JP2004020108A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004020108A
JP2004020108A JP2002177528A JP2002177528A JP2004020108A JP 2004020108 A JP2004020108 A JP 2004020108A JP 2002177528 A JP2002177528 A JP 2002177528A JP 2002177528 A JP2002177528 A JP 2002177528A JP 2004020108 A JP2004020108 A JP 2004020108A
Authority
JP
Japan
Prior art keywords
corrugated fins
valleys
peaks
fins
corrugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002177528A
Other languages
Japanese (ja)
Inventor
Norihide Kawachi
河地 典秀
Takeshi Okinoya
沖ノ谷 剛
Ken Yamamoto
山本 憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002177528A priority Critical patent/JP2004020108A/en
Publication of JP2004020108A publication Critical patent/JP2004020108A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0316Assemblies of conduits in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger efficiently exchanging heat by improving the heat transfer coefficient of an inner fin. <P>SOLUTION: This heat exchanger is disposed with the inner fin 2 inside a flat tube 1 for passing fluid. The inner fin 2 is so formed that multiple corrugated fins 3, 4, and 5 are aligned in rows, and the aligned respective corrugated fins 3, 4, and 5 are so disposed that positions of each crest and trough are disposed by being deviated in one direction by a prescribed length in order. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、流体間で熱交換を行う熱交換器に関し、特に流体を通す偏平通路内にインナーフィンを配設した構造の熱交換器に関する。
【0002】
【従来の技術】
例えば、ヒートポンプサイクルで使用される放熱器として、冷媒を通す多数の第一チューブに接触して、流体を通すための多数の偏平チューブを配置し、それらの偏平チューブ内にインナーフィンを配置した構造の熱交換器が知られている(例えば、特開2001−324291号公報等参照)。
【0003】
【発明が解決しようとする課題】
この種の熱交換器で使用される偏平チューブ内のインナーフィン30は、従来、図6に示すように、薄い金属板をプレス成形して多数列のコルゲートフィンを一列おきにその山と谷の位置をずらすように配置して一体成形されていた。つまり、従来のインナーフィン30は、多数列のコルゲートフィン31,32,33,34・・を並設した形状に形成されているが、隣接する一対のコルゲートフィン31,32または33,34は、その山と谷の位置をフィンの長さ方向に山または谷の半分の長さだけずらすように配置して形成され、このような対をなしたコルゲートフィン31,32または33,34を単純に並べて形成していた。
【0004】
このため、従来のインナーフィン30は、図6のように、隣接するコルゲートフィンつまり一対のコルゲートフィン31,32または33,34については、その山と谷の位置が山または谷の半分の長さだけずらすように配置され、一方のフィンの山または谷に、他方のフィンの山と谷の間である内柱が位置しているものの、隣接する一対のコルゲートフィン33、34の前後に位置する他の対のコルゲートフィン31,32または35,36を注目すると、その対のコルゲートフィン33,34の山と谷の位置が、その前後の対のコルゲートフィン31,32または35,36の山と谷の位置と、流体の流れ方向からみた場合、同列となって一致していた。
【0005】
つまり、図6のように、各対のコルゲートフィン31,32又は33,34又は35,36の前列と後列の配置が、流体の流通方向に繰り返すように配置され、次の対の前列のコルゲートフィンが前の対の前列のコルゲートフィンと同じ位置に配置され、次の対の後列のコルゲートフィンが前の対の後列のコルゲートフィンと同じ位置に配置されていた。
【0006】
したがって、このような熱交換器の偏平チューブ内に流体を通したとき、流体はインナーフィン30の各コルゲートフィン31,32,33,34・・の横断方向に連通して形成された山と谷の空間を通過するが、この際、図7(a)に示すように、各対の前列と後列のコルゲートフィン31,32の山と谷の位置が山または谷の半分の長さだけずれて配置されていても、図7(b)のように、次の対の前列のコルゲートフィン33は前の対の前列のコルゲートフィン31の山と谷の位置が同じとなり、同様に、次の対の後列のコルゲートフィン34も前の対の後列のコルゲートフィン32の山と谷の位置が同じとなってしまう。
【0007】
このために、流体を偏平チューブ内に通したとき、山と谷の中間部に位置する内柱が流体の流通方向に一列おきに一致して位置するために、内柱の周囲に形成される温度境界層がコルゲートフィンの一列おきに流体の流れ方向からみて一致する状態となって、インナーフィンと流体間での熱伝達率が低く抑制されるという課題があった。
