertical passage is provided with an air inlet for taking in air from the outside, and the first vertical passage is provided with an air outlet for taking in air from the air inlet and passing through the heat transfer tube group to the outside. The air outlet may be located higher than the air inlet.
An opening / closing door may be provided at each of the air inlet and the air outlet.
In the heat transfer tubes of the heat transfer tube group, the inlet side where the secondary coolant is introduced from the steam generator is provided above the outlet side where the secondary coolant cooled by the heat transfer tubes is discharged to the steam generator. The heat pipe may be arranged so as to be inclined downward from the inlet side to the outlet side throughout.
A part of the heat transfer tube may be provided with a thermal expansion absorbing part whose inclination is steeper than other parts.
A plurality of heat transfer tube groups of the cooler are provided and are divided into first and second heat transfer tube groups that can be connected to two steam generators, respectively. The first heat transfer tube group and the second heat transfer tube group , May be arranged alternately in the vertical direction and the horizontal direction.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a layout view showing a configuration of a decay heat removal device of a cooling system integrated reactor using a reactor cooler 10 according to an embodiment of the present invention.
In the reactor vessel 11, a reactor core 13 immersed in primary cooling water 12 and two steam generators 14 are provided. The steam generator 14 is composed of a plurality of heat transfer tubes, and heat is generated between the primary cooling water 12 heated by energy due to nuclear fission generated in the reactor core 13 and the secondary cooling water 15 flowing in the main steam pipe 7. Make a replacement.
[0009]
The main steam pipe 7 is provided with a turbine 20, a pump 16, and valves 17a and 17b.
In the middle of the main steam pipe 7, between the steam generator 14 and the valve 17 a and between the steam generator 14 and the valve 17 b, the secondary cooling water 15 branches off from the main steam pipe 7 when LOCA occurs. Introducing pipes 19a, 19b, 19c and 19d are provided to be introduced into the cooler 10 and return to the main steam pipe 7 again.
A valve 18a is provided in the middle of the introduction pipes 19a and 19b. A valve 18b is provided in the middle of the introduction pipes 19c and 19d. By opening and closing these valves 17a, 17b, 18a, 18b, the operating state during normal operation is switched to the operating state when LOCA occurs.
[0010]
The cooler 10 is disposed at a position higher than the steam generator 14, and as shown in FIG. 2, two rectangular parallelepipeds having different heights are adjacent to each other, and inside the short rectangular parallelepiped, An air inflow passage 22 into which the outside air flows in through an air inlet 21 located above is formed. In addition, an air outflow passage 24 through which air flows out through an air outflow port 23 located above is formed inside the tall rectangular parallelepiped.
Here, the air outflow passage 24 constitutes a first vertical passage, and the air inflow passage 22 constitutes a second vertical passage. These are defined by a partition member 25 and communicate with each other at a communication portion 26 below the partition member 25. are doing.
[0011]
As shown in FIGS. 2 to 4, the air outlets 23 are respectively provided on both side surfaces, the front surface, and the rear surface of the upper portion of the air outflow passage 24. Is provided. The air inlets 21 are provided on both side surfaces, the front surface, and the upper surface of the upper portion of the air inflow passage 22, respectively.
The air outlet on the side surface of the air outflow passage 24 so as to reduce the pressure loss of the air flowing through the cooler 10 and to provide a driving force suitable for increasing the speed at which the air passes through the heat transfer tube 34 described later. A height difference of about 5 m is provided between the air inlet 23 and the air inlet 21 on the side surface of the air inflow passage 22.
[0012]
As shown in FIGS. 2 and 3, a plurality of first inlet headers 31a, each of which is connected to the inlet pipe 19a, are provided on the rear surface of the cooler 10, and extend obliquely toward the front surface of the cooler 10. I have. Further, a plurality of first outlet headers 32a, each of which is connected to the introduction pipe 19c, are provided, and extend obliquely toward the front surface of the cooler 10. Similarly, on the rear surface of the cooler 10, a plurality of second inlet headers 31b each connected to the inlet pipe 19b and a plurality of second outlet headers 32b each connected to the inlet pipe 19d are provided. 10 extends obliquely toward the front surface.
[0013]
As shown in FIG. 3, between the first inlet header 31a and the first outlet header 32a, there is provided a first heat transfer tube 34 including a plurality of heat transfer tubes 34 extending in the left-right direction and through which the secondary cooling water 15 flows. A heat tube group 33a is arranged and connected to one of the steam generators 14 via a first inlet header 31a and a first outlet header 32a.
Between the second inlet header 31b and the second outlet header 32b, a second heat transfer tube group 33b composed of a large number of heat transfer tubes 34 extending in the left-right direction is arranged, and the second inlet header 31b and the second outlet are provided. It is connected to the other steam generator 14 via a header 32b. The heat transfer tube groups 33a and the heat transfer tube groups 33b connected to the different steam generators 14 are alternately arranged in the horizontal direction and the vertical direction.
[0014]
The heat transfer tubes 34 of the heat transfer tube groups 33a, 33b are inclined downward toward the outlet headers 32a, 32b from the inlet headers 31a, 31b side (IN side) to the outlet headers 32a, 32b side (OUT side). ing. In addition, near the center of each heat transfer tube 34, a thermal expansion absorbing portion 36 having a steeper slope than other portions is formed.
[0015]
On the other hand, as shown in FIG. 2, one heat transfer tube group 33a, 33b is composed of heat transfer tubes 34 in five stages and 50 rows, and a plate-shaped cooling member is provided around the heat transfer tubes 34 in order to increase heat exchange efficiency. A large number of fins 35 are provided so as to be stacked in the direction perpendicular to the plane of FIG.
The heat transfer tube groups 33a and 33b are arranged obliquely at an angle of 30 degrees with respect to the bottom surface 37 from the bottom surface 37 of the air outflow passage 24 toward the lower end 25a of the partition member 25.
These heat transfer tube groups 33a and 33b are arranged obliquely in the communication portion 26 so as to spatially close the air outflow passage 24, and almost all of the air flowing from the communication portion 26 to above the air outflow passage 24 is a heat transfer tube group. It is configured to pass through 33a and 33b.
Before the occurrence of LOCA, the tank water 38 as cooling water is filled up to the lower end 25 a of the partition member 25 so as to substantially cover all the heat transfer tubes 34.
[0016]
Next, the operation of the decay heat removing device of the cooling system integrated reactor using the reactor cooler 10 according to the embodiment of the present invention will be described.
As shown in FIG. 1, during normal operation of the nuclear reactor, the operation is performed with the valves 18a and 18b closed and the valves 17a and 17b opened.
The core 3 heated by the nuclear fission energy is cooled by the primary cooling water 12, and the primary cooling water 12 itself is heated and becomes high-temperature water. The primary cooling water 12 that has become high-temperature water exchanges heat with the secondary cooling water 15 supplied from the pump 6 in the steam generator 14, so that the primary cooling water 12 is cooled and the secondary cooling water 15 It becomes steam and is guided to the turbine 20 via the main steam pipe 7, and the turbine 20 is rotated to generate power.
[0017]
On the other hand, when LOCA occurs in the reactor, the decay heat removal operation is started, the valves 17a and 17b are closed, and the valves 18a and 18b are opened. In the cooler 10, the air inlet 21 and the air outlet 23, which are closed during normal operation to prevent evaporation of the tank water 38 and intrusion of foreign matter from the outside, move the opening and closing door 28 by the operation of the cylinder 27. The air inlet 21 and the air outlet 23 are open.
Although the temperature of the primary cooling water 12 in the reactor vessel 1 rises due to LOCA, the heat of the primary cooling water 12 is used for generating steam in the steam generator 14, so that the primary cooling water 12 is cooled. You.
