JP2004020027A - Heat accumulator - Google Patents

Heat accumulator Download PDF

Info

Publication number
JP2004020027A
JP2004020027A JP2002174441A JP2002174441A JP2004020027A JP 2004020027 A JP2004020027 A JP 2004020027A JP 2002174441 A JP2002174441 A JP 2002174441A JP 2002174441 A JP2002174441 A JP 2002174441A JP 2004020027 A JP2004020027 A JP 2004020027A
Authority
JP
Japan
Prior art keywords
inner container
spacer
container
main body
ring main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002174441A
Other languages
Japanese (ja)
Inventor
Shigeo Ito
伊藤 茂雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002174441A priority Critical patent/JP2004020027A/en
Publication of JP2004020027A publication Critical patent/JP2004020027A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Thermal Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat accumulator improved in durability by restraining swing of an inner vessel to relax stress generated in a welding part in a vessel lower part, while minimizing reduction of heat-retaining performance of the heat accumulator. <P>SOLUTION: This heat accumulator has a double structure comprising the metal inner vessel 1 and a metal outer vessel 2. Two sides are welded in the connection part 8 in the lower end that is positioned on the opening side of the two sides, and an air gap part between the two sides is vacuum heat isolated. An upper part of the inner vessel is formed with a recessed part 11, and ring-like spacers 7 are fitted in between the recessed part and the outer vessel. The recessed part 11 is annularly formed in the peripheral face of the inner vessel upper part, for example, and the plurality of spacers 7 each formed of a ring with a gap between the recessed part and the outer vessel as a nearly diameter are fitted in the annular recessed part 11. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、真空断熱層を備えた蓄熱器に関し、特に車両に搭載され、エンジン冷却水を保温貯蔵するのに好適な蓄熱器に関する。
【0002】
【従来の技術】
従来より、水冷式内燃機関(エンジン)の暖機促進を図る冷却系装置として、エンジンから流出する冷却水を保温貯蔵する蓄熱器を冷却水回路に配設し、蓄熱器内に貯蔵された高温の冷却水をエンジンに導入してエンジンの暖機促進を図るものが提案されている。
【0003】
このような蓄熱器として、従来より図6に示された構造の蓄熱器がある。この蓄熱器は、図6(b)に示すように内容器1と外容器2及びこの外容器2の下部に接合されたブラケット3から構成されている。内容器1と外容器2とは、通常ステンレスから作られており、両容器1,2間の空隙部は真空に保たれ、断熱層を形成していると共に、図6(c)に接合部であるA部を拡大して示すように、容器下部(容器の開口部)で両者1,2は円周上に溶接接合されている。
【0004】
蓄熱器の車両搭載には、図6(a)に示すように、蓄熱器はブラケット3でボルト6によってエンジン冷却水通路を形成する樹脂ハウジング4に固定され組み付けられる。また、蓄熱器と樹脂ハウジング4とはOリング5によってシールされる。
エンジン冷却水は、車両走行時に高温となり樹脂ハウジング4の入口側パイプ41から蓄熱器内に取り込まれ、その一部は出口側パイプ42より排出される。蓄熱器内に取り込まれた高温のエンジン冷却水は車両が停車している間、蓄熱器内に保温貯蔵される。そして、次回のエンジン始動時に、蓄熱器内の高温のエンジン冷却水がエンジンや車室内暖房用ヒータコアに送り込まれ、エンジンの早期暖機や早期暖房に使用される。
【0005】
しかしながら、上記従来の蓄熱器は保温性能を向上させるために、内容器1と外容器2の接合部8を下側に配置している。これは内容器1内の冷却水の温度が上部は高温、下部は低温となることから、蓄熱器が外部へとつながる、樹脂ハウジング4との接続部分である接合部8を低温側とすることで、伝熱による冷却水の熱損失を低減するためである。しかし、内容器1と外容器2の接合部8は下部の円周溶接部8のみであることから、車両走行時の振動によって、エンジン冷却水で満たされた内容器1が振動し、この円周溶接部に応力が集中し、耐久性が劣る(疲労破壊する)という問題がある。