【0008】
本発明は、上述の課題を解決するものであり、インナーフィンの熱伝達率を向上させ、効率よく熱交換を行うことができる熱交換器を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の熱交換器は、流体を通す偏平通路内にインナーフィンを配設した構造の熱交換器において、インナーフィンが多数のコルゲートフィンを列状に並設して形成され、並設された各コルゲートフィンは、各々の山と谷の位置を順に所定の長さだけ一方向にずらして配置されていることを特徴とする。
【0010】
ここで、請求項2のように、上記各コルゲートフィンは、各々の山と谷の位置を順に山または谷の略半分の長さだけ一方向にずらして配置することができる。
【0011】
【作用】
上記構成の熱交換器では、偏平通路内に流体を流通させると、流体はインナーフィン上に並設され多数のコルゲートフィンの山と谷の空間をその横断方向に流れるが、並設された各コルゲートフィンの山と谷の位置は、所定の長さだけ(例えば山または谷の略半分の長さだけ)一方向にずらして配置されているから、流体の流れ方向からみて、従来のように山と谷の間の内柱が流体の流通方向に一列おきに一致する状態とはならず、内柱は隣接する前後のコルゲートフィンの山または谷の内側に入り、且つ前後の内柱の位置は必ず相互にずれて位置することになる。したがって、内柱の周囲に形成される温度境界層が流体の流れ方向からみて前後に一致することはなく、インナーフィンと流体間での熱伝達率を従来より向上させることができる。
【0012】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。図1は本発明を適用した熱交換器で使用される偏平チューブ1の断面図を示している。この偏平チューブ1は、例えばヒートポンプサイクルで使用される放熱器としての熱交換器内に流体の偏平通路として配設され、偏平チューブ1内には、インナーフィン2が配設される。偏平チューブ1の外側には冷媒を通すための冷媒チューブ9がロウ付けなどで接合されている。
【0013】
偏平チューブ1は、薄い金属板材を所定形状にプレス成形して形成された半割り状板材を使用し、その半割り状板材の内側にインナーフィン2を挟み込むように配置し、その半割り状板材を重ね合わせ、ロウ付けなどにより接合して、内部に偏平通路を形成するように構成される。偏平チューブ1内にはインナーフィン2が、チューブ内の流体の流れ方向に沿って、その山と谷の空間を連続させるように配設される。図1においては、偏平チューブ1内の流体の流れ方向は紙面に対し垂直方向であり、偏平チューブ1の縦方向の各所を絞るようにして閉鎖することにより、偏平チューブ1内に紙面に対し垂直方向の流路が複数本形成されている。
【0014】
インナーフィン2は、薄い金属板をプレス成形して一体に形成され、図2に示すように、多数の細い波形で帯状のコルゲートフィン3,4,5,6,7・・が並設・形成される。各コルゲートフィン3,4,5・・は、薄い金属板を波形つまり山と谷が連続するコルゲート状に成形して形成され、これらのコルゲートフィン3,4,5・・は、前の列のコルゲートフィンに対しその後の列のコルゲートフィンが、山と谷の位置を順に一方向に、その山または谷の略半分の長さだけずらすように配置されている。偏平チューブ1内を通過する流体の流れ方向は、コルゲートフィンの長手方向に対し直角の方向である。
【0015】
すなわち、図2に示すように、例えば4本のコルゲートフィン3,4,5,6が並設される部分では、各コルゲートフィンの山と谷の位置のずれは山または谷の長さの半分の長さに設定されるから、コルゲートフィン3を基準にしてみた場合、コルゲートフィン3と4は山と谷の位置が山または谷の半分の長さだけずれ、コルゲートフィン3と5は山と谷の位置が山または谷の長さだけずれ、コルゲートフィン3と6は山と谷の位置が山または谷の1.5倍の長さだけずれて配置されている。
【0016】
したがって、コルゲートフィン3を基準にして流体の流れ方向からみた場合、図3(a)に示すように、後のコルゲートフィン4の山Yと谷Tの間の内柱Uの位置は、前のコルゲートフィン3の内柱Uと内柱Uの間に入る。同様に、その後のコルゲートフィン5の山Yと谷Tの間の内柱Uの位置は、コルゲートフィン3の内柱Uと内柱Uの間に入り、同様に、その後のコルゲートフィン6の山Yと谷Tの間の内柱Uの位置も、コルゲートフィン3の内柱Uと内柱Uの間に入り、それらのコルゲートフィン3,4,5,6の山と谷の間の内柱が流体の流れ方向で一致することはなく、内柱Uの位置は相違する。
【0017】
さらに、一列おきのコルゲートフィン3,5又は4,6をみた場合、図3(b)に示すように、一方のコルゲートフィン3または4の山Yまたは谷Tと他方のコルゲートフィン5または6の谷Tまたは山Yが一致し、その山と谷の間の内柱Uも一致するが、一致する内柱Uの傾斜は相互に逆向きとなる。
【0018】
したがって、このようなコルゲートフィン3,4,5,6・・を並設してなるインナーフィン2の任意の部分の4列のコルゲートフィンをみた場合、各コルゲートフィンの各々の山と谷の間の内柱は、他のコルゲートフィンの内柱とその位置が一致せずにずれて配置され、また、位置の一致した内柱は傾斜が相互に逆向き状態となる。
【0019】
このように構成される偏平チューブ1は、図示しないヘッダタンク間に多数本が連通して接続され、各偏平チューブ1内にはヘッダタンクを通して水などの流体が流され、偏平チューブ1に接合された冷媒チューブ9には、炭酸ガスなどの冷媒が圧縮機を介して供給される。
【0020】
偏平チューブ1内を通過する水などの流体は、インナーフィン2の各コルゲートフィン3,4,5,6・・の横断方向に流れ、各コルゲートフィンの山と谷の空間を通過して流れるが、このとき、図3のように、任意の4列のコルゲートフィンの各山Yと谷Tの間の内柱Uは、流体の流れ方向からみて、相互に重なる位置とはならず、相互に異なる位置に内柱Uが配置される。
【0021】
したがって、流体が偏平チューブ1内を流れる際、インナーフィン2の各コルゲートフィン3,4,5,6・・の山と谷の間の内柱の周囲に、温度境界層が発生するが、前のコルゲートフィンの内柱の温度境界層に後のコルゲートフィンの内柱が入ることはなく、つまり前のコルゲートフィンの内柱の温度境界層と後のコルゲートフィンの内柱の温度境界層が、流体の流れ方向の前後で一致することがないため、インナーフィン2と流体間の熱伝達率を向上させることができる。このために、図6のような従来のインナーフィンを偏平チューブ内に配設した熱交換器にくらべ、その熱交換率を大幅に向上させることができる。