[0018]
The steam generated by the two steam generators 14 rises to the cooler 10 through the inlet pipes 19a and 19b, and enters the heat transfer tubes 34 of the heat transfer tube groups 33a and 33b through the corresponding inlet headers 31a and 31b. be introduced. The steam in the heat transfer tube 34 is cooled by tank water 38 around the heat transfer tube 34, condensed, and falls into the heat transfer tube 34. Since the heat transfer tubes 34 are inclined toward the outlet headers 32a and 32b, the condensed and liquefied secondary cooling water 15 flows inside the heat transfer tubes 34 toward the outlet headers 32a and 32b by gravity, and the outlet headers 32a and 32b. It is discharged from 32b and returned to the respective steam generators 14 via the corresponding introduction pipes 19c and 19d, and is used again to cool the inside of the reactor vessel 1.
[0019]
On the other hand, as shown in FIG. 2, the tank water 38 used for cooling and condensing the steam in the heat transfer tube 34 receives heat from the steam, and gradually boils and evaporates.
As the tank water 38 evaporates, the water level of the tank water 38 decreases. However, since the heat transfer tube 34 is disposed close to the bottom surface 37, the heat transfer tube 34 is in direct contact with the heat transfer tube 34 until almost all of the tank water 38 is exhausted. Therefore, water cooling by the tank water 38 is maintained in a state of high cooling efficiency. . Therefore, the tank water 38 is effectively used, and the heat transfer tube 34 can be water-cooled efficiently with a minimum amount of the tank water 38.
When the water level of the tank water 38 decreases, most of the air flowing from the open air inlet 21 passes through the heat transfer tube groups 33a and 33b exposed from the water surface. When the tank water 38 almost boils and evaporates, the entire heat transfer tube group 33a, 33b is cooled by the air flowing from the air inlet 21.
[0020]
Since an appropriate height difference is provided between the air outlet 23 and the air inlet 21, the speed at which air passes through the heat transfer tube 34 is high, and the cooling efficiency by air cooling is enhanced. In addition, since most of the air passes through the heat transfer tube groups 33a and 33b, the cooling efficiency by air cooling is also improved. Further, since the heat transfer tube groups 33a and 33b are oriented in a direction almost perpendicular to the flow of air as shown by arrows, the cooling efficiency by air cooling is further enhanced.
Further, since the heat transfer tube groups 33a, 33b connected to the different steam generators 14 are alternately arranged in the vertical direction and the horizontal direction of the cooler, in the process of gradually lowering the water level of the tank water 38. The liquefied secondary cooling water 15 is returned to the two steam generators 14 at a substantially equal ratio, and the primary cooling water 12 can be cooled in each of the steam generators 14 in a well-balanced manner. Furthermore, even if the secondary cooling water 15 returned to one of the steam generators 14 leaks, the decay heat is appropriately removed by the secondary cooling water 15 returned to the remaining steam generators 14.
[0021]
Note that steam is introduced into each heat transfer tube 34 of the cooler 10, and the heat transfer tube 34 thermally expands while being sandwiched between the inlet headers 31a, 31b and the outlet headers 32a, 32b. However, due to the steep thermal expansion absorbing portions 36 formed in the heat transfer tubes 34, the straight portions of the heat transfer tubes 34 extending from the inlet headers 31a, 31b and the straight lines of the heat transfer tubes 34 extending from the outlet headers 32a, 32b. Since an offset is formed between the linear portions, the elongation due to thermal expansion is not hindered in each straight portion. Therefore, the compressive stress applied to the heat transfer tube 34 does not increase rapidly, and the heat transfer tube 34 does not buckle and break.
[0022]
【The invention's effect】
According to the present invention, the reactor cooler is connected to the steam generator that cools the reactor core, performs heat exchange with the primary coolant heated by the decay heat, and evaporates the secondary coolant. In the reactor cooler for cooling, condensing and returning the evaporated secondary coolant to the steam generator to remove the decay heat, the second coolant passage communicating with the second vertical passage at the communication portion below the partition member. Since the heat transfer tube groups are arranged diagonally from the vicinity of the bottom of the vertical passage to the lower end of the partition member, the cooling efficiency is excellent, so it is possible to efficiently remove decay heat when LOCA occurs. it can.
