JP2004017166A - Aspheric lens polishing method and device using cam type sphere center type polisher - Google Patents

Aspheric lens polishing method and device using cam type sphere center type polisher Download PDF

Info

Publication number
JP2004017166A
JP2004017166A JP2002170977A JP2002170977A JP2004017166A JP 2004017166 A JP2004017166 A JP 2004017166A JP 2002170977 A JP2002170977 A JP 2002170977A JP 2002170977 A JP2002170977 A JP 2002170977A JP 2004017166 A JP2004017166 A JP 2004017166A
Authority
JP
Japan
Prior art keywords
polishing
cam
lens
type
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002170977A
Other languages
Japanese (ja)
Other versions
JP3756130B2 (en
Inventor
Yoichi Kasuga
春日 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haruchika Precision Co Ltd
Original Assignee
Haruchika Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haruchika Precision Co Ltd filed Critical Haruchika Precision Co Ltd
Priority to JP2002170977A priority Critical patent/JP3756130B2/en
Publication of JP2004017166A publication Critical patent/JP2004017166A/en
Application granted granted Critical
Publication of JP3756130B2 publication Critical patent/JP3756130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a machining method for an aspheric lens embodying a locus of an aspheric surface using a cam type sphere center type polisher. <P>SOLUTION: The cam type sphere center type polisher is provided with a sphere center type cam wherein the locus of the mean curvature of an aspheric lens to be machined is the locus of a tool. The aspheric lens is machined by applying the locus of an aspheric surface to the machining tool by delivering or drawing the machining tool at each rocking angle with the difference of the mean curvature of the aspheric-lens to be machined and the locus of the machining tool. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は光学非球面レンズ加工方法のうち非球面形状が軸対称型形状の非球面レンズの加工に関するが、詳しくはカム式球心型研磨機を用いた非球面レンズ研磨方法とその研磨装置に関するものである。
【0002】
【従来の技術】
従来から一般的に使用されている非球面加工機としては、ならい研削装置が知られている。また従来の研磨方法としては、強制回転型研磨機を用いて非球面レンズを分割研磨する方法なども知られている。更に、数値制御を用いた旋盤あるいはカップ型工具を用いた装置もよく知られている。
【0003】
そこで、数値制御を用いた非球面加工方法とその加工装置について図8と図9とで説明する。この方法と装置は、特開平5−138521号公報の「非球面の創成装置及び方法」で開示されている。この従来公知の発明は、光学ガラスレンズ金型などにおける非球面の創成装置とその創成方法に関するものであり、その目的は非球面レンズの研削や研磨加工にて砥石が加工レンズに対し切り込み量を少なくして加工精度を上げるところにある。そして、その構成はL字状のフレーム101の上端部側壁面に矢印Zにて示す上下動可能に構成した工具回転軸部102が工具移動部103を介して装着している。この工具回転軸102の先端部にはモータにより回動する回動軸104を設け、その先端に開板状の加工工具105が装着している。上記工具回転軸部102と対向する下方位置のフレーム101内には、先端を上方向に向けて配設したワーク軸部106が吊架装着されている。このワーク軸部106には、軸心に設けたワーク軸108の先端部に着脱自在に構成した107が装着されて、ワーク107を装着した回転軸108はモータにより矢印B方向に回動する。ワーク軸部は、ワーク107に示すO1 点を支点として矢印Aに揺動と、工具105の上下動Zとワーク軸106のY軸を含む平面に垂直なワーク揺動軸を中心に矢印Y方向に作動構成されている。すなわち、この従来方式は角度の軸(揺動軸)・Z軸・Y軸の3軸を制御して非球面を創成するところに特徴を有するものである。
【0004】
【発明が解決しようとする課題】
このような従来技術のならい方式による装置では段取りの変更が困難であるばかりか他品種小ロットに不向きであり、また従来の分割研磨方法においても分割研磨の箇所を増やすと段取りが複雑になり再段取りの際の再現性が困難となるため分割箇所を減らすと加工精度が悪くなる問題が生じていた。更に、数値制御を用いた非球面加工機の例では制御の軸数を増やすと装置が高価格になるとともに、その加工プログラムが複雑になる欠点がある。
【0005】
そこで、本発明はこのような欠点に鑑みて開発されたものであり、非球面形状に対する疑似球面の球心を中心として加工ツールの揺動を行い、更に疑似球面との差分をもって加工ツールを疑似球面の球心方向に補正することにより非球面研磨を行うところに本発明が解決しようとする課題を有する。
【0006】
【課題を解決するための手段】