【0006】
【発明が解決しようとする課題】
本発明は、上記問題に鑑みてなされたもので、その目的は、蓄熱器の保温性能の低下を最小化しつつ、内容器の振れを拘束することで容器下部の円周溶接部に発生する応力を緩和し、耐久性を向上した蓄熱器を提供することである。
【0007】
【課題を解決するための手段】
本発明は、前記課題を解決するための手段として、特許請求の範囲の各請求項に記載の蓄熱器を提供する。
請求項1に記載の蓄熱器は、内容器の上部に凹部を形成し、この凹部と外容器との間にリング状スペーサを嵌め込むことで、内容器の振動を拘束するようにしたものである。これにより、内容器と外容器との唯一の結合個所である下部の溶接部に発生する応力が緩和され、蓄熱器の耐久性を向上させることができる。また、スペーサをリング状とすることで、スペーサの組付性を向上できる。
【0008】
請求項2の蓄熱器は、スペーサと内・外容器との接触が線接触となるようにしたものであり、これにより、両者間の伝熱面積を最小化することができ、保温性の低下も最小化できる。
請求項3の蓄熱器は、内容器上部の凹部を、内容器上部周面に環状に形成したものである。この場合、内容器上部を絞り込むことによって容易に凹部を形成することができる。
【0009】
請求項4の蓄熱器は、内容器上部の凹部をその周面に所定の間隔をあけて、上面視で略V字状に複数形成したものである。この場合においては、凹部内に嵌め込まれたリング状スペーサが、凹部内を移動するのが防止できる。また、凹部を内容器上部の周面に所定の間隔で設けているので、内容器上部の全周面に環状に凹部を設けた場合に比べて、内容器の容量を増大することができ、エンジン始動時に利用できる熱量を増大できる。
請求項5の蓄熱器は、スペーサを複数設けたものであり、これにより、内容器の振動を効果的に抑制できる。
【0010】
請求項6の蓄熱器は、スペーサを、1つのリング本体と、このリング本体から径方向に延びて、内容器の外周面又は外容器の内周面に当接する複数の支持部とから構成したものである。この場合においては、1個のスペーサですむために、スペーサの組付け工数が低減できると共に、スペーサが凹部内を移動する恐れもない。
請求項7の蓄熱器は、リング本体から径方向の内方に延びる支持部と径方向の外方に延びる支持部とが、リング本体の周方向の同一位置に形成されている。
【0011】
請求項8の蓄熱器は、リング本体から径方向の内方に延びる支持部と径方向の外方に延びる支持部とを、リング本体の周方向に交互に間隔をあけて形成したものであり、この場合においては、リング本体の周方向の同一位置から径方向の内外に延在する支持部に比べて、径方向の内外の支持部が周方向に間隔をあけて存在しているので、内容器から外容器までの伝熱経路が長くなり、保温性が向上する。
【0012】
【発明の実施の形態】
以下、図面に従って本発明の実施の形態の蓄熱器について説明する。図1は、本発明の第1実施形態の蓄熱器の縦断面図と、I−I線における横断面の半分を示している。なお、本発明においては、上部とは、図面において上部側である蓄熱器の底部側を意味しており、下部とは、図面において下部側である蓄熱器の開口側を意味している。
【0013】
本発明の第1実施形態の蓄熱器は、内容器1、外容器2、外容器2の下部(肩部)に接合されたブラケット3及び内容器1と外容器2との間に嵌め込まれる複数のリング状スペーサ7とから構成される。内容器1と外容器2とは、下部の円周溶接部8でのみ接合されている。第1実施形態では、内容器1と外容器2との間に複数のリング状スペーサ7を嵌め込むための空間を形成するために、内容器1の上部には、環状の凹部11が形成されている。この外容器2と内容器1の環状の凹部11とで形成される環状の空間内に、その周方向に適宜の間隔をあけて、複数のリング状スペーサ7が嵌め込まれ、その位置が固定される。なお、図1では、周方向に略90°の間隙をあけて4つのリング状スペーサ7が設けられているが、このスペーサ7の数は、適宜選択可能であるが、スペーサ7の数を多くするとそれだけ伝熱による熱損失が多くなること、及び4方向からの振動に耐えられることから、4つのスペーサ数が好適である。この場合、図1に示されるように内容器1の外周とリング状スペーサ7の外周とは線接触し、外容器2の内周とリング状スペーサ7の外周とも線接触することになる。
【0014】
スペーサ7は、熱伝導の低い材料から作られることが好ましいが、真空中でガスを発生するものは適さない。また、蓄熱器は内容器1と外容器2との間の空隙部を真空にするために高温で真空引きをしており、そのためスペーサ7はその高温にも耐える材質でなければならず、セラミックや伝熱面ではセラミックより劣るが、加工性から内容器及び外容器と同一材であるステンレス等が好ましい。
【0015】
このように、本発明の実施形態の蓄熱器では、スペーサ7が蓄熱器上部の内容器1と外容器2との間に形成される空間に嵌め込まれることによって、内容器の振動が拘束され、これによって、蓄熱器下部の円周上溶接部8に発生する応力が緩和される。また、リング状スペーサ7に加わる応力は、内容器1の上部の外周上に配置された複数個のスペーサ7に分散されるため、スペーサ7が破損する恐れはない。
更に内容器1と外容器2とは下部の円周上溶接部8で接合されているだけであり、その隙間のバラツキは少なくないが、剛性の低い(肉厚の薄い)スペーサ7を用いることで、その変形を利用できるので組み付けは容易となる。
また、蓄熱器上部にスペーサ7を嵌め込むことで、スペーサ7を介した熱伝導による保温性低下を招くが、内容器1とスペーサ7及び外容器2とスペーサ7との接触を線接触とすることで、伝熱面積を最小化し、保温性の低下も最小化できる。
【0016】
図2は、本発明の第2実施形態の蓄熱器の縦断面図と、II−II線における横断面の半分を示している。図1の第1実施形態では、内容器1の上部を全周に渡って環状の凹部11を形成しているが、図2の第2実施形態では、内容器1の上部のリング状スペーサ7を嵌め込む位置にのみ、上部に凹部11を形成している。即ち、第2実施形態では、内容器1の上部の周面に沿って所定の間隔をあけて、上面視で略V形状を形成するように複数の凹部11が形成されている。図2では、この凹部11は、内容器1上部の全周に4個所形成されているが、この数に限定されるものではない。他の部分の構成は、第1実施形態と同様である。
【0017】