【0022】
図4は他の実施形態の熱交換器のインナーフィン12の概略平面図を示している。この例のインナーフィン12は、上記と同様に、薄い金属板をプレス成形して形成され、多数の細い波形で帯状のコルゲートフィン13,14,15・・が並設・形成される。
【0023】
また、各コルゲートフィン13,14,15・・は、薄い金属板を波形つまり山と谷が連続するコルゲート状に成形して形成されが、これらのコルゲートフィン13,14,15・・は、隣接するコルゲートフィンに対しその山と谷の位置がその山または谷の半分の長さだけずらすように配置されている。しかし、その山と谷ずれは、フィンの長さ方向に順にずれていくのではなく、一つおきのコルゲートフィン13と15では、その山と谷の位置が一致するように、一列おきに同じ山と谷の配置を有するコルゲートフィンが繰り返し配置される。
【0024】
さらに、これらのコルゲートフィン13,14,15・・では、その山Yと谷Tの間の内柱Uが流体の流通方向に対し斜めに傾斜角度αだけ傾斜して配置されている。つまり、コルゲートフィン13,14,15・・は、その山と谷を作る際にその横断方向に対し折り曲げ線を角度αだけ傾斜させて折り曲げ、それによって山Yと谷Tの間の内柱Uを流体の流通方向に対し斜めに傾斜して配置するようにしている。
【0025】
このようなインナーフィン12を配設した偏平チューブ内を水などの流体を流通させた場合、流体は、インナーフィン12の各コルゲートフィン13,14,15・・の横断方向に流れ、各コルゲートフィンの山と谷の空間を通過して流れるが、このとき、一つおきに隣接するコルゲートフィンの各山Yと谷Tの間の内柱Uは、流体の流れ方向からみて、相互に重なる位置となるが、内柱Uが流体の流通方向に対し傾斜して配置されるため、内柱Uに当たった流体の流れが変化して、前の内柱周辺の温度境界層と後の内柱周辺の温度境界層が一致せず、流体とインナーフィン12間の熱伝達率を向上させることができ、これによって、熱交換器の熱交換率を向上させることができる。
【0026】
さらに、図5は他の実施形態の熱交換器のインナーフィン22の概略平面図を示している。この例のインナーフィン22は、上記と同様に、コルゲートフィン23,24,25・・が、その山Yと谷Tの間の内柱Uを流体の流通方向に対し傾斜角度αだけ傾斜させるように形成されている。つまり、コルゲートフィン23,24,25・・は、その山と谷を作る際にその横断方向に対し折り曲げ線を角度αだけ傾斜させて折り曲げ、それによって山Yと谷Tの間の内柱Uを流体の流通方向に対し斜めに傾斜して配置するようにしているが、隣接する一方のコルゲートフィン24の内柱Uの流体の流通方向に対する傾斜方向は、他のコルゲートフィン23または25の内柱Uの傾斜方向と逆方向に傾斜している。
【0027】
このように、隣接する一方のコルゲートフィン24の内柱Uの流体の流通方向に対する傾斜方向を、他のコルゲートフィン23または25の内柱Uの傾斜方向と逆方向にすることにより、流体を流通させた際のインナーフィンと流体間の熱伝達率は、さらに向上し、一層、熱交換器の熱交換率を向上させることができる。
【0028】
【発明の効果】
以上説明したように、本発明の熱交換器によれば、インナーフィン上に並設され多数のコルゲートフィンの山と谷の空間をその横断方向に流体が流れるとき、並設された各コルゲートフィンの山と谷の位置が、順に所定の長さだけ一方向にずらして配置されているから、流体の流れ方向からみて、従来のように山と谷の間の内柱が流体の流通方向に一列おきに一致する状態とはならず、内柱は隣接する前後のコルゲートフィンの山または谷の内側に入り、且つ前後の内柱の位置は必ず相互にずれて位置することになる。したがって、内柱の周囲に形成される温度境界層が流体の流れ方向からみて前後に一致することはなく、インナーフィンと流体間での熱伝達率を従来より向上させることができ、それによって、熱交換器の熱交換効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す熱交換器の偏平チューブの断面図である。
【図2】偏平チューブ内に配設するインナーフィンの斜視図である。
【図3】(a)はコルゲートフィン3と4の山と谷の配置状態を示す説明図、(b)はコルゲートフィン3と5の山と谷の配置状態を示す説明図である。
【図4】(a)は他の実施形態のインナーフィンの概略平面図、(b)はそのコルゲートフィン13と14の山と谷の配置状態を示す説明図である。
【図5】(a)は他の実施形態のインナーフィンの概略平面図、(b)はそのコルゲートフィン23と24の山と谷の配置状態を示す説明図である。
【図6】従来のインナーフィンの斜視図である。
【図7】(a)は従来のコルゲートフィン31と32の山と谷の配置状態を示す説明図、(b)は従来のコルゲートフィン31と33の山と谷の配置状態を示す説明図である。
【符号の説明】
1−偏平チューブ(偏平通路)
2−インナーフィン
3,4,5,6−コルゲートフィン
Y−山
T−谷
U−内柱
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger for performing heat exchange between fluids, and more particularly to a heat exchanger having an inner fin disposed in a flat passage through which a fluid passes.
[0002]
[Prior art]
For example, as a radiator used in a heat pump cycle, a structure in which a large number of flat tubes for passing a fluid are arranged in contact with a large number of first tubes for passing a refrigerant, and inner fins are arranged in those flat tubes. Is known (see, for example, JP-A-2001-324291).
[0003]