[0023]
Further, according to the present invention, the uppermost heat transfer tube of the heat transfer tube group is disposed near the lower end of the partition member, and the lowermost heat transfer tube is disposed near the bottom surface of the first vertical passage. Until almost all of the cooling water in the cooler is exhausted, the cooling water directly touches the heat transfer tubes, so that the heat transfer tubes can be efficiently water-cooled.
Further, according to the present invention, the cooler stores the cooling water in the first and second vertical passages to a height substantially covering the heat transfer tubes of the heat transfer tube group, and transfers the evaporated secondary coolant to the heat transfer tubes. When introduced into the heat transfer tubes of the heat tube group, the cooling water in the first and second vertical passages condenses the secondary coolant, and the cooling water evaporates to lower the water level and is exposed from the upper surface of the cooling water. Since the heat pipe is cooled by the airflow flowing from the second vertical passage into the first vertical passage, the heat transfer pipe is water-cooled with a minimum amount of cooling water, and the heat transfer pipe exposed from the upper surface of the cooling water is cooled. Air cooling can be performed efficiently.
[0024]
Further, according to the present invention, since the air outlet is disposed at a position higher than the air inlet, the speed at which air passes through the heat transfer tube can be increased, and the cooling efficiency by air cooling can be increased.
Furthermore, according to the present invention, since the opening and closing doors are provided at the air inlet and the air outlet, respectively, during normal operation of the nuclear reactor, evaporation of cooling water in the cooler, foreign matter from the outside, Intrusion can be prevented.
[0025]
Further, according to the present invention, since the heat transfer tube is disposed so as to be inclined downward from the inlet side to the outlet side, the secondary coolant, which is cooled and condensed by the steam, is disposed inside the heat transfer tube. Can flow toward the outlet side by gravity.
Further, according to the present invention, since a part of the heat transfer tube is provided with the thermal expansion absorbing portion whose inclination is steeper than other portions, the heat transfer tube is not damaged by thermal expansion.
Further, according to the present invention, a plurality of heat transfer tube groups are provided, divided into first and second heat transfer tube groups that can be respectively connected to two steam generators, and a first heat transfer tube group and a second heat transfer tube group are provided. Since the heat transfer tube groups are alternately arranged in the vertical direction and the horizontal direction, the primary coolant can be cooled in a well-balanced manner in the two steam generators.
[Brief description of the drawings]
FIG. 1 is a layout diagram showing a configuration of a decay heat removing device of a cooling system integrated type reactor using a reactor cooler according to an embodiment of the present invention.
FIG. 2 is a side sectional view of the reactor cooler according to the embodiment;
FIG. 3 is a front view of the reactor cooler according to the embodiment.
FIG. 4 is a plan view of the reactor cooler according to the embodiment.
FIG. 5 is a side view showing a structure of a conventional reactor cooler during water cooling.
FIG. 6 is a side view showing a structure of a conventional reactor cooler at the time of air cooling.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Cooler, 12 ... Primary cooling water, 13 ... Core, 14 ... Steam generator, 15 ... Secondary coolant, 21 ... Air inlet, 22 ... Air inflow passage (2nd vertical passage), 23 ... Air outlet, 24 ... Air outflow passage (first vertical passage), 25 ... Partition member, 25a ... Lower end of partition member, 26 ... Communication part, 28 ... Opening / closing door, 33a, 33b ... Heat transfer tube group, 34 ... Heat transfer tube, 36: thermal expansion absorbing part, 37: bottom surface, 38: tank water (cooling water).

Claims (8)

原子炉の炉心を冷却し崩壊熱により加熱された1次冷却材との熱交換を行って2次冷却材を蒸発させる蒸気発生器に接続されて、蒸発した2次冷却材を冷却し凝縮して蒸気発生器に戻して、崩壊熱を除去する原子炉用冷却器において、
仕切部材と、
この仕切部材により画され且つ仕切部材の下方の連通部で互いに連通する第1及び第2の縦通路と、
2次冷却材が内部を流れる複数の伝熱管を有する伝熱管群とを備え、
この伝熱管群は、連通部において、第1の縦通路を空間的に塞ぐように、第1の縦通路の底面近傍から仕切部材の下端に向かって、斜めに配置されたことを特徴とする原子炉用冷却器。
It is connected to a steam generator that cools the core of the nuclear reactor and exchanges heat with the primary coolant heated by the decay heat to evaporate the secondary coolant, thereby cooling and condensing the evaporated secondary coolant. In the reactor cooler to return to the steam generator and remove decay heat,
A partition member;
First and second vertical passages defined by the partition member and communicating with each other at a communication portion below the partition member;
A heat transfer tube group having a plurality of heat transfer tubes through which the secondary coolant flows,
This heat transfer tube group is characterized by being disposed obliquely from the vicinity of the bottom surface of the first vertical passage toward the lower end of the partition member so as to spatially block the first vertical passage in the communicating portion. Reactor cooler.
伝熱管群の最上部の伝熱管は、仕切部材の下端近傍に配置され、最下部の伝熱管は、第1の縦通路の底面近傍に配置された請求項1に記載の原子炉用冷却器。2. The reactor cooler according to claim 1, wherein the uppermost heat transfer tube of the heat transfer tube group is disposed near a lower end of the partition member, and the lowermost heat transfer tube is disposed near a bottom surface of the first vertical passage. . 冷却器は、伝熱管群の伝熱管をほぼ覆うような高さまで、第1及び第2の縦通路内に冷却水が貯えられ、
蒸発した2次冷却材が伝熱管群の伝熱管に導入されると、第1及び第2の縦通路内の冷却水により2次冷却材を凝縮するとともに、冷却水が蒸発して水位が下がり冷却水の上面から露出した伝熱管は、第2の縦通路から第1の縦通路に流入する気流によって冷却される請求項1または2に記載の原子炉用冷却器。
The cooler stores cooling water in the first and second vertical passages to a height substantially covering the heat transfer tubes of the heat transfer tube group,
When the evaporated secondary coolant is introduced into the heat transfer tubes of the heat transfer tube group, the secondary coolant is condensed by the cooling water in the first and second vertical passages, and the cooling water evaporates to lower the water level. 3. The reactor cooler according to claim 1, wherein the heat transfer tube exposed from the upper surface of the cooling water is cooled by an airflow flowing from the second vertical passage into the first vertical passage. 4.
第2の縦通路には、空気を外部から取り入れる空気流入口が設けられ、
第1の縦通路には、空気流入口から取り入れ伝熱管群を通過した空気を外部に流出する空気流出口が設けられ、
空気流出口は、空気流入口よりも高い位置に配置された請求項1〜3のいずれか一項に記載の原子炉用冷却器。
An air inlet for taking in air from the outside is provided in the second vertical passage,
The first vertical passage is provided with an air outlet for taking in air from the air inlet and passing through the heat transfer tube group to the outside,
The reactor cooler according to any one of claims 1 to 3, wherein the air outlet is located at a position higher than the air inlet.
空気流入口及び空気流出口には、それぞれ開閉用扉が設けられた請求項4に記載の原子炉用冷却器。The reactor cooler according to claim 4, wherein an opening / closing door is provided at each of the air inlet and the air outlet. 伝熱管群の伝熱管は、蒸気発生器から2次冷却材が導入される入口側が、伝熱管により冷却された2次冷却材を蒸気発生器に排出する出口側よりも上方に設けられ、
伝熱管は、全体にわたって、入口側から出口側に向かって下向きに傾斜して配置された請求項1〜5のいずれか一項に記載の原子炉用冷却器。
In the heat transfer tubes of the heat transfer tube group, the inlet side where the secondary coolant is introduced from the steam generator is provided above the outlet side where the secondary coolant cooled by the heat transfer tubes is discharged to the steam generator,
The reactor cooler according to any one of claims 1 to 5, wherein the heat transfer tubes are disposed to be inclined downward from the inlet side to the outlet side throughout.
伝熱管の一部は、他の部分よりも傾斜が急な熱膨張吸収部を備える請求項6に記載の原子炉用冷却器。The reactor cooler according to claim 6, wherein a part of the heat transfer tube includes a thermal expansion absorbing part whose inclination is steeper than other parts. 冷却器の伝熱管群は、複数設けられ、2つの蒸気発生器にそれぞれ接続され得る第1及び第2の伝熱管群に区分され、
第1の伝熱管群と第2の伝熱管群とは、鉛直方向及び水平方向にそれぞれ交互に配置された請求項1〜7のいずれか一項に記載の原子炉用冷却器。
A plurality of heat transfer tube groups of the cooler are provided, and are divided into first and second heat transfer tube groups that can be connected to the two steam generators, respectively.
The reactor cooler according to any one of claims 1 to 7, wherein the first heat transfer tube group and the second heat transfer tube group are alternately arranged in a vertical direction and a horizontal direction, respectively.
JP2002175586A 2002-06-17 2002-06-17 Cooler for nuclear reactor Pending JP2004020376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175586A JP2004020376A (en) 2002-06-17 2002-06-17 Cooler for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175586A JP2004020376A (en) 2002-06-17 2002-06-17 Cooler for nuclear reactor

Publications (1)

Publication Number Publication Date
JP2004020376A true JP2004020376A (en) 2004-01-22

Family

ID=31174193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175586A Pending JP2004020376A (en) 2002-06-17 2002-06-17 Cooler for nuclear reactor

Country Status (1)

Country Link
JP (1) JP2004020376A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076578A (en) * 2011-09-29 2013-04-25 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor cooling system
JP2013195396A (en) * 2012-03-22 2013-09-30 Mitsubishi Heavy Ind Ltd Cooling device
KR101405666B1 (en) 2012-11-14 2014-06-10 한국수력원자력 주식회사 Passive Secondary Condensing System of An Atomic Power Plant
JP2014173860A (en) * 2013-03-06 2014-09-22 Hitachi-Ge Nuclear Energy Ltd Safety enhancement building for nuclear facility
KR101447179B1 (en) * 2012-06-20 2014-10-08 한국원자력연구원 Heat Exchanger for Passive Residual Heat Removal System
JP2015505373A (en) * 2012-01-18 2015-02-19 デ・セ・エヌ・エス Power generation module
JP2015509191A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Underwater power generation module
JP2015509190A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Diving energy generation module
JP2015509192A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Submersible power generation module
JP2015510582A (en) * 2012-01-18 2015-04-09 デ・セ・エヌ・エス Submersible or underwater power generation module
JP2015124945A (en) * 2013-12-26 2015-07-06 三菱重工業株式会社 Air cooler and air cooling method
KR101665551B1 (en) * 2015-08-13 2016-10-24 한국과학기술원 A passive residual heat removal system and a nuclear power plant comprising thereof
WO2016190572A1 (en) * 2015-05-27 2016-12-01 한국원자력연구원 Passive natural circulation cooling system and method
JP2017515128A (en) * 2014-04-18 2017-06-08 アゲンツィア ナチオナーレ ペル レ ヌオーブ テクノロジ,レネルジア エ ロ スビルッポ エコノミコ ソステニビレ(エエンネエア) Passive system for exhausting residual heat from nuclear reactors.

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076578A (en) * 2011-09-29 2013-04-25 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor cooling system
KR20150047116A (en) * 2012-01-18 2015-05-04 데쎄엔에스 Underwater electricity generation module
KR102130860B1 (en) 2012-01-18 2020-07-06 나발 그룹 Submerged energy generation module
KR20150047115A (en) * 2012-01-18 2015-05-04 데쎄엔에스 Underwater electricity generation module
KR20150047118A (en) * 2012-01-18 2015-05-04 데쎄엔에스 Submerged energy generation module
JP2015505373A (en) * 2012-01-18 2015-02-19 デ・セ・エヌ・エス Power generation module
JP2015509191A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Underwater power generation module
JP2015509190A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Diving energy generation module
JP2015509192A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Submersible power generation module
KR102115043B1 (en) 2012-01-18 2020-05-25 나발 그룹 Underwater electricity generation module
JP2015510582A (en) * 2012-01-18 2015-04-09 デ・セ・エヌ・エス Submersible or underwater power generation module
KR102115044B1 (en) 2012-01-18 2020-06-05 나발 그룹 Underwater electricity generation module
KR102097839B1 (en) 2012-01-18 2020-04-06 나발 그룹 Submerged or underwater electricity generation module
KR20150047117A (en) * 2012-01-18 2015-05-04 데쎄엔에스 Submerged or underwater electricity generation module
JP2013195396A (en) * 2012-03-22 2013-09-30 Mitsubishi Heavy Ind Ltd Cooling device
US9111651B2 (en) 2012-06-20 2015-08-18 Korea Atomic Energy Research Institute Heat exchanger for passive residual heat removal system
KR101447179B1 (en) * 2012-06-20 2014-10-08 한국원자력연구원 Heat Exchanger for Passive Residual Heat Removal System
KR101405666B1 (en) 2012-11-14 2014-06-10 한국수력원자력 주식회사 Passive Secondary Condensing System of An Atomic Power Plant
JP2014173860A (en) * 2013-03-06 2014-09-22 Hitachi-Ge Nuclear Energy Ltd Safety enhancement building for nuclear facility
JP2015124945A (en) * 2013-12-26 2015-07-06 三菱重工業株式会社 Air cooler and air cooling method
JP2017515128A (en) * 2014-04-18 2017-06-08 アゲンツィア ナチオナーレ ペル レ ヌオーブ テクノロジ,レネルジア エ ロ スビルッポ エコノミコ ソステニビレ(エエンネエア) Passive system for exhausting residual heat from nuclear reactors.
US10734123B2 (en) 2014-04-18 2020-08-04 Agenzia Nazionale Per Le Nuove Tecnologie, L'energia E Lo Sviluppo Economico Sostenible (Enea) Passive system for evacuating the residual heat from a nuclear reactor
CN107660306A (en) * 2015-05-27 2018-02-02 韩国原子力研究院 Passive Natural Circulation Cooling System And Method
US20180261342A1 (en) * 2015-05-27 2018-09-13 Korea Atomic Energy Research Institute Passive natural circulation cooling system and method
RU2670425C1 (en) * 2015-05-27 2018-10-23 Корея Этомик Энерджи Рисерч Инститьют Passive cooling system with natural circulation and method
KR102015500B1 (en) * 2015-05-27 2019-08-28 한국원자력연구원 Passive natural circulation cooling system and method
CN107660306B (en) * 2015-05-27 2019-11-12 韩国原子力研究院 Passive natural circulation cooling system and method
KR20160140361A (en) * 2015-05-27 2016-12-07 한국원자력연구원 Passive natural circulation cooling system and method
WO2016190572A1 (en) * 2015-05-27 2016-12-01 한국원자력연구원 Passive natural circulation cooling system and method
US10811149B2 (en) * 2015-05-27 2020-10-20 Korea Atomic Energy Research Institute Passive natural circulation cooling system and method
KR101665551B1 (en) * 2015-08-13 2016-10-24 한국과학기술원 A passive residual heat removal system and a nuclear power plant comprising thereof

Similar Documents

Publication Publication Date Title
US6718001B2 (en) Nuclear reactor
JP2004020376A (en) Cooler for nuclear reactor
US9111651B2 (en) Heat exchanger for passive residual heat removal system
KR100906717B1 (en) Air/Water hybrid passive reactor cavity cooling apparatus and method for core decay heat removal of a High Temperature Gas-Cooled Reactor
US10811148B2 (en) Self-diagnosis and accident-handling unmanned nuclear reactor
KR101619075B1 (en) Nuclear reactor having spray cooling system on the saturated steam
US10541058B2 (en) Passive safety system and nuclear power plant comprising same
US10811147B2 (en) Passive residual heat removal system and atomic power plant comprising same
JP2006138744A (en) Reactor cooling device
US10706974B2 (en) Passive cooling system of containment building and nuclear power plant comprising same
KR102015500B1 (en) Passive natural circulation cooling system and method
CN111811289B (en) Symmetrical nozzle condensing device
JP2023529201A (en) System and method for centralized and scalable steam management system in immersion cooling
JP2010249424A (en) Exhaust heat recovery device
JP6771402B2 (en) Nuclear plant
JP2022550675A (en) Coolant purification system and heat sink system and method of operation thereof
US11289217B2 (en) Intercooler for nuclear facility
KR101665551B1 (en) A passive residual heat removal system and a nuclear power plant comprising thereof
KR101570076B1 (en) Containment cooling system and nuclear power plant having the same
JP5854369B2 (en) Cogeneration system
KR101645428B1 (en) Spray heat exchanger on the saturated steam
KR102546736B1 (en) Reactor having 2 step heat exchange natural circulation cooling system and method for operating the same reactor
JP2015124945A (en) Air cooler and air cooling method
KR101624147B1 (en) 3-dimensional heat exchanger
JP2017210910A (en) Thermoelectric generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060413

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070606

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070607

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028