JP2004018999A - METHOD FOR MANUFACTURING HOT-DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET - Google Patents

METHOD FOR MANUFACTURING HOT-DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET Download PDF

Info

Publication number
JP2004018999A
JP2004018999A JP2002180331A JP2002180331A JP2004018999A JP 2004018999 A JP2004018999 A JP 2004018999A JP 2002180331 A JP2002180331 A JP 2002180331A JP 2002180331 A JP2002180331 A JP 2002180331A JP 2004018999 A JP2004018999 A JP 2004018999A
Authority
JP
Japan
Prior art keywords
steel sheet
dip
hot
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002180331A
Other languages
Japanese (ja)
Other versions
JP3772798B2 (en
Inventor
Hajime Ishigaki
石垣 一
Tamotsu Toki
土岐 保
Yasuo Tsujimoto
辻本 康男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002180331A priority Critical patent/JP3772798B2/en
Publication of JP2004018999A publication Critical patent/JP2004018999A/en
Application granted granted Critical
Publication of JP3772798B2 publication Critical patent/JP3772798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a hot-dip Zn-Al-Mg alloy plated steel sheet that does not cause a polka-dot pattern and has excellent surface appearance. <P>SOLUTION: This manufacturing method is characterized by cooling the steel sheet coming out from the hot dipping bath after being immersed in the hot dipping bath, when the plated film is solidified, in such a state in which solid particles with sizes of 50 μm or larger capable of sticking to the surface of a molten plated film do not substantially exist, in the temperature range of 350-360°C or lower but the solidification temperature or higher, and by solidifying the hot-dip plated film by cooling. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶融Zn−Al−Mg合金めっき鋼板の製造方法、特に表面外観に優れる溶融Zn−Al−Mg合金めっき鋼板の製造方法に関する。
【0002】
【従来の技術】
近年、自動車、家電、土木建築、建材などの産業分野において、安価で耐食性に優れる溶融亜鉛めっき鋼板が広く用いられている。溶融亜鉛めっき鋼板は、加工後塗装されて使用される場合と、加工したまま無塗装で使用される(以下、単に「無塗装使用」と記す)場合がある。このため、溶融亜鉛めっき鋼板には、耐食性と共に、大気中での無塗装使用に際して長期間優れた外観を有するという性能も重要とされている。
【0003】
ところで、溶融亜鉛めっき鋼板の耐食性を向上させる方法も種々研究されており、例えば米国特許第 3505043号明細書には、質量%で(以下、化学組成を表す%表示は質量%を意味する)、Al:3〜17%、Mg:1〜5%、残部がZnからなる溶融めっき浴を用いた耐食性に優れた溶融Zn−Al−Mgめっき鋼板の製造方法が提案されている。
【0004】
さらに最近では、例えば、特開平10−226865号公報には、Alを4.0 〜10%、Mgを1.0 〜4.0 %含有し、Al/Zn/ZnMg の3元共晶組織からなる素地中に初晶Al相が混在した金属組織を有するめっき皮膜を備えることを特徴とする溶融Zn−Al−Mg合金めっき鋼板が提案されている。
【0005】
しかしながら、この溶融Zn−Al−Mg合金めっき鋼板には、鋼板表層部に斑点状の模様が現れ、しばらく放置するとこの模様が黒色に変色(以下「水玉模様」と称す)する場合がある。この水玉模様は、前記特開平10−226865号公報に記載されているようにめっき皮膜中のMgZn11 相に起因する溶融Zn−Al−Mg合金めっき鋼板特有の現象である。
【0006】
水玉模様の改善方法として、前記特開平10−226865号公報には、めっき後の冷却速度を所定値以上とする方法が提案されている。しかしながら、本発明者らの検討したところによれば、後述する理由により、冷却速度を高めてもなお水玉模様が発生する場合のあることがわかった。
【0007】
また、同公報によれば、冷却温度をさほど高めなくても、めっき浴温度を所定温度以上にすることで水玉模様を改善する方法も開示されている。しかしながら、めっき設備(後述する図1参照)やライン速度等の操業条件によっては、トップロール到達までにめっき皮膜の凝固を完了させるために、できるだけめっき浴温度を低くし、かつ、めっき冷却速度もある程度大きくして操業せざるを得ず、この方法が必ずしも採用できない場合もある。
【0008】
さらに、特開平2001−107212号公報でTiおよびBを添加することにより水玉模様の生成が改善されることが開示されているが、そのような手段を採用すると浴中のTiおよびBの濃度管理が必要になり、煩雑さが増すことになる。