[Problems to be solved by the invention]
Conventionally, as shown in FIG. 6, an inner fin 30 in a flat tube used in this type of heat exchanger is formed by press-forming a thin metal plate to form a row of corrugated fins every other row. They were arranged so as to be shifted from each other and were integrally molded. That is, the conventional inner fin 30 is formed in a shape in which a large number of rows of corrugated fins 31, 32, 33, 34,... Are arranged, but a pair of adjacent corrugated fins 31, 32 or 33, 34 The peaks and valleys are formed so as to be shifted by half the length of the peaks or valleys in the length direction of the fins, and such a pair of corrugated fins 31, 32 or 33, 34 is simply formed. It was formed side by side.
[0004]
For this reason, as shown in FIG. 6, in the conventional inner fin 30, the positions of the peaks and valleys of the adjacent corrugated fins, that is, the pair of corrugated fins 31, 32 or 33, 34 are half the length of the peaks or valleys. Are arranged so as to be shifted from each other, and although the inner pillar between the peak and the valley of the other fin is located at the peak or the valley of the other fin, it is located before and after the pair of adjacent corrugated fins 33 and 34 Focusing on the other pair of corrugated fins 31, 32 or 35, 36, the positions of the peaks and valleys of the pair of corrugated fins 33, 34 correspond to the peaks of the corrugated fins 31, 32, or 35, 36 of the pair before and after the pair. When viewed from the direction of the flow of the fluid, the valley position and the valley position were the same and matched.
[0005]
That is, as shown in FIG. 6, the front row and the rear row of each pair of corrugated fins 31, 32 or 33, 34 or 35, 36 are arranged so as to be repeated in the fluid flow direction, and the corrugated fins of the next pair of front rows are arranged. The fins were located at the same position as the front row corrugated fins of the previous pair, and the next pair of back row corrugated fins were located at the same position as the front pair of back row corrugated fins.
[0006]
Therefore, when the fluid passes through the flat tubes of such a heat exchanger, the fluid communicates with the corrugated fins 31, 32, 33, 34,. In this case, as shown in FIG. 7A, the positions of the peaks and valleys of the corrugated fins 31 and 32 in the front and rear rows of each pair are shifted by half the length of the peak or valley. Even if they are arranged, as shown in FIG. 7B, the corrugated fins 33 of the front row of the next pair have the same peaks and valleys as the corrugated fins 31 of the front row of the previous pair. The corrugated fins 34 in the rear row of the pair also have the same peak and valley positions of the corrugated fins 32 in the front row of the pair.
[0007]
For this reason, when the fluid is passed through the flat tube, the inner pillars located in the middle part of the peaks and valleys are formed around the inner pillars because they are located in every other row in the flow direction of the fluid. There has been a problem that the temperature boundary layer is in a state of being coincident with every other row of the corrugated fins as viewed from the flow direction of the fluid, and the heat transfer coefficient between the inner fin and the fluid is suppressed low.
[0008]
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a heat exchanger capable of improving the heat transfer coefficient of an inner fin and performing efficient heat exchange.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a heat exchanger of the present invention is a heat exchanger having a structure in which inner fins are arranged in a flat passage through which a fluid passes, wherein the inner fins have a number of corrugated fins arranged in a row. The corrugated fins formed and arranged side by side are characterized in that the positions of the peaks and valleys are sequentially shifted by a predetermined length in one direction.
[0010]
Here, as in the second aspect, the corrugated fins can be arranged such that the positions of the peaks and valleys are sequentially shifted in one direction by substantially half the length of the peaks or valleys.
[0011]
[Action]
In the heat exchanger having the above configuration, when a fluid is caused to flow in the flat passage, the fluid is arranged in parallel on the inner fins and flows in the space between the peaks and valleys of a large number of corrugated fins in the transverse direction thereof. Since the positions of the peaks and valleys of the corrugated fins are shifted in a single direction by a predetermined length (for example, approximately half the length of the peaks or valleys), they are arranged in a conventional manner when viewed from the fluid flow direction. The inner pillars between the peaks and the valleys do not coincide with every other row in the direction of fluid flow, and the inner pillars enter inside the peaks or valleys of the adjacent front and rear corrugated fins, and the positions of the front and rear inner pillars Are always offset from each other. Therefore, the temperature boundary layer formed around the inner column does not coincide with the front and rear when viewed from the fluid flow direction, and the heat transfer coefficient between the inner fin and the fluid can be improved as compared with the related art.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a flat tube 1 used in a heat exchanger to which the present invention is applied. The flat tube 1 is disposed as a fluid flat passage in a heat exchanger as a radiator used in, for example, a heat pump cycle, and an inner fin 2 is disposed in the flat tube 1. A refrigerant tube 9 for passing a refrigerant is joined to the outside of the flat tube 1 by brazing or the like.
[0013]
The flat tube 1 uses a half-split plate formed by pressing a thin metal plate into a predetermined shape, and is disposed so as to sandwich the inner fin 2 inside the half-split plate. Are overlapped and joined by brazing or the like to form a flat passage inside. Inner fins 2 are arranged in the flat tube 1 so as to make the space between the peak and the valley continuous along the flow direction of the fluid in the tube. In FIG. 1, the flow direction of the fluid in the flat tube 1 is perpendicular to the plane of the paper. A plurality of flow paths in the direction are formed.
[0014]
The inner fin 2 is integrally formed by press-molding a thin metal plate. As shown in FIG. 2, a number of corrugated fins 3, 4, 5, 6, 7,... Is done. Each corrugated fin 3, 4, 5,... Is formed by shaping a thin metal plate into a corrugated shape in which corrugations, that is, peaks and valleys are continuous, and these corrugated fins 3, 4, 5,. With respect to the corrugated fins, the corrugated fins in the succeeding row are arranged so that the positions of the peaks and the valleys are sequentially shifted in one direction by the length of substantially half of the peaks or the valleys. The flow direction of the fluid passing through the flat tube 1 is a direction perpendicular to the longitudinal direction of the corrugated fin.
[0015]
That is, as shown in FIG. 2, for example, in a portion where four corrugated fins 3, 4, 5, and 6 are juxtaposed, the displacement between the peak and the valley of each corrugated fin is half the length of the peak or the valley. Therefore, when the corrugated fins 3 and 4 are used as a reference, the corrugated fins 3 and 4 are shifted from the peaks and valleys by half the length of the peaks or valleys. The positions of the valleys are shifted by the length of the peaks or valleys, and the corrugated fins 3 and 6 are arranged such that the positions of the ridges and valleys are shifted by 1.5 times the length of the peaks or valleys.
[0016]
Therefore, when viewed from the flow direction of the fluid with reference to the corrugated fin 3, as shown in FIG. 3A, the position of the inner column U between the peak Y and the valley T of the later corrugated fin 4 is equal to that of the front. It enters between the inner pillars U of the corrugated fins 3. Similarly, the position of the inner pillar U between the peak Y and the valley T of the subsequent corrugated fin 5 enters between the inner pillar U and the inner pillar U of the corrugated fin 3, and similarly, the peak of the subsequent corrugated fin 6 The position of the inner pillar U between Y and the valley T also enters between the inner pillars U of the corrugated fins 3 and the inner pillar between the peaks and valleys of the corrugated fins 3, 4, 5, and 6. Does not coincide in the flow direction of the fluid, and the position of the inner column U is different.
[0017]
Further, when looking at the corrugated fins 3, 5 or 4, 6 in every other row, as shown in FIG. 3B, the peak Y or the valley T of one corrugated fin 3 or 4 and the corrugated fin 5 or 6 of the other corrugated fin 3 or 4 are shown. The valley T or the peak Y coincides, and the inner column U between the peak and the valley also coincides, but the inclination of the coincident inner column U is opposite to each other.
[0018]
Therefore, when four rows of corrugated fins of an arbitrary portion of the inner fin 2 in which such corrugated fins 3, 4, 5, 6,... The inner pillars are not aligned with the inner pillars of the other corrugated fins and are displaced from each other, and the inner pillars whose positions match each other are inclined in opposite directions.
[0019]
A number of the flat tubes 1 configured as described above are connected and connected between header tanks (not shown). A fluid such as water flows through each flat tube 1 through the header tank, and is joined to the flat tubes 1. The refrigerant tube 9 is supplied with a refrigerant such as carbon dioxide via a compressor.
[0020]
Fluid such as water passing through the flat tube 1 flows in the transverse direction of the corrugated fins 3, 4, 5, 6,... Of the inner fin 2 and flows through the space between the peaks and valleys of the corrugated fins. At this time, as shown in FIG. 3, the inner columns U between the peaks Y and the valleys T of the arbitrary four rows of corrugated fins do not overlap with each other when viewed from the fluid flow direction, The inner pillars U are arranged at different positions.
[0021]
Therefore, when the fluid flows in the flat tube 1, a temperature boundary layer is generated around the inner pillar between the peaks and valleys of the corrugated fins 3, 4, 5, 6,. The inner boundary of the inner pillar of the corrugated fin does not include the inner column of the inner corrugated fin of the rear corrugated fin. Since there is no coincidence before and after the flow direction of the fluid, the heat transfer coefficient between the inner fin 2 and the fluid can be improved. For this reason, the heat exchange rate of the conventional inner fin as shown in FIG. 6 can be greatly improved compared to a heat exchanger in which the inner fin is disposed in a flat tube.
[0022]
FIG. 4 is a schematic plan view of the inner fin 12 of the heat exchanger according to another embodiment. The inner fin 12 of this example is formed by press-molding a thin metal plate in the same manner as described above, and a plurality of strip-shaped corrugated fins 13, 14, 15,...
[0023]
Each corrugated fin 13, 14, 15,... Is formed by forming a thin metal plate into a corrugated shape in which corrugations, that is, peaks and valleys are continuous, and these corrugated fins 13, 14, 15,. The corrugated fins are arranged such that the positions of the peaks and valleys are shifted by half the length of the peaks or valleys. However, the peaks and valleys do not shift sequentially in the length direction of the fins. Instead, every other corrugated fins 13 and 15 have the same peaks and valleys in every other row so that the positions of the peaks and valleys match. Corrugated fins having peaks and valleys are repeatedly arranged.
[0024]
Further, in these corrugated fins 13, 14, 15,..., The inner column U between the peak Y and the valley T is arranged obliquely at an inclination angle α with respect to the flow direction of the fluid. That is, when forming the peaks and valleys, the corrugated fins 13, 14, 15... Are bent by inclining the bending line by an angle α with respect to the transverse direction, thereby forming the inner column U between the peak Y and the valley T. Are arranged obliquely with respect to the flow direction of the fluid.
[0025]
When a fluid such as water flows through the flat tube provided with such inner fins 12, the fluid flows in the transverse direction of each of the corrugated fins 13, 14, 15,. Flows through the space between the peaks and valleys, and at this time, the inner pillars U between the peaks Y and the valleys T of every other adjacent corrugated fin overlap with each other when viewed from the fluid flow direction. However, since the inner column U is arranged to be inclined with respect to the flow direction of the fluid, the flow of the fluid hitting the inner column U changes, and the temperature boundary layer around the front inner column and the rear inner column The peripheral temperature boundary layer does not match, and the heat transfer coefficient between the fluid and the inner fins 12 can be improved, thereby improving the heat exchange rate of the heat exchanger.
[0026]
FIG. 5 is a schematic plan view of an inner fin 22 of a heat exchanger according to another embodiment. The inner fins 22 of this example have the corrugated fins 23, 24, 25,... Inclining the inner column U between the peaks Y and the valleys T at an inclination angle α with respect to the flow direction of the fluid. Is formed. That is, when forming the peaks and valleys, the corrugated fins 23, 24, 25,... Are bent by inclining the bending line at an angle α with respect to the transverse direction, thereby forming the inner column U between the peak Y and the valley T. Are arranged obliquely with respect to the direction of fluid flow, but the direction of inclination of the inner column U of one adjacent corrugated fin 24 with respect to the direction of fluid flow is the same as that of the other corrugated fins 23 or 25. The column U is inclined in a direction opposite to the inclination direction.
[0027]
In this manner, the fluid is circulated by making the direction of inclination of the inner column U of the adjacent one of the corrugated fins 24 opposite to the direction of inclination of the inner column U of the other corrugated fins 23 or 25 in the opposite direction. The heat transfer coefficient between the inner fin and the fluid when this is performed is further improved, and the heat exchange rate of the heat exchanger can be further improved.
[0028]
【The invention's effect】
As described above, according to the heat exchanger of the present invention, when the fluid flows in the transverse direction in the space between the peaks and valleys of the corrugated fins that are juxtaposed on the inner fins, the corrugated fins juxtaposed are arranged. Since the positions of the peaks and valleys are sequentially shifted by a predetermined length in one direction, the inner pillar between the peaks and the valleys in the flow direction of the fluid as in the related art is viewed from the fluid flow direction. The inner pillars do not coincide with every other row, and the inner pillars are located inside the ridges or valleys of the adjacent front and rear corrugated fins, and the front and rear inner pillars are always offset from each other. Therefore, the temperature boundary layer formed around the inner column does not coincide with the front and rear when viewed from the flow direction of the fluid, and the heat transfer coefficient between the inner fin and the fluid can be improved as compared with the related art. The heat exchange efficiency of the heat exchanger can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a flat tube of a heat exchanger showing one embodiment of the present invention.
FIG. 2 is a perspective view of an inner fin provided in a flat tube.
FIG. 3A is an explanatory view showing an arrangement state of peaks and valleys of corrugated fins 3 and 4, and FIG. 3B is an explanatory view showing an arrangement state of peaks and valleys of corrugated fins 3 and 5.
FIG. 4A is a schematic plan view of an inner fin according to another embodiment, and FIG. 4B is an explanatory diagram showing an arrangement state of peaks and valleys of the corrugated fins 13 and 14.
FIG. 5A is a schematic plan view of an inner fin according to another embodiment, and FIG. 5B is an explanatory diagram showing an arrangement state of peaks and valleys of the corrugated fins 23 and 24.
FIG. 6 is a perspective view of a conventional inner fin.
FIG. 7A is an explanatory view showing an arrangement state of peaks and valleys of conventional corrugated fins 31 and 32, and FIG. 7B is an explanatory view showing an arrangement state of peaks and valleys of conventional corrugated fins 31 and 33. is there.
[Explanation of symbols]
1-flat tube (flat passage)
2-inner fins 3,4,5,6-corrugated fin Y-mountain T-valley U-inner pillar

Claims (4)

流体を通す偏平通路内にインナーフィンを配設した構造の熱交換器において、
該インナーフィンが多数のコルゲートフィンを列状に並設して形成され、並設された各コルゲートフィンは、各々の山と谷の位置を順に所定の長さだけ一方向にずらして配置されていることを特徴とする熱交換器。
In a heat exchanger having a structure in which inner fins are disposed in a flat passage through which a fluid passes,
The inner fins are formed by arranging a large number of corrugated fins in a row, and the corrugated fins arranged in a row are arranged such that the positions of the peaks and valleys are sequentially shifted by a predetermined length in one direction. A heat exchanger.
前記各コルゲートフィンは、各々の山と谷の位置を順に該山または谷の略半分の長さだけ一方向にずらして配置されていることを特徴とする請求項1記載の熱交換器。2. The heat exchanger according to claim 1, wherein the corrugated fins are arranged such that the positions of the peaks and valleys are sequentially shifted in one direction by a length substantially equal to the half of the peaks or valleys. 流体を通す偏平通路内にインナーフィンを配設した構造の熱交換器において、
該インナーフィンが多数のコルゲートフィンを列状に並設して形成され、並設された各コルゲートフィンは、隣接するコルゲートフィンに対し各々の山と谷の位置を所定の長さだけずらして配置され、該コルゲートフィンの山と谷の間の内柱が流体の流通方向に対し斜めに傾斜して配置されていることを特徴とする熱交換器。
In a heat exchanger having a structure in which inner fins are disposed in a flat passage through which a fluid passes,
The inner fin is formed by arranging a number of corrugated fins in a row, and the corrugated fins are arranged such that the positions of the peaks and valleys are shifted from the adjacent corrugated fins by a predetermined length. A heat exchanger characterized in that the inner pillar between the peak and the valley of the corrugated fin is arranged obliquely to the direction of fluid flow.
前記内柱が隣接するコルゲートフィン間で相互に逆向きに傾斜して配置されていることを特徴とする請求項3記載の熱交換器。The heat exchanger according to claim 3, wherein the inner pillars are arranged so as to be inclined in opposite directions between adjacent corrugated fins.
JP2002177528A 2002-06-18 2002-06-18 Heat exchanger Withdrawn JP2004020108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177528A JP2004020108A (en) 2002-06-18 2002-06-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177528A JP2004020108A (en) 2002-06-18 2002-06-18 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2004020108A true JP2004020108A (en) 2004-01-22

Family

ID=31175539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177528A Withdrawn JP2004020108A (en) 2002-06-18 2002-06-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2004020108A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116151A (en) * 2006-11-07 2008-05-22 Mahle Filter Systems Japan Corp Heat exchanger
WO2011021820A2 (en) * 2009-08-20 2011-02-24 삼성공조 주식회사 Heat exchanger and turbulator for a heat exchanger
WO2011148505A1 (en) 2010-05-28 2011-12-01 トヨタ自動車株式会社 Heat exchanger and method for manufacturing same
CN106643263A (en) * 2015-07-29 2017-05-10 丹佛斯微通道换热器(嘉兴)有限公司 Fin assembly used for heat exchanger and heat exchanger with fin assembly
CN112470329A (en) * 2018-07-27 2021-03-09 日本轻金属株式会社 Cooling device
US20220082448A1 (en) * 2020-09-11 2022-03-17 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Device for measuring temperatures in a heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116151A (en) * 2006-11-07 2008-05-22 Mahle Filter Systems Japan Corp Heat exchanger
WO2011021820A2 (en) * 2009-08-20 2011-02-24 삼성공조 주식회사 Heat exchanger and turbulator for a heat exchanger
WO2011021820A3 (en) * 2009-08-20 2011-06-03 삼성공조 주식회사 Heat exchanger and turbulator for a heat exchanger
KR101103003B1 (en) 2009-08-20 2012-01-05 삼성공조 주식회사 heat-exchanger and turbulator of the heat-exchanger
WO2011148505A1 (en) 2010-05-28 2011-12-01 トヨタ自動車株式会社 Heat exchanger and method for manufacturing same
US8944147B2 (en) 2010-05-28 2015-02-03 Toyota Jidosha Kabushiki Kaisha Heat exchanger and method for manufacturing same
CN106643263A (en) * 2015-07-29 2017-05-10 丹佛斯微通道换热器(嘉兴)有限公司 Fin assembly used for heat exchanger and heat exchanger with fin assembly
CN106643263B (en) * 2015-07-29 2019-02-15 丹佛斯微通道换热器(嘉兴)有限公司 Fin component for heat exchanger and the heat exchanger with the fin component
US10816278B2 (en) 2015-07-29 2020-10-27 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co. Ltd. Fin assembly for heat exchanger and heat exchanger having the fin assembly
CN112470329A (en) * 2018-07-27 2021-03-09 日本轻金属株式会社 Cooling device
CN112470329B (en) * 2018-07-27 2024-02-06 日本轻金属株式会社 Cooling device
US20220082448A1 (en) * 2020-09-11 2022-03-17 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Device for measuring temperatures in a heat exchanger

Similar Documents

Publication Publication Date Title
JP4231610B2 (en) Manufacturing method of heat exchanger fins
JP4312339B2 (en) Heat transfer device with meandering passage
CN107076533B (en) Heat exchanger with the wave-shaped fins plate for reducing EGR gas differential pressure
JP4946348B2 (en) Air heat exchanger
JP4989979B2 (en) Heat exchanger
JP5326855B2 (en) Heat exchanger and article storage device
JP2004205124A (en) Plate fin for heat exchanger and heat exchanger core
JP2004144460A (en) Heat exchanger
JP6708835B2 (en) Multi-hole extrusion tube design
WO2014119942A1 (en) Heat exchange system
KR100740180B1 (en) Finned heat exchanger and method of manufacturing the same
JP2011112331A (en) Heat exchanger for exhaust gas
JP2004020108A (en) Heat exchanger
JP2004019999A (en) Heat exchanger with fin, and manufacturing method therefor
KR101075164B1 (en) Heat exchanger
JPH10176892A (en) Noded plate fin type heat exchanger
JPH11159987A (en) Corrugate fin for compound heat exchanger
JP3906814B2 (en) tube
JP2015535591A (en) Tube element of heat exchange means
JP2003279291A (en) Heat exchanger
JP4513207B2 (en) Air heat exchanger
US1993872A (en) Radiator core
JP2008170060A (en) Herringbone type liquid cooled heat sink
WO2016065988A1 (en) Heat exchanger
JP4813288B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906