この第2実施形態では、第1実施形態のように内容器1上部の全周に渡って凹部11を形成するのではなく、リング7を嵌め込む位置にのみ周面に断続的に凹部11を形成しているので、内容器1の容量を増やすことができ、エンジン始動時に利用できる熱量を増大できる。また、第1実施形態では、リング状スペーサ7が環状の凹部11内を移動し、内容器1の振動を規制する能力が低下する恐れがあるが、第2の実施形態では、略V形状の凹部11内にリング状スペーサ7を収めることができるので、スペーサ7の移動が防止でき、内容器1の振動を規制する能力が低下することはない。
【0018】
図3は、本発明の第3実施形態の蓄熱器の縦断面図と、 III−III 線における横断面の半分を示している。図1,2に示す第1、第2実施形態のスペーサ7の形状では、内容器1上部の凹部11と外容器2とで形成される空間を概略直径とするリング状としているが、図3に示す第3実施形態のスペーサ7は、内容器1上部の環状の凹部11と外容器2とで形成される環状の空間内の略中間部に環状に位置するようなリング状に形成されている。
【0019】
この第3形態のスペーサ7は、図3に示すようにリング本体71とこのリング本体71から径方向に突出する複数の支持部72とからなる。リング本体71は、内容器1上部の環状凹部11が形成されている部分の直径と外容器2の直径との略中間の直径を有している。リング本体71の内外周面には、所定の間隔をあけて周方向の同一位置から径方向の内方及び外方に向けて延びる支持部72が複数個所、例えば図3では4個所で、形成されている。これらの支持部72の先端73は、内容器1の外周面又は外容器2の内周面と線接触するように、円弧状に形成されている。他の構造は、第1実施形態と同様である。
【0020】
第3実施形態のスペーサ7は、第1、第2実施形態に比べてスペーサ7自体は1個ですむのでスペーサの組み付け工数が低減できる。また、1個のスペーサ7が、環状空間の略中央部に環状に配置されているので、第1、第2実施形態のようにスペーサ7が移動(回転)する恐れがない。
【0021】
図4は、本発明の第4実施形態の蓄熱器の縦断面図と、IV−IV線における横断面の半分を示している。第3実施形態のスペーサ7では、支持部72が、リング本体71の円周上の同一位置から径方向の内方及び外方に向けて延びているが、本第4実施形態のスペーサ7では、リング本体71の円周上で径方向の内方に向けて延びる内支持部72aと径方向の外方に向けて延びる外支持部72bとが、周方向に所定の間隔をあけて交互にリング本体71に設けられている。内・外支持部72a,72bの先端73は、第3実施形態と同様に内容器1の外周面又は外容器2の内周面に線接触するように、円弧状に形成されている。他の構造は、第3実施形態と同様である。
【0022】
この第4実施形態のスペーサ7では、内・外支持部72a,72bがリング本体の円周上を交互に形成されているので、第3実施形態のスペーサ7に比べて内容器1から外容器2までの伝熱経路が長くなり、保温性の向上を図れる。
【0023】
図5は、本発明のスペーサ7を蓄熱器に組み付ける場合の1つの例を説明する図である。この例においては、外容器2が上蓋部分22と容器部分21とからなり、内容器1を外容器2の容器部分21に組み込んで、下部の接合部8で溶接接合した後、内容器1と外容器2の容器部分21とで形成されるスペーサ7の嵌め込み位置にスペーサ7を嵌め込む。その後、外容器2の上蓋部分22を容器部分21に被せ、両者の接合部分を溶接によって結合する。このようにして、スペーサ7を組み込んだ蓄熱器が得られる。
【0024】
なお、上記説明においては、本発明の蓄熱器を専ら車両用として説明しているが、車両用以外にも適宜利用できるものであることは当然である。
【図面の簡単な説明】
【図1】本発明の第1実施形態の蓄熱器の縦断面図と、I−I線による横断面の半分を示す図である。
【図2】本発明の第2実施形態の蓄熱器の縦断面図と、II−II線による横断面の半分を示す図である。
【図3】本発明の第3実施形態の蓄熱器の縦断面図と、 III−III 線による横断面の半分を示す図である。
【図4】本発明の第4実施形態の蓄熱器の縦断面図と、IV−IV線による横断面の半分を示す図である。
【図5】本発明におけるスペーサの蓄熱器への組付け手順を説明する図である。
【図6】従来の蓄熱器を、(a)車両搭載時の断面図、(b)蓄熱器の縦断面図、(c)接合部であるA部の拡大図、で示している。
【符号の説明】
1…内容器
11…凹部
2…外容器
3…ブラケット
4…樹脂ハウジング
7…スペーサ
71…リング本体
72…支持部
73…先端
8…接合部(溶接部)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat accumulator provided with a vacuum heat insulating layer, and more particularly to a heat accumulator mounted on a vehicle and suitable for keeping engine cooling water warm.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a cooling system device for promoting the warm-up of a water-cooled internal combustion engine (engine), a heat storage device for keeping the cooling water flowing out of the engine warm and stored has been arranged in a cooling water circuit, and the high temperature stored in the heat storage device has been provided. In order to promote warm-up of the engine by introducing cooling water into the engine, there has been proposed.
[0003]
As such a regenerator, there is a regenerator having a structure shown in FIG. 6 conventionally. As shown in FIG. 6 (b), the heat storage device includes an inner container 1, an outer container 2, and a bracket 3 joined to a lower portion of the outer container 2. The inner container 1 and the outer container 2 are usually made of stainless steel, the space between the two containers 1 and 2 is kept in a vacuum, and a heat insulating layer is formed. As shown in an enlarged view of the portion A, the two 1 and 2 are welded on the circumference at the lower part of the container (opening of the container).
[0004]
When the regenerator is mounted on a vehicle, the regenerator is fixed to a resin housing 4 forming an engine cooling water passage by bolts 6 with a bracket 3 and assembled as shown in FIG. The heat storage and the resin housing 4 are sealed by an O-ring 5.
The engine cooling water has a high temperature during running of the vehicle and is taken into the regenerator from the inlet pipe 41 of the resin housing 4, and a part thereof is discharged from the outlet pipe 42. The high-temperature engine cooling water taken into the heat accumulator is kept warm and stored in the heat accumulator while the vehicle is stopped. Then, at the next engine start, high-temperature engine cooling water in the regenerator is sent to the engine and the heater core for heating the vehicle interior, and is used for early warm-up and early heating of the engine.
[0005]
However, in the above-mentioned conventional heat storage device, the joint 8 between the inner container 1 and the outer container 2 is disposed on the lower side in order to improve the heat retaining performance. This is because the temperature of the cooling water in the inner container 1 is high in the upper part and low in the lower part. Therefore, the joining part 8 which is the connection part with the resin housing 4 where the regenerator is connected to the outside is set to the low temperature side. This is to reduce the heat loss of the cooling water due to the heat transfer. However, since the joint 8 between the inner container 1 and the outer container 2 is only the lower circumferential welded portion 8, the inner container 1 filled with the engine cooling water vibrates due to the vibration during running of the vehicle. There is a problem that stress concentrates on the girth welded portion, resulting in poor durability (fatigue failure).
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has as its object to minimize the decrease in the heat retaining performance of a heat accumulator while restraining the inner container from oscillating to generate a stress generated in a circumferential weld at a lower portion of a container. And to provide a heat accumulator with improved durability.
[0007]
[Means for Solving the Problems]
The present invention provides, as means for solving the above-mentioned problems, a regenerator described in the claims.
The heat storage device according to claim 1 is configured such that a concave portion is formed in an upper portion of the inner container, and a ring-shaped spacer is fitted between the concave portion and the outer container to restrain the vibration of the inner container. is there. This alleviates the stress generated in the lower welded portion, which is the only joint between the inner container and the outer container, and can improve the durability of the heat storage device. Further, by making the spacer a ring shape, the assemblability of the spacer can be improved.
[0008]
In the regenerator according to the second aspect, the contact between the spacer and the inner / outer container is a line contact, whereby the heat transfer area between the two can be minimized, and the heat retention is lowered. Can also be minimized.
According to a third aspect of the present invention, the concave portion in the upper part of the inner container is formed in an annular shape on the inner peripheral surface of the inner container. In this case, the recess can be easily formed by narrowing the upper portion of the inner container.
[0009]
According to a fourth aspect of the present invention, a plurality of concave portions in the upper portion of the inner container are formed in a substantially V-shape as viewed from above, with a predetermined interval on a peripheral surface thereof. In this case, it is possible to prevent the ring-shaped spacer fitted in the concave portion from moving in the concave portion. Further, since the concave portions are provided at predetermined intervals on the peripheral surface of the inner container upper part, the capacity of the inner container can be increased as compared with the case where the concave portions are provided annularly on the entire peripheral surface of the internal container upper part, The amount of heat available when starting the engine can be increased.
The heat accumulator according to the fifth aspect is provided with a plurality of spacers, whereby the vibration of the inner container can be effectively suppressed.
[0010]
In the heat storage device of the sixth aspect, the spacer includes one ring main body and a plurality of support portions extending radially from the ring main body and abutting on the outer peripheral surface of the inner container or the inner peripheral surface of the outer container. Things. In this case, since only one spacer is required, the man-hour for assembling the spacer can be reduced, and the spacer does not move in the recess.
In the heat accumulator according to the seventh aspect, the support portion extending inward in the radial direction from the ring main body and the support portion extending outward in the radial direction are formed at the same position in the circumferential direction of the ring main body.
[0011]
In the heat accumulator according to the eighth aspect, a support portion extending inward in the radial direction from the ring main body and a support portion extending outward in the radial direction are formed alternately at intervals in the circumferential direction of the ring main body. In this case, since the inner and outer support portions in the radial direction are spaced apart from each other in the circumferential direction as compared with the support portions extending inward and outward in the radial direction from the same position in the circumferential direction of the ring main body, The heat transfer path from the inner container to the outer container is lengthened, and the heat retention is improved.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a heat storage device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a longitudinal cross-sectional view of a heat storage device according to a first embodiment of the present invention and a half of a cross-sectional view taken along line II. In the present invention, the upper part means the bottom side of the regenerator which is the upper side in the drawing, and the lower part means the opening side of the regenerator which is the lower side in the drawing.
[0013]
The heat storage device of the first embodiment of the present invention includes an inner container 1, an outer container 2, a bracket 3 joined to a lower portion (shoulder) of the outer container 2, and a plurality of fittings between the inner container 1 and the outer container 2. And the ring-shaped spacer 7. The inner container 1 and the outer container 2 are joined only at a lower circumferential weld 8. In the first embodiment, an annular concave portion 11 is formed in the upper part of the inner container 1 to form a space for fitting the plurality of ring-shaped spacers 7 between the inner container 1 and the outer container 2. ing. In an annular space formed by the outer container 2 and the annular concave portion 11 of the inner container 1, a plurality of ring-shaped spacers 7 are fitted at appropriate intervals in the circumferential direction, and the positions thereof are fixed. You. In FIG. 1, four ring-shaped spacers 7 are provided with a gap of about 90 ° in the circumferential direction. The number of the spacers 7 can be appropriately selected. Then, the number of spacers is preferably four because heat loss due to heat transfer increases and vibration from four directions can be endured. In this case, as shown in FIG. 1, the outer periphery of the inner container 1 and the outer periphery of the ring-shaped spacer 7 are in line contact, and the inner periphery of the outer container 2 and the outer periphery of the ring-shaped spacer 7 are also in line contact.
[0014]
The spacer 7 is preferably made of a material having low thermal conductivity, but one that generates gas in a vacuum is not suitable. In addition, the heat accumulator is evacuated at a high temperature in order to evacuate the gap between the inner container 1 and the outer container 2, so that the spacer 7 must be made of a material that can withstand the high temperature. Although the heat transfer surface is inferior to ceramics, stainless steel or the like, which is the same material as the inner container and the outer container, is preferable from the viewpoint of workability.
[0015]
As described above, in the heat storage device according to the embodiment of the present invention, the vibration of the inner container is restrained by fitting the spacer 7 into the space formed between the inner container 1 and the outer container 2 at the upper part of the heat storage device. Thereby, the stress generated in the circumferentially welded portion 8 at the lower part of the heat storage device is reduced. Further, since the stress applied to the ring-shaped spacer 7 is dispersed to the plurality of spacers 7 arranged on the outer periphery of the upper part of the inner container 1, there is no possibility that the spacer 7 is damaged.
Furthermore, the inner container 1 and the outer container 2 are joined only by the lower circumferential welded portion 8, and the dispersion of the gap is not small, but the spacer 7 having low rigidity (thin thickness) is used. Since the deformation can be used, the assembling becomes easy.
Also, fitting the spacer 7 on the upper part of the regenerator causes a decrease in heat retention due to heat conduction through the spacer 7, but the contact between the inner container 1 and the spacer 7 and the contact between the outer container 2 and the spacer 7 are line contact. Thus, the heat transfer area can be minimized, and the decrease in heat retention can be minimized.
[0016]
FIG. 2 shows a longitudinal sectional view of a heat storage device according to a second embodiment of the present invention and a half of a transverse section taken along line II-II. In the first embodiment of FIG. 1, an annular recess 11 is formed over the entire circumference of the upper part of the inner container 1, but in the second embodiment of FIG. The recess 11 is formed in the upper part only at the position where the is fitted. That is, in the second embodiment, the plurality of recesses 11 are formed at predetermined intervals along the upper peripheral surface of the inner container 1 so as to form a substantially V shape when viewed from above. In FIG. 2, four recesses 11 are formed on the entire circumference of the upper portion of the inner container 1, but the number is not limited to this. Other configurations are the same as those of the first embodiment.
[0017]
In the second embodiment, the recess 11 is intermittently formed on the peripheral surface only at the position where the ring 7 is fitted, instead of forming the recess 11 over the entire circumference of the upper part of the inner container 1 as in the first embodiment. Since it is formed, the capacity of the inner container 1 can be increased, and the amount of heat available at the time of starting the engine can be increased. In the first embodiment, the ring-shaped spacer 7 may move in the annular concave portion 11 and the ability to regulate the vibration of the inner container 1 may be reduced. However, in the second embodiment, the substantially V-shaped Since the ring-shaped spacer 7 can be accommodated in the recess 11, the movement of the spacer 7 can be prevented, and the ability to regulate the vibration of the inner container 1 does not decrease.
[0018]
FIG. 3 shows a longitudinal sectional view of a heat storage device according to a third embodiment of the present invention, and a half of a transverse section taken along line III-III. In the shapes of the spacers 7 of the first and second embodiments shown in FIGS. 1 and 2, the space formed by the concave portion 11 at the upper part of the inner container 1 and the outer container 2 has a ring shape having an approximate diameter. The spacer 7 of the third embodiment shown in FIG. 3 is formed in a ring shape so as to be annularly located at a substantially intermediate portion in an annular space formed by the annular concave portion 11 at the upper part of the inner container 1 and the outer container 2. I have.
[0019]
As shown in FIG. 3, the spacer 7 of the third embodiment includes a ring main body 71 and a plurality of support portions 72 projecting radially from the ring main body 71. The ring main body 71 has a diameter substantially in the middle between the diameter of the portion where the annular concave portion 11 in the upper part of the inner container 1 is formed and the diameter of the outer container 2. A plurality of support portions 72 extending radially inward and outward from the same position in the circumferential direction at predetermined intervals are formed on the inner and outer peripheral surfaces of the ring body 71 at a plurality of positions, for example, at four positions in FIG. Have been. The tips 73 of these support portions 72 are formed in an arc shape so as to make line contact with the outer peripheral surface of the inner container 1 or the inner peripheral surface of the outer container 2. Other structures are the same as in the first embodiment.
[0020]
Since the spacer 7 of the third embodiment requires only one spacer 7 as compared with the first and second embodiments, the man-hour for assembling the spacer can be reduced. Further, since one spacer 7 is annularly arranged substantially at the center of the annular space, there is no possibility that the spacer 7 moves (rotates) as in the first and second embodiments.
[0021]
FIG. 4 shows a longitudinal sectional view of a heat storage unit according to a fourth embodiment of the present invention and a half of a transverse section taken along line IV-IV. In the spacer 7 of the third embodiment, the support portions 72 extend radially inward and outward from the same position on the circumference of the ring main body 71, but in the spacer 7 of the fourth embodiment. An inner support portion 72a extending radially inward on the circumference of the ring main body 71 and an outer support portion 72b extending radially outward alternately at a predetermined interval in the circumferential direction. It is provided on the ring main body 71. The tips 73 of the inner / outer support portions 72a and 72b are formed in an arc shape so as to make line contact with the outer peripheral surface of the inner container 1 or the inner peripheral surface of the outer container 2 as in the third embodiment. Other structures are the same as in the third embodiment.
[0022]
In the spacer 7 of the fourth embodiment, the inner / outer support portions 72a and 72b are alternately formed on the circumference of the ring main body. The length of the heat transfer path up to 2 can be increased, and the heat retention can be improved.
[0023]
FIG. 5 is a diagram illustrating one example of a case where the spacer 7 of the present invention is assembled to a heat storage device. In this example, the outer container 2 includes an upper lid portion 22 and a container portion 21, and the inner container 1 is incorporated into the container portion 21 of the outer container 2, and is welded and joined at the lower joint portion 8. The spacer 7 is fitted into the fitting position of the spacer 7 formed by the container portion 21 of the outer container 2. After that, the upper lid portion 22 of the outer container 2 is put on the container portion 21, and the joined portions of the two are joined by welding. Thus, a regenerator incorporating the spacer 7 is obtained.
[0024]
In the above description, the regenerator according to the present invention is exclusively used for vehicles, but it goes without saying that the regenerator can be used as appropriate other than for vehicles.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a heat storage device according to a first embodiment of the present invention, and a diagram showing a half of a transverse section taken along line II.
FIG. 2 is a longitudinal sectional view of a heat accumulator according to a second embodiment of the present invention and a diagram showing a half of a transverse section taken along line II-II.
FIG. 3 is a longitudinal sectional view of a heat accumulator according to a third embodiment of the present invention, and a diagram showing a half of a transverse section taken along line III-III.
FIG. 4 is a longitudinal sectional view of a heat storage device according to a fourth embodiment of the present invention, and a diagram showing a half of a transverse section taken along line IV-IV.
FIG. 5 is a diagram illustrating a procedure for assembling a spacer to a heat accumulator according to the present invention.
FIG. 6 shows a conventional heat storage device in (a) a cross-sectional view when mounted on a vehicle, (b) a longitudinal cross-sectional view of the heat storage device, and (c) an enlarged view of a portion A which is a joint.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inner container 11 ... Concave part 2 ... Outer container 3 ... Bracket 4 ... Resin housing 7 ... Spacer 71 ... Ring body 72 ... Support part 73 ... Tip 8 ... Joining part (welding part)

Claims (8)

金属製の内容器と外容器との二重構造であって、前記内容器と前記外容器の開口側である下部の両者の接合部でのみ、両者が溶接接合されており、両者の空隙部が真空断熱されている蓄熱器において、
前記内容器の上部に凹部を形成し、前記凹部と前記外容器との間にリング状スペーサを嵌め込むことで、前記内容器の振動を拘束することを特徴とする蓄熱器。
It is a double structure of a metal inner container and an outer container, and only at the joint of both the inner container and the lower portion on the opening side of the outer container, both are welded and joined, and a gap portion between both Is a vacuum heat-insulated regenerator,
A heat accumulator, wherein a recess is formed in an upper portion of the inner container, and a ring-shaped spacer is fitted between the recess and the outer container to restrain vibration of the inner container.
前記スペーサと前記内容器及び前記スペーサと前記外容器との接触を線接触とすることを特徴とする請求項1に記載の蓄熱器。The regenerator according to claim 1, wherein the contact between the spacer and the inner container and the contact between the spacer and the outer container are linear contact. 前記凹部が前記内容器上部の周面に環状に形成されていることを特徴とする請求項1又は2に記載の蓄熱器。The heat accumulator according to claim 1, wherein the concave portion is formed in an annular shape on a peripheral surface of the upper part of the inner container. 前記凹部が前記内容器上部の周面に所定の間隔をあけて、上面視で略V字状に複数形成されていることを特徴とする請求項1又は2に記載の蓄熱器。The heat storage device according to claim 1, wherein a plurality of the concave portions are formed in a substantially V shape in a top view at a predetermined interval on a peripheral surface of an upper portion of the inner container. 前記スペーサが複数設けられていることを特徴とする請求項1〜4のいずれか一項に記載の蓄熱器。The heat storage device according to any one of claims 1 to 4, wherein a plurality of the spacers are provided. 前記スペーサが、1つのリング本体と、前記リング本体から径方向に延びて前記内容器の外周面又は前記外容器の内周面に当接する複数の支持部とからなることを特徴とする請求項1,2又は3に記載の蓄熱器。The said spacer consists of one ring main body, and the some support part extended in the radial direction from the ring main body, and contact | connecting the outer peripheral surface of the said inner container or the inner peripheral surface of the said outer container. The regenerator according to 1, 2, or 3. 前記リング本体から径方向の内方に延びる支持部と径方向の外方に延びる支持部とが、前記リング本体の周方向の同一位置に形成されていることを特徴とする請求項6に記載の蓄熱器。The support portion extending radially inward from the ring main body and the support portion extending radially outward from the ring main body are formed at the same circumferential position of the ring main body. Regenerator. 前記リング本体から径方向の内方に延びる支持部と径方向の外方に延びる支持部とが、前記リング本体の周方向に交互に間隔をあけて形成されていることを特徴とする請求項6に記載の蓄熱器。The support part extending inward in the radial direction from the ring main body and the support part extending outward in the radial direction are formed alternately at intervals in the circumferential direction of the ring main body. 7. The regenerator according to 6.
JP2002174441A 2002-06-14 2002-06-14 Heat accumulator Pending JP2004020027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174441A JP2004020027A (en) 2002-06-14 2002-06-14 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174441A JP2004020027A (en) 2002-06-14 2002-06-14 Heat accumulator

Publications (1)

Publication Number Publication Date
JP2004020027A true JP2004020027A (en) 2004-01-22

Family

ID=31173405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174441A Pending JP2004020027A (en) 2002-06-14 2002-06-14 Heat accumulator

Country Status (1)

Country Link
JP (1) JP2004020027A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026532A1 (en) 2006-08-28 2008-03-06 Calsonic Kansei Corporation Heat accumulator, method for manufacturing the heat accumulator, and vehicle-mounted thermal system using the heat accumulator
WO2008062810A1 (en) 2006-11-21 2008-05-29 Calsonic Kansei Corporation Heat storage system for vehicle
JP2015503049A (en) * 2011-11-17 2015-01-29 ベール ゲーエムベーハー ウント コー カーゲー Heat accumulator
JP7133250B1 (en) * 2021-12-07 2022-09-08 和幸 前田 Insulation device and insulation method for pipes and containers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026532A1 (en) 2006-08-28 2008-03-06 Calsonic Kansei Corporation Heat accumulator, method for manufacturing the heat accumulator, and vehicle-mounted thermal system using the heat accumulator
WO2008062810A1 (en) 2006-11-21 2008-05-29 Calsonic Kansei Corporation Heat storage system for vehicle
JP2015503049A (en) * 2011-11-17 2015-01-29 ベール ゲーエムベーハー ウント コー カーゲー Heat accumulator
JP7133250B1 (en) * 2021-12-07 2022-09-08 和幸 前田 Insulation device and insulation method for pipes and containers

Similar Documents

Publication Publication Date Title
US3703083A (en) Reactor
JP2012515295A (en) Connection arrangement of turbine housing and bearing housing and exhaust turbocharger
JP2005147139A (en) Housing for turbo-supercharger of internal combustion engine
JPH09264129A (en) Exhaust manifold
US6360782B1 (en) Exhaust pipe assembly of two-passage construction
JP2004509264A (en) Honeycomb body with a jacket tube with slits
JP2004020027A (en) Heat accumulator
JP2019199851A (en) Exhaust emission control device
JP2004518059A (en) Rocket engine member and method of manufacturing rocket engine member
JPH09242537A (en) Double tube exhaust manifold for internal combustion engine
JP3681011B2 (en) Double pipe type exhaust manifold
JPH10266844A (en) Double pipe type exhaust manifold
JP3999382B2 (en) Insulated exhaust manifold for engine
JPH08277711A (en) Double pipe integrated flexible tube
JP2004100598A (en) Exhaust emission control device of engine and joint pipe for controlling emissions having the same
JPH1122454A (en) Low noise type double pipe
JP2007247432A (en) Exhaust port liner of internal combustion engine and method of manufacturing cylinder head
JPH10266845A (en) Double pipe type exhaust manifold
JPH03165842A (en) Metallic carrier for race track type automobile exhaust gas cleanup catalyst having thermal stress resistance and thermal fatigue resistance
JPH0724576Y2 (en) Exhaust manifold catalytic converter
JP2000282858A (en) Exhaust pipe for engine
JP2003184548A (en) Exhaust double pipe
JP2717287B2 (en) Engine exhaust system
JPH06346728A (en) Exhaust manifold and exhaust pipe for internal combustion engine
JP2001330207A (en) Sealing structure between casing and pipeline