JP2004019919A - Ground water draining device for high-pressure gas storage facility in base rock - Google Patents

Ground water draining device for high-pressure gas storage facility in base rock Download PDF

Info

Publication number
JP2004019919A
JP2004019919A JP2002180113A JP2002180113A JP2004019919A JP 2004019919 A JP2004019919 A JP 2004019919A JP 2002180113 A JP2002180113 A JP 2002180113A JP 2002180113 A JP2002180113 A JP 2002180113A JP 2004019919 A JP2004019919 A JP 2004019919A
Authority
JP
Japan
Prior art keywords
drainage
pipe
pipes
rock
water collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002180113A
Other languages
Japanese (ja)
Other versions
JP4035386B2 (en
Inventor
Kazuyuki Yoneyama
米山 一幸
Yoshio Ishizuka
石塚 与志雄
Tetsuo Okuno
奥野 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN GAS ASS
Shimizu Construction Co Ltd
Shimizu Corp
Japan Gas Association
Original Assignee
JAPAN GAS ASS
Shimizu Construction Co Ltd
Shimizu Corp
Japan Gas Association
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN GAS ASS, Shimizu Construction Co Ltd, Shimizu Corp, Japan Gas Association filed Critical JAPAN GAS ASS
Priority to JP2002180113A priority Critical patent/JP4035386B2/en
Publication of JP2004019919A publication Critical patent/JP2004019919A/en
Application granted granted Critical
Publication of JP4035386B2 publication Critical patent/JP4035386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ground water draining device for a high-pressure gas storage facility in base rock excellent in workability, low in cost, and excellent in drainage performance. <P>SOLUTION: A plurality of first water collecting pipes 8 are disposed along a vertical rock wall surface 2a so that the areas near the top and bottom parts of a storage tank 3 are connected to each other, and spaced apart specified distances from each other at a specified angle as viewed from the top part of the storage tank 3. A plurality of second water collecting pipes 9 are disposed along a horizontal rock wall surface 2a in the state of crossing the first water collecting pipes 8 and apart specified distances from each other in vertical direction. A drainage body 10 is disposed in an area surrounded by the first water collecting pipe 8 and the second water collecting pipe 9, and a water drainage pipe 11 is formed in a net-like surface continuously having such a structure that the end part thereof is fitted to the connection port 12a of a connection socket 12. The water drainage body 10 is formed such that the end part of the drainage pipe 11 at the edge part of the drainage body 10 is connected to the connection ports 8a and 9a of the first water collecting pipe 8 and the second water collecting pipe 9 through the connection socket 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、前記岩盤内高圧気体貯蔵施設周辺の地下水を排水する岩盤内高圧気体貯蔵施設の地下水排水装置に関する。
【0002】
【従来の技術】
従来より、図4に示すように、岩盤2の空洞部に鋼製のライニング材4を裏張りして構築された貯槽3と、該ライニング材4と岩盤2との隙間に配された裏込めコンクリート5を備えるライニング式の岩盤内高圧気体貯蔵施設1において、開放点検等を実施する際に前記貯槽3内の内圧を開放すると、地下水圧の影響を受けて前記ライニング材4が変形することが一般に知られている。
これに対応すべく、図5(a)に示すように、岩盤内高圧気体貯蔵施設1を構成する前記裏込めコンクリート5の内方には、前記貯槽3に裏張りされたライニング材4の裏面を網羅するように敷設される排水管14と、該排水管14に流入した地下水を集水する集水管13が備えられている。
【0003】
該集水管13は、貯槽3として利用される岩盤2を掘削して設けられた空洞部の岩盤壁面2aに沿うように、鉛直方向及び水平方向の各々に複数配置されており、これら鉛直方向及び水平方向に配置された集水管13どうしは、両者が交差する部位で連通している。また、排水管14は、隣接する2本の前記集水管13どうしを連結するとともに、岩盤壁面2aに沿うように配置されているが、前記岩盤壁面2aをまんべんなく網羅することを目的に、複数の排水管14を少なくとも交差する2方向に配置して、排水管14どうしで網目形状を形成している。これにより、複数の前記集水管13に囲まれた領域には、前記岩盤壁面2aと同様の平面もしくは曲面が形成される。
これらは、地下水等が前記裏込めコンクリート5に浸水した場合に、地下水を前記排水管14に排水した後、水平方向に配された集水管13に取り入れ、さらに、鉛直方向に配された集水管13を介して、アクセストンネル部6へ排水するものである。
【0004】
【発明が解決しようとする課題】
しかし、前記集水管13と排水管14は、連結部で連通しているものの、排水管14どうしでは互いに交差する部位では、連通されていない。このため、図5(b)のB領域に示すように、排水管14aの一部で閉塞が生じると、該排水管14aが両端部を連結された上下に位置する集水管13a、13b間の全長にわたり排水機能を果たせないこととなる。
また、例えば、岩盤2中に顕著な水みちがある場合には、裏込めコンクリート5内において、局所的に大量の地下水が浸水する箇所が生じることが考えられる。このとき、大量に浸水した地下水は、この箇所に位置する排水管14に排水されるが、交差する排水管14どうしは連通がなされていないため、その排水量は、排水管14自身の排水能力によるところとなり、該排水管14の最大流量を超えるような水量が生じた場合には、全てを排水できない場合が生じる。
【0005】
上記事情に鑑み、本発明は、施工性が良く、安価で排水性能の良い岩盤内高圧気体貯蔵施設の地下水排水装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
請求項1記載の岩盤内高圧気体貯蔵施設の地下水排水装置は、岩盤の空洞部における岩盤壁面に鋼製のライニング材を裏張りして構築された貯槽と、該ライニング材と岩盤壁面との空隙部に配される裏込めコンクリートを備える岩盤内高圧気体貯蔵施設の地下水排水装置であって、前記貯槽の頂部近傍及び底部近傍を連結するように、鉛直方向の前記岩盤壁面に沿って配置される複数の第1の集水管と、該第1の集水管と直交するように、水平方向の前記岩盤壁面に沿って配置され、前記第1の集水管との交点が連通される複数の第2の集水管と、前記第1の集水管と第2の集水管に囲まれた領域に前記岩盤壁面に沿って配置され、第1の集水管と第2の集水管の両者に連通する排水体により構成され、前記排水体が、外周面に複数の孔を有する排水管を、少なくとも交差する2方向に複数配置して成形される網目状の平面もしくは曲面よりなり、交差する排水管どうしは連通されることを特徴としている。
【0007】
請求項2記載の岩盤内高圧気体貯蔵施設の地下水排水装置は、前記排水体が、複数の前記排水管に加え、複数の該排水管を接続する複数の接続用ソケットにより平面もしくは曲面に成形され、前記排水管が、所定の形状にモジュール化されるとともに、該接続用ソケットを介して複数の排水管どうしが連通されることを特徴としている。
【0008】
【発明の実施の形態】
以下、本発明の岩盤内高圧気体貯蔵施設の地下水排水装置について、図1及び図3を用いて詳述する。
【0009】
図1(a)に示すように、ライニング式の岩盤内高圧気体貯蔵施設1は、岩盤2を円筒状に掘削した空洞部を貯槽3として利用するものであり、該空洞部の岩盤壁面2aにライニング材4を裏張りして形成された貯槽3と、該貯槽3と岩盤2との隙間を充填する裏込めコンクリート5とにより構成されている。
前記貯槽3は、例えば都市ガス、天然ガス及び空気等の貯蔵ガスが貯蔵されるもので、裏張りされた鋼製のライニング材4は、前記貯槽3の貯蔵ガスの漏洩を防止するとともに、これを安全に貯蔵することを目的に用いられるものである。また、前記裏込めコンクリート5は、前記貯槽3より生じる貯蔵圧を均等に岩盤に伝達する機能を有するものである。
【0010】
上述する構成による岩盤内高圧気体貯蔵施設1の裏込めコンクリート5の内方には、貯槽3として利用する岩盤2を円筒状に掘削した空洞部の岩盤壁面2aに沿って、地下水排水装置7が敷設されており、該地下水排水装置7は、第1の集水管8、第2の集水管9、及び排水管11と接続用ソケット12よりなる排水体10により構成されている。
【0011】
前記第1の集水管8は、鋼管もしくは塩化ビニル管等の中空管よりなり、前記貯槽3の頂部近傍及び底部近傍を連結するように、鉛直方向の前記岩盤壁面2aに沿って配置され、貯槽3の頂部から見て、一定の角度を設けて複数が離間配置されている。本実施の形態では、180°毎に3本の第1の集水管8が敷設されているが、これにこだわるものではなく、岩盤内高圧気体貯蔵施設1の規模や、周辺の地下水の状況等に応じて、適宜調整するものである。
また、第2の集水管9も第1の集水管8と同様に、鋼管もしくは塩化ビニル管等の中空管よりなり、第1の集水管8と直交するように、水平方向の前記岩盤壁面2aに沿って配置されており、鉛直方向に所定の間隔をもって、複数が離間配置されている。なお、これら第1の集水管8と第2の集水管9は、互いに交差する部位で連通している。
【0012】
また、第1の集水管8と第2の集水管9に囲まれる領域には、排水体10が配置されており、該排水体10は、複数の前記排水管11と接続用ソケット12により構成されている。図1(b)に示すように、排水管11は、その形状がモジュール化された長さの短い中空管よりなり、外周面には地下水を取り入れるための孔が複数設けらた構成となっている。本実施の形態では、排水管11に排水設備等に一般に用いられている周面がメッシュ状に成形された網状管を用いているが、これにこだわるものではなく、図2(a)に示すようならせん状に成形された芯材の内周面に網材を固着して管状に成形した網状管や、図2(b)に示すような並列配置された複数のリングを連結するように直線上の芯材を編み込むことによって管状に一体成形された耐圧性能の高い管体等、周面に複数の孔を有する構成の管体であれば、何れを用いても良い。また、前記接続用ソケット12は、前記複数の排水管11どうし、もしくは排水管11と第1の集水管8及び第2の集水管9を連通した状態で連結することを目的に用いられるもので、接続口12aが複数設けられている。
なお、前記第1の集水管8および第2の集水管9の外周面には、接続用ソケット12を介して前記排水管11と接続するための接続口8a、9aが各々に、複数設けられており、接続口8a、9aの断面径は、排水管11と同様の径に製作されている。これにより、接続用ソケット12の接続口12aは、前記排水管11に嵌合する径にのみ製作しておけば良く、その数量や取り付け角度は何れの形状としても良い。本実施の形態では、接続口12aの数量や取り付け角度、取り付け位置等に変化を与えた複数の接続用ソケット12を用意しておくこととする。
【0013】
このように、排水体10は、排水管11が、その端部を前記接続用ソケット12の接続口12aに嵌合される構成を連続することにより、図1(b)に示すような所望の大きさ、及び所望の形状を有する網目状の面に形成される。該排水体10は、その縁部に位置する排水管11の端部と、前記第1の集水管8及び第2の集水管9の接続口8a、9aとを、前記接続用ソケット12を介して接続され、図1(a)に示すように、第1の集水管8及び第2の集水管9に囲まれた領域に敷設されることとなる。
このとき、網目状の曲面もしくは平面に形成された前記排水体10は、前記第1の集水管8及び第2の集水管9により囲まれた領域における岩盤壁面2aと、同様の面形状に製作される。このような構成は、接続口12aの取り付け角度や配置間隔等に、様々な変化を与えた形状の異なる接続用ソケット12をあらかじめ数種類製作しておき、前記岩盤壁面2aの凹凸形状に応じて、適した形状の接続用ソケット12を用いて前記排水管11を接続していくことにより、製作できるものである。
なお、本実施の形態において、排水体10は網目状の曲面もしくは平面に製作したが、これにこだわるものではなく、前記ライニング材4全体を網羅することが可能であり、かつ効率よく前記裏込めコンクリート5内に浸水する地下水を取り込むことができる構成であれば、何れの形状に製作してもよい。
【0014】
このような構成により、前記岩盤内高圧気体貯蔵施設1の貯槽3に裏張りされたライニング材4は全面を、前記岩盤壁面2aに沿って設けられた前記地下水排水装置7により覆われることとなる。これら地下水排水装置7は、前記裏込めコンクリート内に流入した地下水を、前記排水体10を構成する排水管11に取り込み、該排水管11に取り込まれた地下水を前記第1の集水管8もしくは第2の集水管9に送り出した上で、前記貯槽3の底部で接続されたアクセストンネル部6へ排水することとなる。
【0015】
上述する構成によれば、前記岩盤内高圧気体貯蔵施設1の貯槽3に裏張りされたライニング材4は、全面を前記岩盤壁面2aに沿って設けられた地下水排水装置7により覆われることとなるため、貯槽3の内圧を開放した場合にも、裏込めコンクリート5に侵入した地下水を前記地下水排水装置7により排水できるため、地下水圧の作用により生じるライニング材4の変形を防止することが可能となる。
また、前記裏込めコンクリート5において、局所的に浸水する地下水の量が多い箇所が生じた場合においても、排水体10は隣接する排水管11どうしがネットワーク化されて、面全体で排水することとなるため、前記排水管11自身の排水限界に左右されることなく、大量の地下水を排水することが可能となる。
【0016】
前記地下水排水装置7を構成する排水体10が、モジュール化された排水管11及び接続用ソケット12をユニット化することにより形成されるため、運搬や保管が容易であるとともに、ハンドリング性が良いため、壁面への設置作業が容易であり、工費削減、工期短縮に大きく貢献することが可能である。
また、前記排水体10は、隣り合う排水管11どうしが接続用ソケット12を介して連通するように接続され、ネットワーク型の網目状の曲面もしくは平面に形成されていることから、図3に示すA部のように、排水管11が部分的に閉塞した場合においても、排水機能を喪失する部位は、接続用ソケット12に挟まれた一部に過ぎず、隣接する他の経路を利用した排水が可能であるため、地下水排水装置7自身の排水機能を維持することが可能となる。
【0017】
さらに、前記排水体10は、適切な本数の排水管11、及び適切な形状の接続用ソケット12を用いる簡略な構成で、所望の曲面もしくは平面を形成できることから、前記貯槽3の頂部及び底部近傍のドーム形状部等、煩雑な形状の部位にも容易に排水体10を設けることが可能であり、貯槽3自身の形状や部位によることなく、最小の部品で精度のよい排水体10を構築でき、コストを大幅に削減することが可能となる。
また、接続用ソケット12に設けられた複数の接続口12aの接続角度や配置位置等に変化を与えて、形状の異なる数種類の接続用ソケット12を製作しておけば、これらを使い分けることにより、岩盤壁面2aの凹凸などにも比較的容易に対応が可能であり、排水体10を掘削断面に密着して施工することが可能となる。
【0018】
これら排水管11及び接続用ソケット12に剛性のある材料を用いてユニットに組み立てて形成される前記排水体10は、組み立て後の構成がいわゆるトラス構造となるため、材料自体の自立性により岩盤壁面2aへの固定箇所を減少させることが可能となる。
【0019】
【発明の効果】
請求項1記載の岩盤内高圧気体貯蔵施設の地下水排水装置によれば、岩盤の空洞部における岩盤壁面に鋼製のライニング材を裏張りして構築された貯槽と、該ライニング材と岩盤壁面との空隙部に配される裏込めコンクリートを備える岩盤内高圧気体貯蔵施設の地下水排水装置であって、前記貯槽の頂部近傍及び底部近傍を連結するように、鉛直方向の前記岩盤壁面に沿って配置される複数の第1の集水管と、該第1の集水管と直交するように、水平方向の前記岩盤壁面に沿って配置され、前記第1の集水管との交点が連通される複数の第2の集水管と、前記第1の集水管と第2の集水管に囲まれた領域に前記岩盤壁面に沿って配置され、第1の集水管と第2の集水管の両者に連通する排水体により構成され、前記排水体が、外周面に複数の孔を有する排水管を、少なくとも交差する2方向に複数配置して成形される網目状の平面もしくは曲面よりなり、交差する排水管どうしは連通されることから、貯槽の内圧を開放した場合にも、裏込めコンクリートに侵入した地下水を前記地下水排水装置により排水できるため、地下水圧の作用により生じるライニング材の変形を防止することが可能となる。
【0020】
また、前記裏込めコンクリートにおいて、局所的に浸水する地下水の量が多い箇所が生じた場合においても、排水体は隣接する排水管どうしがネットワーク化されて、面全体で排水することとなるため、前記排水管自身の排水限界に左右されることなく、大量の地下水を排水することが可能となる。

【0021】
請求項2記載の岩盤内高圧気体貯蔵施設の地下水排水装置によれば、前記排水体が、複数の前記排水管に加え、複数の該排水管を接続する複数の接続用ソケットにより平面もしくは曲面に成形され、前記排水管が、所定の形状にモジュール化されるとともに、該接続用ソケットを介して複数の排水管どうしが連通されることから、運搬や保管が容易であるとともに、ハンドリング性が良いため、壁面への設置作業が容易であり、工費削減、工期短縮に大きく貢献することが可能である。
また、前記排水体は、隣り合う排水管どうしが接続用ソケットを介して連通するように接続され、ネットワーク型の網目状の曲面もしくは平面に形成されていることから、排水管が部分的に閉塞した場合においても、排水機能を喪失する部位は、接続用ソケットに挟まれた一部に過ぎず、隣接する他の経路を利用した排水が可能であるため、地下水排水装置7自身の排水機能を維持することが可能となる。
【0022】
さらに、前記排水体は、適切な本数の排水管、及び適切な形状の接続用ソケットを用いる簡略な構成で、所望の曲面もしくは平面を形成できることから、前記貯槽の頂部及び底部近傍のドーム形状部等、煩雑な形状の部位にも容易に排水体を設けることが可能であり、貯槽自身の形状や部位によることなく、最小の部品で精度のよい排水体を構築でき、コストを大幅に削減することが可能となる。
また、接続用ソケットに設けられた複数の接続口の接続角度や配置位置等をに変化を与えて、形状の異なる数種類の接続用ソケットを製作しておけば、これらを使い分けることにより、岩盤壁面の凹凸などにも比較的容易に対応が可能であり、排水体を掘削断面に密着して施工することが可能となる。
【0023】
これら排水管及び接続用ソケットに剛性のある材料を用いてユニットに組み立てて形成される前記排水体は、組み立て後の構成がいわゆるトラス構造となるため、材料自体の自立性により岩盤壁面2aへの固定箇所を減少させることが可能となる。
【図面の簡単な説明】
【図1】本発明に係る岩盤内高圧気体貯蔵施設の地下水排水装置を示す図である。
【図2】本発明に係る岩盤内高圧気体貯蔵施設の地下水排水装置を示す図である。
【図3】本発明に係る地下水排水装置の模式図を示す図である。
【図4】従来の岩盤内高圧気体貯蔵施設を示す図である。
【図5】従来の岩盤内高圧気体貯蔵施設の地下水排水装置を示す図である。
【符号の説明】
1 岩盤内高圧気体貯蔵施設
2 岩盤
3 貯槽
4 ライニング材
5 裏込めコンクリート
6 アクセストンネル部
7 地下水排水装置
8 第1の集水管
8a 接続口
9 第2の集水管
9a 接続口
10 排水体
11 排水管
12 接続用ソケット
12a 接続口
13 集水管
14 排水管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a groundwater drainage device for a high-pressure gas storage facility in rock that drains groundwater around the high-pressure gas storage facility in rock.
[0002]
[Prior art]
Conventionally, as shown in FIG. 4, a storage tank 3 constructed by lining a steel lining material 4 in a hollow portion of a bedrock 2, and a backfill disposed in a gap between the lining material 4 and the bedrock 2. When the internal pressure in the storage tank 3 is released when performing an open inspection or the like in the lining-type high-pressure gas storage facility 1 in the lining provided with the concrete 5, the lining material 4 may be deformed under the influence of the groundwater pressure. Generally known.
In order to cope with this, as shown in FIG. 5A, the back of the lining material 4 lined with the storage tank 3 is provided inside the backfill concrete 5 constituting the high-pressure gas storage facility 1 in the rock. And a water collecting pipe 13 for collecting groundwater flowing into the drain pipe 14.
[0003]
A plurality of the water collecting pipes 13 are arranged in a vertical direction and a horizontal direction, respectively, along the rock wall surface 2a of a hollow portion formed by excavating the rock 2 used as the storage tank 3. The water collecting pipes 13 arranged in the horizontal direction communicate with each other at a portion where they intersect. The drain pipe 14 connects the two adjacent water collecting pipes 13 and is arranged along the rock wall surface 2a. However, in order to cover the rock wall surface 2a evenly, a plurality of drain pipes 14 are provided. The drain pipes 14 are arranged in at least two directions crossing each other, and the drain pipes 14 form a mesh shape. Thereby, a plane or a curved surface similar to the rock wall surface 2a is formed in a region surrounded by the plurality of water collecting pipes 13.
When groundwater or the like is flooded in the backfill concrete 5, the groundwater is drained to the drainage pipe 14, then taken in the horizontally arranged water collection pipes 13, and further vertically collected water collection pipes. The waste water is drained to the access tunnel section 6 through the switch 13.
[0004]
[Problems to be solved by the invention]
However, although the water collecting pipe 13 and the drain pipe 14 communicate with each other at the connecting portion, the drain pipes 14 do not communicate with each other at a portion where they cross each other. For this reason, as shown in the area B of FIG. 5B, when a part of the drainage pipe 14a is blocked, the drainage pipe 14a is connected between the upper and lower water collecting pipes 13a and 13b connected at both ends. The drainage function cannot be performed over the entire length.
Further, for example, when there is a remarkable water path in the bedrock 2, it is conceivable that a part where a large amount of groundwater is locally flooded in the backfill concrete 5. At this time, the groundwater that has been flooded in a large amount is drained to the drainpipe 14 located at this location, but since the intersecting drainpipe 14 is not connected, the amount of drainage depends on the drainage capacity of the drainpipe 14 itself. However, when the amount of water that exceeds the maximum flow rate of the drain pipe 14 is generated, it may not be possible to drain all of the water.
[0005]
In view of the above-mentioned circumstances, an object of the present invention is to provide a groundwater drainage device for a high-pressure gas storage facility in a rock that has good workability, is inexpensive, and has good drainage performance.
[0006]
[Means for Solving the Problems]
The underground water drainage device for a high-pressure gas storage facility in rock according to claim 1, wherein a storage tank constructed by lining a steel lining material on a rock wall surface in a hollow portion of the rock, and a gap between the lining material and the rock wall surface A groundwater drainage device for a high pressure gas storage facility in a rock mass provided with backfill concrete disposed in a portion, wherein the ground water drain device is disposed along the rock wall surface in a vertical direction so as to connect near a top portion and a bottom portion of the storage tank. A plurality of first water collecting pipes and a plurality of second water collecting pipes are arranged along the rock wall surface in a horizontal direction so as to be orthogonal to the first water collecting pipes, and the intersections of the first water collecting pipes communicate with each other. And a drainage body disposed along the rock wall surface in an area surrounded by the first water collection pipe and the second water collection pipe, and communicating with both the first water collection pipe and the second water collection pipe The drainage body has a plurality of holes on the outer peripheral surface. That the drain pipe, made of a mesh-like planar or curved surface which is formed with a plurality disposed in two directions at least intersect, drainage pipes each other crossing is characterized by being communicated.
[0007]
The groundwater drainage device for a high-pressure gas storage facility in rock according to claim 2, wherein the drainage body is formed into a flat surface or a curved surface by a plurality of drainage pipes and a plurality of connection sockets connecting the plurality of drainage pipes. The drain pipe is modularized into a predetermined shape, and a plurality of drain pipes communicate with each other via the connection socket.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a groundwater drainage device for a high-pressure gas storage facility in a rock according to the present invention will be described in detail with reference to FIGS.
[0009]
As shown in FIG. 1A, a lining type high-pressure gas storage facility 1 in a rock uses a hollow portion obtained by excavating a rock 2 in a cylindrical shape as a storage tank 3. It comprises a storage tank 3 formed by lining a lining material 4 and a backfill concrete 5 filling a gap between the storage tank 3 and the bedrock 2.
The storage tank 3 is for storing a storage gas such as city gas, natural gas, and air. The lined steel lining material 4 prevents the storage gas in the storage tank 3 from leaking. Is used for the purpose of safe storage. The backfill concrete 5 has a function of uniformly transmitting the storage pressure generated from the storage tank 3 to the bedrock.
[0010]
Inside the backfill concrete 5 of the high-pressure gas storage facility 1 in the rock having the above-described configuration, a groundwater drainage device 7 is provided along the rock wall 2a of the hollow portion where the rock 2 used as the storage tank 3 is excavated into a cylindrical shape. The groundwater drainage device 7 includes a first water collection pipe 8, a second water collection pipe 9, and a drainage body 10 including a drainage pipe 11 and a connection socket 12.
[0011]
The first water collecting pipe 8 is formed of a hollow pipe such as a steel pipe or a vinyl chloride pipe, and is arranged along the rock wall surface 2a in the vertical direction so as to connect the vicinity of the top and the bottom of the storage tank 3 with each other. When viewed from the top of the storage tank 3, a plurality of storage tanks 3 are spaced apart from each other at a certain angle. In the present embodiment, three first water collecting pipes 8 are laid every 180 °. However, the present invention is not limited to this, and the scale of the high-pressure gas storage facility 1 in the rock, the state of the surrounding groundwater, and the like are not limited. Are appropriately adjusted according to the conditions.
The second water collecting pipe 9 is also made of a hollow pipe such as a steel pipe or a vinyl chloride pipe, like the first water collecting pipe 8, and the rock wall surface in the horizontal direction is orthogonal to the first water collecting pipe 8. 2a, and a plurality of them are arranged at predetermined intervals in the vertical direction. Note that the first water collection pipe 8 and the second water collection pipe 9 communicate with each other at portions that cross each other.
[0012]
Further, in a region surrounded by the first water collecting pipe 8 and the second water collecting pipe 9, a drainage body 10 is arranged, and the drainage body 10 includes a plurality of the drainage pipes 11 and connection sockets 12. Have been. As shown in FIG. 1B, the drain pipe 11 is formed of a hollow pipe having a short length with a modularized shape, and a plurality of holes for taking in groundwater are provided on the outer peripheral surface. ing. In the present embodiment, a mesh pipe whose peripheral surface is generally formed in a mesh shape is used for the drain pipe 11 as the drain pipe 11. However, the present invention is not limited to this and is shown in FIG. As shown in FIG. 2 (b), a net-like tube formed by fixing a net material to the inner peripheral surface of a spiral shaped core material and connecting a plurality of rings arranged in parallel as shown in FIG. Any tube having a structure having a plurality of holes on the peripheral surface, such as a tube having a high pressure resistance and integrally formed into a tube by braiding a linear core material, may be used. The connection socket 12 is used for the purpose of connecting the plurality of drain pipes 11 or connecting the drain pipes 11 with the first water collecting pipe 8 and the second water collecting pipe 9. And a plurality of connection ports 12a.
In addition, a plurality of connection ports 8 a and 9 a for connecting to the drain pipe 11 via a connection socket 12 are provided on the outer peripheral surfaces of the first water collection pipe 8 and the second water collection pipe 9, respectively. The connection ports 8a and 9a have the same cross-sectional diameter as the drain pipe 11. Thus, the connection port 12a of the connection socket 12 may be manufactured only to have a diameter that fits into the drain pipe 11, and the number and the mounting angle may be any shape. In the present embodiment, a plurality of connection sockets 12 in which the number, the mounting angle, the mounting position, and the like of the connection ports 12a are changed are prepared.
[0013]
As described above, the drainage body 10 has a configuration in which the end of the drainage pipe 11 is fitted to the connection port 12a of the connection socket 12 so that a desired configuration as shown in FIG. It is formed on a mesh-like surface having a size and a desired shape. The drainage body 10 connects the end of the drainage pipe 11 located at the edge thereof and the connection ports 8a, 9a of the first water collection pipe 8 and the second water collection pipe 9 via the connection socket 12. As shown in FIG. 1A, they are laid in a region surrounded by the first water collection pipe 8 and the second water collection pipe 9.
At this time, the drainage body 10 formed into a mesh-like curved surface or a flat surface is manufactured to have the same surface shape as the rock wall surface 2a in a region surrounded by the first water collection pipe 8 and the second water collection pipe 9. Is done. In such a configuration, several types of connection sockets 12 having different shapes with various changes in the attachment angle and arrangement interval of the connection port 12a are manufactured in advance, and according to the uneven shape of the rock wall surface 2a, It can be manufactured by connecting the drain pipe 11 using a connection socket 12 having a suitable shape.
In the present embodiment, the drainage body 10 is manufactured to have a mesh-like curved surface or a flat surface. However, the present invention is not limited to this. The drainage body 10 can cover the entire lining material 4 and the backfill can be efficiently performed. Any shape may be used as long as it can take in groundwater that is submerged in the concrete 5.
[0014]
With this configuration, the entire surface of the lining material 4 lined with the storage tank 3 of the in-rock high-pressure gas storage facility 1 is covered by the groundwater drainage device 7 provided along the rock wall surface 2a. . These groundwater drainage devices 7 take in groundwater that has flowed into the backfill concrete into a drainage pipe 11 that constitutes the drainage body 10, and transfer the groundwater that has been taken into the drainage pipe 11 to the first water collection pipe 8 or a second drainage pipe. After being sent to the second water collection pipe 9, the water is drained to the access tunnel 6 connected at the bottom of the storage tank 3.
[0015]
According to the above-described configuration, the lining material 4 lined with the storage tank 3 of the in-rock high-pressure gas storage facility 1 is entirely covered with the groundwater drainage device 7 provided along the rock wall surface 2a. Therefore, even when the internal pressure of the storage tank 3 is released, the groundwater that has infiltrated the backfill concrete 5 can be drained by the groundwater drainage device 7, so that deformation of the lining material 4 caused by the action of the groundwater pressure can be prevented. Become.
Also, in the case of the backfill concrete 5, even in a case where there is a place where the amount of groundwater that is locally flooded is large, the drainage body 10 is configured such that the drainage pipes 11 adjacent to each other are networked to drain the entire surface. Therefore, a large amount of groundwater can be drained without being affected by the drainage limit of the drain pipe 11 itself.
[0016]
Since the drainage body 10 constituting the groundwater drainage device 7 is formed by unitizing the modularized drainage pipe 11 and the connection socket 12, the transport and storage are easy, and the handling property is good. The installation work on the wall is easy, and it can greatly contribute to the reduction of the construction cost and the construction period.
The drainage body 10 is shown in FIG. 3 because adjacent drainage pipes 11 are connected so as to communicate with each other via a connection socket 12 and are formed in a network-shaped mesh-like curved surface or flat surface. Even when the drain pipe 11 is partially blocked, as in part A, the part that loses the drain function is only a part sandwiched between the connection sockets 12 and drains using another adjacent route. Therefore, the drainage function of the groundwater drainage device 7 itself can be maintained.
[0017]
Furthermore, since the drainage body 10 can form a desired curved surface or flat surface with a simple configuration using an appropriate number of drainage pipes 11 and connection sockets 12 of an appropriate shape, the vicinity of the top and bottom of the storage tank 3 It is possible to easily provide the drainage body 10 even in a portion having a complicated shape such as a dome-shaped portion of the storage tank 3, and it is possible to construct the accurate drainage body 10 with the minimum number of parts without depending on the shape and the portion of the storage tank 3 itself. Thus, the cost can be significantly reduced.
In addition, by changing the connection angle, the arrangement position, and the like of the plurality of connection ports 12a provided in the connection socket 12, if several types of connection sockets 12 having different shapes are manufactured, these can be used properly. It is possible to relatively easily cope with the unevenness of the rock wall surface 2a and the like, and the drainage body 10 can be constructed in close contact with the excavated cross section.
[0018]
The drainage body 10 formed by assembling the unit using a rigid material for the drainage pipe 11 and the connection socket 12 has a so-called truss structure when assembled, and the rock wall surface is formed by the self-sustainability of the material itself. It is possible to reduce the number of fixing portions to 2a.
[0019]
【The invention's effect】
According to the underground water drainage device of the high pressure gas storage facility in the rock according to claim 1, a storage tank constructed by lining a steel lining material on a rock wall surface in a hollow portion of the rock, and the lining material and the rock wall surface A groundwater drainage device for a high-pressure gas storage facility in a rock mass provided with backfill concrete disposed in a void portion of the storage tank, wherein the drainage device is disposed along a vertical wall surface of the rock mass so as to connect a vicinity of a top portion and a bottom portion of the storage tank. A plurality of first water collection pipes, and a plurality of first water collection pipes, which are arranged along the rock wall surface in a horizontal direction so as to be orthogonal to the first water collection pipes, and at which intersections with the first water collection pipes are communicated. A second water collecting pipe, and a region surrounded by the first water collecting pipe and the second water collecting pipe, which is arranged along the rock wall surface and communicates with both the first water collecting pipe and the second water collecting pipe. A drain body, wherein the drain body has a plurality of Drain pipes having a mesh-shaped flat surface or curved surface formed by arranging a plurality of drain pipes at least in two directions intersecting each other, since the intersecting drain pipes are communicated with each other, even when the internal pressure of the storage tank is released, Since the groundwater that has entered the backfill concrete can be drained by the groundwater drainage device, it is possible to prevent deformation of the lining material caused by the action of the groundwater pressure.
[0020]
In addition, in the backfill concrete, even when a location where the amount of groundwater that is locally flooded occurs, the drainage body is networked between adjacent drainage pipes, so that the entire surface is drained, A large amount of groundwater can be drained without being affected by the drainage limit of the drainpipe itself.
.
[0021]
According to the groundwater drainage device for a high-pressure gas storage facility in rock according to claim 2, the drainage body is formed into a flat surface or a curved surface by a plurality of connection sockets connecting the plurality of drainage tubes in addition to the plurality of drainage tubes. The drainage pipe is formed into a module having a predetermined shape, and a plurality of drainage pipes are communicated with each other through the connection socket, so that transport and storage are easy and handling properties are good. Therefore, the installation work on the wall surface is easy, and it is possible to greatly contribute to the reduction of the construction cost and the construction period.
Further, the drainage body is connected so that adjacent drainage pipes communicate with each other via a connection socket, and is formed on a network-type mesh-like curved surface or flat surface, so that the drainage pipe is partially blocked. Even in the case where the drainage function is lost, the part that loses the drainage function is only a part sandwiched between the connection sockets, and the drainage function using the other adjacent route is possible. It can be maintained.
[0022]
Further, since the drainage body can form a desired curved surface or flat surface with a simple configuration using an appropriate number of drainage pipes and a connection socket of an appropriate shape, a dome-shaped portion near the top and bottom of the storage tank. It is possible to easily install drainage bodies even in parts with complicated shapes such as, etc., it is possible to construct an accurate drainage body with the minimum parts without depending on the shape and part of the storage tank itself, greatly reducing costs It becomes possible.
In addition, by changing the connection angles and arrangement positions of the plurality of connection ports provided in the connection sockets and manufacturing several types of connection sockets having different shapes, the rock wall surface can be selectively used. It is possible to relatively easily cope with the unevenness of the pit, and the drainage body can be constructed in close contact with the excavated cross section.
[0023]
The drainage body formed by assembling the unit using a rigid material for the drainage pipe and the connection socket has a so-called truss structure after assembling. The number of fixing points can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a groundwater drainage device for a high-pressure gas storage facility in rock according to the present invention.
FIG. 2 is a diagram showing a groundwater drainage device for a high-pressure gas storage facility in rock according to the present invention.
FIG. 3 is a diagram showing a schematic view of a groundwater drainage device according to the present invention.
FIG. 4 is a diagram showing a conventional high-pressure gas storage facility in rock.
FIG. 5 is a diagram showing a conventional groundwater drainage device for a high-pressure gas storage facility in rock.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High-pressure gas storage facility in bedrock 2 Bedrock 3 Storage tank 4 Lining material 5 Backfill concrete 6 Access tunnel part 7 Groundwater drainage device 8 First water collecting pipe 8a Connection 9 Second water collecting pipe 9a Connection 10 Water drain 11 Drain pipe 12 Connection socket 12a Connection port 13 Water collecting pipe 14 Drain pipe

Claims (2)

岩盤の空洞部における岩盤壁面に鋼製のライニング材を裏張りして構築された貯槽と、該ライニング材と岩盤壁面との空隙部に配される裏込めコンクリートを備える岩盤内高圧気体貯蔵施設の地下水排水装置であって、
前記貯槽の頂部近傍及び底部近傍を連結するように、鉛直方向の前記岩盤壁面に沿って配置される複数の第1の集水管と、
該第1の集水管と直交するように、水平方向の前記岩盤壁面に沿って配置され、前記第1の集水管との交点が連通される複数の第2の集水管と、
前記第1の集水管と第2の集水管に囲まれた領域に前記岩盤壁面に沿って配置され、第1の集水管と第2の集水管の両者に連通する排水体により構成され、
前記排水体が、外周面に複数の孔を有する排水管を、少なくとも交差する2方向に複数配置して成形される網目状の平面もしくは曲面よりなり、交差する排水管どうしは連通されることを特徴とする岩盤内高圧気体貯蔵施設の地下水排水装置。
A storage tank constructed by lining a steel lining material on the rock wall surface in the rock part cavity, and a high-pressure gas storage facility in the rock that includes backfill concrete arranged in the gap between the lining material and the rock wall surface A groundwater drainage device,
A plurality of first water collecting pipes arranged along the rock wall surface in the vertical direction so as to connect the vicinity of the top and the bottom of the storage tank;
A plurality of second water collection pipes that are arranged along the bedrock wall surface in a horizontal direction so as to be orthogonal to the first water collection pipes and that communicate with intersections with the first water collection pipes;
A first drainage pipe and a second drainage pipe are arranged along the bedrock wall surface in a region surrounded by the bedrock, and are constituted by a drainage body communicating with both the first drainage pipe and the second drainage pipe;
The drainage body has a drainage pipe having a plurality of holes on an outer peripheral surface, and is formed of a mesh-shaped flat surface or a curved surface formed by arranging a plurality of drainage pipes in at least two directions intersecting with each other. Features Groundwater drainage equipment for high pressure gas storage facilities in rock.
請求項1に記載の岩盤内高圧気体貯蔵施設の地下水排水装置であって、
前記排水体が、複数の前記排水管に加え、複数の該排水管を接続する複数の接続用ソケットにより平面もしくは曲面に成形され、
前記排水管が、所定の形状にモジュール化されるとともに、該接続用ソケットを介して複数の排水管どうしが連通されることを特徴とする岩盤内高圧気体貯蔵施設の地下水排水装置。
A groundwater drainage device for a high-pressure gas storage facility in rocks according to claim 1,
The drainage body is formed into a plane or a curved surface by a plurality of connection sockets connecting the plurality of drainage pipes, in addition to the plurality of drainage pipes,
The drainage pipe is modularized into a predetermined shape, and a plurality of drainage pipes are communicated with each other via the connection socket.
JP2002180113A 2002-06-20 2002-06-20 Groundwater drainage system for high pressure gas storage facilities in bedrock Expired - Fee Related JP4035386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180113A JP4035386B2 (en) 2002-06-20 2002-06-20 Groundwater drainage system for high pressure gas storage facilities in bedrock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180113A JP4035386B2 (en) 2002-06-20 2002-06-20 Groundwater drainage system for high pressure gas storage facilities in bedrock

Publications (2)

Publication Number Publication Date
JP2004019919A true JP2004019919A (en) 2004-01-22
JP4035386B2 JP4035386B2 (en) 2008-01-23

Family

ID=31177339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180113A Expired - Fee Related JP4035386B2 (en) 2002-06-20 2002-06-20 Groundwater drainage system for high pressure gas storage facilities in bedrock

Country Status (1)

Country Link
JP (1) JP4035386B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2160505A4 (en) * 2007-06-29 2015-05-27 Rocktech Projektledning 450329 4078 A draining pipe mesh
CN106088150A (en) * 2016-08-09 2016-11-09 国家电网公司 Cable duct of substation Dampproof water-drainage device
CN115388330A (en) * 2022-07-21 2022-11-25 浙江大学 Impact-resistant protective material lossless fixed supporting structure suitable for high-pressure hydrogen storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2160505A4 (en) * 2007-06-29 2015-05-27 Rocktech Projektledning 450329 4078 A draining pipe mesh
CN106088150A (en) * 2016-08-09 2016-11-09 国家电网公司 Cable duct of substation Dampproof water-drainage device
CN115388330A (en) * 2022-07-21 2022-11-25 浙江大学 Impact-resistant protective material lossless fixed supporting structure suitable for high-pressure hydrogen storage device
CN115388330B (en) * 2022-07-21 2023-09-12 浙江大学 Impact-resistant protective material nondestructive fixing support structure suitable for high-pressure hydrogen storage device

Also Published As

Publication number Publication date
JP4035386B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
ES2298157T3 (en) MODULAR DRAIN CHANNELS.
BR112019007277B1 (en) CHAMBER AND STORMWATER MANAGEMENT SYSTEM
CN102482871A (en) Liquid run-off disposal system
JP2004019919A (en) Ground water draining device for high-pressure gas storage facility in base rock
JP4163042B2 (en) Installation mechanism of heat exchange piping in heat exchange system using building foundation piles
JP2009179981A (en) Rainwater storage system and drain unit
CN212272300U (en) Water collecting and draining structure of mine method tunnel
CN214006283U (en) Drainage structure for rainwater gravity flow crossing roof deformation joint
CN211692564U (en) Tunnel lining drainage system
CN212272299U (en) Water collecting and draining structure of mine method tunnel
JP2008150809A (en) Rainwater permeation institution
CN214940377U (en) Same-floor crossed intersection of comprehensive pipe gallery
CN215977615U (en) Semi-closed rain sewage lift pump well facility
CN105369852B (en) A kind of sunk type collection water permeable device
KR20130070173A (en) Valve room
CN219081651U (en) Tunnel groundwater flow-guiding structure suitable for karst area
CN208870083U (en) A kind of Urban Underground pipe gallery drainage relief arrangement
CN216999838U (en) Retaining wall structure with drainage guiding function
CN217811477U (en) Multifunctional rainwater drop well
CN112761183A (en) Same-floor crossed intersection of comprehensive pipe gallery
CN212835431U (en) Foundation ditch bearing structure suitable for engineering building
JP4431484B2 (en) Groundwater storage tank and its construction method
JP5463872B2 (en) Underground heat exchange system
CN209221579U (en) A kind of rainwater collection pool for preventing differential settlement
KR200462219Y1 (en) Constructing device for hume pipe underground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4035386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees