JP2004019519A - Control device of engine system - Google Patents

Control device of engine system Download PDF

Info

Publication number
JP2004019519A
JP2004019519A JP2002174286A JP2002174286A JP2004019519A JP 2004019519 A JP2004019519 A JP 2004019519A JP 2002174286 A JP2002174286 A JP 2002174286A JP 2002174286 A JP2002174286 A JP 2002174286A JP 2004019519 A JP2004019519 A JP 2004019519A
Authority
JP
Japan
Prior art keywords
engine
internal combustion
exhaust
combustion engine
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002174286A
Other languages
Japanese (ja)
Inventor
Yusuke Kamijo
上條 祐輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002174286A priority Critical patent/JP2004019519A/en
Publication of JP2004019519A publication Critical patent/JP2004019519A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0633Inlet air flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device capable of performing motoring control in stopping an internal combustion engine while sufficiently keeping a function of catalyst for exhaust emission control disposed in an exhaust passage of the internal combustion engine, in operating and controlling an engine system having the internal combustion engine and a motor. <P>SOLUTION: An electronic control device 90 for wholly controlling an operation state of a hybrid engine system 1 throttles opening of a throttle valve 21a in cooperation with the motoring control in stopping the internal combustion engine 20 to reduce flow rate of fresh air flowing into the exhaust passage 22. This suppresses increase of an oxygen storage amount of three way catalyst in a catalytic converter 23 in response to the motoring control. As a result, silence and driveability in stopping the engine are improved, the superiority of the motoring control of scavenging the exhaust gas remaining in a combustion chamber is secured, and the generation of NOx in starting the engine next time can be suppressed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関及び電動機を含む複数の駆動源を備えたハイブリッドエンジンの制御装置に関し、特に、その内燃機関の排気通路に設けられた排気浄化用触媒の機能を向上させるための制御構造を具現する装置に関する。
【0002】
【従来の技術】
内燃機関及び電動機を複数の駆動源として組み合わせたハイブリッドエンジンは、各駆動源の作動状態を制御しつつ、これら駆動源から発せられる動力を適宜外部に伝達する機能を有する。ハイブリッドエンジンシステムを用いれば、例えば機関燃焼によるエネルギーの変換効率が高い運転領域では内燃機関の出力を優先的に活用し、機関燃焼によるエネルギーの変換効率が低い運転領域では電動機の出力を優先的に活用するといった制御を行うことができる。その結果、ハイブリッドエンジンを搭載した車両は、従来の内燃機関を搭載した車両に比べ、車両運転に伴う燃料の消費量や排気ガスの排出量を格段に低減することができる。
【0003】
ハイブリッドエンジンの機能を効果的に活用する制御の一つに、機関停止時において非燃焼状態にある内燃機関を、所定期間電動機によって動作させる制御(以下、モータリング制御という)がある(特開平11−210520公報参照)。一般に、内燃機関の運転が停止する際、機関への燃料供給が停止してから機関運転が完全に停止するまでの間、機関回転数が急落する現象(トルクショック)が起き、このトルクショックが運転者に違和感を与える。
【0004】
ハイブリッドエンジンのモータリング制御では、内燃機関の運転を停止する場合に、電動機の出力軸と機関出力軸とを連結し、内燃機関への燃料供給が停止した後、電動機の出力によって機関回転数を徐々に低くしつつ完全な機関停止に至らしめる。モータリング制御を行うことにより、トルクショックの問題が解消し、内燃機関の停止時における静寂性が向上する。
【0005】
また、モータリング制御を行うことにより、以下のような効果も得られる。内燃機関の停止後、排気ガスの一部は燃焼室に残留することになる。一般に、機関始動時には排気通路内の温度が低いため、排気通路に設けられた排気浄化用触媒が十分に活性化していない場合が多い。このため、機関停止後、燃焼室内に残留した排気ガスが機関運転の再開と同時に排気通路に排出されると、排気浄化用触媒を素通りして外部に排出され、排気特性を悪化させる懸念がある。内燃機関への燃料供給の停止後、モータリング制御を行って燃焼室から完全に排気ガスを排出させてしまえば、機関運転の再開直後における排気特性の悪化を防止することができる。
【0006】
【発明が解決しようとする課題】
ところで、モータリング制御を行うと、吸気通路内の空気が燃焼室を通じて排気通路に直接入り込む。排気浄化用触媒は、酸素を蓄える性質(O2ストレージ能力)を有するので、モータリング制御によって排気通路に入り込んだ酸素を多量に蓄えることになる。すると、次回の機関始動時に排気浄化用触媒が多量の酸素を放出し、この酸素が排気中のNOx量を増大させる。
【0007】
本発明は、このような実情に鑑みてなされたものであって、その目的とするところは、内燃機関及びモータを備えたエンジンシステムを運転制御する上で、その内燃機関の排気通路に設けられた排気浄化用触媒の機能を良好に保持しつつ、内燃機関停止時のモータリング制御を実施することのできる制御装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は、(1)内燃機関と、モータと、該モータの発生する回転力を内燃機関に伝達する動力伝達機構と、前記内燃機関の排気通路に設けられた排気浄化用触媒と、を有するエンジンシステムを制御するための制御装置であって、前記内燃機関の停止時に、前記モータの駆動力を前記内燃機関に伝達し、非燃焼状態にある当該機関を動作させる機関停止制御手段と、前記非燃焼状態にある当該機関の動作に合わせて、前記排気浄化用触媒に流入する空気の量を抑制する空気流入量抑制手段と、を備えることを要旨とする。
【0009】
同構成によれば、前記モータの作動に併せて前記排気通路へ流れ込む新気の流量を低減することで、モータが作動している条件下であれ、前記排気浄化用触媒への新気の接触が防止され、ひいては前記排気浄化用触媒の酸素ストレージ量の増大が抑制されるようになる。この結果、機関停止制御手段の作用、すなわち機関停止時における静寂性やドライバビリティを向上させ、また、燃焼室内に残留する排気ガスを掃気する作用を確保しつつ、次回機関始動時における前記排気浄化用触媒下流でのNOxの発生量を抑制することができる。
【0010】
(2)また、前記空気流入量抑制手段は、前記内燃機関の吸気通路の通路抵抗を増大することにより、前記排気浄化用触媒に流入する空気の量を抑制するのが好ましい。
【0011】
同構成によれば、排気通路の過剰な空気の流入を効果的に抑制することができる。
【0012】
(3)また、前記内燃機関の排気通路における前記排気浄化用触媒の上流部位と前記吸気通路とを連絡し、前記排気通路を流れる排気の一部を前記吸気通路に還流する還流通路と、前記還流通路を通じて還流される排気の量を調整する排気還流量調整手段と、を備え、前記空気流入量抑制手段は、前記排気還流量調整手段を通じて前記還流される排気の量を増大させることにより、前記排気浄化用触媒に流入する空気の量を抑制するのが好ましい。
【0013】
同構成によれば、機関停止制御手段の作用として、機関停止時における静寂性やドライバビリティを向上させる作用を得る他、とくに、機関温度の低下を抑制するといった作用を得ることもできる。
【0014】
(4)前記空気流入量抑制手段は、前記排気浄化用触媒へ流入するガスの流路を遮断することにより、前記排気浄化用触媒に流入する空気の量を抑制するのが好ましい。
【0015】
(5)また、前記空気流量抑制手段は、前記排気通路における前記排気浄化用触媒の上流部位を開閉する上流側通路開閉弁と、前記排気通路における前記排気浄化用触媒の下流部位を開閉する下流側通路開閉弁と、を備え、前記上流側通路開閉弁及び前記下流側開閉弁を閉じることにより、前記排気浄化用触媒へ流入するガスの流路を遮断するのが好ましい。
【0016】
同構成によれば、排気浄化用触媒に対する酸素の接触を確実に且つ持続的に外部から遮断することができるばかりでなく、同触媒の温度低下を抑制することができる。
【0017】
(6)当該エンジンシステムの運転状態に応じた自動的な機関停止と当該エンジンシステムの運転操作部からの指令信号に基づく手動的な機関停止とを行うとともに、前記空気流量抑制手段は、当該エンジンシステムが前記手動的な機関停止を行う場合には、前記上流側通路開閉弁及び前記下流側開閉弁を閉じることにより、前記排気浄化用触媒へ流入するガスの流路を遮断するのが好ましい。
【0018】
同構成によれば、機関停止制御手段の作用として、機関停止時における静寂性やドライバビリティを向上させる作用を得る他、とくに、内燃機関の停止期間が長期に亘る場合には、次回の機関始動時までの期間中、前記排気浄化用触媒への酸素の接触を確実且つ継続的に抑制するとともに、排気浄化用触媒の温度低下を抑制することができる。
【0019】
なお、上記各構成は、可能な限り組み合わせることができる。
【0020】
【発明の実施の形態】
以下、本発明の制御装置を、車載用ハイブリッドエンジンシステムに適用した一実施の形態について説明する。
【0021】
〔エンジンシステムの構造及び機能〕
図1に示すように、ハイブリッドエンジンシステム(以下、単にエンジンシステムという)1は、内燃機関20、モータ30、発電機(ジェネレータ)40、動力分割機構50、減速機60、インバータ70、バッテリ80、電子制御装置(ECU)90等を主要な構成要素として含む。内燃機関20は、4本の気筒A,B,C,Dを直列に配置して構成されたガソリンエンジンである。内燃機関20の吸気通路21途中には、吸気の流量(吸気量)を制御するためのスロットル弁21aが備えられている。また、内燃機関20の排気通路22途中には、排気中の一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)を浄化する排気浄化用三元触媒(以下、三元触媒という)を内蔵した触媒コンバータ23が備えられている。内燃機関20は車両の駆動輪9,10に回転力を付与する他、ジェネレータ40を駆動して電力を発生させる。モータ30は、バッテリ80或いはジェネレータ40から電力の供給を受けて駆動輪9,10に回転力を付与するように機能する場合と、逆に駆動輪9,10や内燃機関20から回転力を付与されることで発電を行いバッテリ80に充電用の電力を供給するように機能する場合とがある。
【0022】
内燃機関20のクランクシャフト24と、モータ30の回転軸31と、ジェネレータ40の回転軸41とは、動力分割機構50を介して相互に連結されている。動力分割機構50は、周知の遊星歯車(図示略)を利用して、内燃機関20の発生する動力(クランクシャフト24の回転力)をモータ30の回転軸31とジェネレータ40の回転軸41とに分割して伝達する。
【0023】
モータ30の回転軸31は、減速機60を介して駆動輪9,10の回転軸9a,9aに連結される。
【0024】
なお、モータ30の回転軸31とクランクシャフト24とは、適宜連結することや、切り離すことが可能である。すなわち、内燃機関20が機関燃焼を停止している場合でも、モータ30の発生する動力を利用してクランクシャフト24を回転させることができる。
【0025】
ECU90は、中央処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、バックアップRAM94およびタイマーカウンタ等を備え、これら各部と、A/D変換器を含む外部入力回路と、外部出力回路とが双方向性バスにより接続されて構成される論理演算回路を備える。ECU90は、図示しない各種センサの検出信号を外部入力回路を介して入力し、これら信号に基づいて、内燃機関20、モータ30、バッテリ80等の作動状態を把握し、これら要素20,30,80等の作動状態に基づいてエンジンシステム1の運転状態を最適化するための各種制御を実施する。
【0026】
このように構成されたエンジンシステム1は、内燃機関20及びモータ30の発生する動力(軸トルク)を適宜使い分けて車両の駆動輪9,10に伝達する他、適宜、内燃機関20の駆動力や車両の減速に伴って発生するエネルギーを電力に変換してバッテリ80を充電する。
【0027】
〔エンジンシステムの作動〕
以下、エンジンシステム1の作動について、具体例を挙げて説明する。
【0028】
図2は、内燃機関20及びモータ30の発生する動力やバッテリ80に蓄えられた電力が、エンジンシステム1の運転条件に応じてどのように活用されるのかを、動力や電力の伝達経路を中心に説明する模式図である。なお、各図2(a),図2(b),図2(c)において、実線の矢印は動力の伝達経路を示し、破線の矢印は電力の伝達経路を示す。
(1)システム起動時
エンジンシステム1の起動時には、内燃機関20の暖機を行う。この際、内燃機関20の発生するエネルギーの一部はジェネレータ40を介して電力に変換され、バッテリ80に蓄えられる(図1)。内燃機関20の冷却水の温度を所定値を上回ると(暖機が完了すると)、内燃機関20の運転を停止する。
(2)発進時・低速走行時
エンジンシステム1を搭載した車両が発進する際、或いは低速走行を行う際等、内燃機関20の熱効率が低くなる条件下においては、モータ30の発生する動力を優先的に活用して車両(駆動輪9,10)を駆動する。
(3)通常走行時
エンジンシステム1を搭載した車両が通常の条件下で走行を行う場合には、内燃機関20の発生する動力を動力分割機構により適宜の割合に分割することにより、内燃機関20の発生する動力(クランクシャフト24から減速機60に直接伝達される動力)と、モータ30の発生する動力とが最適な比率で協動して車両(駆動輪9,10)を駆動するように制御を行う。
【0029】
上記のように構成されたエンジンシステム1では、内燃機関20及びモータ30の分担を制御しつつ車両を駆動する。また例えば、車両の発進時に内燃機関20からの動力の供給を要しないことから、車両の停止時には、内燃機関20を自動的に停止する制御を行うこともできる。この結果、燃費の向上や、排気ガスの総排出量の低減が図られる。
【0030】
〔内燃機関停止時のモータリング制御〕
エンジンシステム1では、内燃機関20を停止する際、各気筒A,B,C,Dへの燃料供給の停止後(或いは停止前後に亘り)、モータ30の動力を利用してクランクシャフト24を回転することにより、クランクシャフト24の回転速度を徐々に低下させて完全な停止に至らしめる制御(モータリング制御)を実施する。
【0031】
モータリング制御を実施すると、モータ30の動力が動力分割機構を介して内燃機関20のクランクシャフト24に伝達され(図3参照)、クランクシャフト24の回転動作を補助するようになる。このため、内燃機関20の停止に伴う機関回転数の急激な低下が抑制される。
【0032】
また、内燃機関20の停止後、各気筒A,B,C,D内に残留する排気ガスが、次回の運転再開直後に排気通路22へ排出されると、触媒ケーシング23内の三元触媒が未だ活性化していない条件下で同ケーシング23内を通過する排気ガスの量が増大することになる。内燃機関20への燃料供給の停止後、各気筒A,B,C,Dの燃焼室から完全に排気ガスが排出されるまでモータリング制御を行うことにより、各気筒A,B,C,Dに残留した排気ガスが掃気されるため、内燃機関20の運転再開時における排気特性が向上するようになる。
【0033】
ところで、モータリング制御が実施されると、非燃焼状態にある内燃機関20のクランクシャフト24が回転すると、吸気通路21内の空気(新気)が各気筒A,B,C,Dを通じて排気通路22に流れ込み、触媒コンバータ23に到達する。三元触媒は、酸素を蓄える性質(酸素ストレージ能力)を有するため、モータリング制御によって排気通路に入り込んだ酸素を多量に蓄えることになる。すると、次回の機関始動時に三元触媒が多量の酸素を放出し、この酸素が排気中のNOx量を増大させる懸念が生じる。
【0034】
そこで、エンジンシステム1は、モータリング制御の実施と併せて、スロットル弁21aの開度を絞る(吸気通路21の通路抵抗を増大する)ことにより、排気通路22(触媒コンバータ23)への過剰な空気の流入を抑制する制御を行う。
【0035】
以下、エンジンシステム1が、その構成要素である内燃機関の運転を停止する際に行う制御の具体的な手順について説明する。
【0036】
図4は、エンジンシステム1が実施する機関停止制御の制御ルーチンを示すフローチャートである。このルーチンは、内燃機関20の運転中、ECU90を通じ所定周期で繰り返し実行される。
【0037】
このルーチンに処理が移行すると、ECU90は先ずステップS101において、現時点が、エンジンシステム1が内燃機関20の停止モードへの移行を開始するタイミングであるか否かを判断する。ここで、停止モードへの移行とは、運転中の内燃機関20が停止する過程を意味する。
【0038】
エンジンシステム1では、例えば以下の条件(a)〜(d)のうち、何れかが成立した場合等に、内燃機関20が停止モードに移行する。
(a)エンジンシステム1を搭載した車両が停止した場合
(b)エンジンシステム1を搭載した車両が減速する場合
(c)エンジンシステム1に対する要求トルクが所定値を下回った場合
(d)運転者がイグニションキー等を操作して自発的にエンジンシステム1を停止する場合
同ステップS101での判断が肯定である場合、ECU90はその処理をステップS102に移行し、その判断が否定である場合、本ルーチンを一旦抜ける。
【0039】
ステップS102においてECU90は、モータリング制御を実施するに際しての条件設定を行う。ここでは、例えば内燃機関20を静寂に停止させるといった観点から、エンジンシステム1の現在の運転状態(例えば内燃機関20の回転数やトルク)に照らし、モータリング制御の実施期間、モータへの供給電力量、供給電力の変化率等、各種実施条件を設定する。
【0040】
続くステップS103では、上記ステップS102で設定した条件に従ってモータリング制御を実施する。また、モータリング制御の実施に伴い、スロットル弁21aの開度を調整し(絞り)、吸気通路21から各気筒A,B,C,Dを介して排気通路22に流れ込む新気の流量を低減する制御(新気量低減制御)を実施する。
【0041】
モータリング制御及び新気量低減制御を完了した時点で、ECU90は本ルーチンを一旦抜ける。
【0042】
このような制御手順に従って機関停止制御を行うエンジンシステム1のECU90は、モータリング制御の実施に伴い排気通路22へ流れ込む新気の流量を低減することにより、触媒コンバータ23への空気の流入量を抑制する。
【0043】
ここで従来の制御装置では、内燃機関を停止する際にモータリング制御を実施することで、内燃機関が停止する際に発生するトルクショックを抑制して静寂性やドライバビリティを向上する効果や、燃焼室内に残留する排気ガスを掃気し、三元触媒に送り出して浄化するといった効果を奏することはできる。しかしその反面、吸気通路内の空気が非燃焼状態にある内燃機関の気筒を素通りし、排気通路内に多量に流れ込むことで、酸素ストレージ能を有する三元触媒が過剰な酸素を保持することになっていた。三元触媒の酸素ストレージ能は高温条件下で高まり、低温条件下で低くなる傾向があるため、特に高負荷運転が継続した直後に内燃機関が停止した場合等には、高温条件下にある三元触媒が多量の酸素を蓄え、次回の機関始動時、一気に放出する現象が起きる。その結果、三元触媒の下流に排出されるNOx量が増大する懸念があった。
【0044】
この点、エンジンシステム1のECU90が行う機関停止制御では、モータリング制御の実施に併せて排気通路22へ流れ込む新気の流量を低減することにより、触媒コンバータ23内の三元触媒に新気を接触させないようにする。これにより、機関停止時における静寂性やドライバビリティを向上させ、また、燃焼室内に残留する排気ガスを掃気するといったモータリング制御の優位性を確保しつつ、次回機関始動時におけるNOxの発生量を抑制することができる。
【0045】
なお、上記実施の形態では、新気量低減制御(図4のステップS103を参照)として、スロットル弁21aの開度を調整する制御を行うこととした。しかしながら、吸気通路21から各気筒A,B,C,Dを介して排気通路22に流れ込む新気の流量を低減する他の制御を行うこととしてもよい。
【0046】
〔変形例1〕
例えば図5に示すように、吸気通路21と排気通路22とを接続する排気還流通路(EGR通路)100と、電子制御によって開閉され同通路100を流れる排気(EGRガス)の流量を調整することができるEGR弁101とをエンジンシステム1に付加して周知のEGR装置を構成する。そして、モータリング制御と併せてEGR弁101を開弁する制御を新気量低減制御として実施するようにすれば、少なくとも機関停止時における静寂性やドライバビリティを向上させつつ、次回機関始動時におけるNOxの発生量を抑制することができる他、機関温度の低下を抑制することもできる。
【0047】
〔変形例2〕
また、例えば図6に示すように、電子制御による開閉制御が可能な制御弁102を排気通路22の触媒コンバータ23上流に設け、同通路22から触媒コンバータ23に流れ込む排気の流量を調整することができるような装置構成を、エンジンシステムに付加する。そして、モータリング制御と併せて制御弁102を閉弁する制御を新気量低減制御として実施するようにしても、上記実施の形態と同等若しくはこれに準ずる効果を奏することができる。
【0048】
〔変形例3〕
さらに、図7に示すように、電子制御による開閉制御が可能な制御弁102,103を排気通路22の触媒コンバータ23上流及び下流に設け、モータリング制御と併せて両制御弁102,103を閉弁するようにしてもよい。このようにすれば、触媒コンバータ23上流からのガスの流入が抑制されるばかりでなく、触媒コンバータ23下流からのガスの流入も抑制されるようになる。
【0049】
触媒コンバータ23の上流及び下流に設けられた制御弁102,103を閉弁する制御(以下、第2の新気量低減制御という)は、例えば吸気通路21内のスロットル弁21aを絞る制御や、EGR弁101を開弁する制御(以下、第1の新気量低減制御という)に比べ、排気通路22内の圧力を上昇させる不利があるものの、触媒ケーシング23内の三元触媒を確実に且つ持続的に外部から遮断することができ、しかも、触媒ケーシング23内の温度低下を抑制することもできる。
【0050】
そこで、エンジンシステム1の作動中、一時的に内燃機関20を停止するような条件下では、第1の新気量低減制御を行って触媒ケーシング23内への過剰な酸素流入を抑制し、エンジンシステム1の作動を停止するような条件(長期間に亘り内燃機関20の運転を停止することが予測される条件下)では、第2の新気量低減制御を行い、触媒ケーシング23内の三元触媒を外部からほぼ完全に遮断するようにしてもよい。
【0051】
以下、上記第1の新気量低減制御と第2の新気量低減制御とを適宜使い分けて実施するための具体的な制御手順を、フローチャートを参照して説明する。
【0052】
図8は、エンジンシステム1が実施する機関停止制御の制御ルーチンの変形例を示すフローチャートである。このルーチンは、図4で説明した機関停止制御の制御ルーチンと同じく、内燃機関20の運転中、ECU90を通じ所定周期で繰り返し実行される。
【0053】
本ルーチンに処理が移行すると、ECU90は先ずステップS201において、現時点が、エンジンシステム1が内燃機関20の第1の停止モードへの移行を開始するタイミングであるか否かを判断する。ここで、「停止モードへの移行」が、運転中の内燃機関20が停止する過程を意味することは上述した通りである。本例において「第1の停止モード」とは、エンジンシステム1がECU90の指令信号に従って自動的に内燃機関20停止することを意味する。具体的には、(a)エンジンシステム1を搭載した車両が停止した場合、(b)エンジンシステム1を搭載した車両が減速する場合、(c)エンジンシステム1に対する要求トルクが所定値を下回った場合、エンジンシステム1は第1の停止モードに移行する。
【0054】
ステップS201における判断が肯定であれば(現時点が第1の停止モードへの移行タイミングであれば)、ECU90は、モータリング制御を実施するに際しての条件設定を行った上で(ステップS201A)、当該設定条件に従ってモータリング制御を実施する(ステップS201B)。また、モータリング制御の実施に伴い、スロットル弁21aの開度を絞るか、或いはEGR弁101aを開弁する制御(第1の新気量低減制御)を実施する(ステップS201B)。
【0055】
モータリング制御及び第1の新気量低減制御を完了した時点で、ECU90は本ルーチンを一旦抜ける。
【0056】
一方、上記ステップS201における判断が否定である場合(現時点が第1の停止モードへの移行タイミングでない場合)、ECU90はその処理をステップS202へ移行する。
【0057】
ステップS202においては、現時点が、エンジンシステム1が内燃機関20の第2の停止モードへの移行を開始するタイミングであるか否かを判断する。ここで、「第2の停止モード」とは、手動操作に基づいて内燃機関20が停止することを意味する。具体的には、(d)運転者がイグニションキー等を操作して自発的にエンジンシステム1を停止する場合、エンジンシステム1は第1の停止モードに移行する。
【0058】
ステップS202における判断が否定であれば(現時点が第2の停止モードへの移行タイミングでなければ)ECU90は本ルーチンを一旦抜ける。
【0059】
一方、ステップS202での判断が肯定であれば(現時点が第2の停止モードへの移行タイミングであれば)、ECU90は、モータリング制御を実施するに際しての条件設定を行った上で(ステップS202A)、当該設定条件に従ってモータリング制御を実施する(ステップS202B)。また、モータリング制御の実施に伴い、触媒ケーシング23の上流及び下流に設けられた制御弁102,103を閉弁する制御(第2の新気量低減制御)を実施する(ステップS201B)。
【0060】
モータリング制御を完了した時点で、ECU90は本ルーチンを一旦抜ける。
【0061】
なお、内燃機関の次回の始動時まで各制御弁102,103は閉弁状態を保持する。
【0062】
このような制御ルーチンに従えば、第1の新気量低減制御と第2の新気量低減制御とを使い分けて実施することにより、とくに内燃機関20が長期に亘って停止することが予測されるような条件下では、モータリング制御と併せて第2の新気量低減制御を実施することができる。このような制御を実施することにより、内燃機関20の停止時ばかりでなく、その停止後も継続して、触媒ケーシング23内への新気の流れ込みの抑制と触媒ケーシング23内の保温とを併せ行うことができる。
【0063】
なお、上記各変形例を含め、本実施の形態で適用することとした各種の新気量低減制御は、状況に応じて適宜選択的に、或いは組み合わせて実施することができる。例えば、モータリング制御の実施に併せて、EGR弁101を半開状態にしつつ制御弁102,103を閉弁するといった制御を行うこともできる。
【0064】
また、新気量低減制御にかかるスロットル弁21aの開度、EGR弁101の開度、或いは制御弁102,103の開度の目標値や変化速度等は、停止モードに移行する際の内燃機関20の運転状態(例えば機関回転数や機関温度)に応じて変更するようにしてもよい。
【0065】
また、エンジンシステム1が内燃機関20の停止モードへの移行を開始した場合に、先ず所定期間、モータリング制御を単独で実施し、各気筒A,B,C,Dからの排気ガスの掃気が完了した後に、モータリング制御と新気量低減制御とを併せ行うようにしてもよい。
【0066】
また、エンジンシステム1のように、内燃機関20とモータ30とが協働して搭載車両の駆動輪に動力を付与するシステムに限らず、内燃機関と、非燃焼状態にある内燃機関に十分高いトルクを付与するモータとを備えたエンジンシステムであれば、本発明の制御装置を適用して上記実施の形態と同等若しくはこれに準ずる効果を奏することができる。
【0067】
また、本実施の形態では、内燃機関としてガソリンエンジンを備えたエンジンシステムに本発明を適用することとしたが、ディーゼルエンジン等、他の内燃機関を備えたエンジンシステムにも本発明を適用して同等若しくはこれに準ずる効果を奏することができる。
【0068】
また、エンジンシステム1のように、車両搭載用のエンジンシステムの他、他の被駆動対象に本発明の制御装置を適用しても、上記実施の形態と同等若しくはこれに準ずる効果を奏することができる。
【0069】
また、三元触媒に限らず、内燃機関の排気通路に設けられた他の排気浄化用触媒(例えば酸化触媒やNOx吸蔵還元型触媒)等を排気通路に備えた内燃機関(エンジンシステム)に対しても、本発明の制御装置を適用して上記実施の形態と同等若しくはこれに準ずる効果を奏することができる。
【0070】
【発明の効果】
以上説明したように、本発明の制御装置によれば、機関停止時における静寂性やドライバビリティを向上させ、また、燃焼室内に残留する排気ガスを掃気する作用を確保しつつ、次回機関始動時における前記排気浄化用触媒下流でのNOxの発生量を抑制することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかるハイブリッドエンジンシステムを示す概略構成図。
【図2】同実施の形態にかかる内燃機関の停止制御手順を示すフローチャート。
【図3】同実施の形態にかかるエンジンシステムにおいて、モータリング制御実施時における動力の伝達経路を示す略図。
【図4】同実施の形態にかかる機関停止制御の制御手順を示すフローチャート。
【図5】同実施の形態にかかるエンジンシステムの変形例を示す概略構成図。
【図6】同実施の形態にかかるエンジンシステムの変形例を示す概略構成図。
【図7】同実施の形態にかかるエンジンシステムの変形例を示す概略構成図。
【図8】同実施の形態にかかる機関停止制御の他の制御手順を示すフローチャート。
【符号の説明】
1 ハイブリッドエンジンシステム(エンジンシステム)
9,10 駆動輪
9a,9a 回転軸
20 内燃機関
21 吸気通路
21a スロットル弁
22 同通路
22 排気通路
23 触媒コンバータ(排気浄化用触媒を含む)
24 クランクシャフト
30 モータ
31 回転軸
40 ジェネレータ
41 回転軸
50 動力分割機構(動力伝達機構を構成)
60 減速機
80 バッテリ
90 電子制御装置(ECU)
100 EGR通路
101 EGR弁
102 制御弁(上流側通路開閉弁)
103 制御弁(下流側通路開閉弁)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a hybrid engine having a plurality of drive sources including an internal combustion engine and an electric motor, and more particularly, to a control structure for improving the function of an exhaust purification catalyst provided in an exhaust passage of the internal combustion engine. The present invention relates to a device to be implemented.
[0002]
[Prior art]
A hybrid engine in which an internal combustion engine and an electric motor are combined as a plurality of drive sources has a function of appropriately transmitting the power generated from these drive sources to the outside while controlling the operating state of each drive source. If the hybrid engine system is used, for example, the output of the internal combustion engine is preferentially used in the operation region where the energy conversion efficiency due to engine combustion is high, and the output of the motor is preferentially used in the operation region where the energy conversion efficiency due to engine combustion is low. Control such as utilization can be performed. As a result, a vehicle equipped with a hybrid engine can significantly reduce the amount of fuel consumed and the amount of exhaust gas discharged during vehicle operation compared to a vehicle equipped with a conventional internal combustion engine.
[0003]
One of the controls that effectively utilize the function of the hybrid engine is a control (hereinafter referred to as motoring control) that causes an internal combustion engine that is in a non-combusting state when the engine is stopped to operate by a motor for a predetermined period of time (hereinafter referred to as motoring control). -210520). In general, when the operation of the internal combustion engine stops, a phenomenon (torque shock) in which the engine speed drops suddenly occurs after the fuel supply to the engine stops until the engine operation stops completely. Gives the driver a sense of incongruity.
[0004]
In the motoring control of the hybrid engine, when the operation of the internal combustion engine is stopped, the output shaft of the electric motor and the engine output shaft are connected, and after the fuel supply to the internal combustion engine is stopped, the engine speed is determined by the output of the electric motor. The engine will be completely stopped while gradually lowering. By performing the motoring control, the problem of torque shock is solved, and the quietness when the internal combustion engine is stopped is improved.
[0005]
Moreover, the following effects are also acquired by performing motoring control. After the internal combustion engine is stopped, a part of the exhaust gas remains in the combustion chamber. Generally, since the temperature in the exhaust passage is low when the engine is started, the exhaust purification catalyst provided in the exhaust passage is often not activated sufficiently. For this reason, if the exhaust gas remaining in the combustion chamber is discharged into the exhaust passage simultaneously with the restart of the engine operation after the engine is stopped, the exhaust gas is exhausted to the outside through the exhaust purification catalyst, which may deteriorate the exhaust characteristics. . If motoring control is performed after exhausting fuel to the internal combustion engine and exhaust gas is completely exhausted from the combustion chamber, it is possible to prevent deterioration of exhaust characteristics immediately after resuming engine operation.
[0006]
[Problems to be solved by the invention]
By the way, when the motoring control is performed, the air in the intake passage directly enters the exhaust passage through the combustion chamber. Since the exhaust purification catalyst has a property of storing oxygen (O 2 storage capability), it stores a large amount of oxygen that has entered the exhaust passage by motoring control. Then, at the next engine start, the exhaust purification catalyst releases a large amount of oxygen, and this oxygen increases the amount of NOx in the exhaust.
[0007]
The present invention has been made in view of such circumstances, and an object of the present invention is to be provided in an exhaust passage of the internal combustion engine in order to control the operation of the engine system including the internal combustion engine and the motor. Another object of the present invention is to provide a control device capable of carrying out motoring control when the internal combustion engine is stopped while maintaining the function of the exhaust purification catalyst satisfactorily.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is provided in (1) an internal combustion engine, a motor, a power transmission mechanism for transmitting a rotational force generated by the motor to the internal combustion engine, and an exhaust passage of the internal combustion engine. A control device for controlling an engine system having an exhaust purification catalyst, wherein when the internal combustion engine is stopped, the driving force of the motor is transmitted to the internal combustion engine to operate the engine in a non-combustion state The gist of the present invention is to provide an engine stop control means for causing the engine to stop and an air inflow amount suppression means for suppressing the amount of air flowing into the exhaust purification catalyst in accordance with the operation of the engine in the non-combustion state.
[0009]
According to this configuration, by reducing the flow rate of fresh air flowing into the exhaust passage in conjunction with the operation of the motor, contact of fresh air with the exhaust purification catalyst even under conditions where the motor is operating. As a result, an increase in the oxygen storage amount of the exhaust purification catalyst is suppressed. As a result, the operation of the engine stop control means, that is, quietness and drivability when the engine is stopped is improved, and the exhaust gas purification at the next engine start is ensured while ensuring the operation of scavenging the exhaust gas remaining in the combustion chamber. The amount of NOx generated downstream of the catalyst for use can be suppressed.
[0010]
(2) Further, it is preferable that the air inflow amount suppressing means suppresses the amount of air flowing into the exhaust purification catalyst by increasing a passage resistance of an intake passage of the internal combustion engine.
[0011]
According to this configuration, it is possible to effectively suppress the inflow of excess air in the exhaust passage.
[0012]
(3) a recirculation passage that connects an upstream portion of the exhaust purification catalyst in the exhaust passage of the internal combustion engine and the intake passage, and recirculates a part of the exhaust gas flowing through the exhaust passage to the intake passage; An exhaust gas recirculation amount adjusting means for adjusting the amount of exhaust gas recirculated through the recirculation passage, and the air inflow amount suppressing means increases the amount of exhaust gas recirculated through the exhaust gas recirculation amount adjusting means, It is preferable to suppress the amount of air flowing into the exhaust purification catalyst.
[0013]
According to this configuration, as an operation of the engine stop control means, it is possible to obtain an effect of improving the quietness and drivability when the engine is stopped, and in particular, an effect of suppressing a decrease in engine temperature.
[0014]
(4) It is preferable that the air inflow amount suppression means suppresses the amount of air flowing into the exhaust purification catalyst by blocking a flow path of gas flowing into the exhaust purification catalyst.
[0015]
(5) The air flow rate suppression means includes an upstream-side passage opening / closing valve that opens and closes an upstream portion of the exhaust purification catalyst in the exhaust passage, and a downstream that opens and closes a downstream portion of the exhaust purification catalyst in the exhaust passage. It is preferable that the flow path of the gas flowing into the exhaust gas purification catalyst is shut off by closing the upstream side passage on-off valve and the downstream side on-off valve.
[0016]
According to this configuration, not only can the contact of oxygen with the exhaust purification catalyst be reliably and continuously blocked from the outside, but also a temperature drop of the catalyst can be suppressed.
[0017]
(6) The engine is automatically stopped according to the operating state of the engine system and the engine is manually stopped based on a command signal from the operation operation unit of the engine system. When the system performs the manual engine stop, it is preferable to shut off the flow path of the gas flowing into the exhaust purification catalyst by closing the upstream side passage on-off valve and the downstream side on-off valve.
[0018]
According to this configuration, the operation of the engine stop control means is not only improved in quietness and drivability when the engine is stopped, but also when the internal combustion engine is stopped for a long time, During the period up to the time, the contact of oxygen with the exhaust purification catalyst can be reliably and continuously suppressed, and the temperature reduction of the exhaust purification catalyst can be suppressed.
[0019]
In addition, said each structure can be combined as much as possible.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the control device of the present invention is applied to an in-vehicle hybrid engine system will be described.
[0021]
[Engine system structure and function]
As shown in FIG. 1, a hybrid engine system (hereinafter simply referred to as an engine system) 1 includes an internal combustion engine 20, a motor 30, a generator (generator) 40, a power split mechanism 50, a speed reducer 60, an inverter 70, a battery 80, An electronic control unit (ECU) 90 and the like are included as main components. The internal combustion engine 20 is a gasoline engine configured by arranging four cylinders A, B, C, and D in series. In the middle of the intake passage 21 of the internal combustion engine 20, a throttle valve 21a for controlling the flow rate (intake amount) of intake air is provided. Further, in the middle of the exhaust passage 22 of the internal combustion engine 20, an exhaust purification three-way catalyst (hereinafter referred to as a three-way catalyst) that purifies carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) in the exhaust gas. A catalytic converter 23 having a built-in). The internal combustion engine 20 applies a rotational force to the drive wheels 9 and 10 of the vehicle and drives the generator 40 to generate electric power. The motor 30 receives power supplied from the battery 80 or the generator 40 and functions to apply rotational force to the drive wheels 9 and 10. On the contrary, the motor 30 applies rotational force from the drive wheels 9 and 10 and the internal combustion engine 20. As a result, the battery 80 may function to generate power and supply power for charging to the battery 80.
[0022]
The crankshaft 24 of the internal combustion engine 20, the rotating shaft 31 of the motor 30, and the rotating shaft 41 of the generator 40 are connected to each other via a power split mechanism 50. The power split mechanism 50 uses a known planetary gear (not shown) to transmit the power (rotational force of the crankshaft 24) generated by the internal combustion engine 20 to the rotary shaft 31 of the motor 30 and the rotary shaft 41 of the generator 40. Divide and transmit.
[0023]
The rotation shaft 31 of the motor 30 is connected to the rotation shafts 9 a and 9 a of the drive wheels 9 and 10 via the speed reducer 60.
[0024]
In addition, the rotating shaft 31 and the crankshaft 24 of the motor 30 can be appropriately connected or disconnected. That is, even when the internal combustion engine 20 stops engine combustion, the crankshaft 24 can be rotated using the power generated by the motor 30.
[0025]
The ECU 90 includes a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), a backup RAM 94, a timer counter, and the like. These units, an external input circuit including an A / D converter, A logic operation circuit configured to be connected to the output circuit by a bidirectional bus is provided. The ECU 90 inputs detection signals of various sensors (not shown) via an external input circuit, and based on these signals, grasps the operating states of the internal combustion engine 20, the motor 30, the battery 80, etc., and these elements 20, 30, 80 Various controls for optimizing the operating state of the engine system 1 are performed based on the operating state.
[0026]
The engine system 1 configured as described above properly transmits power (shaft torque) generated by the internal combustion engine 20 and the motor 30 to the drive wheels 9 and 10 of the vehicle as appropriate. The battery 80 is charged by converting energy generated as the vehicle decelerates into electric power.
[0027]
[Engine system operation]
Hereinafter, the operation of the engine system 1 will be described with a specific example.
[0028]
FIG. 2 shows how the power generated by the internal combustion engine 20 and the motor 30 and the power stored in the battery 80 are utilized according to the operating conditions of the engine system 1, focusing on the power and power transmission path. It is a schematic diagram demonstrated to. In each of FIGS. 2 (a), 2 (b), and 2 (c), a solid arrow indicates a power transmission path, and a broken arrow indicates a power transmission path.
(1) At system startup
When the engine system 1 is started, the internal combustion engine 20 is warmed up. At this time, part of the energy generated by the internal combustion engine 20 is converted into electric power via the generator 40 and stored in the battery 80 (FIG. 1). When the temperature of the cooling water of the internal combustion engine 20 exceeds a predetermined value (when the warm-up is completed), the operation of the internal combustion engine 20 is stopped.
(2) Starting and running at low speed
Under conditions where the thermal efficiency of the internal combustion engine 20 is low, such as when a vehicle equipped with the engine system 1 starts or runs at a low speed, the vehicle (drive wheels) preferentially uses the power generated by the motor 30. 9 and 10) are driven.
(3) During normal driving
When a vehicle equipped with the engine system 1 travels under normal conditions, the power generated by the internal combustion engine 20 is divided into an appropriate ratio by the power split mechanism by the power split mechanism. Control is performed such that the power (power directly transmitted from the shaft 24 to the speed reducer 60) and the power generated by the motor 30 cooperate with each other at an optimum ratio to drive the vehicle (drive wheels 9, 10).
[0029]
In the engine system 1 configured as described above, the vehicle is driven while controlling the sharing of the internal combustion engine 20 and the motor 30. Further, for example, since power supply from the internal combustion engine 20 is not required when the vehicle starts, it is possible to perform control for automatically stopping the internal combustion engine 20 when the vehicle is stopped. As a result, fuel consumption can be improved and total exhaust gas emission can be reduced.
[0030]
[Motoring control when the internal combustion engine is stopped]
In the engine system 1, when the internal combustion engine 20 is stopped, the crankshaft 24 is rotated using the power of the motor 30 after the fuel supply to each cylinder A, B, C, D is stopped (or before and after the stop). By doing so, the control (motoring control) which reduces the rotational speed of the crankshaft 24 gradually and leads to a complete stop is implemented.
[0031]
When the motoring control is performed, the power of the motor 30 is transmitted to the crankshaft 24 of the internal combustion engine 20 through the power split mechanism (see FIG. 3), and assists the rotational operation of the crankshaft 24. For this reason, a rapid decrease in the engine speed accompanying the stop of the internal combustion engine 20 is suppressed.
[0032]
Further, after the internal combustion engine 20 is stopped, if the exhaust gas remaining in each cylinder A, B, C, D is discharged to the exhaust passage 22 immediately after the next restart of operation, the three-way catalyst in the catalyst casing 23 is discharged. The amount of exhaust gas that passes through the casing 23 under conditions that have not yet been activated increases. After stopping the fuel supply to the internal combustion engine 20, each cylinder A, B, C, D is performed by performing motoring control until exhaust gas is completely discharged from the combustion chamber of each cylinder A, B, C, D. Since the exhaust gas remaining in the exhaust gas is scavenged, the exhaust characteristics when the operation of the internal combustion engine 20 is resumed are improved.
[0033]
By the way, when the motoring control is performed, when the crankshaft 24 of the internal combustion engine 20 in the non-combustion state rotates, the air (fresh air) in the intake passage 21 passes through the cylinders A, B, C, D to the exhaust passage. 22, and reaches the catalytic converter 23. Since the three-way catalyst has the property of storing oxygen (oxygen storage capability), it stores a large amount of oxygen that has entered the exhaust passage by motoring control. Then, the three-way catalyst releases a large amount of oxygen at the next engine start, and there is a concern that this oxygen increases the amount of NOx in the exhaust.
[0034]
Therefore, the engine system 1 reduces the opening of the throttle valve 21a together with the implementation of the motoring control (increases the passage resistance of the intake passage 21), thereby excessively supplying the exhaust passage 22 (catalytic converter 23). Control to suppress the inflow of air.
[0035]
Hereinafter, a specific procedure of control performed when the engine system 1 stops the operation of the internal combustion engine that is a component thereof will be described.
[0036]
FIG. 4 is a flowchart showing a control routine for engine stop control performed by the engine system 1. This routine is repeatedly executed at a predetermined cycle through the ECU 90 during operation of the internal combustion engine 20.
[0037]
When the processing shifts to this routine, the ECU 90 first determines in step S101 whether or not the current time is the timing when the engine system 1 starts shifting to the stop mode of the internal combustion engine 20. Here, the transition to the stop mode means a process in which the operating internal combustion engine 20 stops.
[0038]
In the engine system 1, for example, when any one of the following conditions (a) to (d) is satisfied, the internal combustion engine 20 shifts to the stop mode.
(A) When the vehicle equipped with the engine system 1 stops
(B) When a vehicle equipped with the engine system 1 decelerates
(C) When the required torque for the engine system 1 falls below a predetermined value
(D) When the driver stops the engine system 1 voluntarily by operating the ignition key or the like
If the determination in step S101 is affirmative, the ECU 90 moves the process to step S102, and if the determination is negative, the ECU 90 once exits this routine.
[0039]
In step S102, the ECU 90 sets conditions for performing motoring control. Here, for example, from the viewpoint of quietly stopping the internal combustion engine 20, in light of the current operating state of the engine system 1 (for example, the rotational speed and torque of the internal combustion engine 20), the motoring control period, the power supplied to the motor Set various implementation conditions such as amount and rate of change in power supply.
[0040]
In the subsequent step S103, motoring control is performed in accordance with the conditions set in step S102. Further, along with the motoring control, the opening degree of the throttle valve 21a is adjusted (throttle) to reduce the flow rate of fresh air flowing from the intake passage 21 into the exhaust passage 22 via the cylinders A, B, C, D. Implement control (new air volume reduction control).
[0041]
When the motoring control and the fresh air amount reduction control are completed, the ECU 90 once exits this routine.
[0042]
The ECU 90 of the engine system 1 that performs engine stop control according to such a control procedure reduces the flow rate of fresh air that flows into the exhaust passage 22 in accordance with the motoring control, thereby reducing the amount of air flowing into the catalytic converter 23. Suppress.
[0043]
Here, in the conventional control device, by performing the motoring control when stopping the internal combustion engine, the effect of suppressing the torque shock generated when the internal combustion engine stops and improving the silence and drivability, The exhaust gas remaining in the combustion chamber can be scavenged and sent to the three-way catalyst for purification. However, on the other hand, the air in the intake passage passes through the cylinders of the internal combustion engine in a non-combustion state and flows into the exhaust passage in large quantities, so that the three-way catalyst having oxygen storage ability holds excessive oxygen. It was. Since the oxygen storage capacity of a three-way catalyst tends to increase under high temperature conditions and decrease under low temperature conditions, especially when the internal combustion engine is shut down immediately after high-load operation continues, The original catalyst stores a large amount of oxygen, and the next time the engine is started, a phenomenon occurs in which it is released at once. As a result, there is a concern that the amount of NOx discharged downstream of the three-way catalyst increases.
[0044]
In this regard, in the engine stop control performed by the ECU 90 of the engine system 1, the fresh air flows into the three-way catalyst in the catalytic converter 23 by reducing the flow rate of fresh air flowing into the exhaust passage 22 in conjunction with the execution of the motoring control. Avoid contact. This improves the quietness and drivability when the engine is stopped, and ensures the superiority of motoring control such as scavenging the exhaust gas remaining in the combustion chamber, while reducing the amount of NOx generated at the next engine start. Can be suppressed.
[0045]
In the above-described embodiment, control for adjusting the opening of the throttle valve 21a is performed as the fresh air amount reduction control (see step S103 in FIG. 4). However, another control for reducing the flow rate of fresh air flowing from the intake passage 21 through the cylinders A, B, C, and D into the exhaust passage 22 may be performed.
[0046]
[Modification 1]
For example, as shown in FIG. 5, the exhaust gas recirculation passage (EGR passage) 100 that connects the intake passage 21 and the exhaust passage 22 and the flow rate of exhaust gas (EGR gas) that is opened and closed by electronic control and flows through the passage 100 are adjusted. A known EGR device is configured by adding an EGR valve 101 capable of performing the above operation to the engine system 1. If the control for opening the EGR valve 101 together with the motoring control is performed as a new air amount reduction control, at least the quietness and drivability when the engine is stopped are improved, and the next time the engine is started. In addition to suppressing the amount of NOx generated, it is also possible to suppress a decrease in engine temperature.
[0047]
[Modification 2]
For example, as shown in FIG. 6, a control valve 102 capable of electronically opening and closing can be provided upstream of the catalytic converter 23 in the exhaust passage 22 to adjust the flow rate of exhaust gas flowing into the catalytic converter 23 from the passage 22. An apparatus configuration that can be used is added to the engine system. And even if it implements the control which closes the control valve 102 with motoring control as fresh air quantity reduction control, there can exist an effect equivalent to the said embodiment, or an equivalent thing.
[0048]
[Modification 3]
Furthermore, as shown in FIG. 7, control valves 102 and 103 that can be opened and closed by electronic control are provided upstream and downstream of the catalytic converter 23 in the exhaust passage 22, and both control valves 102 and 103 are closed together with motoring control. You may make it speak. In this way, not only the inflow of gas from the upstream of the catalytic converter 23 is suppressed, but also the inflow of gas from the downstream of the catalytic converter 23 is suppressed.
[0049]
Control for closing the control valves 102 and 103 provided upstream and downstream of the catalytic converter 23 (hereinafter referred to as second fresh air amount reduction control) is, for example, control for throttle the throttle valve 21a in the intake passage 21, Compared to the control for opening the EGR valve 101 (hereinafter referred to as first fresh air amount reduction control), there is a disadvantage that the pressure in the exhaust passage 22 is increased, but the three-way catalyst in the catalyst casing 23 is securely and It can be continuously blocked from the outside, and the temperature drop in the catalyst casing 23 can also be suppressed.
[0050]
Therefore, under the condition that the internal combustion engine 20 is temporarily stopped during the operation of the engine system 1, the first fresh air amount reduction control is performed to suppress excessive oxygen inflow into the catalyst casing 23, and the engine Under conditions such that the operation of the system 1 is stopped (conditions where it is predicted that the operation of the internal combustion engine 20 will be stopped for a long period of time), the second new air amount reduction control is performed, and the three inside the catalyst casing 23 are controlled. The original catalyst may be cut off almost completely from the outside.
[0051]
Hereinafter, a specific control procedure for appropriately performing the first new air amount reduction control and the second new air amount reduction control will be described with reference to a flowchart.
[0052]
FIG. 8 is a flowchart showing a modification of the control routine for engine stop control performed by the engine system 1. This routine is repeatedly executed at a predetermined cycle through the ECU 90 during the operation of the internal combustion engine 20, as in the control routine for engine stop control described with reference to FIG.
[0053]
When the processing shifts to this routine, the ECU 90 first determines in step S201 whether or not the current time is the timing when the engine system 1 starts shifting to the first stop mode of the internal combustion engine 20. Here, as described above, “transition to the stop mode” means a process in which the operating internal combustion engine 20 stops. In this example, the “first stop mode” means that the engine system 1 automatically stops the internal combustion engine 20 in accordance with a command signal from the ECU 90. Specifically, (a) when the vehicle equipped with the engine system 1 stops, (b) when the vehicle equipped with the engine system 1 decelerates, (c) the required torque for the engine system 1 falls below a predetermined value. In this case, the engine system 1 shifts to the first stop mode.
[0054]
If the determination in step S201 is affirmative (if the current time is the transition timing to the first stop mode), the ECU 90 sets the conditions for performing the motoring control (step S201A), and Motoring control is performed according to the set conditions (step S201B). Further, along with the execution of the motoring control, the opening degree of the throttle valve 21a is throttled or the EGR valve 101a is opened (first fresh air amount reduction control) (step S201B).
[0055]
When the motoring control and the first new air amount reduction control are completed, the ECU 90 once exits this routine.
[0056]
On the other hand, if the determination in step S201 is negative (if the current time is not the timing for shifting to the first stop mode), the ECU 90 proceeds to step S202.
[0057]
In step S202, it is determined whether or not the current time is the timing when the engine system 1 starts to shift the internal combustion engine 20 to the second stop mode. Here, the “second stop mode” means that the internal combustion engine 20 is stopped based on a manual operation. Specifically, (d) when the driver operates the ignition key or the like to stop the engine system 1 spontaneously, the engine system 1 shifts to the first stop mode.
[0058]
If the determination in step S202 is negative (if the current time is not the timing for shifting to the second stop mode), the ECU 90 once exits this routine.
[0059]
On the other hand, if the determination in step S202 is affirmative (if the current time is the transition timing to the second stop mode), the ECU 90 sets conditions for performing the motoring control (step S202A). ), Motoring control is performed according to the set condition (step S202B). Further, with the execution of the motoring control, a control (second fresh air amount reduction control) for closing the control valves 102 and 103 provided upstream and downstream of the catalyst casing 23 is performed (step S201B).
[0060]
When the motoring control is completed, the ECU 90 once exits this routine.
[0061]
The control valves 102 and 103 remain closed until the next start of the internal combustion engine.
[0062]
According to such a control routine, it is predicted that the internal combustion engine 20 will be stopped for a long period of time by performing the first fresh air amount reduction control and the second new air amount reduction control separately. Under such conditions, the second new air amount reduction control can be performed together with the motoring control. By performing such control, not only when the internal combustion engine 20 is stopped, but also after the stop, the suppression of the flow of fresh air into the catalyst casing 23 and the heat retention in the catalyst casing 23 are combined. It can be carried out.
[0063]
In addition, the various fresh air amount reduction controls that are applied in the present embodiment, including the above-described modified examples, can be implemented appropriately selectively or in combination depending on the situation. For example, in conjunction with the implementation of the motoring control, the control valves 102 and 103 can be closed while the EGR valve 101 is in a half-open state.
[0064]
Further, the opening degree of the throttle valve 21a, the opening degree of the EGR valve 101, the target value and the changing speed of the opening degree of the control valves 102 and 103, etc. for the fresh air amount reduction control are determined when the engine is shifted to the stop mode. You may make it change according to 20 driving | running states (for example, engine speed or engine temperature).
[0065]
Further, when the engine system 1 starts shifting to the stop mode of the internal combustion engine 20, first, motoring control is performed independently for a predetermined period, and the exhaust gas scavenging from each cylinder A, B, C, D is performed. After the completion, motoring control and fresh air amount reduction control may be performed together.
[0066]
The engine system 1 is not limited to a system in which the internal combustion engine 20 and the motor 30 cooperate to apply power to the drive wheels of the mounted vehicle, and is sufficiently high for the internal combustion engine and the internal combustion engine in a non-combustion state. If it is an engine system provided with the motor which provides a torque, the control apparatus of this invention can be applied, and there can exist an effect equivalent to the said embodiment or an equivalent thing.
[0067]
In the present embodiment, the present invention is applied to an engine system including a gasoline engine as an internal combustion engine. However, the present invention is also applied to an engine system including another internal combustion engine such as a diesel engine. An effect equivalent to or equivalent to this can be achieved.
[0068]
Moreover, even if the control device of the present invention is applied to other driven objects as well as the engine system mounted on the vehicle as in the engine system 1, the effect equivalent to or equivalent to that of the above embodiment can be obtained. it can.
[0069]
Further, not only for a three-way catalyst, but also for an internal combustion engine (engine system) provided with another exhaust purification catalyst (for example, an oxidation catalyst or NOx storage reduction catalyst) provided in the exhaust passage of the internal combustion engine in the exhaust passage. However, by applying the control device of the present invention, an effect equivalent to or equivalent to that of the above embodiment can be achieved.
[0070]
【The invention's effect】
As described above, according to the control device of the present invention, the quietness and drivability when the engine is stopped are improved, and the action of scavenging the exhaust gas remaining in the combustion chamber is ensured while the engine is started next time. The amount of NOx generated downstream of the exhaust gas purification catalyst can be suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a hybrid engine system according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a stop control procedure for the internal combustion engine according to the embodiment;
FIG. 3 is a schematic diagram showing a power transmission path when motoring control is performed in the engine system according to the embodiment;
FIG. 4 is a flowchart showing a control procedure for engine stop control according to the embodiment;
FIG. 5 is a schematic configuration diagram showing a modification of the engine system according to the embodiment;
FIG. 6 is a schematic configuration diagram showing a modification of the engine system according to the embodiment;
FIG. 7 is a schematic configuration diagram showing a modification of the engine system according to the embodiment;
FIG. 8 is a flowchart showing another control procedure of the engine stop control according to the embodiment;
[Explanation of symbols]
1 Hybrid engine system (engine system)
9,10 Drive wheel
9a, 9a Rotating shaft
20 Internal combustion engine
21 Intake passage
21a Throttle valve
22 The same passage
22 Exhaust passage
23 Catalytic converter (including exhaust purification catalyst)
24 Crankshaft
30 motor
31 Rotating shaft
40 generator
41 Rotating shaft
50 Power split mechanism (composed of power transmission mechanism)
60 reducer
80 battery
90 Electronic control unit (ECU)
100 EGR passage
101 EGR valve
102 Control valve (upstream passage open / close valve)
103 Control valve (downstream passage opening / closing valve)

Claims (6)

内燃機関と、
モータと、
該モータの発生する回転力を内燃機関に伝達する動力伝達機構と、
前記内燃機関の排気通路に設けられた排気浄化用触媒と、
を有するエンジンシステムを制御するための制御装置であって、
前記内燃機関の停止時に、前記モータの駆動力を前記内燃機関に伝達し、非燃焼状態にある当該機関を動作させる機関停止制御手段と、
前記非燃焼状態にある当該機関の動作に合わせて、前記排気浄化用触媒に流入する空気の量を抑制する空気流入量抑制手段と、
を備えることを特徴とするエンジンシステムの制御装置。
An internal combustion engine;
A motor,
A power transmission mechanism for transmitting the rotational force generated by the motor to the internal combustion engine;
An exhaust purification catalyst provided in an exhaust passage of the internal combustion engine;
A control device for controlling an engine system having
Engine stop control means for transmitting the driving force of the motor to the internal combustion engine when the internal combustion engine is stopped, and operating the engine in a non-combustion state;
Air inflow amount suppression means for suppressing the amount of air flowing into the exhaust purification catalyst in accordance with the operation of the engine in the non-combustion state;
An engine system control device comprising:
前記空気流入量抑制手段は、前記内燃機関の吸気通路の通路抵抗を増大することにより、前記排気浄化用触媒に流入する空気の量を抑制することを特徴とする請求項1記載のエンジンシステムの制御装置。2. The engine system according to claim 1, wherein the air inflow amount suppression unit suppresses an amount of air flowing into the exhaust purification catalyst by increasing a passage resistance of an intake passage of the internal combustion engine. Control device. 前記内燃機関の排気通路における前記排気浄化用触媒の上流部位と前記吸気通路とを連絡し、前記排気通路を流れる排気の一部を前記吸気通路に還流する還流通路と、
前記還流通路を通じて還流される排気の量を調整する排気還流量調整手段と、
を備え、
前記空気流入量抑制手段は、前記排気還流量調整手段を通じて前記還流される排気の量を増大させることにより、前記排気浄化用触媒に流入する空気の量を抑制することを特徴とする請求項1記載のエンジンシステムの制御装置。
A recirculation passage that communicates an upstream portion of the exhaust purification catalyst in the exhaust passage of the internal combustion engine and the intake passage, and returns a part of the exhaust flowing through the exhaust passage to the intake passage;
Exhaust gas recirculation amount adjusting means for adjusting the amount of exhaust gas recirculated through the recirculation passage;
With
2. The air inflow amount suppression means suppresses the amount of air flowing into the exhaust gas purification catalyst by increasing the amount of exhaust gas recirculated through the exhaust gas recirculation amount adjusting means. The engine system control device described.
前記空気流入量抑制手段は、前記排気浄化用触媒へ流入するガスの流路を遮断することにより、前記排気浄化用触媒に流入する空気の量を抑制することを特徴とする請求項1記載のエンジンシステムの制御装置。2. The air inflow amount suppression means suppresses an amount of air flowing into the exhaust purification catalyst by blocking a flow path of gas flowing into the exhaust purification catalyst. Control device for engine system. 前記空気流量抑制手段は、
前記排気通路における前記排気浄化用触媒の上流部位を開閉する上流側通路開閉弁と、
前記排気通路における前記排気浄化用触媒の下流部位を開閉する下流側通路開閉弁と、
を備え、
前記上流側通路開閉弁及び前記下流側開閉弁を閉じることにより、前記排気浄化用触媒へ流入するガスの流路を遮断することを特徴とする請求項4記載のエンジンシステムの制御装置。
The air flow rate suppression means is
An upstream side passage opening and closing valve for opening and closing an upstream portion of the exhaust gas purification catalyst in the exhaust passage;
A downstream-side passage opening / closing valve that opens and closes a downstream portion of the exhaust purification catalyst in the exhaust passage;
With
5. The engine system control device according to claim 4, wherein the upstream side passage on-off valve and the downstream side on-off valve are closed to shut off a flow path of the gas flowing into the exhaust purification catalyst. 6.
当該エンジンシステムの運転状態に応じた自動的な機関停止と当該エンジンシステムの運転操作部からの指令信号に基づく手動的な機関停止とを行うとともに、
前記空気流量抑制手段は、
当該エンジンシステムが前記手動的な機関停止を行う場合には、前記上流側通路開閉弁及び前記下流側開閉弁を閉じることにより、前記排気浄化用触媒へ流入するガスの流路を遮断することを特徴とする請求項5記載のエンジンシステムの制御装置。
While automatically stopping the engine according to the operating state of the engine system and manually stopping the engine based on a command signal from the operation unit of the engine system,
The air flow rate suppression means is
When the engine system performs the manual engine stop, the upstream passage opening / closing valve and the downstream opening / closing valve are closed to shut off the flow path of the gas flowing into the exhaust gas purification catalyst. 6. The engine system control apparatus according to claim 5, wherein:
JP2002174286A 2002-06-14 2002-06-14 Control device of engine system Pending JP2004019519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174286A JP2004019519A (en) 2002-06-14 2002-06-14 Control device of engine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174286A JP2004019519A (en) 2002-06-14 2002-06-14 Control device of engine system

Publications (1)

Publication Number Publication Date
JP2004019519A true JP2004019519A (en) 2004-01-22

Family

ID=31173294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174286A Pending JP2004019519A (en) 2002-06-14 2002-06-14 Control device of engine system

Country Status (1)

Country Link
JP (1) JP2004019519A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321669A (en) * 2006-06-01 2007-12-13 Shin Caterpillar Mitsubishi Ltd Engine control device for working machine
JP2008080914A (en) * 2006-09-27 2008-04-10 Mazda Motor Corp Controller for hybrid car
JP2009227039A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Catalyst warming control device for hybrid vehicle
JP2009235990A (en) * 2008-03-27 2009-10-15 Mazda Motor Corp Automatic stop device for diesel engine
JP2012013056A (en) * 2010-07-05 2012-01-19 Toyota Motor Corp Automatic stop-and-restart system of compression ignition internal combustion engine
US8239121B2 (en) 2007-04-18 2012-08-07 Toyota Jidosha Kabushiki Kaisha Control unit for variable valve timing mechanism
US8843262B2 (en) 2010-12-22 2014-09-23 Toyota Jidosha Kabushiki Kaisha Vehicle, method for controlling vehicle, and device for controlling vehicle
JP2015048747A (en) * 2013-08-30 2015-03-16 ダイハツ工業株式会社 Internal combustion engine for vehicle
KR101795415B1 (en) 2016-09-22 2017-11-09 현대자동차 주식회사 Exhaust gas emitting controlling apparatus and method of the same
CN113710555A (en) * 2019-04-19 2021-11-26 日产自动车株式会社 Control method of hybrid vehicle and control device of hybrid vehicle
WO2022064238A1 (en) 2020-09-25 2022-03-31 日産自動車株式会社 Vehicle control method and vehicle control device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321669A (en) * 2006-06-01 2007-12-13 Shin Caterpillar Mitsubishi Ltd Engine control device for working machine
JP2008080914A (en) * 2006-09-27 2008-04-10 Mazda Motor Corp Controller for hybrid car
JP4492599B2 (en) * 2006-09-27 2010-06-30 マツダ株式会社 Control device for hybrid vehicle
US8239121B2 (en) 2007-04-18 2012-08-07 Toyota Jidosha Kabushiki Kaisha Control unit for variable valve timing mechanism
JP2009227039A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Catalyst warming control device for hybrid vehicle
JP2009235990A (en) * 2008-03-27 2009-10-15 Mazda Motor Corp Automatic stop device for diesel engine
JP2012013056A (en) * 2010-07-05 2012-01-19 Toyota Motor Corp Automatic stop-and-restart system of compression ignition internal combustion engine
US8843262B2 (en) 2010-12-22 2014-09-23 Toyota Jidosha Kabushiki Kaisha Vehicle, method for controlling vehicle, and device for controlling vehicle
JP2015048747A (en) * 2013-08-30 2015-03-16 ダイハツ工業株式会社 Internal combustion engine for vehicle
KR101795415B1 (en) 2016-09-22 2017-11-09 현대자동차 주식회사 Exhaust gas emitting controlling apparatus and method of the same
CN113710555A (en) * 2019-04-19 2021-11-26 日产自动车株式会社 Control method of hybrid vehicle and control device of hybrid vehicle
WO2022064238A1 (en) 2020-09-25 2022-03-31 日産自動車株式会社 Vehicle control method and vehicle control device
JPWO2022064238A1 (en) * 2020-09-25 2022-03-31
JP7395007B2 (en) 2020-09-25 2023-12-08 日産自動車株式会社 Vehicle control method and vehicle control device

Similar Documents

Publication Publication Date Title
JP3578044B2 (en) Internal combustion engine control device for hybrid vehicle
JP3374734B2 (en) Internal combustion engine control device for hybrid vehicle
EP1085177B1 (en) Regenerative catalytic apparatus in hybrid vehicle
WO2009145002A1 (en) Method and system for warming up exhaust gas purifying catalyst
US20110072793A1 (en) Particulate filter regeneration in an engine
WO1999047801A1 (en) Hybrid car
JP2007230475A (en) Exhaust gas purification system for hybrid vehicle
JP2000274227A (en) Exhaust emission control device for hybrid vehicle
JP2008095669A (en) Control device for vehicle
JP2004019519A (en) Control device of engine system
JP6149748B2 (en) Vehicle control device
JP3376902B2 (en) Internal combustion engine control device for hybrid vehicle
JP7207115B2 (en) hybrid vehicle
JPH10288063A (en) Idling control device for hybrid engine
JP2012144205A (en) Hybrid vehicle and control device for internal combustion engine
JP2010203279A (en) Engine controller of hybrid vehicle
JP4548143B2 (en) Exhaust gas purification device for hybrid vehicle
JP2019105267A (en) Internal combustion engine
JP2009292246A (en) Stop control device for hybrid vehicle
JP7009832B2 (en) Supercharging system
JPH05222966A (en) Operation condition control device for hybrid vehicle
JP2001317384A (en) Internal combustion engine controller for hybrid vehicle
JP2001065384A (en) Warming-up accelerating device for internal combustion engine
JP2006112311A (en) Exhaust emission control system for hybrid vehicle
JP2005351184A (en) Hybrid car equipped with inter cooler bypass control means