JP2004018928A - Aluminum foil for container, and container formed from aluminum foil - Google Patents

Aluminum foil for container, and container formed from aluminum foil Download PDF

Info

Publication number
JP2004018928A
JP2004018928A JP2002174687A JP2002174687A JP2004018928A JP 2004018928 A JP2004018928 A JP 2004018928A JP 2002174687 A JP2002174687 A JP 2002174687A JP 2002174687 A JP2002174687 A JP 2002174687A JP 2004018928 A JP2004018928 A JP 2004018928A
Authority
JP
Japan
Prior art keywords
aluminum foil
container
less
thickness
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002174687A
Other languages
Japanese (ja)
Inventor
Keitaro Yamaguchi
山口 恵太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2002174687A priority Critical patent/JP2004018928A/en
Publication of JP2004018928A publication Critical patent/JP2004018928A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum foil for a container superior in corrosion resistance, which effectively prevents pitting by salts, and to provide the container formed from the aluminum foil superior in corrosion resistance, which is suitable for preserving foods containing the salts for a long time. <P>SOLUTION: The aluminum foil for the container has an anodic oxide film with a thickness of 20 nm or thicker but 800 nm or thinner formed on the surface of a foil substrate consisting of aluminum or an aluminum alloy, wherein the anodic oxide film has an external layer with a porosity of 60% or less, and a nonporous layer with a porosity of 20% or less having a thickness of 20 nm or more but 600 nm or less. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、容器用アルミ箔及びアルミ箔成形容器に関するものである。
【0002】
【従来の技術】
従来、アルミ箔成形容器は、携帯用容器や食品を盛るために広く使用されており、流動性食品(例えば、カレー、シチュー、ラーメン、グラタン、煮物、スープなど)や、薄肉食品(例えばピザ、ハム、チーズなど)を入れる容器として利用されている。
【0003】
【発明が解決しようとする課題】
近年、このようなアルミ箔成形容器に食品を収容し、冷蔵又は冷凍した状態で流通させ、アルミ箔成形容器ごとコンロやオーブンで加熱して収容された食品を調理する形態のものが知られている。この用途に用いられるアルミ箔成形容器としては、容器側壁部にしわを形成して強度を増したしわ付きアルミ箔成形容器がある。このしわ付き容器は強度に優れることから、より容量の大きな食品容器として用いられており、アルミ箔を打ち抜きした後、絞り加工してしわを形成した容器とし、更にしわを延ばさずにダイに押し込んで均一なしわを発生した後、縁巻きを行うことで作製する。
このようなしわ付き容器は、食品の長期保存や調理に用いられることが多いが、塩分を含む食品と長期間接触する状態とされた際に、容器のしわの狭小な隙間に汁や汁に含まれる塩分が入り込み、隙間腐食を生じて穴あきを生じさせ、内部の食品の汁が漏れるおそれがあった。
【0004】
本発明は、上記の課題を解決するためになされたものであって、塩分による穴あきを効果的に防止することができる耐食性に優れた容器用アルミ箔を提供することを目的としている。
また本発明は、塩分を含む食品の保存や調理に用いて好適な耐食性に優れるアルミ箔成形容器を提供することを目的としている。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る容器用アルミ箔は、アルミニウム又はアルミニウム合金からなる箔基材の表面に、膜厚20nm以上800nm以下の陽極酸化皮膜が形成されており、前記陽極酸化皮膜が、有孔率20%以下の無孔質層を有するとともに、皮膜外面における有孔率が60%以下とされており、前記無孔質層の厚さが20nm以上600nm以下とされたことを特徴としている。
上記構成によれば、塩分腐食に対する耐性に優れ、アルミ箔成形容器として用いた場合に塩分を含む食品の保存や調理に用いても穴あきが生じることのない容器用アルミ箔を提供することができる。以下、本発明に係る容器用アルミ箔の構成要件について説明する。
【0006】
膜厚(20〜800nm):膜厚が20nm未満では、陽極酸化皮膜の耐食性が不足して塩分により穴あきを生じる場合がある。陽極酸化皮膜の膜厚は好ましくは50nm以上であり、厚くすることでアルミ箔のコイル処理を高速で行うことが可能になり、製造効率を高めることができる。
一方、膜厚が800nmを越えると、容器への成形加工時に陽極酸化皮膜にクラックを生じやすくなりこのクラックに起因する穴あきが生じる場合がある。また、電解工程の処理時間が長くなりコスト高となる。
【0007】
有孔率:本発明に係る容器用アルミ箔における陽極酸化皮膜の有孔率としては、基材上に形成された陽極酸化皮膜外面の有孔率と、陽極酸化皮膜の厚さ方向の断面における有孔率の2種類がり、いずれの場合にも電子顕微鏡視野において孔の専有面積比率により導出される。これは、陽極酸化皮膜の厚さ方向における有孔率が皮膜厚さに応じて変化することによる。
本発明に係る陽極酸化皮膜の外面における有孔率は60%以下とされ、いわゆる無孔質又は微孔質の陽極酸化皮膜に属する。この皮膜外面における有孔率が60%を越えると、陽極酸化皮膜が多孔質化されて脆くなり、加工時にクラックを生じやすくなる。また、腐食性物質が皮膜を透過しやすくなり、基材に到達しやすくなることで耐食性が低下し、穴あきを生じやすくなる。
次に、本発明に係る陽極酸化皮膜に含まれる無孔質層は、その有孔率が20%以下であり、いわゆる無孔質陽極酸化皮膜に相当する構成を備えた層である。この場合の有孔率は、陽極酸化皮膜の厚さ方向断面における孔の面積比とされる。無孔質陽極酸化皮膜とは、皮膜成長時に電解液による局所溶解が起こらず、緻密で微細孔のない陽極酸化皮膜を指す。
本発明に係る容器用アルミ箔では、この無孔質層の緻密性による優れた耐食性を利用し、効果的に腐食による穴あきを防止することができる。従って、本発明に係る無孔質層では有孔率は可能な限り低くすることが好ましい。
【0008】
無孔質層の膜厚(20〜600nm):無孔質層の膜厚は、陽極酸化皮膜の厚さ方向断面において、有孔率が20%以下の部分の厚さに相当する。本発明に係る陽極酸化皮膜において腐食性物質の基材への進入を防止するのは主に無孔質層であり、この無孔質層の膜厚が20nmより薄い場合には、腐食性物質を十分に遮断することができないために耐食性が低下し、穴あきを生じる原因となる。
その一方で、無孔質層の膜厚が600nmを越える場合には、加工時に無孔質層にクラックが生じ、穴あきが生じる原因となるおそれがある。
【0009】
次に、本発明に係る容器用アルミ箔においては、前記陽極酸化皮膜の膜厚が、50nm以上500nm以下とされることが好ましい。このような範囲とすることで、優れた耐食性を得られるとともに、コイル処理を高速に行うことができ、製造効率を高めることができる。
【0010】
次に、本発明に係る容器用アルミ箔においては、前記無孔質層の膜厚が、50nm以上500nm以下とされることが好ましい。このような範囲とすることで、優れた耐食性を得られるとともに、コイル処理を高速に行うことができ、製造効率を高めることができる。
【0011】
また、本発明に係る容器用アルミ箔においては、前記陽極酸化皮膜外面における有孔率が20%以下とされることが好ましい。このような範囲とすることで、全体が無孔質の陽極酸化皮膜となり、より優れた耐食性を得ることができ、効果的に穴あきを防止し得るアルミ箔とすることができる。
【0012】
次に、本発明に係るアルミ箔成形容器は、先のいずれかに記載の容器用アルミ箔を器状に成形したことを特徴とする。
次に、本発明に係るしわ付きのアルミ箔成形容器は、先に記載の容器用アルミ箔を成形して形成された底壁と、該底壁の周縁から立ち上がる周壁とを備え、前記周壁にしわが付与されたことを特徴とする。
上記本発明に係るアルミ箔成形容器によれば、耐食性に優れる食品容器を提供することができる。特に、塩分を含む食品を保存、調理するための食品容器として好適である。
【0013】
【発明の実施の形態】
以下、本発明に係る容器用アルミ箔の製造方法の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。
まず、アルミニウム又はアルミニウム合金からなる箔基材を用意する。本発明に係る容器用アルミ箔に適用する箔基材としては、特に限定されず、容器用アルミ箔として従来から用いられている3004等の3000系アルミニウム合金を問題なく用いることができる。また、基材の厚さも通常用いられている30〜150μm程度、あるいはそれ以上の厚さのものであってもよい。
【0014】
また、上記の基材上に無孔質陽極酸化皮膜を形成するにあたっては、前記基材の表面に前処理を行うことが好ましい。この前処理としては、特に限定されず、要は素材の表面に付着した油脂分を除去し、素材表面の不均質な酸化物皮膜が除去できるものであればよい。例えば、弱アルカリ性の脱脂液による脱脂処理を施したのち、水酸化ナトリウム水溶液でアルカリエッチングをしたのち、硝酸水溶液中でデスマット処理を行う方法や脱脂処理後に酸洗浄を行う方法などが適宜選択して用いられる。
【0015】
次に、上記箔基材の表面に陽極酸化皮膜を電解処理により形成する。本発明に係る製造方法では、電解液として酸性あるいはアルカリ性の水溶液を用い、電解処理することで有孔率が60%以下であり、かつ有孔率20%以下の無孔質層を有する陽極酸化皮膜を箔基材の表面に形成する。
上記電解液としては、生成する陽極酸化皮膜を溶解しにくく、かつ無孔質の陽極酸化皮膜を生成する電解質である硫酸、珪酸塩、ホウ酸、ホウ酸塩、リン酸塩、アジピン酸塩、フタル酸塩、安息香酸塩、酒石酸塩、クエン酸塩、シュウ酸などの群から選ばれる1種または2種以上を溶解した水溶液が用いられる。これらの電解質のなかでも硫酸、珪酸塩、リン酸塩が酸化皮膜の性状、コストなどの点で好ましい。また、陽極酸化皮膜の膜厚の調整は電解時間により調整することができる。
尚、電解液中の電解質濃度は2重量%からその電解質の飽和濃度の範囲で選ばれる。電解浴の浴温は15〜50℃の範囲で十分であり、浴温を50℃を越える高温とする必要はない。また、電解処理は、2種以上の電解液を用いて2段階以上で行っても良い。
電解処理にあたっては、箔基材を陽極とし、陰極には電解液に不溶性の導電材料が用いられ、例えば炭素電極が陰極とされる。そして、電解処理後の箔基材表面を水洗して、本発明に係る容器用アルミ箔を得ることができる。
【0016】
(アルミ箔成形容器)
図1及び図2は、本発明に係る容器用アルミ箔を形成して作製できるアルミ箔成形容器の斜視構成図であり、図1に示すアルミ箔成形容器10は、比較的底浅の底壁11とその周縁から立ち上がる周壁12と、周壁12の上端部から外周側へ延出されたフランジ部13とから概略構成されており、周壁12にはその立設方向に多数のしわ14が形成されている。係るアルミ箔成形容器は、底壁11形成後に絞り加工してしわ14を付与しながら周壁12を形成し、その後フランジ部13を形成し、その外周を縁巻き加工することで作製することができる。
また、図2に示すアルミ箔成形容器15は、周壁12にしわが形成されていないしわ無し容器である。
【0017】
図1及び図2に示すアルミ箔成形容器10は、耐食性に優れる本発明の容器用アルミ箔により構成されていることで、塩分を含む食品を長期保存しても、食品やそれに含まれる汁による腐食で穴あきを生じることがなく、塩分を含む食品の調理や保存に好適なアルミ箔成形容器である。特に、図1に示すしわ付き容器にあっては、従来しわの隙間で隙間腐食が生じることによる穴あきが問題となっていたが、本発明に係る耐食性に優れるアルミ箔を用いることで、変色や穴あきの生じない優れた食品容器を実現している。
【0018】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、以下の実施例は本発明の技術範囲を限定するものではない。
本例では、上記実施の形態の製造方法により容器用アルミ箔を作製し、得られたアルミ箔を成形して図1に示すしわ付き容器を作製して、アルミ箔成形容器の耐食性(穴あき)について検証した。
【0019】
まず、80μm厚のA3004のO材箔基材を用意し、50℃の10%NaOHで10秒間エッチングした後、10秒間水洗し、次いで、25%の10%硝酸で10秒間の中和処理を行い、10秒間水洗した。上記いずれの処理もスプレー処理により行った。
次に、表1に示す構成の各種電解液を用意し、上記の処理が終了した箔基材を陽極とし、炭素板を陰極として電解処理を行い、箔基材の表面に陽極酸化皮膜を形成した。そして、電解処理後の箔基材を10秒間水洗した後、120℃で20秒間乾燥させ、アルミ箔を得た。
次に、得られたアルミ箔を、ブランキング、ドローイング、ワイプダウン、カーリングの成形工程に供することで、図1に示す縁の付いたしわ付き容器を作製した。
【0020】
(評価)
上記にて得られた各アルミ箔容器について、変色性、穴あきの評価、及び膜厚と有孔率の測定を行った。これらの評価及び測定結果を表1に併記する。また、評価方法、及び測定方法を以下に示す。
【0021】
<穴あき性>各アルミ箔容器に5%に希釈した醤油を入れ、25℃で7日間保持し、容器の穴あき状態を目視観察した。特に、穴あきが生じやすいしわ部についても詳細に観察した。評価基準は、穴あきの全く生じないものを○、穴あきが生じたものを×とした。
【0022】
<膜厚の測定>膜厚は、表1に示す各試料を切断し、その断面を透過電子顕微鏡で観察し、顕微鏡像中の任意の10点の膜厚の平均値から求めた。また、試料の断面観察により有孔率20%以下の部位を測定し、無孔質層厚さとした。但し、試料内に存在する金属化合物周辺の膜質の不均一な部位は除外した。
【0023】
<有孔率の測定>有孔率は、箔基材表面に形成した陽極酸化皮膜の表面を10万倍の電子顕微鏡で観察し、任意の10箇所について、全観察面積に対する孔部の面積比により求めた。但し、試料内に存在する金属化合物周辺の膜質の不均一な部位は除外した。
【0024】
表1に示すように、本発明の要件を満たすアルミ箔を用いて作製された実施例1〜8のアルミ箔成形容器は、いずれにおいても穴あきが生じることはなく、優れた耐食性を有することが確認された。
これに対して、本発明の要件を満たさない比較例1〜5では、いずれも容器に穴あきが観察された。
【0025】
【表1】

Figure 2004018928
【0026】
【発明の効果】
以上、詳細に説明したように、本発明に係る容器用アルミ箔は、アルミニウム又はアルミニウム合金からなる箔基材の表面に、膜厚20nm以上800nm以下の陽極酸化皮膜が形成されており、前記陽極酸化皮膜が、有孔率20%以下の無孔質層を有するとともに、皮膜外面における有孔率が60%以下とされており、前記無孔質層の厚さが20nm以上600nm以下とされたことで、耐食性に優れるアルミ箔成形容器を構成することができるアルミ箔とされている。
【0027】
本発明に係るアルミ箔成形容器は、上記本発明のアルミ箔により構成されるので、耐食性に優れ、特に、塩分を含む食品の保存や調理に用いる容器として好適である。
【図面の簡単な説明】
【図1】図1は、本発明に係るアルミ箔成形容器の一実施の形態であるしわ付き容器の斜視構成図である。
【図2】図2は、本発明に係るアルミ箔形成容器の一実施の形態であるしわ無し容器の斜視構成図である。
【符号の説明】
10 しわ付き容器(アルミ箔成形容器)
15 しわ無し容器(アルミ箔成形容器)
11 底壁
12 周壁
13 フランジ部
14 しわ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aluminum foil for a container and an aluminum foil molded container.
[0002]
[Prior art]
Conventionally, aluminum foil molded containers are widely used for serving portable containers and foodstuffs, and include liquid foods (for example, curry, stew, ramen, gratin, boiled dishes, soups, etc.) and thin-walled foods (for example, pizza, Ham, cheese, etc.).
[0003]
[Problems to be solved by the invention]
In recent years, a form in which food is housed in such an aluminum foil molded container, distributed in a refrigerated or frozen state, and the aluminum foil molded container is heated by a stove or oven to cook the stored food is known. I have. As an aluminum foil molded container used for this purpose, there is a wrinkled aluminum foil molded container having increased strength by forming wrinkles on the container side wall. This wrinkled container is used as a food container with a larger capacity because of its excellent strength, and after punching out aluminum foil, it is drawn into a wrinkled container and then pressed into a die without extending the wrinkles. After the uniform wrinkles are generated in the above, the wrapping is performed.
Such wrinkled containers are often used for long-term storage and cooking of food, but when they come into contact with food containing salt for a long period of time, juice or juice is added to the narrow gaps in the wrinkles of the container. The salt contained therein may enter, causing crevice corrosion and perforation to occur, and the juice of the food inside may leak.
[0004]
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide an aluminum foil for a container having excellent corrosion resistance and capable of effectively preventing perforation due to salt.
Another object of the present invention is to provide an aluminum foil molded container having excellent corrosion resistance which is suitable for storage and cooking of food containing salt.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, an aluminum foil for a container according to the present invention has an anodized film having a film thickness of not less than 20 nm and not more than 800 nm formed on a surface of a foil substrate made of aluminum or an aluminum alloy. The film has a non-porous layer having a porosity of 20% or less, the porosity on the outer surface of the film is 60% or less, and the thickness of the non-porous layer is 20 nm or more and 600 nm or less. It is characterized by.
According to the above configuration, it is possible to provide an aluminum foil for a container which has excellent resistance to salt corrosion and does not cause puncturing even when used for storage or cooking of food containing salt when used as an aluminum foil molded container. it can. Hereinafter, the components of the aluminum foil for a container according to the present invention will be described.
[0006]
Film thickness (20 to 800 nm): If the film thickness is less than 20 nm, the corrosion resistance of the anodic oxide film may be insufficient, and holes may be formed due to salt content. The thickness of the anodic oxide film is preferably 50 nm or more. By increasing the thickness, coil processing of the aluminum foil can be performed at a high speed, and the production efficiency can be increased.
On the other hand, if the film thickness exceeds 800 nm, cracks are likely to occur in the anodic oxide film during molding into a container, and holes may be formed due to the cracks. In addition, the processing time of the electrolysis process is lengthened and the cost is increased.
[0007]
Porosity: The porosity of the anodic oxide film in the aluminum foil for a container according to the present invention includes the porosity of the outer surface of the anodic oxide film formed on the substrate and the cross-section in the thickness direction of the anodic oxide film. There are two types of porosity. In each case, the porosity is derived from the occupied area ratio of the holes in the field of view of the electron microscope. This is because the porosity in the thickness direction of the anodic oxide film changes according to the film thickness.
The porosity on the outer surface of the anodic oxide film according to the present invention is 60% or less, and belongs to a so-called nonporous or microporous anodic oxide film. If the porosity on the outer surface of this film exceeds 60%, the anodic oxide film becomes porous and brittle, and cracks are likely to occur during processing. In addition, the corrosive substance easily permeates the film and easily reaches the base material, so that the corrosion resistance is lowered and holes are easily formed.
Next, the nonporous layer contained in the anodic oxide film according to the present invention is a layer having a porosity of 20% or less and having a structure corresponding to a so-called nonporous anodic oxide film. The porosity in this case is defined as the area ratio of holes in the cross section in the thickness direction of the anodic oxide film. The nonporous anodic oxide film refers to a dense, nonporous anodic oxide film in which local dissolution by an electrolytic solution does not occur during film growth.
In the aluminum foil for a container according to the present invention, the excellent corrosion resistance due to the denseness of the non-porous layer can be used to effectively prevent perforation due to corrosion. Therefore, the porosity of the non-porous layer according to the present invention is preferably as low as possible.
[0008]
Film thickness of non-porous layer (20 to 600 nm): The film thickness of the non-porous layer corresponds to the thickness of a portion having a porosity of 20% or less in the thickness direction cross section of the anodic oxide film. In the anodic oxide film according to the present invention, it is mainly the non-porous layer that prevents the corrosive substance from entering the substrate, and when the thickness of the non-porous layer is smaller than 20 nm, the corrosive substance is prevented. Can not be sufficiently shut off, thereby deteriorating the corrosion resistance and causing perforation.
On the other hand, if the thickness of the non-porous layer exceeds 600 nm, cracks may occur in the non-porous layer at the time of processing, which may cause perforation.
[0009]
Next, in the aluminum foil for a container according to the present invention, it is preferable that the thickness of the anodic oxide film is 50 nm or more and 500 nm or less. With such a range, excellent corrosion resistance can be obtained, the coil processing can be performed at high speed, and the production efficiency can be increased.
[0010]
Next, in the aluminum foil for a container according to the present invention, it is preferable that the film thickness of the non-porous layer is 50 nm or more and 500 nm or less. With such a range, excellent corrosion resistance can be obtained, the coil processing can be performed at high speed, and the production efficiency can be increased.
[0011]
In the aluminum foil for a container according to the present invention, it is preferable that the porosity on the outer surface of the anodized film is 20% or less. By setting the content in such a range, the whole becomes a nonporous anodic oxide film, more excellent corrosion resistance can be obtained, and an aluminum foil that can effectively prevent perforation can be obtained.
[0012]
Next, an aluminum foil molded container according to the present invention is characterized in that the container aluminum foil described in any of the above is molded into a container shape.
Next, the wrinkled aluminum foil molded container according to the present invention includes a bottom wall formed by molding the aluminum foil for a container described above, and a peripheral wall rising from a peripheral edge of the bottom wall. It is characterized by having been given.
According to the aluminum foil molded container according to the present invention, a food container excellent in corrosion resistance can be provided. In particular, it is suitable as a food container for storing and cooking food containing salt.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a method for manufacturing an aluminum foil for a container according to the present invention will be described, but the present invention is not limited to the following embodiment.
First, a foil substrate made of aluminum or an aluminum alloy is prepared. The foil substrate applied to the aluminum foil for a container according to the present invention is not particularly limited, and a 3000 series aluminum alloy such as 3004 conventionally used as an aluminum foil for a container can be used without any problem. Further, the thickness of the substrate may be about 30 to 150 μm, which is usually used, or more.
[0014]
In forming the nonporous anodized film on the substrate, it is preferable to perform a pretreatment on the surface of the substrate. The pre-treatment is not particularly limited, and it is essential that the pre-treatment remove oils and fats adhering to the surface of the material and remove a heterogeneous oxide film on the surface of the material. For example, after performing a degreasing treatment with a weak alkaline degreasing solution, after performing alkali etching with an aqueous sodium hydroxide solution, a method of performing a desmut treatment in a nitric acid aqueous solution or a method of performing acid cleaning after the degreasing treatment is appropriately selected. Used.
[0015]
Next, an anodic oxide film is formed on the surface of the foil substrate by electrolytic treatment. In the production method according to the present invention, an anodic oxidation having a nonporous layer having a porosity of 60% or less and a porosity of 20% or less is performed by electrolytic treatment using an acidic or alkaline aqueous solution as an electrolytic solution. A film is formed on the surface of the foil substrate.
As the electrolyte, it is difficult to dissolve the anodic oxide film to be generated, and sulfuric acid, silicate, boric acid, borate, phosphate, adipate, which is an electrolyte that generates a nonporous anodic oxide film, An aqueous solution in which one or more selected from the group of phthalate, benzoate, tartrate, citrate, oxalic acid and the like are used. Among these electrolytes, sulfuric acid, silicate, and phosphate are preferred in view of properties of the oxide film, cost, and the like. The thickness of the anodic oxide film can be adjusted by the electrolysis time.
The concentration of the electrolyte in the electrolyte is selected from the range of 2% by weight to the saturation concentration of the electrolyte. The bath temperature of the electrolytic bath is sufficient in the range of 15 to 50 ° C, and it is not necessary to set the bath temperature to a high temperature exceeding 50 ° C. Further, the electrolytic treatment may be performed in two or more stages using two or more kinds of electrolytic solutions.
In the electrolytic treatment, a foil base material is used as an anode, and a conductive material insoluble in an electrolytic solution is used as a cathode. For example, a carbon electrode is used as a cathode. Then, the aluminum foil for a container according to the present invention can be obtained by washing the surface of the foil substrate after the electrolytic treatment with water.
[0016]
(Aluminum foil container)
1 and 2 are perspective structural views of an aluminum foil molded container which can be produced by forming an aluminum foil for a container according to the present invention. The aluminum foil molded container 10 shown in FIG. 1 has a relatively shallow bottom wall. 11, a peripheral wall 12 rising from the peripheral edge thereof, and a flange 13 extending from the upper end of the peripheral wall 12 to the outer peripheral side. The peripheral wall 12 has a large number of wrinkles 14 formed in its standing direction. ing. Such an aluminum foil molded container can be manufactured by forming the peripheral wall 12 while forming a wrinkle 14 by drawing after forming the bottom wall 11, forming a flange portion 13 thereafter, and curling the outer periphery thereof. .
The aluminum foil molded container 15 shown in FIG. 2 is a container with no wrinkles formed on the peripheral wall 12.
[0017]
The aluminum foil molded container 10 shown in FIGS. 1 and 2 is made of the aluminum foil for a container of the present invention, which has excellent corrosion resistance. It is an aluminum foil molded container suitable for cooking and preserving food containing salt without causing pitting due to corrosion. In particular, in the container with a wrinkle shown in FIG. 1, there has been a problem of perforation due to crevice corrosion occurring in a crevice of a wrinkle. However, discoloration is caused by using an aluminum foil excellent in corrosion resistance according to the present invention. It realizes an excellent food container with no holes or holes.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples do not limit the technical scope of the present invention.
In this example, an aluminum foil for a container was produced by the production method of the above-described embodiment, and the obtained aluminum foil was molded to produce a container with a wrinkle as shown in FIG. 1. ).
[0019]
First, an A3004 O-material foil base material having a thickness of 80 μm is prepared, etched with 10% NaOH at 50 ° C. for 10 seconds, washed with water for 10 seconds, and then neutralized with 25% 10% nitric acid for 10 seconds. And washed with water for 10 seconds. All of the above processes were performed by a spray process.
Next, various electrolytic solutions having the constitutions shown in Table 1 were prepared, and an electrolytic treatment was performed using the foil substrate after the above treatment as an anode and a carbon plate as a cathode to form an anodic oxide film on the surface of the foil substrate. did. After the foil substrate after the electrolytic treatment was washed with water for 10 seconds, it was dried at 120 ° C. for 20 seconds to obtain an aluminum foil.
Next, the obtained aluminum foil was subjected to blanking, drawing, wipe-down, and curling forming steps to produce a wrinkled container with an edge shown in FIG.
[0020]
(Evaluation)
About each aluminum foil container obtained above, the discoloration property, evaluation of perforation, and measurement of film thickness and porosity were performed. These evaluation and measurement results are also shown in Table 1. The evaluation method and the measurement method are shown below.
[0021]
<Perforability> Each aluminum foil container was charged with 5% diluted soy sauce, kept at 25 ° C. for 7 days, and the perforated state of the container was visually observed. In particular, wrinkles where holes easily occur were also observed in detail. The evaluation criterion was evaluated as ○ when no perforation occurred, and x when perforation occurred.
[0022]
<Measurement of film thickness> The film thickness was determined by cutting each sample shown in Table 1, observing the cross section with a transmission electron microscope, and calculating the average value of the film thickness at arbitrary 10 points in the microscope image. Further, a portion having a porosity of 20% or less was measured by observing a cross section of the sample, and the thickness was determined as a nonporous layer thickness. However, sites where the film quality was uneven around the metal compound existing in the sample were excluded.
[0023]
<Measurement of porosity> The porosity is measured by observing the surface of the anodic oxide film formed on the surface of the foil base material with a 100,000-magnification electron microscope, and measuring the area ratio of the hole to the total observation area at any 10 locations. Determined by However, sites where the film quality was uneven around the metal compound existing in the sample were excluded.
[0024]
As shown in Table 1, the aluminum foil molded containers of Examples 1 to 8 produced using the aluminum foil satisfying the requirements of the present invention have no corrosion in any of them and have excellent corrosion resistance. Was confirmed.
In contrast, in Comparative Examples 1 to 5, which did not satisfy the requirements of the present invention, perforations were observed in the containers.
[0025]
[Table 1]
Figure 2004018928
[0026]
【The invention's effect】
As described above in detail, the aluminum foil for a container according to the present invention has an anodic oxide film having a thickness of 20 nm or more and 800 nm or less formed on the surface of a foil base material made of aluminum or an aluminum alloy. The oxide film has a nonporous layer having a porosity of 20% or less, the porosity on the outer surface of the film is 60% or less, and the thickness of the nonporous layer is 20 nm or more and 600 nm or less. Thus, the aluminum foil can be used to form an aluminum foil molded container having excellent corrosion resistance.
[0027]
Since the aluminum foil molded container according to the present invention is constituted by the aluminum foil of the present invention, it has excellent corrosion resistance, and is particularly suitable as a container used for storage and cooking of foods containing salt.
[Brief description of the drawings]
FIG. 1 is a perspective view of a wrinkled container as an embodiment of an aluminum foil molded container according to the present invention.
FIG. 2 is a perspective view of a wrinkle-free container, which is an embodiment of the aluminum foil forming container according to the present invention.
[Explanation of symbols]
10 Wrinkled container (aluminum foil molded container)
15 Wrinkle-free container (aluminum foil molded container)
11 bottom wall 12 peripheral wall 13 flange 14 wrinkle

Claims (6)

アルミニウム又はアルミニウム合金からなる箔基材の表面に、膜厚20nm以上800nm以下の陽極酸化皮膜が形成されており、
前記陽極酸化皮膜が、有孔率20%以下の無孔質層を有するとともに、皮膜外面における有孔率が60%以下とされており、
前記無孔質層の厚さが20nm以上600nm以下とされたことを特徴とする容器用アルミ箔。
An anodized film having a film thickness of not less than 20 nm and not more than 800 nm is formed on the surface of the foil base material made of aluminum or an aluminum alloy,
The anodic oxide film has a nonporous layer having a porosity of 20% or less, and a porosity on the outer surface of the film is 60% or less;
An aluminum foil for a container, wherein the thickness of the nonporous layer is 20 nm or more and 600 nm or less.
前記陽極酸化皮膜の膜厚が、50nm以上500nm以下とされたことを特徴とする請求項1に記載の容器用アルミ箔。2. The aluminum foil for a container according to claim 1, wherein the thickness of the anodized film is 50 nm or more and 500 nm or less. 3. 前記陽極酸化皮膜の無孔質層の厚さが、50nm以上500nm以下とされたことを特徴とする請求項1又は2に記載の容器用アルミ箔。The aluminum foil for a container according to claim 1 or 2, wherein the thickness of the nonporous layer of the anodic oxide film is 50 nm or more and 500 nm or less. 前記陽極酸化皮膜外面における有孔率が、20%以下とされたことを特徴とする請求項1から3のいずれか1項に記載の容器用アルミ箔。The aluminum foil for a container according to any one of claims 1 to 3, wherein a porosity on an outer surface of the anodized film is set to 20% or less. 請求項1ないし4のいずれか1項に記載の容器用アルミ箔を器状に成形したことを特徴とするアルミ箔成形容器。An aluminum foil molded container obtained by molding the aluminum foil for a container according to any one of claims 1 to 4 into a container shape. 請求項1ないし4のいずれか1項に記載の容器用アルミ箔を成形することにより底壁と、該底壁の周縁から立ち上がる周壁とが形成され、前記周壁にしわが付与されたことを特徴とするしわ付きのアルミ箔成形容器。A bottom wall and a peripheral wall rising from a peripheral edge of the bottom wall are formed by molding the aluminum foil for a container according to any one of claims 1 to 4, and wrinkles are applied to the peripheral wall. Wrinkled aluminum foil molded container.
JP2002174687A 2002-06-14 2002-06-14 Aluminum foil for container, and container formed from aluminum foil Pending JP2004018928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174687A JP2004018928A (en) 2002-06-14 2002-06-14 Aluminum foil for container, and container formed from aluminum foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174687A JP2004018928A (en) 2002-06-14 2002-06-14 Aluminum foil for container, and container formed from aluminum foil

Publications (1)

Publication Number Publication Date
JP2004018928A true JP2004018928A (en) 2004-01-22

Family

ID=31173589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174687A Pending JP2004018928A (en) 2002-06-14 2002-06-14 Aluminum foil for container, and container formed from aluminum foil

Country Status (1)

Country Link
JP (1) JP2004018928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2420658A1 (en) * 2009-04-15 2012-02-22 Toyota Jidosha Kabushiki Kaisha Engine combustion chamber structure and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2420658A1 (en) * 2009-04-15 2012-02-22 Toyota Jidosha Kabushiki Kaisha Engine combustion chamber structure and method for producing the same
EP2420658A4 (en) * 2009-04-15 2013-11-06 Toyota Motor Co Ltd Engine combustion chamber structure and method for producing the same
US9816458B2 (en) 2009-04-15 2017-11-14 Toyota Jidosha Kabushiki Kaisha Engine combustion chamber structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2011003685A (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP4021714B2 (en) Manufacturing method of aluminum foil for containers with excellent alkali resistance
JP3506827B2 (en) Surface-treated aluminum material and method for producing the same
JP2004018928A (en) Aluminum foil for container, and container formed from aluminum foil
JP2005082848A (en) Surface treated aluminum material having excellent corrosion resistance, hydrophilicity retainability and formability
JP4021713B2 (en) Manufacturing method of aluminum foil for containers with excellent alkali resistance
JP2002177790A (en) Photocatalyst precoated molding material and photocatalyst precoated molding and photocatalyst precoated fin
JPH05121275A (en) Manufacture of titanium electrolytic capacitor
KR20140099690A (en) Magnesium anodizing method for improving corrosion resistance
CN111139508B (en) Chemical conversion solution, chemical conversion method, and anode foil
KR101816720B1 (en) Method for manufacturing edible oil deterioration preventing member, and edible oil deterioration preventing member
JPH10168598A (en) Anodized aluminum material excellent in antibacterial property and its production
JPH08283990A (en) Aluminum material
JP2021027120A (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP2003059777A (en) METHOD FOR MAKING SOUND AMORPHOUS Nb OXIDE FILM AND METHOD FOR PRODUCING Nb SOLID ELECTROLYTIC CAPACITOR
JP2000192281A (en) Surface treated steel sheet for electric cell case, its production, electric cell case using the surface treated steel sheet and electric cell using the same
JP4034159B2 (en) Aluminum material for microwave oven and microwave oven
WO2023042594A1 (en) Electrode foil for electrolytic capacitor, electrolytic capacitor, and method for manufacturing electrode foil for electrolytic capacitor
RU2680082C1 (en) Method of manufacturing anodes of capacitors based on valve metal
JP2002129386A (en) Surface treated aluminium material superior in corrosion resistance and manufacturing method therefor
JP2009246103A (en) Manufacturing method of cathode foil for aluminum electrolytic capacitor
JPH0566260B2 (en)
JP2005142343A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP2007281246A (en) Manufacturing method of electrolytic capacitor electrode foil
JP2004040134A (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213