本発明は上記の如き課題を解決するために開発したものであって、研磨皿を回転かつ球心を揺動させる揺動体で構成されるカム式球心型研磨機を用いた非球面レンズの研磨方法において、前記揺動体の中心を通る軸線上を往復可能なテーブルと前記揺動体の角度を補間して研磨皿に非球面の軌跡制御を与えることを特徴とするカム式球心型研磨機を用いた非球面レンズ研磨方法の提供にあり、また前記の非球面レンズ研磨方法において研磨皿の形状を被加工非球面レンズの曲率の最小曲率部より小さい球面の曲率としたカム式球心型研磨機を用いた非球面レンズ研磨方法の提供にあり、更に前記非球面レンズ研磨方法において被加工非球面レンズに対して研磨皿が接触する位置を研磨皿の球心として旋回させることを可能にするカム式球心型研磨機を用いた非球面レンズ研磨方法提供にあり、更に前記非球面レンズ研磨方法において3軸以上の軸を備えた数値制御とせずカムを用いることにより2軸の制御にて非球面を研磨加工するカム式球心型研磨機を用いた非球面レンズ研磨方法の提供にある。
【0007】
また本発明は、研磨皿を回転かつ球心揺動させる揺動体で構成されるカム式の球心型研磨機を用いた非球面レンズの研磨装置において、前記揺動体の中心を通る軸線上を往復可能なテーブルと前記揺動体の角度を補間する研磨皿とを設け、該研磨皿に非球面の軌跡制御を与えることを特徴とするカム式球心型研磨機を用いた非球面レンズ研磨装置の提供にあり、更に前記の非球面レンズ研磨装置において被加工非球面レンズ曲率の平均曲率の軌跡がツールの軌跡となる球心型のカムを設け、該被加工非球面レンズ曲率と加工ツールとの軌跡差を有し、かつ各々の揺動角度に加工ツールを繰出し或いは引込みさせて前記加工ツールに非球面の軌跡を付与したカム式球心研磨機を用いた非球面レンズ研磨装置の提供にある。
【0008】
すなわち、本発明の課題を解決するための手段は、第1に被加工非球面レンズの疑似球面の球心と加工ツールの揺動球心を一致させるべくカムを配置し、各々の角度で加工ツールを往復させて非球面の軌跡を創成する。その際の角度θはθ=Tan−1(X/Y)で疑似球面の曲率をRとすると繰り出し量△は△=√(X2 +Y2 ) −Rで算出される。従って、この角度θと繰り出し量△を補間させることにより非球面の軌跡を創成するところにある。
【0009】
第2に被加工レンズ曲率の最小曲率より、小さい球面工具皿を用いることによって工具皿の製作を容易にするところにある。
【0010】
第3に工具皿の配置位置が工具皿の球心を中心として、旋回できる構造となっているため段取りを容易にするところにある。
【0011】
第4に制御プログラムの作成を容易にして、加工コストを低減するところにある。
【0012】
【発明の実施の形態】
本発明の実施形態は、研磨皿を回転かつ球心を揺動させる揺動体で構成されるカム式球心型研磨機を用いた非球面レンズの研磨方法において、前記揺動体の中心を通る軸線上を往復可能なテーブルと前記揺動体の角度を補間して研磨皿に非球面の軌跡制御を与えることを特徴とするカム式球心型研磨機を用いた非球面レンズ研磨方法にあり、また前記の非球面レンズ研磨方法において研磨皿の形状を被加工非球面レンズの曲率の最小曲率部より小さい球面の曲率としたカム式球心型研磨機を用いた非球面レンズ研磨方法にあり、また前記の非球面レンズ研磨方法において被加工非球面レンズに対して研磨皿が接触する位置を研磨皿の球心として旋回させることを可能にするカム式球心型研磨機を用いた非球面レンズ研磨方法にあり、更に前記の非球面レンズ研磨方法において3軸以上の軸を備えた数値制御とせずカムを用いることにより2軸の制御にて非球面を研磨加工するカム式球心型研磨機を用いた非球面レンズ研磨方法にあるから、非球面形状に対する疑似球面の球心を中心として加工ツールの揺動を行い、かつ疑似球面との差分をもって加工ツールを疑似球面の球心方向に補正することにより非球面研磨を容易に行うことができる。
【0013】
また本発明の実施形態は、研磨皿を回転かつ球心揺動させる揺動体で構成されるカム式の球心型研磨機を用いた非球面レンズの研磨装置において、前記揺動体の中心を通る軸線上を往復可能なテーブルと前記揺動体の角度を補間する研磨皿とを設け、該研磨皿に非球面の軌跡制御を与えることを特徴とするカム式球心型研磨機を用いた非球面レンズ研磨装置にあり、更に前記の非球面レンズ研磨装置において被加工非球面レンズ曲率の平均曲率の軌跡がツールの軌跡となる球心型のカムを設け、該被加工非球面レンズ曲率と加工ツールとの軌跡差を有し、かつ各々の揺動角度に加工ツールを繰出し或いは引込みさせて前記加工ツールに非球面の軌跡を付与したカム式球心研磨機を用いた非球面レンズ研磨装置にあるから、角度θと繰り出し量△を補間させることにより非球面の軌跡を創成することができ、また被加工レンズ曲率の最小曲率より小さい球面工具皿を用いることにより工具皿の製作を容易にできる。更に、工具皿の配置位置が工具皿の球心を中心として旋回できる構造となっているため段取りが容易であり、しかも制御プログラムの作成が容易となり加工コストの低減にもなる。
【0014】
【実施例】
以下、図面に従って本発明の実施例について説明する。
【0015】
図1はから図3は、本発明のカム式球心型研磨機を用いた非球面レンズ研磨装置を示したものであり、図1は非球面研磨機の一部を切欠した斜視図である。図1は加工ツールでありツールスピンドルモータ2に固定保持されている。このツールスピンドルモータ2はスピンドルテーブル5に固定されるとともに、繰出テーブル6上の加工ツール旋回中心部15を中心に旋回保持される。更に、繰出テーブル6は揺動テーブル8上に設置されたリニアガイド7に固着されるとともに、揺動テーブル8上に設置されているツール繰出モータ3により駆動される。このモータ3で駆動されるボールネジユニット4により、揺動テーブル8の揺動中心を通る軸線上を往復制御される。そして、この揺動テーブル8にはカムローラ11が9 /OC=/OC’となるように固着されている。また揺動テーブル8には、減速機13付きの揺動モータ14がカムローラ11と同軸上に取り付けられ、更に減速機13の出力軸には揺動ギア12が固着されている。また、カムローラ11はダイセット9により支持されたカム10上を移動し、更にカム10上には揺動ギア12と噛み合うようにギアピン16が配置されており、揺動テーブル8は減速機13付きの揺動モータ14によって駆動される揺動ギア12とギアピン16の噛み合いによって揺動制御される。
【0016】
一方、被加工レンズ20はレンズホルダー21に着脱自在に取り付けられており、このレンズホルダー21はレンズ回転モータ24により回転するとともにスピンドルスリーブ22により回転往復運動が自在となるように支持され、また被加工レンズ20は加圧ノブ26の先端に設置されたスプリングにより加圧される。更に、スピンドルスリーブ22はワーク23上下アームに固着されワーク軸上下モータ28によって上下に移動され、この23ワーク上下アーム23はレンズホルダー21の回転中心軸線が揺動テーブル8の揺動中心を通るように構成されている。
【0017】
次に、図4から図7により本発明により構成された装置による非球面加工方法について説明すれば、まずレンズホルダー21に被加工レンズ20を取り付け、この被加工レンズ20の疑似球面の中心が揺動テーブル8の中心となるようにワーク上下モータ28を制御して移動させる。また、ツールスピンドルモータ2に加工ツール1を加工ツール15旋回中心軸線と加工ツール1のRの中心が同一点となるように取り付け、スピンドルテーブル5を任意の角度に旋回させて固定する。また、揺動テーブル8を揺動角度0度つまりカムローラの中心を結ぶ線分/CC’とレンズホルダー21の回転中心軸線が垂直となる角度にする。また、ツール繰出モータ3を駆動し繰出テーブル6を移動させ被加工レンズ20と加工ツール1とを接触させる。
【0018】
更に、レンズホルダー21とツールスピンドルモータ2を回転させ図2のようにコンピュータ40より図6のC,θのデータをコントロール41へ送り揺動モータ44と42ツール繰出モータ42と補間させながら、揺動テーブル8を揺動させて非球面レンズを研磨する。その際、実際の軌跡例の概略図は図4と図5のとおりであり、疑似球面と被加工非球面の差分の修正方向は揺動の中心方向となる。また、カム10の形状は非球面形状でなく球面としカムは10ダイセット9を基準点として取り替え可能となっており、カム10を交換することにより加工ツールの軌跡はORから平面まで描くことが可能であり、加工に際しては疑似球面を描くのに必要な球面のカムを取り付ける。更に、コンピュータ40上では表計算ソフト等でポイントデータを作成しそのデータを逐次コントローラ41へ転送しより多点のポイントの制御も可能である。
【0019】
更に、図6により被加工非球面レンズの疑似球面と球心との関係について説明すれば、まず本発明方法の目的を達成するためには被加工非球面レンズの疑似球面の球心と加工ツールの揺動球心を一致させるべくカムを配置し、各々の角度で加工ツールを往復させて非球面の軌跡を創成する。すなわち、角度θはθ=Tan−1(X/Y)で疑似球面の曲率をRとすると繰り出し量△は、△=√(X2 +Y2 ) −Rで算出される。この角度θと繰り出し量△を補間させることにより、非球面の軌跡を創成する。また本発明方法は、被加工レンズ曲率の最小曲率より小さい球面工具皿を用いることにより工具皿の製作を容易にし、更に工具皿の配置位置が工具皿の球心を中心として旋回できる構造となっているため段取りが容易である。なお、本発明装置によれば制御プログラムの作成が容易となり加工コストの低減を図ることもできる。
【0020】
【発明の効果】
本発明は、研磨皿を回転かつ球心を揺動させる揺動体で構成されるカム式球心型研磨機を用いた非球面レンズの研磨方法において、前記揺動体の中心を通る軸線上を往復可能なテーブルと前記揺動体の角度を補間して研磨皿に非球面の軌跡制御を与えることを特徴とするカム式球心型研磨機を用いた非球面レンズ研磨方法であり、また前記の非球面レンズ研磨方法において研磨皿の形状を被加工非球面レンズの曲率の最小曲率部より小さい球面の曲率としたカム式球心型研磨機を用いた非球面レンズ研磨方法であり、また前記非球面レンズ研磨方法において被加工非球面レンズに対して研磨皿が接触する位置を研磨皿の球心として旋回させること可能にするカム式球心型研磨機を用いた非球面レンズ研磨方法であり、更に前記非球面レンズ研磨方法において3軸以上の軸を備えた数値制御とせずカムを用いることにより2軸の制御にて非球面を研磨加工するカム式球心型研磨機を用いた非球面レンズ研磨方法である。
【0021】
また本発明は、研磨皿を回転かつ球心揺動させる揺動体で構成されるカム式の球心型研磨機を用いた非球面レンズの研磨装置において、前記揺動体の中心を通る軸線上を往復可能なテーブルと前記揺動体の角度を補間する研磨皿とを設け、該研磨皿に非球面の軌跡制御を与えることを特徴とするカム式球心型研磨機を用いた非球面レンズ研磨装置であり、更に前記の非球面レンズ研磨装置において被加工非球面レンズ曲率の平均曲率の軌跡がツールの軌跡となる球心型のカムを設け、該被加工非球面レンズ曲率と加工ツールとの軌跡差を有し、かつ各々の揺動角度に加工ツールを繰出し或いは引込みさせて前記加工ツールに非球面の軌跡を付与しカム式球心研磨機を用いた非球面レンズ研磨装置であるから、次のような多くの効果を有する。
ア、本発明は従来の欠点を解消するために開発されたものであるから、非球面形状に対する疑似球面の球心を中心として加工ツールの揺動を行いかつ疑似球面との差分をもって、加工ツールを疑似球面の球心方向に補正することにより非球面研磨を行うことが可能となった。
イ、また本発明方法によれば、被加工非球面レンズの疑似球面の球心と加工ツールの揺動球心を一致させるべく、カム配置し各々の角度で加工ツールを往復させて非球面の軌跡を創成することができる。すなわち、角度θと繰り出し量△を補間させることにより非球面の軌跡を創成することが可能となる。
ウ、また本発明方法によれば、被加工レンズ曲率の最小曲率より小さい球面工具皿を用いることにより工具皿の製作を容易にすることができる。
エ、また本発明の方法によれば、工具皿の配置位置が工具皿の球心を中心として旋回できる構造となっているため段取りが容易である。
オ、また本発明の装置によれば、制御プログラムの作成が容易となり加工コストの低減にもなる。
カ、また本発明の装置によれば、従来の3軸以上の軸をもって数値制御をしなければならない装置をカムを用いることにより、2軸の制御で非球面の研磨加工がより精密に実施でき装置の価格も低価格で提供できる。
キ、更に、非球面の軌跡データも2軸分のデータでよくプログラムも簡単となり加工工数の削減が可能である。
【図面の簡単な説明】
【図1】本発明の非球面レンズ研磨装置を示した切欠斜視図。
【図2】本発明の要部を示した概略切欠斜視図。
【図3】本発明のツール設定方法を示した概略図。
【図4】本発明による凹面の加工方法を示した概略図。
【図5】本発明による凸面の加工方法を示した概略図。
【図6】本発明の位置データ計算方法を示した概略説明図。
【図7】本発明に用いる揺動部カムローラ配置を示した概念図。
【図8】従来の非球面創成装置を示した説明概要図。
【図9】従来の非球面研磨方法を示した説明概要図。
【符号の説明】
1 加工ツール           2 ツールスピンドルモータ
3 ツール繰出モータ        4 ボールネジユニット
5 スピンドルテーブル       6 繰出テーブル
7 リニアガイド          8 揺動テーブル
9 ダイセット           10 カム
11 カムローラ          12 揺動ギア
13 減速機            14 揺動モータ
15 加工ツール旋回中心部     20 被加工レンズ
21 レンズホルダー        22 スピンドルスリーブ
23 ワーク上下アーム       24 レンズ回転モータ
25 タイミングベルト       26 加圧ノブ
27 ボールネジ          28 ワーク軸上モータ
30 加工ツール          31 レンズ
40 コンピュータ         41 コントローラ
42 ツール繰出モータ       43 カム
44 揺動モータ          101 フレーム
102 工具回転軸部        103 工具移動部
104 回転軸           105 加工工具(砥石)
106 ワーク軸部         107 ワーク
108 ワーク軸(回転軸)
A ツール傾斜中心         B 揺動中心
C 疑似球面            D 差分修正方向
E カム面R中心          F 凹型カム面
G 凸型カム面           H カム面R中心
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing an aspheric lens having an axially symmetrical aspherical shape among optical aspheric lens processing methods, and more particularly, to an aspheric lens polishing method using a cam-type spherical core type polishing machine and a polishing apparatus therefor. Things.
[0002]
[Prior art]
Conventionally, a profile grinding device is known as an aspherical surface processing machine generally used. As a conventional polishing method, there is also known a method of dividing and polishing an aspheric lens using a forced rotation type polishing machine. Further, devices using a lathe or a cup type tool using numerical control are well known.
[0003]
Therefore, an aspherical surface processing method using numerical control and its processing apparatus will be described with reference to FIGS. This method and apparatus are disclosed in Japanese Patent Application Laid-Open No. 5-138521, entitled "Apparatus and Method for Creating Aspheric Surface". This conventionally known invention relates to an apparatus for generating an aspheric surface in an optical glass lens mold and the like and a method for generating the same, and the purpose thereof is to reduce the cutting amount of a grinding stone with respect to a processing lens by grinding or polishing an aspheric lens. The point is to increase the processing accuracy by reducing it. In this configuration, a tool rotating shaft portion 102 configured to be vertically movable as indicated by an arrow Z is mounted on a side wall surface of an upper end portion of an L-shaped frame 101 via a tool moving portion 103. A rotating shaft 104 that is rotated by a motor is provided at the tip of the tool rotating shaft 102, and an open plate-shaped processing tool 105 is mounted at the tip. In the frame 101 at a lower position opposed to the tool rotation shaft 102, a work shaft 106 having a front end arranged upward is suspended and mounted. The work shaft 106 is provided with a detachable 107 attached to the tip of a work shaft 108 provided on the shaft center, and the rotating shaft 108 on which the work 107 is mounted is rotated in the direction of arrow B by a motor. Work shank, the swinging of the arrow A to O 1 points shown in the work 107 as a fulcrum, an arrow about a vertical work pivot shaft in the plane containing the Y axis vertical movement Z and workpiece shaft 106 of the tool 105 Y Directionally operative. That is, this conventional method is characterized in that an aspherical surface is created by controlling three axes of an angle axis (oscillation axis), a Z axis and a Y axis.
[0004]
[Problems to be solved by the invention]
Such an apparatus based on the prior art method is not only difficult to change the setup, but also unsuitable for small lots of other products. Since the reproducibility at the time of setup becomes difficult, reducing the number of divisions causes a problem that processing accuracy is deteriorated. Further, in the example of the aspherical processing machine using the numerical control, if the number of control axes is increased, the apparatus becomes expensive and the processing program becomes complicated.
[0005]
Therefore, the present invention has been developed in view of such a drawback, in which the machining tool swings around the spherical center of the pseudo spherical surface with respect to the aspherical shape, and further simulates the processing tool with a difference from the pseudo spherical surface. There is a problem to be solved by the present invention in that aspherical polishing is performed by correcting in the spherical center direction of a spherical surface.
[0006]
[Means for Solving the Problems]
The present invention has been developed in order to solve the problems as described above, and has been developed for an aspherical lens using a cam-type ball-center type polishing machine constituted by an oscillating body that rotates a polishing plate and oscillates a ball center. In the polishing method, a cam-type ball-center type polishing machine is characterized in that an aspherical trajectory control is given to a polishing plate by interpolating an angle between a table which can reciprocate on an axis passing through the center of the oscillator and the oscillator. The present invention provides a method of polishing an aspherical lens using a method, and further comprises a cam-type spherical core in which the shape of a polishing dish is a spherical surface having a curvature smaller than the minimum curvature portion of the curvature of the aspherical lens to be processed in the aspherical lens polishing method. In the provision of an aspheric lens polishing method using a polishing machine, it is possible to further turn the position at which the polishing dish comes into contact with the processed aspheric lens in the aspheric lens polishing method as the spherical center of the polishing dish. Cam type ball core type An aspheric lens polishing method using a polishing machine is provided. Further, in the above aspheric lens polishing method, the aspheric surface is polished by controlling two axes by using a cam instead of numerical control having three or more axes. An object of the present invention is to provide an aspheric lens polishing method using a cam-type ball-center type polishing machine.
[0007]
The present invention also provides a polishing apparatus for an aspheric lens using a cam-type spherical core type polishing machine constituted by an oscillator that rotates a polishing dish and swings a ball center, wherein an axis passing through the center of the oscillator is An aspherical lens polishing apparatus using a cam-type spherical core type polishing machine, comprising: a reciprocating table and a polishing plate for interpolating the angle of the oscillating body, and giving an aspherical trajectory control to the polishing plate. In addition, in the above-mentioned aspheric lens polishing apparatus, a trajectory of the average curvature of the curvature of the aspheric lens to be processed is provided with a spherical core type cam that is the trajectory of the tool, and the curvature of the aspheric lens to be processed and the processing tool The present invention provides an aspheric lens polishing apparatus using a cam-type spherical center polisher having an aspheric trajectory to the processing tool by extending or retracting the processing tool at each swing angle. is there.
[0008]
That is, first, a means for solving the problem of the present invention is to dispose a cam so that the spherical center of the pseudospherical surface of the aspherical lens to be processed and the oscillating spherical center of the processing tool coincide with each other, and perform machining at each angle. Reciprocate the tool to create an aspheric trajectory. In this case, the angle θ is θ = Tan −1 (X / Y), and the curvature of the pseudo spherical surface is R, and the feeding amount △ is calculated by △ = √ (X 2 + Y 2 ) −R. Therefore, the trajectory of the aspherical surface is created by interpolating the angle θ and the feeding amount △.
[0009]
Second, the manufacture of the tool plate is facilitated by using a spherical tool plate smaller than the minimum curvature of the lens to be processed.
[0010]
Third, the arrangement of the tool plate is such that it can be turned around the ball center of the tool plate, thereby facilitating the setup.
[0011]
Fourth, there is a need for facilitating the creation of a control program and reducing the processing cost.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention is directed to a method of polishing an aspheric lens using a cam-type spherical core type polishing machine including an oscillator that rotates a polishing plate and swings a ball center, wherein an axis passing through the center of the oscillator is provided. An aspheric lens polishing method using a cam-type spherical core type polishing machine, characterized by interpolating an angle between a table that can reciprocate on a line and the oscillating body and giving an aspheric trajectory control to the polishing dish, In the above-mentioned aspheric lens polishing method, there is provided an aspheric lens polishing method using a cam-type ball-center type polishing machine in which the shape of a polishing dish has a curvature of a spherical surface smaller than a minimum curvature portion of a curvature of a processed aspheric lens, and Aspherical lens polishing using a cam-type spherical center type polishing machine which enables a position where the polishing plate comes into contact with the aspherical lens to be processed to be rotated as a spherical center of the polishing plate in the above-mentioned aspherical lens polishing method. The method, and further Aspherical lens polishing method using a cam-type spherical core type polishing machine for polishing an aspherical surface by controlling two axes by using a cam instead of numerical control having three or more axes in the aspherical lens polishing method The aspherical surface can be easily polished by oscillating the processing tool around the spherical center of the pseudospherical surface with respect to the aspherical shape and correcting the processing tool to the spherical center of the pseudospherical surface with the difference from the pseudospherical surface. Can be done.
[0013]
Further, an embodiment of the present invention relates to an aspheric lens polishing apparatus using a cam-type spherical core type polishing machine constituted by an oscillator that rotates a polishing dish and swings a ball center, and passes through the center of the oscillator. An aspherical surface using a cam-type ball-center type polishing machine, comprising: a table capable of reciprocating on an axis and a polishing plate for interpolating the angle of the oscillating body, and giving an aspherical trajectory control to the polishing plate. A lens-centered cam provided in the lens polishing apparatus, wherein the trajectory of the average curvature of the aspheric lens to be processed is a tool trajectory in the aspheric lens polishing apparatus; And an aspheric lens polishing apparatus using a cam-type ball-center polisher having an aspheric trajectory given to the processing tool by extending or retracting the processing tool at each swing angle. From the angle θ and the feed amount Aspherical trajectory by interpolation can be created, and also the manufacture of the tool disc can be easily by using a small spherical tool dish than the minimum curvature of the workpiece lens curvature. Furthermore, since the arrangement position of the tool plate can be turned around the center of the ball of the tool plate, the setup is easy, and furthermore, the control program can be easily created and the machining cost can be reduced.
[0014]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIGS. 1 to 3 show an aspheric lens polishing apparatus using the cam-type spherical core type polishing machine of the present invention, and FIG. 1 is a perspective view in which a part of the aspheric surface polishing machine is cut away. . FIG. 1 shows a processing tool, which is fixedly held by a tool spindle motor 2. The tool spindle motor 2 is fixed to the spindle table 5 and is rotated and held around the processing tool rotation center 15 on the feeding table 6. Further, the feeding table 6 is fixed to a linear guide 7 installed on the swing table 8, and is driven by the tool feeding motor 3 installed on the swing table 8. The ball screw unit 4 driven by the motor 3 controls reciprocation on an axis passing through the swing center of the swing table 8. The cam roller 11 is fixed to the swing table 8 so that 9 / OC = / OC '. A swing motor 14 with a speed reducer 13 is mounted on the swing table 8 coaxially with the cam roller 11, and a swing gear 12 is fixed to an output shaft of the speed reducer 13. The cam roller 11 moves on a cam 10 supported by a die set 9, and a gear pin 16 is arranged on the cam 10 so as to mesh with a swing gear 12. The swing table 8 has a speed reducer 13. The swinging is controlled by the engagement between the swinging gear 12 driven by the swinging motor 14 and the gear pin 16.
[0016]
On the other hand, the lens 20 to be processed is detachably attached to a lens holder 21. The lens holder 21 is supported by a lens rotation motor 24 so as to be rotatable and reciprocable by a spindle sleeve 22 while being rotated. The processing lens 20 is pressed by a spring installed at the tip of the pressing knob 26. Further, the spindle sleeve 22 is fixed to a work 23 upper and lower arm and is moved up and down by a work shaft vertical motor 28. The 23 work upper and lower arm 23 allows the rotation center axis of the lens holder 21 to pass through the swing center of the swing table 8. Is configured.
[0017]
Next, an aspherical surface processing method using the apparatus constituted according to the present invention will be described with reference to FIGS. 4 to 7. First, the lens 20 to be processed is attached to the lens holder 21, and the center of the pseudo spherical surface of the lens 20 to be processed is oscillated. The work vertical motor 28 is controlled and moved so as to be at the center of the moving table 8. The machining tool 1 is attached to the tool spindle motor 2 so that the center axis of the turning of the machining tool 15 and the center of the R of the machining tool 1 are at the same point, and the spindle table 5 is turned and fixed at an arbitrary angle. Further, the swing table 8 is set to an angle at which the swing angle is 0 degree, that is, the line segment / CC ′ connecting the center of the cam roller and the rotation center axis of the lens holder 21 are perpendicular to each other. Further, the tool feeding motor 3 is driven to move the feeding table 6 to bring the lens 20 to be processed into contact with the processing tool 1.
[0018]
Further, the lens holder 21 and the tool spindle motor 2 are rotated, and the computer 40 sends the data of C and θ in FIG. 6 to the control 41 as shown in FIG. The moving table 8 is swung to polish the aspherical lens. At this time, schematic diagrams of an actual trajectory example are as shown in FIGS. 4 and 5, and the correction direction of the difference between the pseudo spherical surface and the processed aspheric surface is the center direction of the swing. Further, the shape of the cam 10 is not an aspherical shape but a spherical surface, and the cam can be replaced with the 10 die set 9 as a reference point. By replacing the cam 10, the trajectory of the processing tool can be drawn from the OR to a plane. It is possible, and in processing, a spherical cam necessary to draw a pseudo spherical surface is attached. Further, on the computer 40, point data can be created by spreadsheet software or the like, and the data can be sequentially transferred to the controller 41 to control more points.
[0019]
Further, the relationship between the pseudo spherical surface and the spherical center of the aspherical lens to be processed will be described. First, in order to achieve the object of the method of the present invention, the spherical center of the pseudo spherical surface of the aspherical lens to be processed and the processing tool The cam is arranged so as to match the oscillating spheres of the robot, and the machining tool is reciprocated at each angle to create an aspheric trajectory. That is, assuming that the angle θ is θ = Tan −1 (X / Y) and the curvature of the pseudo spherical surface is R, the feeding amount △ is calculated as △ = √ (X 2 + Y 2 ) −R. By interpolating the angle θ and the feed amount △, an aspheric trajectory is created. Further, the method of the present invention facilitates the manufacture of the tool plate by using a spherical tool plate having a curvature smaller than the minimum curvature of the lens to be processed, and furthermore, has a structure in which the arrangement position of the tool plate can be turned around the spherical center of the tool plate. The setup is easy. According to the apparatus of the present invention, the control program can be easily created, and the processing cost can be reduced.
[0020]
【The invention's effect】
The present invention provides a method of polishing an aspheric lens using a cam-type spherical core type polishing machine constituted by an oscillator that rotates a polishing plate and swings a ball center, wherein the method reciprocates on an axis passing through the center of the oscillator. An aspheric lens polishing method using a cam-type spherical core type polishing machine, characterized in that a possible table and an angle of the oscillating body are interpolated to give an aspheric trajectory control to the polishing dish. A method of polishing an aspheric lens using a cam-type ball-and-center polisher in which the shape of a polishing dish in the method of polishing a spherical lens is a spherical surface having a curvature smaller than the minimum curvature portion of the curvature of the aspheric lens to be processed. An aspheric lens polishing method using a cam-type spherical center type polishing machine that enables a position where the polishing dish is in contact with the aspheric lens to be processed to be rotated as a spherical center of the polishing dish in the lens polishing method, The aspheric lens laboratory An aspherical lens polishing method using the cam-type spherical center grinder for polishing an aspherical surface in the control of the two axes by the use of a cam without the numerical control with three axes or more axes in the method.
[0021]
The present invention also provides a polishing apparatus for an aspheric lens using a cam-type spherical core type polishing machine constituted by an oscillator that rotates a polishing dish and swings a ball center, wherein an axis passing through the center of the oscillator is An aspherical lens polishing apparatus using a cam-type spherical core type polishing machine, comprising: a reciprocating table and a polishing plate for interpolating the angle of the oscillating body, and giving an aspherical trajectory control to the polishing plate. Further, in the above-described aspheric lens polishing apparatus, a spherical core type cam is provided in which a locus of the average curvature of the aspheric lens to be processed is a locus of the tool, and a locus between the curvature of the aspheric lens to be processed and the processing tool is provided. An aspherical lens polishing apparatus using a cam-type ball center polisher having a difference and imparting an aspheric trajectory to the processing tool by extending or retracting the processing tool at each swing angle. It has many effects like:
A. Since the present invention has been developed to solve the conventional disadvantage, the processing tool swings around the spherical center of the pseudo spherical surface with respect to the aspherical shape, and the processing tool has a difference from the pseudo spherical surface. Is corrected in the direction of the spherical center of the pseudo spherical surface, so that aspherical polishing can be performed.
A) According to the method of the present invention, cams are arranged and the processing tool is reciprocated at each angle so that the spherical center of the pseudo spherical surface of the aspherical lens to be processed and the oscillating spherical center of the processing tool coincide with each other. Trajectories can be created. That is, by interpolating the angle θ and the feeding amount △, it is possible to create an aspheric trajectory.
C) According to the method of the present invention, the manufacture of the tool plate can be facilitated by using a spherical tool plate having a curvature smaller than the minimum curvature of the lens to be processed.
D) According to the method of the present invention, the arrangement position of the tool plate has a structure capable of turning around the ball center of the tool plate, so that the setup is easy.
(E) According to the apparatus of the present invention, creation of a control program is facilitated and machining cost is reduced.
According to the apparatus of the present invention, by using a cam, a conventional apparatus which must perform numerical control with three or more axes can perform polishing of an aspheric surface more precisely by controlling two axes. The price of the device can also be provided at a low price.
In addition, the trajectory data of the aspherical surface may be data of two axes, and the program is simplified, and the number of machining steps can be reduced.
[Brief description of the drawings]
FIG. 1 is a cutaway perspective view showing an aspheric lens polishing apparatus according to the present invention.
FIG. 2 is a schematic cutaway perspective view showing a main part of the present invention.
FIG. 3 is a schematic diagram showing a tool setting method according to the present invention.
FIG. 4 is a schematic view showing a concave surface processing method according to the present invention.
FIG. 5 is a schematic view showing a method for processing a convex surface according to the present invention.
FIG. 6 is a schematic explanatory view showing a position data calculation method according to the present invention.
FIG. 7 is a conceptual diagram showing an arrangement of a swinging portion cam roller used in the present invention.
FIG. 8 is an explanatory schematic diagram showing a conventional aspherical surface generating device.
FIG. 9 is an explanatory diagram showing a conventional aspherical surface polishing method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Processing tool 2 Tool spindle motor 3 Tool feeding motor 4 Ball screw unit 5 Spindle table 6 Feeding table 7 Linear guide 8 Swing table 9 Die set 10 Cam 11 Cam roller 12 Swing gear 13 Reducer 14 Swing motor 15 Working tool rotation center Unit 20 Work lens 21 Lens holder 22 Spindle sleeve 23 Work vertical arm 24 Lens rotation motor 25 Timing belt 26 Pressure knob 27 Ball screw 28 Work axis motor 30 Processing tool 31 Lens 40 Computer 41 Controller 42 Tool feeding motor 43 Cam 44 Swing Dynamic motor 101 Frame 102 Tool rotating shaft 103 Tool moving 104 Rotary axis 105 Processing tool (grinding stone)
106 Work axis 107 Work 108 Work axis (rotary axis)
A Tool tilt center B Swing center C Pseudo spherical surface D Difference correction direction E Cam surface R center F Concave cam surface G Convex cam surface H Cam surface R center

Claims (6)

研磨皿を回転かつ球心を揺動させる揺動体で構成されるカム式球心型研磨機を用いた非球面レンズの研磨方法において、前記揺動体の中心を通る軸線上を往復可能なテーブルと前記揺動体の角度を補間して研磨皿に非球面の軌跡制御を与えることを特徴とするカム式球心型研磨機を用いた非球面レンズ研磨方法。In a method of polishing an aspheric lens using a cam-type spherical polishing machine constituted by an oscillator that rotates a polishing plate and swings a ball center, a table that can reciprocate on an axis passing through the center of the oscillator. An aspherical lens polishing method using a cam-type spherical core type polishing machine, wherein an aspherical trajectory control is given to a polishing plate by interpolating an angle of the oscillator. 前項の非球面レンズ研磨方法において、研磨皿の形状を被加工非球面レンズの曲率の最小曲率部より小さい球面の曲率とした請求項1記載のカム式球心型研磨機を用いた非球面レンズ研磨方法。2. The aspheric lens using a cam-type spherical core type polishing machine according to claim 1, wherein in the method of polishing an aspheric lens according to the preceding item, the shape of the polishing dish is a spherical surface having a curvature smaller than the minimum curvature portion of the curvature of the aspheric lens to be processed. Polishing method. 請求項1記載の非球面レンズ研磨方法において、被加工非球面レンズに対して研磨皿が接触する位置を研磨皿の球心として旋回させることを可能にする請求項1及び2記載のカム式球心型研磨機を用いた非球面レンズ研磨方法。The method according to claim 1, wherein the position of the polishing dish in contact with the aspherical lens to be processed can be turned as the spherical center of the polishing dish. An aspherical lens polishing method using a core type polishing machine. 請求項1記載の非球面レンズ研磨方法において、3軸以上の軸を備えた数値制御とせず、カムを用いることにより2軸の制御にて非球面を研磨加工する請求項3記載のカム式球心型研磨機を用いた非球面レンズ研磨方法。4. The method according to claim 1, wherein the aspherical surface is polished by a two-axis control by using a cam instead of a numerical control having three or more axes. An aspherical lens polishing method using a core type polishing machine. 研磨皿を回転かつ球心揺動させる揺動体で構成されるカム式の球心型研磨機を用いた非球面レンズの研磨装置において、前記揺動体の中心を通る軸線上を往復可能なテーブルと前記揺動体の角度を補間する研磨皿とを設け、該研磨皿に非球面の軌跡制御を与えることを特徴とするカム式球心型研磨機を用いた非球面レンズ研磨装置。In a polishing apparatus for an aspheric lens using a cam-type spherical core polishing machine constituted by an oscillator that rotates a polishing dish and swings a ball center, a table that can reciprocate on an axis passing through the center of the oscillator. An aspheric lens polishing apparatus using a cam-type ball-center type polishing machine, comprising: a polishing plate for interpolating the angle of the oscillating body; and providing an aspheric trajectory control to the polishing plate. 請求項5記載の非球面レンズ研磨装置において、被加工非球面レンズ曲率の平均曲率の軌跡がツールの軌跡となる球心型のカムを設け、該被加工非球面レンズ曲率と加工ツールとの軌跡差を有し、かつ各々の揺動角度に加工ツールを繰出し或いは引込みさせて前記加工ツールに非球面の軌跡を付与した請求項5記載のカム式球心研磨機を用いた非球面レンズ研磨装置。6. The aspheric lens polishing apparatus according to claim 5, further comprising: a spherical centered cam having a locus of an average curvature of the aspheric lens to be processed being a locus of the tool, and a locus between the curvature of the aspheric lens to be processed and the processing tool. 6. An aspherical lens polishing apparatus using a cam type spherical center polishing machine according to claim 5, wherein the processing tool is extended or retracted at each swing angle and an aspheric trajectory is given to the processing tool. .
JP2002170977A 2002-06-12 2002-06-12 Aspherical lens polishing method using cam type spherical center polishing machine Expired - Fee Related JP3756130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170977A JP3756130B2 (en) 2002-06-12 2002-06-12 Aspherical lens polishing method using cam type spherical center polishing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170977A JP3756130B2 (en) 2002-06-12 2002-06-12 Aspherical lens polishing method using cam type spherical center polishing machine

Publications (2)

Publication Number Publication Date
JP2004017166A true JP2004017166A (en) 2004-01-22
JP3756130B2 JP3756130B2 (en) 2006-03-15

Family

ID=31170949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170977A Expired - Fee Related JP3756130B2 (en) 2002-06-12 2002-06-12 Aspherical lens polishing method using cam type spherical center polishing machine

Country Status (1)

Country Link
JP (1) JP3756130B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006797A1 (en) 2008-02-01 2009-08-06 Kojima Engineering Co., Ltd. Lens processing device, has actuator mechanisms causing spindles for accomplishing linear forward and backward movement in X-axis direction perpendicular to Y-axis and Z-axis, where Y-axis is perpendicular to plane
US10265831B2 (en) 2015-01-27 2019-04-23 Maxell, Ltd. Method for manufacturing lens, method for manufacturing molding die for lens, method for manufacturing mirror, method for manufacturing molding die for mirror, lens and molding die for lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006797A1 (en) 2008-02-01 2009-08-06 Kojima Engineering Co., Ltd. Lens processing device, has actuator mechanisms causing spindles for accomplishing linear forward and backward movement in X-axis direction perpendicular to Y-axis and Z-axis, where Y-axis is perpendicular to plane
KR101509504B1 (en) 2008-02-01 2015-04-06 유겐가이샤 코지마 엔지니어링 Lens machining device
DE102009006797B4 (en) 2008-02-01 2024-02-29 Kojima Engineering Co., Ltd. Lens processing device
US10265831B2 (en) 2015-01-27 2019-04-23 Maxell, Ltd. Method for manufacturing lens, method for manufacturing molding die for lens, method for manufacturing mirror, method for manufacturing molding die for mirror, lens and molding die for lens

Also Published As

Publication number Publication date
JP3756130B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP4456520B2 (en) Multi-axis spherical grinding apparatus and grinding method
US2633675A (en) Surfacing machine
US5024024A (en) Grinding and finishing apparatus and method
JP2007118117A (en) Machining device and method for fly-eye lens forming die
JP2004017166A (en) Aspheric lens polishing method and device using cam type sphere center type polisher
JP3806408B2 (en) Honing machine and honing method
JP2009113162A (en) Polishing device and method
JP2004025314A (en) Polishing device
JP2009066724A (en) Lens spherical face grinding method and device
JPH03251354A (en) Spherical surface working device for optical ns and mirror
JP2009090414A (en) Spherical surface grinding method for lens
JP2005161410A (en) Curved surface polishing device and curved surface polishing method
JP2003340702A (en) Diamond tool plate oscillation rotation-type lens polishing method and its device
JP2000237931A (en) Curved surface working method
JP2002178248A (en) Polishing device
US4271636A (en) Lens generating apparatus
CN211681571U (en) Surface machining tool and numerical control machine tool
JPH05138521A (en) Aspheric surface manufacturing device and method
JPH0622797B2 (en) Lens polishing equipment
JP2019121290A (en) Cutting device and control method therefor
JPS5953153A (en) Method and apparatus for polishing spherical body
JP3517595B2 (en) Spherical surface processing method and apparatus, and dummy holder
JP2617579B2 (en) Gear grinding machine
JPH0966445A (en) Polishing device and polishing method
JPH05171B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160106

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees