JP2006112311A - Exhaust emission control system for hybrid vehicle - Google Patents

Exhaust emission control system for hybrid vehicle Download PDF

Info

Publication number
JP2006112311A
JP2006112311A JP2004300326A JP2004300326A JP2006112311A JP 2006112311 A JP2006112311 A JP 2006112311A JP 2004300326 A JP2004300326 A JP 2004300326A JP 2004300326 A JP2004300326 A JP 2004300326A JP 2006112311 A JP2006112311 A JP 2006112311A
Authority
JP
Japan
Prior art keywords
reducing agent
internal combustion
combustion engine
nox
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004300326A
Other languages
Japanese (ja)
Inventor
Taro Aoyama
太郎 青山
Hiromasa Nishioka
寛真 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004300326A priority Critical patent/JP2006112311A/en
Publication of JP2006112311A publication Critical patent/JP2006112311A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control system for a hybrid vehicle, in which the amount of use of a reducing agent can be suppressed without additionally providing a bypass. <P>SOLUTION: The exhaust emission control system is provided with a NOx storage reduction catalyst, and a means for adding the reducing agent. In the system, after the reducing agent is added to the NOx storage reduction catalyst, the speed of the internal combustion engine is reduced less than that before addition of the reducing agent, or the engine is stopped, and besides when the hybrid vehicle is driven, the amount of exhaust gas passing through the NOx storage reduction catalyst is reduced less than that before addition of the reducing agent by using an electric motor as the power source. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ハイブリッド車の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for a hybrid vehicle.

内燃機関の排気通路にNOx吸蔵還元触媒(以下、NOx触媒という。)を配置し、排気中のNOxを該NOx触媒に貯蔵する技術が提案されている。
ところで、内燃機関が希薄燃焼運転されている場合は、NOx触媒に吸蔵されたNOxが飽和する前に該NOx触媒に吸蔵されたNOxを還元させる必要がある。そのため、NOx触媒よりも上流の排気中に還元剤を添加して、該NOx触媒内の還元剤濃度を高め、該NOx触媒に吸蔵されたNOxを還元している。
A technique has been proposed in which a NOx storage reduction catalyst (hereinafter referred to as a NOx catalyst) is disposed in an exhaust passage of an internal combustion engine, and NOx in the exhaust is stored in the NOx catalyst.
By the way, when the internal combustion engine is operated in lean combustion, it is necessary to reduce the NOx stored in the NOx catalyst before the NOx stored in the NOx catalyst is saturated. Therefore, a reducing agent is added to the exhaust gas upstream of the NOx catalyst to increase the concentration of the reducing agent in the NOx catalyst and reduce the NOx stored in the NOx catalyst.

そして、NOx触媒をバイパスする通路を設け、NOx触媒に還元剤を供給する場合には、該バイパス通路に排気を流通させてNOx触媒に流入する排気の量を制限しつつNOx触媒に還元剤を添加して、還元剤の添加量を低減させる技術が知られている(例えば、特許文献1参照。)。
特開2001−140635号公報 特開2000−186536号公報
When a passage for bypassing the NOx catalyst is provided and the reducing agent is supplied to the NOx catalyst, the reducing agent is supplied to the NOx catalyst while restricting the amount of exhaust flowing into the NOx catalyst by circulating the exhaust through the bypass passage. A technique is known in which the addition amount of the reducing agent is reduced by addition (see, for example, Patent Document 1).
JP 2001-140635 A JP 2000-186536 A

しかし、従来技術によれば、NOx触媒をバイパスする通路、該バイパス通路とNOx触媒との流れを切り替えるバイパス弁、および排気をバイパス通路へ流すときに排気の浄化を別途行う触媒が必要となり、装置が複雑となると供にコスト高となる。   However, according to the prior art, a passage for bypassing the NOx catalyst, a bypass valve for switching the flow between the bypass passage and the NOx catalyst, and a catalyst for separately purifying exhaust when flowing the exhaust to the bypass passage are required. The cost increases with the complexity.

本発明は以上の問題を解決するためになされたものであり、ハイブリッド車の排気浄化装置において、バイパス通路を追加することなく還元剤の使用量を抑制することができる技術を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a technique capable of suppressing the amount of reducing agent used without adding a bypass passage in an exhaust gas purification apparatus for a hybrid vehicle. And

上記課題を達成するために本発明によるハイブリッド車の排気浄化装置は、
酸化雰囲気のときにNOxを吸蔵し還元雰囲気のときにNOxを還元するNOx吸蔵還元触媒と、前記NOx吸蔵還元触媒に還元剤を添加する還元剤添加手段と、を内燃機関および/または電動モータを動力源として走行可能なハイブリッド車に備えたハイブリッド車の排気浄化装置において、
前記NOx吸蔵還元触媒に還元剤を添加した後に、内燃機関の回転数を還元剤添加前よりも低下させ若しくは内燃機関を停止させ、且つハイブリッド車を走行させる場合には前記電動モータを動力源とすることにより、前記NOx吸蔵還元触媒を通過する排気の量を還元剤添加前よりも減少させることを特徴とする。
In order to achieve the above object, an exhaust emission control device for a hybrid vehicle according to the present invention comprises:
An internal combustion engine and / or an electric motor comprising: a NOx occlusion reduction catalyst that occludes NOx in an oxidizing atmosphere and reduces NOx in a reducing atmosphere; and a reducing agent addition means that adds a reducing agent to the NOx occlusion reduction catalyst. In an exhaust emission control device for a hybrid vehicle provided in a hybrid vehicle capable of traveling as a power source,
After adding a reducing agent to the NOx occlusion reduction catalyst, the electric motor is used as a power source when the rotational speed of the internal combustion engine is made lower than before addition of the reducing agent or the internal combustion engine is stopped and the hybrid vehicle is run. By doing so, the amount of exhaust gas passing through the NOx occlusion reduction catalyst is reduced more than before the addition of the reducing agent.

本発明の最大の特徴は、NOx吸蔵還元触媒への還元剤添加後に該NOx吸蔵還元触媒に流入する排気の量を減少させることにより、該NOx吸蔵還元触媒に余分な酸素が流入することを抑制して還元剤濃度を高く保つことにある。   The most important feature of the present invention is that the amount of exhaust gas flowing into the NOx storage reduction catalyst after the addition of the reducing agent to the NOx storage reduction catalyst is reduced, thereby suppressing excess oxygen from flowing into the NOx storage reduction catalyst. The purpose is to keep the reducing agent concentration high.

すなわち、内燃機関の回転数を低下させると、内燃機関からの排気の量が減少するため、NOx吸蔵還元触媒を通過する排気の量が減少する。また、内燃機関を停止させると、
内燃機関からの排気がなくなるため、NOx吸蔵還元触媒内に排気が滞留する。
That is, when the rotational speed of the internal combustion engine is reduced, the amount of exhaust from the internal combustion engine is reduced, so that the amount of exhaust passing through the NOx storage reduction catalyst is reduced. When the internal combustion engine is stopped,
Since there is no exhaust from the internal combustion engine, the exhaust stays in the NOx storage reduction catalyst.

そのため、NOx吸蔵還元触媒へ還元剤を添加した後に内燃機関の回転数を低下させ、若しくは内燃機関を停止させると、NOx吸蔵還元触媒には還元剤が多く残留し、且つ新たに供給される酸素量が減少する。これにより、NOx吸蔵還元触媒内における還元剤に対する酸素量を相対的に少なくすることができるので、NOx吸蔵還元触媒内の雰囲気をストイキ若しくはリッチ空燃比に容易に維持することができる。そのため、還元剤の添加量は少なくて済み、還元剤添加量を減少させることができる。また、NOx吸蔵還元触媒を通過する排気の体積流量を減少させ、若しくは体積流量をゼロにすることができるので、還元剤がNOxに作用する機会を多く得ることができ、NOxの還元効率を向上させることができる。さらに、排気によるNOx吸蔵還元触媒からの熱の持ち去りを抑制することができ、NOx吸蔵還元触媒の温度低下を抑制することができる。   Therefore, when the rotational speed of the internal combustion engine is reduced after the reducing agent is added to the NOx storage reduction catalyst or the internal combustion engine is stopped, a large amount of the reducing agent remains in the NOx storage reduction catalyst, and the newly supplied oxygen The amount decreases. As a result, the amount of oxygen relative to the reducing agent in the NOx storage reduction catalyst can be relatively reduced, so that the atmosphere in the NOx storage reduction catalyst can be easily maintained at a stoichiometric or rich air-fuel ratio. Therefore, the amount of addition of the reducing agent can be small, and the amount of addition of the reducing agent can be reduced. In addition, the volume flow rate of the exhaust gas that passes through the NOx storage reduction catalyst can be reduced or the volume flow rate can be made zero, so that many opportunities for the reducing agent to act on NOx can be obtained, and the NOx reduction efficiency is improved. Can be made. Furthermore, it is possible to suppress the removal of heat from the NOx storage reduction catalyst due to exhaust, and it is possible to suppress the temperature decrease of the NOx storage reduction catalyst.

また、内燃機関の回転数を低下させ、若しくは内燃機関を停止させているときには、電動モータを駆動源とすることにより、ハイブリッド車の走行を可能とすることができ、また内燃機関の出力低下を電動モータの出力により補うことでドライバビリティの悪化を抑制することもできる。   In addition, when the internal combustion engine speed is reduced or the internal combustion engine is stopped, the hybrid motor can be driven by using the electric motor as a drive source, and the output of the internal combustion engine can be reduced. By making up with the output of the electric motor, it is possible to suppress deterioration in drivability.

なお、「NOx吸蔵還元触媒を通過する排気の量を還元剤添加前よりも減少させる」とは、還元剤添加後に排気が全く流れない状態をも含む。また、排気の量は、排気の体積流量としてもよい。   Note that “reducing the amount of exhaust gas passing through the NOx storage reduction catalyst than before adding the reducing agent” includes a state in which exhaust does not flow at all after adding the reducing agent. Further, the amount of exhaust may be a volume flow of exhaust.

本発明においては、前記内燃機関の排気通路に排気の流量を調整する排気絞り弁をさらに備え、前記還元剤添加手段により還元剤が添加された後に前記排気絞り弁を閉じることができる。   In the present invention, an exhaust throttle valve for adjusting the flow rate of exhaust gas is further provided in the exhaust passage of the internal combustion engine, and the exhaust throttle valve can be closed after the reducing agent is added by the reducing agent adding means.

ここで、内燃機関は、回転数を低下させ若しくは停止させようとしても、惰性で回転するので、所望の回転数となるまでに時間がかかる。そして、所望の回転数となるまでは、内燃機関からの排気の量が徐々に減少するので、その間はNOx吸蔵還元触媒に排気が流入し、該NOx吸蔵還元触媒に酸素が供給されてしまう。ここで、排気絞り弁を閉じることにより、排気の流れを止めることができ、NOx吸蔵還元触媒に排気が流れ込むのを抑制することができる。これにより、NOx吸蔵還元触媒へ酸素が供給されることを抑制できる。   Here, since the internal combustion engine rotates with inertia even if the rotational speed is reduced or stopped, it takes time to reach a desired rotational speed. Then, the amount of exhaust from the internal combustion engine gradually decreases until the desired number of revolutions is reached. During this time, exhaust flows into the NOx storage reduction catalyst, and oxygen is supplied to the NOx storage reduction catalyst. Here, by closing the exhaust throttle valve, the flow of the exhaust can be stopped, and the exhaust can be prevented from flowing into the NOx storage reduction catalyst. Thereby, it can suppress that oxygen is supplied to a NOx storage reduction catalyst.

本発明においては、前記還元剤添加手段により還元剤が添加されてから所定時間後に、前記内燃機関の回転数を還元剤添加前よりも低下させ若しくは前記内燃機関を停止させ、且つハイブリッド車を走行させる場合には前記電動モータを動力源とすることができる。   In the present invention, after a predetermined time from when the reducing agent is added by the reducing agent addition means, the rotational speed of the internal combustion engine is reduced from that before addition of the reducing agent or the internal combustion engine is stopped, and the hybrid vehicle is driven. In this case, the electric motor can be used as a power source.

この所定時間は、還元剤添加手段により排気中へ還元剤が添加されてから、この還元剤がNOx吸蔵還元触媒に到達するまでにかかる時間としてもよい。
ここで、NOx吸蔵還元触媒よりも上流から還元剤を添加すると、排気と供に還元剤が流されるが、還元剤が添加された場所からNOx吸蔵還元触媒までの間に距離があると、還元剤がNOx吸蔵還元触媒へ到達するまでに時間がかかる。そのため、還元剤供給直後では、還元剤がまだNOx吸蔵還元触媒に到達していないこともある。しかし、還元剤供給から所定時間経過後には、還元剤がより下流へと流され、該還元剤がNOx吸蔵還元触媒へ到達することができる。したがって、所定時間後に内燃機関の回転数を低下させ、若しくは内燃機関を停止させることにより、NOx吸蔵還元触媒に還元剤をより確実に供給することができる。
The predetermined time may be a time required for the reducing agent to reach the NOx storage reduction catalyst after the reducing agent is added into the exhaust gas by the reducing agent addition means.
Here, when the reducing agent is added from the upstream side of the NOx storage reduction catalyst, the reducing agent flows along with the exhaust, but if there is a distance from the place where the reducing agent is added to the NOx storage reduction catalyst, the reduction is performed. It takes time for the agent to reach the NOx storage reduction catalyst. Therefore, immediately after supplying the reducing agent, the reducing agent may not yet reach the NOx storage reduction catalyst. However, after a predetermined time has elapsed from the supply of the reducing agent, the reducing agent is caused to flow further downstream, and the reducing agent can reach the NOx storage reduction catalyst. Therefore, the reducing agent can be more reliably supplied to the NOx storage reduction catalyst by reducing the rotational speed of the internal combustion engine or stopping the internal combustion engine after a predetermined time.

本発明に係るハイブリッド車の排気浄化装置では、還元剤添加後にNOx吸蔵還元触媒を通過する排気の量を減少させることにより、バイパス通路を追加することなく還元剤の使用量を抑制することができる。   In the exhaust emission control device for a hybrid vehicle according to the present invention, the amount of exhaust gas that passes through the NOx storage reduction catalyst after the addition of the reducing agent can be reduced, thereby reducing the amount of reducing agent used without adding a bypass passage. .

以下、本発明に係るハイブリッド車の排気浄化装置の具体的な実施態様について図面に基づいて説明する。   A specific embodiment of an exhaust emission control device for a hybrid vehicle according to the present invention will be described below with reference to the drawings.

図1は、本実施例によるハイブリッドシステム、及び内燃機関の排気系の概略構成を示す図である。
本実施の形態によるハイブリッド車は、内燃機関1、動力分割機構31、電動モータ32、発電機33、バッテリ34、インバータ35、車軸36、減速機37、車輪38を備えて構成されている。
FIG. 1 is a diagram showing a schematic configuration of a hybrid system according to the present embodiment and an exhaust system of an internal combustion engine.
The hybrid vehicle according to the present embodiment includes an internal combustion engine 1, a power split mechanism 31, an electric motor 32, a generator 33, a battery 34, an inverter 35, an axle 36, a speed reducer 37, and wheels 38.

動力分割機構31は、内燃機関1からの出力を発電機33や車軸36に振り分けている。この動力分割機構31は、電動モータ32からの出力を車軸36に伝達する機能をも有する。電動モータ32は、減速機37を介して車軸36と比例した回転数にて回転する。該電動モータ32は、通常運転時には必要に応じて内燃機関1の出力を補助することもできる。また、電動モータ32及び発電機33には、インバータ35を介してバッテリ34が接続されている。そして、発電機33は、内燃機関1からの動力を得て発電しバッテリ34の充電を行う。   The power split mechanism 31 distributes the output from the internal combustion engine 1 to the generator 33 and the axle 36. The power split mechanism 31 also has a function of transmitting the output from the electric motor 32 to the axle 36. The electric motor 32 rotates at a rotational speed proportional to the axle 36 via the speed reducer 37. The electric motor 32 can assist the output of the internal combustion engine 1 as necessary during normal operation. A battery 34 is connected to the electric motor 32 and the generator 33 via an inverter 35. The generator 33 obtains power from the internal combustion engine 1 to generate power and charge the battery 34.

このように構成されたハイブリッドシステムでは、通常走行時には内燃機関1の出力若しくは電動モータ32の出力により車軸36を回転させ、車輪38が駆動される。また、内燃機関1の出力と電動モータ32の出力とを合わせて車軸36を回転させ、車輪38を駆動することもできる。一方、減速時には、車輪38の回転力により電動モータ32を発電機として作動させることで、運動エネルギを電気エネルギに変換しバッテリ34に回収させることもできる。このように、車両減速時に運動エネルギを電気エネルギに変換するため、車両の減速を補助することが可能となっている。   In the hybrid system configured as described above, during normal traveling, the wheel 36 is driven by rotating the axle 36 by the output of the internal combustion engine 1 or the output of the electric motor 32. Further, the wheel 36 can be driven by rotating the axle 36 by combining the output of the internal combustion engine 1 and the output of the electric motor 32. On the other hand, at the time of deceleration, the electric motor 32 is operated as a generator by the rotational force of the wheel 38, whereby the kinetic energy can be converted into electric energy and collected by the battery 34. Thus, since the kinetic energy is converted into electric energy when the vehicle is decelerated, it is possible to assist the deceleration of the vehicle.

次に、内燃機関1は、4つの気筒を有するディーゼルエンジンである。この内燃機関1は、希薄燃焼による運転が可能な機関である。なお、本実施例においては、ディーゼルエンジンを例に挙げて説明するが、希薄燃焼可能であればガソリンエンジンであっても適用することができる。   Next, the internal combustion engine 1 is a diesel engine having four cylinders. The internal combustion engine 1 is an engine that can be operated by lean combustion. In the present embodiment, a diesel engine will be described as an example. However, a gasoline engine can be applied as long as it can perform lean combustion.

この内燃機関1には、気筒内へ燃料を噴射する燃料噴射弁5が各気筒に備えられている。また、内燃機関1には、燃焼室に通じる排気通路2が接続されている。この排気通路2は、下流にて大気へと通じている。   In the internal combustion engine 1, each cylinder is provided with a fuel injection valve 5 for injecting fuel into the cylinder. Further, an exhaust passage 2 leading to the combustion chamber is connected to the internal combustion engine 1. This exhaust passage 2 communicates with the atmosphere downstream.

前記排気通路2の途中には、NOx吸蔵還元触媒4(以下、NOx触媒4という。)が備えられている。
NOx触媒4は、流入する排気の酸素濃度が高いときは排気中のNOxを吸蔵し、流入する排気の酸素濃度が低下し且つ還元剤が存在するときは吸蔵していたNOxを還元する機能を有する。
A NOx occlusion reduction catalyst 4 (hereinafter referred to as NOx catalyst 4) is provided in the middle of the exhaust passage 2.
The NOx catalyst 4 has a function of storing NOx in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and reducing the stored NOx when the oxygen concentration of the inflowing exhaust gas is reduced and a reducing agent is present. Have.

ところで、内燃機関1が希薄燃焼運転されている場合は、NOx触媒4に吸蔵されたNOxが飽和する前に該NOx触媒4に吸蔵されたNOxを還元させる必要がある。
そこで、本実施例では、NOx触媒4より上流の排気通路2を流通する排気中に還元剤たる燃料(軽油)を添加する還元剤添加弁9を備えている。ここで、還元剤添加弁9は、
後述するECU6からの信号により開弁して還元剤を噴射する。還元剤添加弁9から排気通路2内へ噴射された還元剤は、排気通路2の上流から流れてきた排気の空燃比をリッチにする。すなわち、排気中の酸素濃度を低下させる。そして、NOx還元時には、NOx触媒4に流入する排気の空燃比がリッチとなるように、還元剤添加制御を実行する。
By the way, when the internal combustion engine 1 is operated in lean combustion, it is necessary to reduce the NOx stored in the NOx catalyst 4 before the NOx stored in the NOx catalyst 4 is saturated.
Therefore, in this embodiment, a reducing agent addition valve 9 for adding fuel (light oil) as a reducing agent to the exhaust gas flowing through the exhaust passage 2 upstream from the NOx catalyst 4 is provided. Here, the reducing agent addition valve 9 is
The valve is opened by a signal from the ECU 6 to be described later, and the reducing agent is injected. The reducing agent injected into the exhaust passage 2 from the reducing agent addition valve 9 makes the air-fuel ratio of the exhaust flowing from the upstream of the exhaust passage 2 rich. That is, the oxygen concentration in the exhaust is reduced. During NOx reduction, reducing agent addition control is executed so that the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 4 becomes rich.

また、NOx触媒4よりも下流の排気通路2には、該排気通路2内を流通する排気の流量を調節する排気絞り弁10が設けられている。また、NOx触媒4よりも下流でかつ排気絞り弁10よりも上流の排気通路2には、該排気通路2を流通する排気の空燃比に応じた信号を出力する空燃比センサ11が取り付けられている。   Further, an exhaust throttle valve 10 for adjusting the flow rate of the exhaust gas flowing through the exhaust passage 2 is provided in the exhaust passage 2 downstream of the NOx catalyst 4. An air-fuel ratio sensor 11 that outputs a signal corresponding to the air-fuel ratio of the exhaust gas flowing through the exhaust passage 2 is attached to the exhaust passage 2 downstream of the NOx catalyst 4 and upstream of the exhaust throttle valve 10. Yes.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU6が併設されている。このECU6は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。   The internal combustion engine 1 configured as described above is provided with an ECU 6 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 6 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.

また、ECU6には、運転者がアクセルを踏み込んだ量に応じた電気信号を出力し、車両の負荷状態を検出可能なアクセル開度センサ7、内燃機関1の回転数を検出するクランクポジションセンサ8の他、各種センサが電気配線を介して接続され、上記した各種センサの出力信号がECU6に入力されるようになっている。   The ECU 6 outputs an electric signal corresponding to the amount of depression of the accelerator by the driver, and an accelerator opening sensor 7 that can detect the load state of the vehicle, and a crank position sensor 8 that detects the rotational speed of the internal combustion engine 1. In addition, various sensors are connected via electric wiring, and output signals of the various sensors described above are input to the ECU 6.

一方、ECU6には、燃料噴射弁5、還元剤添加弁9、排気絞り弁10等が電気配線を介して接続され、これらはECU6により制御される。
さらに、前記ECU6は、各種アプリケーションプログラム及び各種制御マップを記憶している。
On the other hand, the fuel injection valve 5, the reducing agent addition valve 9, the exhaust throttle valve 10, and the like are connected to the ECU 6 through electrical wiring, and these are controlled by the ECU 6.
Further, the ECU 6 stores various application programs and various control maps.

ここで、本実施例においては、前記還元剤添加制御において、還元剤添加弁9から還元剤を供給してから所定時間経過後に内燃機関1を停止させ、且つ排気絞り弁10を閉じると供に、電動モータ32により車両を走行させる。   Here, in this embodiment, in the reducing agent addition control, the internal combustion engine 1 is stopped after a predetermined time has elapsed since the reducing agent was supplied from the reducing agent addition valve 9, and the exhaust throttle valve 10 is closed. The vehicle is driven by the electric motor 32.

すなわち、前記したように、NOx触媒4に吸蔵されたNOxの還元時には、該NOx触媒4内の還元剤濃度を高める必要がある。ここで、還元剤添加弁9から還元剤を添加した後に内燃機関1が運転されていると、該内燃機関1からの排気がNOx触媒4に流入する。内燃機関1が希薄燃焼を行っているときには、排気中に多くの酸素が含まれているため、還元剤は酸素と反応する。そのため、NOx触媒4に吸蔵されているNOxを還元させるための還元剤が減少するので、NOxを還元させるためにはより多くの還元剤が必要となり、燃費が悪化してしまう。   That is, as described above, when the NOx stored in the NOx catalyst 4 is reduced, the concentration of the reducing agent in the NOx catalyst 4 needs to be increased. Here, if the internal combustion engine 1 is operated after the reducing agent is added from the reducing agent addition valve 9, the exhaust gas from the internal combustion engine 1 flows into the NOx catalyst 4. When the internal combustion engine 1 is performing lean combustion, since the exhaust gas contains a large amount of oxygen, the reducing agent reacts with oxygen. Therefore, since the reducing agent for reducing NOx stored in the NOx catalyst 4 is reduced, more reducing agent is required to reduce NOx, and the fuel efficiency is deteriorated.

また、NOx触媒4を通過する排気の量が多いと、還元剤が該NOx触媒4で反応する率が低下し、還元効率が低下するおそれがある。
その点、内燃機関1を停止させると、排気通路2には排気がほとんど流通しなくなるため、NOx触媒4内において酸素濃度が高まることを抑制できる。すなわち、NOx触媒4内において還元剤濃度が高い状態を維持することができる。また、還元剤がNOx触媒4内に留まるため、還元効率を向上させることができる。さらには、NOx触媒4の温度が低下することも抑制できる。
Further, if the amount of exhaust gas passing through the NOx catalyst 4 is large, the rate at which the reducing agent reacts with the NOx catalyst 4 is lowered, and the reduction efficiency may be lowered.
In that regard, when the internal combustion engine 1 is stopped, the exhaust gas hardly circulates in the exhaust passage 2, so that it is possible to suppress an increase in the oxygen concentration in the NOx catalyst 4. That is, it is possible to maintain a high reducing agent concentration in the NOx catalyst 4. Further, since the reducing agent remains in the NOx catalyst 4, the reduction efficiency can be improved. Furthermore, it is possible to suppress the temperature of the NOx catalyst 4 from decreasing.

また、内燃機関1を停止させている間は、駆動源を電動モータ32とすることにより車両を走行させることができる。
そして、NOxが還元されるために必要となる例えば数秒間この状態を維持し、その後、内燃機関1を始動させ駆動源を内燃機関1とすると供に、排気絞り弁10を開き、元の運転状態に復帰する。
Further, while the internal combustion engine 1 is stopped, the vehicle can be driven by using the electric motor 32 as the drive source.
Then, this state is maintained for several seconds, for example, which is necessary for reducing NOx. Thereafter, the internal combustion engine 1 is started and the drive source is the internal combustion engine 1, and the exhaust throttle valve 10 is opened to perform the original operation. Return to the state.

次に、本実施例による還元剤供給制御のフローについて説明する。
図2は、本実施例による還元剤供給制御のフローを示したフローチャートである。本ルーチンは、予め定められた時間毎に実行される。
Next, the flow of reducing agent supply control according to this embodiment will be described.
FIG. 2 is a flowchart showing a flow of reducing agent supply control according to this embodiment. This routine is executed every predetermined time.

ステップS101では、ECU6は、NOx触媒4のNOx還元条件が成立しているか否か判定する。
条件としては、NOx触媒4に吸蔵されたNOx量が規定量を超えたか等を例示することができる。ここで、NOx吸蔵量は、車両走行距離に応じてNOx吸蔵量が増加するとして、該車両走行距離に基づいてNOx吸蔵量を求めても良い。また、単に予め定めた時間毎にNOx還元条件が成立するとしてもよい。
In step S101, the ECU 6 determines whether or not a NOx reduction condition for the NOx catalyst 4 is satisfied.
An example of the condition is whether the amount of NOx stored in the NOx catalyst 4 exceeds a specified amount. Here, regarding the NOx occlusion amount, the NOx occlusion amount may be obtained based on the vehicle travel distance, assuming that the NOx occlusion amount increases according to the vehicle travel distance. Alternatively, the NOx reduction condition may be established simply at predetermined time intervals.

ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方、否定判定がなされた場合にはNOxの還元を行わないため、本ルーチンを終了させる。
ステップS102では、ECU6は、還元剤添加弁9から排気中へ還元剤を添加する。
If an affirmative determination is made in step S101, the process proceeds to step S102. On the other hand, if a negative determination is made, NOx is not reduced, so this routine is terminated.
In step S102, the ECU 6 adds the reducing agent into the exhaust gas from the reducing agent addition valve 9.

ステップS103では、ECU6は、内燃機関1を停止させ、排気絞り弁10を閉じ、電動モータ32により車両を走行させる。
ステップS104では、ECU6は、NOx還元終了時期であるか否か判定する。ここでは、NOx触媒4に吸蔵されたNOxを還元させるために十分な時間が経過したか否か判定する。この時間は、予め実験等により求めておき、ECU6に記憶させておく。
In step S <b> 103, the ECU 6 stops the internal combustion engine 1, closes the exhaust throttle valve 10, and causes the electric motor 32 to drive the vehicle.
In step S104, the ECU 6 determines whether it is the NOx reduction end time. Here, it is determined whether or not a sufficient time has passed to reduce the NOx stored in the NOx catalyst 4. This time is obtained in advance by experiments or the like and stored in the ECU 6.

ステップS104で肯定判定がなされた場合にはステップS105へ進み、一方、否定判定がなされた場合にはステップS104へ戻る。
ステップS105では、ECU6は、内燃機関1を始動させ、排気絞り弁10を開き、電動モータ32を停止させる。
If an affirmative determination is made in step S104, the process proceeds to step S105, whereas if a negative determination is made, the process returns to step S104.
In step S105, the ECU 6 starts the internal combustion engine 1, opens the exhaust throttle valve 10, and stops the electric motor 32.

以上説明したように、本実施例によれば、NOx触媒4への還元剤添加時に、内燃機関1を停止させ且つ排気絞り弁10を閉じてNOx触媒4内の排気の流量を減少させることにより、NOx触媒4内の還元剤濃度を高く保つことができる。また、このときに電動モータ32を駆動源とすることにより、ハイブリッド車を走行させることができる。   As described above, according to this embodiment, when the reducing agent is added to the NOx catalyst 4, the internal combustion engine 1 is stopped and the exhaust throttle valve 10 is closed to reduce the flow rate of the exhaust gas in the NOx catalyst 4. The reducing agent concentration in the NOx catalyst 4 can be kept high. At this time, the hybrid vehicle can be driven by using the electric motor 32 as a drive source.

なお、本実施例においては、還元剤添加時に内燃機関1を停止させているが、これに代えて内燃機関1の回転数を還元剤添加前よりも低下させるようにしてもよい。そして、内燃機関1の回転数を低下させた際の出力の低下は、電動モータ32の出力により補う。すなわち、内燃機関1の回転数を低下させることにより、NOx触媒4を流れる排気の流量を低下させることができるので、還元剤量に対する酸素量を相対的に減少させることができ、該NOx触媒4内の還元剤濃度を高めることができる。また、還元剤がNOx触媒4を通過するのに時間がかかるので、該NOx触媒4内で還元剤が反応する機会を多く得ることができ、NOxの還元効率を向上させることができる。この間に内燃機関1と電動モータ32とを駆動源として車両を走行させることにより、ドライバビリティの悪化を抑制することができる。   In the present embodiment, the internal combustion engine 1 is stopped when the reducing agent is added, but instead, the rotational speed of the internal combustion engine 1 may be made lower than before the reducing agent is added. And the fall of the output at the time of reducing the rotation speed of the internal combustion engine 1 is supplemented by the output of the electric motor 32. That is, by reducing the rotational speed of the internal combustion engine 1, the flow rate of the exhaust gas flowing through the NOx catalyst 4 can be reduced, so that the amount of oxygen relative to the amount of reducing agent can be relatively reduced, and the NOx catalyst 4 The concentration of the reducing agent inside can be increased. Further, since it takes time for the reducing agent to pass through the NOx catalyst 4, many opportunities for the reducing agent to react in the NOx catalyst 4 can be obtained, and the NOx reduction efficiency can be improved. During this time, the drivability can be prevented from deteriorating by running the vehicle using the internal combustion engine 1 and the electric motor 32 as drive sources.

また、本実施例においては、還元剤添加時に排気絞り弁10を閉じているが、これは、必ずしも必要ではない。すなわち、内燃機関1が停止される信号が発信されてから完全に停止するまでには時間がかかるが、その間にもNOx触媒4を通過する排気の流量は減少するので、上記効果を得ることができる。   In the present embodiment, the exhaust throttle valve 10 is closed when the reducing agent is added, but this is not always necessary. That is, it takes time until the internal combustion engine 1 is completely stopped after the signal for stopping the internal combustion engine 1 is transmitted, but the flow rate of the exhaust gas passing through the NOx catalyst 4 also decreases during that time, so that the above effect can be obtained. it can.

さらに、本実施例においては、還元剤添加弁9から還元剤が添加され、さらに所定時間が経過した後に内燃機関1を停止させ且つ排気絞り弁10を閉じてもよい。すなわち、還元剤添加弁9からNOx触媒4までの距離が長くなるほど、還元剤添加弁9から排気中へ
還元剤が添加されてからNOx触媒4へ還元剤が到達するまでの時間が長くなる。また、NOx触媒4の上流側から下流側へ還元剤が通過するのにも時間がかかる。さらに、排気の流速によっても還元剤がNOx触媒4へ到達するまでの時間が変わる。そのため、還元剤添加直後に内燃機関1を停止等させると、NOx触媒4に吸蔵されているNOxに還元剤が供給される前に排気の流れが止められてしまう。これに対し、還元剤供給から所定時間経過後に内燃機関1を停止させ、排気絞り弁10を閉じるようにすればNOx触媒4に十分な還元剤を供給することができる。この所定時間は、内燃機関の運転状態、例えば、排気の流量と関係する吸入空気量や機関回転数に応じて変更しても良い。さらに、NOx触媒4に吸蔵されているNOxを還元するために最適な時間となるように、前記所定時間を実験等により求めてもよい。
Further, in this embodiment, the reducing agent may be added from the reducing agent addition valve 9 and the internal combustion engine 1 may be stopped and the exhaust throttle valve 10 may be closed after a predetermined time has passed. That is, the longer the distance from the reducing agent addition valve 9 to the NOx catalyst 4, the longer the time from when the reducing agent is added into the exhaust gas from the reducing agent addition valve 9 until the reducing agent reaches the NOx catalyst 4. It also takes time for the reducing agent to pass from the upstream side to the downstream side of the NOx catalyst 4. Furthermore, the time until the reducing agent reaches the NOx catalyst 4 also varies depending on the flow rate of the exhaust gas. For this reason, if the internal combustion engine 1 is stopped immediately after the addition of the reducing agent, the flow of exhaust gas is stopped before the reducing agent is supplied to the NOx stored in the NOx catalyst 4. On the other hand, if the internal combustion engine 1 is stopped and the exhaust throttle valve 10 is closed after a lapse of a predetermined time from the supply of the reducing agent, sufficient reducing agent can be supplied to the NOx catalyst 4. This predetermined time may be changed in accordance with the operating state of the internal combustion engine, for example, the intake air amount and the engine speed related to the exhaust gas flow rate. Further, the predetermined time may be obtained by experiments or the like so that the optimal time for reducing the NOx stored in the NOx catalyst 4 is reached.

また、本実施例においては、還元剤添加から所定時間経過後に内燃機関を停止させ且つ排気絞り弁10を閉じているが、これに代えて、還元剤添加後に空燃比センサ11より得られる排気の空燃比がリーンからストイキ若しくはリッチに変わったときに、内燃機関を停止させ且つ排気絞り弁10を閉じるようにしてもよい。すなわち、空燃比センサ11の出力信号がストイキ若しくはリッチに変わった場合には、還元剤がNOx触媒4の下流側まで実際に到達しているので、このときに内燃機関を停止させ且つ排気絞り弁10を閉じることにより、NOx触媒4内に多くの還元剤が存在しているときに排気の流れを止めることが可能となる。   In this embodiment, the internal combustion engine is stopped and the exhaust throttle valve 10 is closed after a predetermined time has elapsed since the addition of the reducing agent. Instead, the exhaust gas obtained from the air-fuel ratio sensor 11 after the addition of the reducing agent is replaced. When the air-fuel ratio changes from lean to stoichiometric or rich, the internal combustion engine may be stopped and the exhaust throttle valve 10 may be closed. That is, when the output signal of the air-fuel ratio sensor 11 changes to stoichiometric or rich, the reducing agent has actually reached the downstream side of the NOx catalyst 4, so at this time the internal combustion engine is stopped and the exhaust throttle valve By closing 10, it becomes possible to stop the flow of exhaust gas when a large amount of reducing agent is present in the NOx catalyst 4.

実施例によるハイブリッドシステム、及び内燃機関の排気系の概略構成を示す図である。It is a figure which shows schematic structure of the hybrid system by an Example, and the exhaust system of an internal combustion engine. 実施例による還元剤供給制御のフローを示したフローチャートである。It is the flowchart which showed the flow of the reducing agent supply control by an Example.

符号の説明Explanation of symbols

1 内燃機関
2 排気通路
4 NOx吸蔵還元触媒
5 燃料噴射弁
6 ECU
7 アクセル開度センサ
8 クランクポジションセンサ
9 還元剤添加弁
10 排気絞り弁
11 空燃比センサ
31 動力分割機構
32 電動モータ
33 発電機
34 バッテリ
35 インバータ
36 車軸
37 減速機
38 車輪
1 Internal combustion engine 2 Exhaust passage 4 NOx storage reduction catalyst 5 Fuel injection valve 6 ECU
7 Accelerator opening sensor 8 Crank position sensor 9 Reducing agent addition valve 10 Exhaust throttle valve 11 Air-fuel ratio sensor 31 Power split mechanism 32 Electric motor 33 Generator 34 Battery 35 Inverter 36 Axle 37 Reducer 38 Wheel

Claims (3)

酸化雰囲気のときにNOxを吸蔵し還元雰囲気のときにNOxを還元するNOx吸蔵還元触媒と、前記NOx吸蔵還元触媒に還元剤を添加する還元剤添加手段と、を内燃機関および/または電動モータを動力源として走行可能なハイブリッド車に備えたハイブリッド車の排気浄化装置において、
前記NOx吸蔵還元触媒に還元剤を添加した後に、内燃機関の回転数を還元剤添加前よりも低下させ若しくは内燃機関を停止させ、且つハイブリッド車を走行させる場合には前記電動モータを動力源とすることにより、前記NOx吸蔵還元触媒を通過する排気の量を還元剤添加前よりも減少させることを特徴とするハイブリッド車の排気浄化装置。
An internal combustion engine and / or an electric motor comprising: a NOx occlusion reduction catalyst that occludes NOx in an oxidizing atmosphere and reduces NOx in a reducing atmosphere; and a reducing agent addition means that adds a reducing agent to the NOx occlusion reduction catalyst. In an exhaust emission control device for a hybrid vehicle provided in a hybrid vehicle capable of traveling as a power source,
After adding a reducing agent to the NOx occlusion reduction catalyst, the electric motor is used as a power source when the rotational speed of the internal combustion engine is made lower than before addition of the reducing agent or the internal combustion engine is stopped and the hybrid vehicle is run. By doing so, the amount of exhaust gas passing through the NOx occlusion reduction catalyst is reduced as compared with that before the addition of the reducing agent.
前記内燃機関の排気通路に排気の流量を調整する排気絞り弁をさらに備え、前記還元剤添加手段により還元剤が添加された後に前記排気絞り弁を閉じることを特徴とする請求項1に記載のハイブリッド車の排気浄化装置。   The exhaust throttle valve for adjusting the flow rate of exhaust gas in the exhaust passage of the internal combustion engine is further provided, and the exhaust throttle valve is closed after the reducing agent is added by the reducing agent adding means. Hybrid vehicle exhaust purification system. 前記還元剤添加手段により還元剤が添加されてから所定時間後に、前記内燃機関の回転数を還元剤添加前よりも低下させ若しくは前記内燃機関を停止させ、且つハイブリッド車を走行させる場合には前記電動モータを動力源とすることを特徴とする請求項1または2に記載のハイブリッド車の排気浄化装置。   When a predetermined time after the reducing agent is added by the reducing agent addition means, when the rotational speed of the internal combustion engine is reduced from that before addition of the reducing agent or the internal combustion engine is stopped and the hybrid vehicle is run, The exhaust purification device for a hybrid vehicle according to claim 1 or 2, wherein an electric motor is used as a power source.
JP2004300326A 2004-10-14 2004-10-14 Exhaust emission control system for hybrid vehicle Pending JP2006112311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004300326A JP2006112311A (en) 2004-10-14 2004-10-14 Exhaust emission control system for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004300326A JP2006112311A (en) 2004-10-14 2004-10-14 Exhaust emission control system for hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2006112311A true JP2006112311A (en) 2006-04-27

Family

ID=36381041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004300326A Pending JP2006112311A (en) 2004-10-14 2004-10-14 Exhaust emission control system for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2006112311A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8423214B2 (en) 2009-09-15 2013-04-16 Kpit Cummins Infosystems, Ltd. Motor assistance for a hybrid vehicle
US8596391B2 (en) 2009-09-15 2013-12-03 Kpit Cummins Infosystems Ltd Method of converting vehicle into hybrid vehicle
US8606443B2 (en) 2009-09-15 2013-12-10 Kpit Cummins Infosystems, Ltd. Motor assistance for a hybrid vehicle based on user input
US9227626B2 (en) 2009-09-15 2016-01-05 Kpit Technologies Limited Motor assistance for a hybrid vehicle based on predicted driving range
EP3381756A1 (en) 2017-03-29 2018-10-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system and exhaust gas control method for hybrid vehicle
CN110067622A (en) * 2018-01-24 2019-07-30 丰田自动车株式会社 The emission control system of hybrid electric vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8423214B2 (en) 2009-09-15 2013-04-16 Kpit Cummins Infosystems, Ltd. Motor assistance for a hybrid vehicle
US8596391B2 (en) 2009-09-15 2013-12-03 Kpit Cummins Infosystems Ltd Method of converting vehicle into hybrid vehicle
US8606443B2 (en) 2009-09-15 2013-12-10 Kpit Cummins Infosystems, Ltd. Motor assistance for a hybrid vehicle based on user input
US9227626B2 (en) 2009-09-15 2016-01-05 Kpit Technologies Limited Motor assistance for a hybrid vehicle based on predicted driving range
US9884615B2 (en) 2009-09-15 2018-02-06 Kpit Technologies Limited Motor assistance for a hybrid vehicle based on predicted driving range
EP3381756A1 (en) 2017-03-29 2018-10-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system and exhaust gas control method for hybrid vehicle
CN108691621A (en) * 2017-03-29 2018-10-23 丰田自动车株式会社 The emission control system of hybrid electric vehicle
CN110067622A (en) * 2018-01-24 2019-07-30 丰田自动车株式会社 The emission control system of hybrid electric vehicle
EP3517748A1 (en) 2018-01-24 2019-07-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for a hybrid vehicle
US11168597B2 (en) 2018-01-24 2021-11-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for a hybrid vehicle

Similar Documents

Publication Publication Date Title
KR100533190B1 (en) Emission control apparatus of internal combustion engine and control method for the emission control apparatus
EP2165059B1 (en) Internal combustion engine exhaust gas control system and control method of internal combustion engine exhaust gas control system
US8844272B2 (en) Particulate filter regeneration during engine shutdown
JP3721088B2 (en) Control device for hybrid vehicle
EP0922599B1 (en) Internal combustion engine control apparatus of hybrid powered vehicle
JP4513629B2 (en) Vehicle control device
WO2008050531A1 (en) Power output device, internal combustion engine device, and method of controlling them
JP2007064097A (en) Stop control of engine
JP2009149195A (en) Controller for hybrid system
JP4548143B2 (en) Exhaust gas purification device for hybrid vehicle
JP2006112311A (en) Exhaust emission control system for hybrid vehicle
JP5829838B2 (en) Engine brake control device
JP2010274762A (en) Control system of hybrid vehicle
JP2009292246A (en) Stop control device for hybrid vehicle
JP2005048623A (en) Control device of hybrid vehicle
JP7105414B2 (en) HYBRID VEHICLE CONTROL METHOD AND HYBRID VEHICLE CONTROL DEVICE
JP2008280013A (en) Exhaust purification system for internal combustion engine
JP2005351184A (en) Hybrid car equipped with inter cooler bypass control means
JP4001094B2 (en) Control device for hybrid vehicle
CN110857644A (en) Exhaust gas purification device and exhaust gas purification method for internal combustion engine
JP4049072B2 (en) Catalyst degradation degree judgment device
JP2004316514A (en) Combustion control system of hybrid vehicle
WO2019106741A1 (en) Control method and control device for vehicular internal combustion engine
JP2006177307A (en) Internal combustion engine control device for hybrid vehicle
JP2005113710A (en) Control device for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507