【0009】
すでに述べたように、溶融亜鉛合金めっき鋼板は、今日広く採用されているが、特に耐食性に優れているとされる溶融Zn−Al−Mg合金めっき鋼板の場合、上述のような問題があることから、その実施が必ずしも広く普及していると云えない状況にあり、更なる改善が求められている。
【0010】
【発明が解決しようとする課題】
ここに、本発明の課題は、溶融Zn−Al−Mg合金めっき鋼板における水玉模様発生という従来技術の問題点を解決して、耐食性に優れた溶融Zn−Al−Mg合金めっき鋼板のより広範囲の実用化を可能とすることのできる技術を開発することである。
【0011】
【課題を解決するための手段】
本発明者等は、溶融めっき後に空冷したときに水玉模様の発生したZn−Al−Mgめっき鋼板を詳細に観察したところ、水玉模様の中心付近に、鉄錆と思われる固形粒子が観察される場合があった。
【0012】
そこで、本発明者らは、固形粒子の付着が水玉模様の発生と関係あるのではないかと考え、調査を行った。その結果、溶融めっき後の冷却段階において水玉模様発生温度から凝固温度までの温度領域で固形粒子が付着すると、水玉模様が発生するという知見を得た。
【0013】
このときの水玉模様の発生機構については必ずしも明確ではないが、本発明者らは、上記知見から以下のような仮説を想定した。
すなわち、水玉模様は前述のようにZn11Mg2 相に起因するものとされる。ここでZn11Mg2 相は、図1のZn−Mg 二元系状態図からめっき皮膜の過冷によって析出する組織と考えられる (なお、図1中に記載の温度の数値は、あくまでZn−Mg 二元系のものであり、ここにAlを含有するZn−Al−Mg三元系の場合は、図1に記載の温度と異なるものとなる。) 凝固温度近く (凝固直前) の固形粒子の付着は、めっき皮膜の局部的な過冷の原因となり、これによってZn11Mg2 相が析出することになるため、水玉模様が発生すると考えられる。
【0014】
本発明は、上記知見、仮説に基づいてさらに一連の実験を行い、その効果を確認して完成されたものであり、その要旨は次の通りである。
(1)溶融めっき浴に鋼板を浸漬してから引き上げてめっき皮膜の冷却を行う溶融Zn−Al−Mg合金めっき鋼板の製造方法において、溶融めっき浴から引き上げためっき皮膜の冷却を行う際に、めっき皮膜の水玉発生開始温度からめっき皮膜の凝固温度までの温度領域の冷却を、溶融めっき鋼板表面に粒径50μm 以上の固形粒子を付着させないようにして行うことを特徴とする、溶融Zn−Al−Mg合金めっき鋼板の製造方法。
【0015】
(2)溶融めっき浴に鋼板を浸漬してから引き上げてめっき皮膜の冷却を行う溶融Zn−Al−Mg合金めっき鋼板の製造方法において、溶融めっき浴から引き上げためっき皮膜の冷却を行う際に、該めっき皮膜の温度で、少なくとも360 ℃から320 ℃までの温度領域の冷却を、溶融めっき鋼板表面に粒径50μm 以上の固形粒子を付着させないようにして行うことを特徴とする、溶融Zn−Al−Mg合金めっき鋼板の製造方法。
【0016】
(3)前記めっき皮膜の化学組成が、Mg:1.0質量%以上10質量%以下,Al:1.0 質量%以上20質量%以下、Zn: 残部である、上記(1) または(2) 記載の溶融Zn−Al−Mg合金めっき鋼板の製造方法。
【0017】
(4)めっき皮膜の前記冷却を、気体の吹付けで行う上記(1) ないし(3) のいずれかに記載の溶融Zn−Al−Mg合金めっき鋼板の製造方法。
なお、上記に云う「めっき皮膜の温度」とは、実際上は板温度とほぼ等しいと考えられるための生産ラインでの温度管理は板温度でも問題はない。
【0018】
【発明の実施の形態】
次に、本発明にかかる製造方法についてさらに具体的にその実施の形態を説明し、それによる作用効果に言及する。
【0019】
図2は、本発明にかかる方法を実施するためにめっき設備の模式的概略説明図である。
図中、所定組成に予め調整された溶融めっき浴1には、還元処理された鋼板がスナウトを経由して浸漬され、シンクロールを介して浴内を通過後、浴1より引き上げられる。めっき浴1の上方には、めっき付着量調整のために、ガスワイピングノズル3が設けられている。溶融めっき浴を出ためっき済み鋼板、つまり溶融めっき鋼板は、冷却チャンバー5内を通過する際に、配管6から供給される冷却ガスによってめっき皮膜の冷却が行われる。
【0020】
冷却された溶融めっき鋼板はトップロール4を介して系外に取り出される。
本発明によれば、好ましくは正圧に維持される冷却チャンバー5内における冷却に際してまだ溶融状態にあるめっき皮膜表面に、例えば配管内の鉄錆その他の異物等の固形粒子が付着しないような手段を講じて冷却される。本発明においては、めっき皮膜の冷却凝固過程における所定の温度範囲にて、塵、ホコリ等の固形粒子を付着させないことが重要である。
【0021】
ここに、そのような固形粒子を実質上付着させないで冷却する温度範囲は水玉模様発生温度から凝固温度までの領域である。
ここで、凝固温度は、めっきのZn−Al−Mgの組成によって変動するが、例えば、Alが3〜6%、Mgが2〜4%含まれるZn−Al−Mgめっきの場合は、その凝固温度はおおよそ320 〜330 ℃程度である。
【0022】
一方、水玉発生開始温度は、例えば付着する固形粒子径や板厚によって変化する。後述するように、板厚が薄いほど、また固形粒子径が大きいほど、水玉発生開始温度が高く、つまり比較的高温で付着しても水玉模様が発生する。これは、前述の仮説によれば、固形粒子の径が大きいほど、抜熱効果が大きいので比較的高温で付着しても局部的過冷状態を生じて水玉の原因となりやすく、また板厚が薄いと鋼板全体としての熱容量が小さいことから、固形粒子付着による抜熱効果の影響が比較的大きくなり局部的過冷状態を生じやすいため、と考えられる。
【0023】
具体的には、本発明者らの検討の結果では、粒子径が50μm 未満の鉄粉の場合は、めっき皮膜の凝固温度寸前と想定した335 ℃でめっき皮膜に付着させても水玉模様は発生しなかった。一方、粒子径1mmの鉄粉の場合、板厚にもよるが、水玉発生開始温度が350 〜360 ℃程度であった。すなわち、当該温度から凝固温度(320〜330 ℃) までの間で大形の固形粒子が付着すると水玉模様が発生するのであった。なお、種々の条件を検討したが、水玉発生開始温度が360 ℃を超えていることは稀であった。したがって、実際の製造においては、めっき表面温度が360 ℃から320 ℃までの温度領域において、粒子径50μm 以上の固形粒子を付着させないことが好ましいと考えられる。
【0024】
本発明によれば、固形粒子が実質上不存在で、好ましくはガス冷却が行われる。この趣旨は、水玉模様が発生しない限り、冷却に際して何ら制限はないということであるが、具体的には、水玉模様の発生には付着する粒子の大きさも関係することから、冷却ガス中から粒子径100 μm 以上の粒子、好ましくは50μm 以上の粒子が実質的に除去されていることが好ましい。
【0025】
実際のめっきラインにおける冷却方法としては、工場内の配管を通じて圧搾空気、窒素等のガスを吹き付けることが多いと考えられるが、この場合はフィルター等により塵、ホコリ、錆、さらには周囲環境から入ってくる海塩粒子等を除去するのが好ましい。
【0026】
なお、上述したように (または実施例で示すように) 、水玉模様の発生には粒子の大きさの影響もあることから、特に粒径50μm以上の粒子を除去できるフィルターを配管内に設置する等の手段を講じるのが望ましい。フィルターを用いる場合は、空気の圧力損失を抑える観点からろ布型フィルターが好ましい。
【0027】
このときの冷却速度は、水玉模様の点からは特に限定されず、また板厚等によっても異なるが、通常のガス冷却条件下では、2〜20℃/sである。加工性の観点から皮膜が硬さが問題になる場合は、2〜10℃/sが好ましい。
【0028】
次に、本発明の好適態様において、めっき皮膜の化学組成を規定するが、その理由についてさらに具体的に説明する。なお、本明細書において化学組成を示す「%」は特にことわりがない限り、「質量%」である。
【0029】
めっき皮膜の化学組成;
めっき皮膜のAlおよびMg含有量はめっき浴におけるそれぞれの含有量とほぼ同じなので、以下では、めっき浴の化学組成とめっき皮膜を同時に述べる。
【0030】
Al:本来、溶融Znに対するMgの溶解量は0.1 %が限度であるが、溶融Znに適量のAlを含有させると、Alが溶融Zn面に酸化膜を形成し、Mgの酸化を防止して、溶融ZnにおけるMg溶解量を高めることができる。
【0031】
Znめっき浴にMgを1.0 %以上含有させ、めっき皮膜の耐食性を高めるために、めっき浴にAlを1.0 %以上含有させる。めっき皮膜のAlはめっき浴のAl濃度とほぼ同一になるので、めっき皮膜のAl含有量は1.0 %以上とする。また、20%超Alを添加しても、Mgの溶解効果を高めることができないため上限は20%である。好ましくは15%以下である。
【0032】
Mg:Mgはめっき皮膜の耐食性を向上させる作用があり、その効果を得るために、1.0 %以上含有させる。望ましくは2.0 %以上である。めっき浴に過剰にMgを含有させるとめっき浴面にドロス(酸化物)が多量に発生し、溶融めっきの操業性を損なう。Mg含有量は10%超になると浴中にほとんど溶解しないので、めっき浴へのMg含有量の上限は10%以下とする。従って、めっき皮膜のMg含有量は10%以下とする。望ましくは8.0 %以下である。
【0033】
なお、本発明者らの検討では、Al:約3〜11%、Mg約2〜5%程度の領域では、同じ温度で同じ固形粒子を付着させた場合に、Al、Mgの組成割合が低いほど、水玉模様が発生しやすくまたは発生した水玉模様の径が大きくなって目立ちやすくなるため、これを抑制することが重要であることがわかった。したがって、本発明の方法は、Zn−Al−Mg合金めっきにおいてもAl、Mgの組成割合が比較的小さい領域 (例えばAl約3〜6%、Mg約2〜3%) で特に有効性の高い方法であると考えられる。
【0034】
本発明の好適態様において、溶融めっき皮膜の残部はZnであるが、本発明の効果が発揮される範囲であれば、その他の元素を適宜配合することも本発明の範囲内である。
【0035】
次に、実施例によって本発明の作用効果をより具体的に説明する。
【0036】
【実施例】
(実施例1)
表1に示す形状・寸法を有する鋼板を、表2の組成を有するめっき浴に浸漬し、引上げて放冷する際に、鋼板表面の温度、つまりめっき皮膜の温度を放射温度計で測定し、所定の温度に達したところで、粒径 (粒子の長径をいう。以下同じ。) が1mmの鉄粉を鋼板表面に散布した。
【0037】
このようにして作成したサンプルについて、めっき面の水玉模様について目視で評価した。水玉模様の発生の有無の基準は直径5mm以内であれば実用的に許容される場合が多いのでこの大きさが見えないものを合格とした。
【0038】
○:水玉模様が発生しない
△:発生しない場合と発生する場合がある
×:水玉模様が発生する。
【0039】
鉄粉散布温度と水玉模様の関係を図3に示す。また、併せて、鉄粉を散布しないサンプルも作成したが、これには水玉模様は発生しなかった。これらの結果から、水玉模様の発生に、固形粒子付着が関連すること、および粒子の付着する際の温度が影響することがそれぞれ確認された。
【0040】
(実施例2)
本例では、固形粒子の大きさについて、次の方法で調査した。
表1に示す鋼板を、表2のめっき浴に浸潰し、引上げて放冷する際に、鋼板表面の温度を放射温度計で測定し、335 ℃になったところで、所定粒径の鉄粉を鋼板表面に散布した。このようにして作成したサンプルについて、水玉模様の発生の有無を前述の○〜×を基準にして評価した。
【0041】
その結果を図4に示す。この図から固形粒子の粒径が小さい場合は、水玉模様が発生しにくいことがわかった。
【0042】
【表1】

Figure 2004018999
【0043】
【表2】
Figure 2004018999
【0044】
【発明の効果】
以上説明したように、本発明によると、溶融Zn−Al−Mg合金めっき鋼板を製造する場合に遭遇する水玉模様発生を抑制しためっき鋼板を作成することが可能であり、また、この安価な手段によれば、溶融Zn−Al−Mg合金めっき鋼板の広範囲での普及に大きく寄与できるのであって、本発明は工業的に価値の高い発明である。
【図面の簡単な説明】
【図1】Zn−Mg 二元系状態図である。
【図2】本発明に係る方法を実施するための連続溶融めっき設備の概要図である。
【図3】鉄粉散布温度と水玉模様の発生の関係を示した図である。
【図4】鉄粉径と水玉模様との関係を示した図である。
【符号の説明】
1:めっき浴
2:鋼帯
3:ワイビングノズル
4:トップロール
5:冷却設備
6:配管[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a hot-dip Zn-Al-Mg alloy-plated steel sheet, and particularly to a method for manufacturing a hot-dip Zn-Al-Mg alloy-plated steel sheet having excellent surface appearance.
[0002]
[Prior art]
2. Description of the Related Art In recent years, hot-dip galvanized steel sheets that are inexpensive and have excellent corrosion resistance have been widely used in industrial fields such as automobiles, home appliances, civil engineering and construction materials. The hot-dip galvanized steel sheet may be used after being processed and then coated, or may be used without being processed as it is (hereinafter simply referred to as “uncoated use”). For this reason, it is important for the hot-dip galvanized steel sheet not only to have corrosion resistance but also to have a long-term excellent appearance when used without coating in the atmosphere.
[0003]
By the way, various methods for improving the corrosion resistance of hot-dip galvanized steel sheet have also been studied. For example, in US Pat. No. 3,505,043, a percentage by mass (hereinafter, a% expression representing a chemical composition means mass%) A method for producing a hot-dip Zn—Al—Mg-plated steel sheet having excellent corrosion resistance using a hot-dip plating bath made of Al: 3 to 17%, Mg: 1 to 5%, and the balance being Zn has been proposed.
[0004]
More recently, for example, Japanese Patent Application Laid-Open No. Hei 10-226865 discloses a ternary eutectic containing Al / Zn / Zn 2 Mg containing 4.0 to 10% of Al and 1.0 to 4.0% of Mg. There has been proposed a hot-dip Zn-Al-Mg alloy-plated steel sheet comprising a plated film having a metal structure in which primary Al phases are mixed in a matrix body.
[0005]
However, in the hot-dip Zn-Al-Mg alloy-plated steel sheet, a spot-like pattern appears on the surface layer of the steel sheet, and this pattern may turn black (hereinafter referred to as a "polka dot pattern") when left for a while. This polka dot pattern is a phenomenon peculiar to the hot-dip Zn-Al-Mg alloy-plated steel sheet caused by the Mg 2 Zn 11 phase in the plating film as described in Japanese Patent Application Laid-Open No. 10-226865.
[0006]
As a method of improving a polka dot pattern, Japanese Patent Laid-Open No. Hei 10-226865 proposes a method in which a cooling rate after plating is set to a predetermined value or more. However, the present inventors have studied and found that a polka dot pattern may still occur even when the cooling rate is increased for the reasons described below.
[0007]
Further, according to the publication, a method of improving a polka dot pattern by setting a plating bath temperature to a predetermined temperature or higher without significantly increasing a cooling temperature is also disclosed. However, depending on the operating conditions such as the plating equipment (see FIG. 1 described below) and the line speed, the plating bath temperature should be as low as possible and the plating cooling rate should be as low as possible in order to complete the solidification of the plating film by the time the top roll is reached. In some cases, this method must be used after being enlarged to some extent, and this method cannot always be adopted.
[0008]
Furthermore, Japanese Patent Application Laid-Open No. 2001-107212 discloses that the addition of Ti and B improves the formation of a polka dot pattern. If such a means is employed, the concentration of Ti and B in the bath can be controlled. Is required, and the complexity increases.
[0009]
As described above, hot-dip galvanized steel sheets are widely used today, but in the case of hot-dip Zn-Al-Mg alloy-plated steel sheets, which are considered to be particularly excellent in corrosion resistance, the above-mentioned problems are encountered. Therefore, the implementation is not necessarily widely spread, and further improvement is required.
[0010]
[Problems to be solved by the invention]
Here, an object of the present invention is to solve the problem of the prior art that a polka dot pattern is generated in a hot-dip Zn-Al-Mg alloy-plated steel sheet, and to cover a wider range of a hot-dip Zn-Al-Mg alloy-plated steel sheet having excellent corrosion resistance. The goal is to develop technologies that can be put to practical use.
[0011]
[Means for Solving the Problems]
The present inventors have observed in detail a Zn-Al-Mg plated steel sheet having a polka dot pattern when air-cooled after hot-dip plating, and solid particles considered to be iron rust are observed near the center of the polka dot pattern. There was a case.
[0012]
Therefore, the present inventors considered that the attachment of the solid particles might be related to the occurrence of a polka dot pattern and conducted an investigation. As a result, it has been found that when solid particles adhere in a temperature range from a polka dot generation temperature to a solidification temperature in a cooling stage after hot-dip plating, a polka dot pattern is generated.
[0013]
Although the polka dot generation mechanism at this time is not necessarily clear, the present inventors assumed the following hypothesis based on the above findings.
That is, the polka dot pattern is attributed to the Zn 11 Mg 2 phase as described above. Here, the Zn 11 Mg 2 phase is considered to be a structure precipitated by supercooling of the plating film from the Zn—Mg binary phase diagram of FIG. 1 (note that the numerical value of the temperature described in FIG. In the case of a Zn-Al-Mg ternary system containing Al and containing Al, the temperature differs from the temperature shown in Fig. 1.) Solid particles near the solidification temperature (immediately before solidification) Is considered to cause local overcooling of the plating film, thereby causing a Zn 11 Mg 2 phase to be precipitated, thereby causing a polka dot pattern.
[0014]
The present invention has been completed by conducting a series of experiments based on the above findings and hypotheses and confirming the effects thereof. The gist of the present invention is as follows.
(1) In a method of manufacturing a hot-dip Zn-Al-Mg alloy-plated steel sheet in which a steel sheet is immersed in a hot-dip plating bath and then pulled up to cool the plated film, The molten Zn-Al is characterized in that cooling in a temperature range from a polka dot initiation temperature of a plating film to a solidification temperature of the plating film is performed so that solid particles having a particle size of 50 μm or more do not adhere to the surface of the hot-dip coated steel sheet. -A method for producing a Mg alloy-plated steel sheet.
[0015]
(2) In a method for producing a hot-dip Zn-Al-Mg alloy-plated steel sheet in which a steel sheet is immersed in a hot-dip plating bath and then pulled up to cool the plating film, A molten Zn-Al, characterized in that cooling at least in a temperature range from 360 ° C to 320 ° C at a temperature of the plating film is performed so that solid particles having a particle size of 50 µm or more do not adhere to the surface of the hot-dip coated steel sheet. -A method for producing a Mg alloy-plated steel sheet.
[0016]
(3) The chemical composition of the above (1) or (2), wherein the chemical composition of the plating film is Mg: 1.0% by mass to 10% by mass, Al: 1.0% by mass to 20% by mass, and Zn: the balance. A method for producing a hot-dip Zn-Al-Mg alloy-plated steel sheet according to the above.
[0017]
(4) The method for producing a hot-dip Zn-Al-Mg alloy plated steel sheet according to any one of the above (1) to (3), wherein the cooling of the plating film is performed by blowing gas.
The "temperature of the plating film" mentioned above is considered to be substantially equal to the plate temperature in practice, so that there is no problem in controlling the temperature in the production line even at the plate temperature.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the manufacturing method according to the present invention will be described more specifically, and the effects of the embodiment will be described.
[0019]
FIG. 2 is a schematic schematic explanatory view of a plating facility for performing the method according to the present invention.
In the figure, a reduced steel sheet is immersed in a hot-dip plating bath 1 previously adjusted to a predetermined composition via a snout, passed through the bath via a sink roll, and then pulled up from the bath 1. A gas wiping nozzle 3 is provided above the plating bath 1 for adjusting the amount of plating applied. When the plated steel sheet that has exited the hot-dip plating bath, that is, the hot-dip coated steel sheet, passes through the cooling chamber 5, the plating film is cooled by the cooling gas supplied from the pipe 6.
[0020]
The cooled hot-dip coated steel sheet is taken out of the system via the top roll 4.
According to the present invention, means for preventing solid particles such as iron rust and other foreign matter in the piping from adhering to the surface of the plating film still in a molten state during cooling in the cooling chamber 5 which is preferably maintained at a positive pressure. Take the cooling. In the present invention, it is important that solid particles such as dust and dust do not adhere within a predetermined temperature range in the cooling and solidifying process of the plating film.
[0021]
Here, the temperature range in which such solid particles are cooled without substantially attaching them is a range from the polka dot forming temperature to the solidification temperature.
Here, the solidification temperature varies depending on the composition of Zn—Al—Mg in the plating. For example, in the case of Zn—Al—Mg plating containing 3 to 6% of Al and 2 to 4% of Mg, the solidification is The temperature is on the order of 320-330 ° C.
[0022]
On the other hand, the polka dot generation start temperature changes depending on, for example, the solid particle diameter and plate thickness to be attached. As will be described later, as the plate thickness is smaller and the solid particle diameter is larger, the polka dot generation start temperature is higher, that is, a polka dot pattern is generated even if it is attached at a relatively high temperature. According to the aforementioned hypothesis, the larger the diameter of the solid particles, the greater the heat removal effect. This is considered to be because if the thickness is small, the heat capacity of the entire steel sheet is small, so that the effect of the heat removal effect due to the attachment of the solid particles is relatively large and a local supercooling state is likely to occur.
[0023]
Specifically, as a result of the study of the present inventors, in the case of iron powder having a particle diameter of less than 50 μm, a polka dot pattern is generated even if the powder adheres to the plating film at 335 ° C., which is assumed to be just before the solidification temperature of the plating film. Did not. On the other hand, in the case of iron powder having a particle diameter of 1 mm, the polka dot initiation temperature was about 350 to 360 ° C., depending on the plate thickness. That is, when large solid particles adhere from the temperature to the solidification temperature (320 to 330 ° C.), a polka dot pattern is generated. Although various conditions were examined, it was rare that the polka dot initiation temperature exceeded 360 ° C. Therefore, in actual production, it is considered preferable that solid particles having a particle diameter of 50 μm or more are not adhered in a temperature region where the plating surface temperature is from 360 ° C. to 320 ° C.
[0024]
According to the present invention, solid particles are substantially absent, preferably gas cooling. The meaning of this is that there is no restriction on cooling as long as polka dots are not generated.Specifically, since the size of particles attached to polka dots is also involved, particles from the cooling gas It is preferable that particles having a diameter of 100 μm or more, preferably particles having a diameter of 50 μm or more, are substantially removed.
[0025]
As a method of cooling in the actual plating line, it is considered that gas such as compressed air or nitrogen is often blown through piping in the factory.In this case, however, dust, dust, rust and even ambient It is preferable to remove incoming sea salt particles and the like.
[0026]
As described above (or as shown in the examples), since the size of particles affects the generation of polka dots, a filter capable of removing particles having a particle size of 50 μm or more is provided in the pipe. It is desirable to take such measures. When a filter is used, a filter cloth filter is preferable from the viewpoint of suppressing the pressure loss of air.
[0027]
The cooling rate at this time is not particularly limited in terms of the polka dot pattern, and varies depending on the plate thickness and the like, but is 2 to 20 ° C./s under normal gas cooling conditions. When the hardness of the film becomes a problem from the viewpoint of workability, 2 to 10 ° C./s is preferable.
[0028]
Next, in a preferred embodiment of the present invention, the chemical composition of the plating film is defined, and the reason will be described more specifically. In this specification, “%” indicating a chemical composition is “% by mass” unless otherwise specified.
[0029]
Chemical composition of plating film;
Since the Al and Mg contents of the plating film are almost the same as the respective contents in the plating bath, the chemical composition of the plating bath and the plating film will be described simultaneously below.
[0030]
Al: Originally, the amount of Mg dissolved in molten Zn is limited to 0.1%. However, if an appropriate amount of Al is contained in molten Zn, Al forms an oxide film on the molten Zn surface and prevents oxidation of Mg. Thus, the amount of Mg dissolved in the molten Zn can be increased.
[0031]
Mg is contained in the Zn plating bath at 1.0% or more, and in order to enhance the corrosion resistance of the plating film, Al is contained in the plating bath at 1.0% or more. Since the Al content of the plating film is substantially the same as the Al concentration of the plating bath, the Al content of the plating film is set to 1.0% or more. Further, even if more than 20% of Al is added, the effect of dissolving Mg cannot be enhanced, so the upper limit is 20%. Preferably it is 15% or less.
[0032]
Mg: Mg has an effect of improving the corrosion resistance of the plating film, and is contained in an amount of 1.0% or more to obtain the effect. Desirably, it is 2.0% or more. If Mg is excessively contained in the plating bath, a large amount of dross (oxide) is generated on the plating bath surface, which impairs the operability of hot-dip plating. If the Mg content exceeds 10%, it hardly dissolves in the bath, so the upper limit of the Mg content in the plating bath is 10% or less. Therefore, the Mg content of the plating film is set to 10% or less. Desirably, it is 8.0% or less.
[0033]
In the study of the present inventors, in the region of Al: about 3 to 11% and Mg of about 2 to 5%, when the same solid particles are adhered at the same temperature, the composition ratio of Al and Mg is low. As the polka dot pattern is more likely to be generated or the diameter of the generated polka dot pattern becomes larger and more conspicuous, it has been found that it is important to suppress this. Therefore, the method of the present invention is particularly effective even in a Zn-Al-Mg alloy plating in a region where the composition ratio of Al and Mg is relatively small (for example, about 3 to 6% of Al and about 2 to 3% of Mg). It is considered a way.
[0034]
In the preferred embodiment of the present invention, the balance of the hot-dip coating is Zn, but it is within the scope of the present invention to appropriately mix other elements as long as the effects of the present invention are exhibited.
[0035]
Next, the operation and effect of the present invention will be described more specifically with reference to examples.
[0036]
【Example】
(Example 1)
When a steel sheet having the shape and dimensions shown in Table 1 is immersed in a plating bath having the composition shown in Table 2, pulled up, and allowed to cool, the temperature of the steel sheet surface, that is, the temperature of the plating film is measured with a radiation thermometer. When the temperature reached a predetermined temperature, iron powder having a particle diameter of 1 mm (referred to as the major axis of the particle; the same applies hereinafter) was sprayed on the surface of the steel sheet.
[0037]
The polka dots on the plated surface of the sample thus prepared were visually evaluated. The criterion for the presence or absence of the polka dot pattern is often acceptable if it is within 5 mm in diameter.
[0038]
:: No polka dot pattern is generated. △: There is a case where no polka dot pattern is generated. X: A polka dot pattern is generated.
[0039]
FIG. 3 shows the relationship between the iron powder spraying temperature and the polka dot pattern. In addition, a sample in which iron powder was not sprayed was also prepared, but no polka dot pattern was generated. From these results, it was confirmed that the occurrence of a polka dot pattern is related to the attachment of solid particles, and that the temperature at which the particles adhere is affected.
[0040]
(Example 2)
In this example, the size of the solid particles was investigated by the following method.
When the steel sheet shown in Table 1 was immersed in the plating bath shown in Table 2, pulled up and allowed to cool, the temperature of the steel sheet surface was measured with a radiation thermometer. When the temperature reached 335 ° C., iron powder having a predetermined particle size was removed. Sprayed on steel plate surface. The samples thus prepared were evaluated for the presence or absence of polka dots based on the above-mentioned 〜 to ×.
[0041]
The result is shown in FIG. From this figure, it was found that when the particle size of the solid particles was small, a polka dot pattern was hardly generated.
[0042]
[Table 1]
Figure 2004018999
[0043]
[Table 2]
Figure 2004018999
[0044]
【The invention's effect】
As described above, according to the present invention, it is possible to produce a plated steel sheet that suppresses the occurrence of a polka dot pattern encountered when producing a hot-dip Zn-Al-Mg alloy-plated steel sheet, and this inexpensive means. According to this, the present invention can greatly contribute to widespread use of hot-dip Zn-Al-Mg alloy plated steel sheets, and the present invention is an industrially valuable invention.
[Brief description of the drawings]
FIG. 1 is a Zn—Mg binary phase diagram.
FIG. 2 is a schematic diagram of a continuous hot-dip plating facility for performing a method according to the present invention.
FIG. 3 is a diagram showing the relationship between iron powder spraying temperature and the occurrence of polka dots.
FIG. 4 is a diagram showing the relationship between iron powder diameter and polka dots.
[Explanation of symbols]
1: Plating bath 2: Steel strip 3: Wiving nozzle 4: Top roll 5: Cooling equipment 6: Piping

Claims (4)

溶融めっき浴に鋼板を浸漬してから引き上げてめっき皮膜の冷却を行う溶融Zn−Al−Mg合金めっき鋼板の製造方法において、溶融めっき浴から引き上げためっき皮膜の冷却を行う際に、めっき皮膜の水玉発生開始温度からめっき皮膜の凝固温度までの温度領域の冷却を、溶融めっき鋼板表面に粒径50μm 以上の固形粒子を付着させないようにして行うことを特徴とする、溶融Zn−Al−Mg合金めっき鋼板の製造方法。In a method for manufacturing a hot-dip Zn-Al-Mg alloy-coated steel sheet in which a steel sheet is immersed in a hot-dip plating bath and then pulled up to cool the plated film, when cooling the plated film pulled out of the hot-dip bath, A molten Zn-Al-Mg alloy, characterized in that cooling in a temperature range from a polka dot initiation temperature to a solidification temperature of a plating film is performed so that solid particles having a particle size of 50 µm or more do not adhere to the surface of the hot-dip coated steel sheet. Manufacturing method of plated steel sheet. 溶融めっき浴に鋼板を浸漬してから引き上げてめっき皮膜の冷却を行う溶融Zn−Al−Mg合金めっき鋼板の製造方法において、溶融めっき浴から引き上げためっき皮膜の冷却を行う際に、該めっき皮膜の温度で、少なくとも360 ℃から320 ℃までの温度領域の冷却を、溶融めっき鋼板表面に粒径50μm 以上の固形粒子を付着させないようにして行うことを特徴とする、溶融Zn−Al−Mg合金めっき鋼板の製造方法。In a method for manufacturing a hot-dip Zn-Al-Mg alloy-coated steel sheet in which a steel sheet is dipped in a hot-dip plating bath and then pulled up to cool the plating film, when the plating film pulled out of the hot-dip bath is cooled, A molten Zn—Al—Mg alloy, characterized in that cooling at least in the temperature range of 360 ° C. to 320 ° C. is performed so that solid particles having a particle size of 50 μm or more do not adhere to the surface of the hot-dip coated steel sheet. Manufacturing method of plated steel sheet. 前記めっき皮膜の化学組成が、Mg:1.0質量%以上10質量%以下,Al:1.0 質量%以上20質量%以下、Zn: 残部である、請求項1または2記載の溶融Zn−Al−Mg合金めっき鋼板の製造方法。3. The molten Zn— according to claim 1, wherein the chemical composition of the plating film is Mg: 1.0% by mass to 10% by mass, Al: 1.0% by mass to 20% by mass, and Zn: Δ balance. A method for producing an Al-Mg alloy plated steel sheet. めっき皮膜の前記冷却を、気体の吹付けで行う請求項1ないし3のいずれかに記載の溶融Zn−Al−Mg合金めっき鋼板の製造方法。The method for producing a hot-dip Zn-Al-Mg alloy-plated steel sheet according to any one of claims 1 to 3, wherein the cooling of the plating film is performed by blowing gas.
JP2002180331A 2002-06-20 2002-06-20 Method for producing hot-dip Zn-Al-Mg alloy-plated steel sheet Expired - Fee Related JP3772798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180331A JP3772798B2 (en) 2002-06-20 2002-06-20 Method for producing hot-dip Zn-Al-Mg alloy-plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180331A JP3772798B2 (en) 2002-06-20 2002-06-20 Method for producing hot-dip Zn-Al-Mg alloy-plated steel sheet

Publications (2)

Publication Number Publication Date
JP2004018999A true JP2004018999A (en) 2004-01-22
JP3772798B2 JP3772798B2 (en) 2006-05-10

Family

ID=31177494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180331A Expired - Fee Related JP3772798B2 (en) 2002-06-20 2002-06-20 Method for producing hot-dip Zn-Al-Mg alloy-plated steel sheet

Country Status (1)

Country Link
JP (1) JP3772798B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283155A (en) * 2005-04-01 2006-10-19 Nippon Steel Corp Hot dip plated steel sheet having satisfactory appearance
JP2009073513A (en) * 2007-09-20 2009-04-09 Hitachi Ltd Temperature adjustment member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283155A (en) * 2005-04-01 2006-10-19 Nippon Steel Corp Hot dip plated steel sheet having satisfactory appearance
JP4528187B2 (en) * 2005-04-01 2010-08-18 新日本製鐵株式会社 Hot-dip steel sheet with good appearance
JP2009073513A (en) * 2007-09-20 2009-04-09 Hitachi Ltd Temperature adjustment member

Also Published As

Publication number Publication date
JP3772798B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
TWI431156B (en) Magnesium-based alloy plating steel
JP6830489B2 (en) Plated steel with excellent abrasion resistance and white rust resistance and its manufacturing method
Bo et al. Effect of Mg and RE on the surface properties of hot dipped Zn–23Al–0.3 Si coatings
JP2018507321A (en) Zinc alloy plated steel sheet excellent in phosphatability and spot weldability and method for producing the same
KR102384674B1 (en) Plated steel sheet having excellent corrosion resistance, galling resistance, workability and surface property and method for manufacturing the same
JP2017066459A (en) Plated steel
WO2018181391A1 (en) Hot-dipped al coated steel sheet and method for producing hot-dipped al coated steel sheet
JP2011144429A (en) Highly corrosion-resistant hot-dip galvanized steel sheet
JP2003147500A (en) HOT DIP Zn-Al ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AFTER WORKING, AND PRODUCTION METHOD THEREFOR
KR20210135578A (en) galvanized steel
JP2005272967A (en) METHOD FOR MANUFACTURING HOT DIP Al TYPE COATED STEEL SHEET HAVING DECREASED PLATING DEFECTS
KR101568508B1 (en) HOT DIP Zn-BASED ALLOY COATING BATH COMPRISING CALCIUM OXIDE, HOT DIP Zn-BASED ALLOY COATED STEEL SHEET AND METHOD FOR PREPARING THE SAME
WO2020213680A1 (en) Plated steel material
JP4356423B2 (en) Fused Al-Zn-Mg plated steel sheet and method for producing the same
JP3772798B2 (en) Method for producing hot-dip Zn-Al-Mg alloy-plated steel sheet
JP4834922B2 (en) Method for producing hot-dip galvanized steel sheet
JP2023500997A (en) Galvanized steel sheet with excellent corrosion resistance, galling resistance, workability and surface quality, and its manufacturing method
KR100667140B1 (en) HOT-DIPPED Sn-Zn PLATING PROVIDED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY
JP2000345368A (en) Plated steel sheet
KR101629260B1 (en) Composition for hot dipping bath
JP7381984B1 (en) plated steel
JP2004131819A (en) Hot-dip tin-zinc base coated steel sheet having good corrosion resistance
JP4253927B2 (en) Plated steel sheet
JP4469055B2 (en) Hot-dip Zn-Mg-Al alloy plating method
JPH10140316A (en) Production of hot dip galvanized steel sheet excellent in workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees