JP2004017003A - Catalytic wet oxidation apparatus and method - Google Patents

Catalytic wet oxidation apparatus and method Download PDF

Info

Publication number
JP2004017003A
JP2004017003A JP2002178840A JP2002178840A JP2004017003A JP 2004017003 A JP2004017003 A JP 2004017003A JP 2002178840 A JP2002178840 A JP 2002178840A JP 2002178840 A JP2002178840 A JP 2002178840A JP 2004017003 A JP2004017003 A JP 2004017003A
Authority
JP
Japan
Prior art keywords
oxygen
wastewater
cod
amount
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002178840A
Other languages
Japanese (ja)
Inventor
Sugihiro Konishi
小西 杉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002178840A priority Critical patent/JP2004017003A/en
Publication of JP2004017003A publication Critical patent/JP2004017003A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize a COD (chemical oxygen demand) concentration of oxidation treated waste water and to reduce wasteful driving power relating to the intrusion of oxygen-containing gas into waste water by suppressing the fluctuation of the amount of intrusion of the oxygen-containing gas from its optimum value. <P>SOLUTION: The catalytic wet oxidation apparatus for subjecting the waste water X to be treated to oxidation treatment by a catalyst in the state of mixing a prescribed amount of the oxygen-containing gas with the waste water X is equipped with a COD measuring means 1 for measuring the COD concentration of the oxygen-containing gas, an oxygen-containing gas adjusting means 7 for adjusting the supply amount of the oxygen-containing gas to be mixed with the waste water X, and a control means 14 for optimally controlling the oxygen-containing gas adjusting means 7 so as to maximize the reduction rate of the COD of the oxidation treated waste water X' with respect to the waste water X on the basis of the COD concentration of the COD measuring means 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、対象物を触媒を用いて酸化処理する触媒湿式酸化装置及び方法に関する。
【0002】
【従来の技術】
周知のように、触媒湿式酸化装置は、対象物に空気等の酸素含有ガスを混入させた状態とし、触媒によって酸化処理する装置である。このような触媒湿式酸化装置は、廃水を対象物とする酸化処理に利用される。
【0003】
例えば,特開平6−277680号公報には、このような触媒湿式酸化装置を用いた廃水の酸化処理技術の1つとして、廃水の処理結果に基づいて廃水への酸素含有ガスの混入量を最適にコントロールする技術が開示されている。すなわち、この技術は、過剰な酸素含有ガスを廃水に混入させた場合に、廃水の酸化処理によって生成されたガス中に酸化反応に寄与しなかった酸素(余剰酸素)が含まれる点に着目し、当該余剰酸素の量に基づいて酸素含有ガスの混入量を制御することにより廃水の酸化処理に必要最小限の酸素含有ガスを廃水に混入させるものである。
【0004】
【発明が解決しようとする課題】
ところで、上記特開平6−277680号公報の技術は、廃水の処理結果に基づいて廃水への酸素含有ガスの混入量を最適にコントロールするものなので、酸素含有ガスの混入量を十分に最適制御することができない。すなわち、酸化反応にある程度の時間を要するために、余剰酸素の検出結果に基づいて酸素含有ガスの混入量を制御したのでは、いわゆる「制御遅れ」が生じて酸素含有ガスの混入量が本来の最適値から大きく変動する。この結果、酸素含有ガスを廃水に混入させる供給装置に無駄な動力を与えなければいけなかったり、あるいは酸化処理後の廃水(酸化処理済廃水)のCOD濃度が変動するという問題が生じる。
【0005】
本発明は、上述する問題点に鑑みてなされたもので、以下の点を目的とするものである。
(1)酸素含有ガスの混入量の最適値からの変動を抑制する。
(2)酸素含有ガスの廃水への混入に係わる無駄な動力を削減する。
(3)酸化処理済廃水のCOD濃度を安定化させる。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明では、処理対象廃水に所定量の酸素含有ガスを混合した状態で触媒によって酸化処理する触媒湿式酸化装置において、上記処理対象廃水のCOD濃度を測定するCOD測定手段と、上記処理対象廃水に混合させる上記酸素含有ガスの供給量を調節する酸素含有ガス調節手段と、上記COD測定手段のCOD濃度に基づいて、上記処理対象廃水に対する酸化処理済廃水のCOD低減率が最大となるように上記酸素含有ガス調節手段を最適制御する制御手段とを具備するという手段を採用する。
すなわち、本第1の手段によれば、処理対象廃水に混合させる酸素含有ガスの供給量は、酸化処理前の処理対象廃水のCOD濃度に基づいてフィードフォワード制御される。
【0007】
触媒湿式酸化装置に係わる第2の手段として、上記第1の手段において、上記酸化処理済廃水に含まれる余剰酸素量を検出する酸素検出手段をさらに備え、上記制御手段は前記酸素検出手段によって検出された余剰酸素量と上記COD濃度に基づいて上記酸素含有ガス調節手段を最適制御するという手段を採用する。
すなわち、本第2の手段によれば、処理対象廃水に混合させる酸素含有ガスの供給量は、酸化処理前の処理対象廃水のCOD濃度に基づいてフィードフォワード制御されると共に、酸化処理済廃水の余剰酸素量に基づいてフィードバック制御される。
【0008】
触媒湿式酸化装置に係わる第3の手段として、上記第1または第2の手段において、上記制御手段は、COD濃度とCOD低減率を最大とする単位酸素含有ガス量との関係を予め記憶し、上記COD測定手段からCOD濃度が入力されると、当該COD濃度を前記関係に当てはめることによって上記酸素含有ガスの量を算出するという手段を採用する。
すなわち、本第3の手段によれば、制御手段に予め記憶されたCOD濃度と単位酸素含有ガス量との関係、つまりフィードフォワード用の制御データに実測されたCOD濃度を当てはめることによって酸素含有ガスの量が算出される。
【0009】
触媒湿式酸化装置に係わる第4の手段として、上記第1〜第3いずれかの手段において、上記COD測定手段は、上記処理対象廃水に照射した紫外線の透過量に基づいてCOD濃度を測定するという手段を採用する。
すなわち、本第4の手段によれば、処理対象廃水のCOD濃度は、COD測定手段から照射された紫外線の透過量を測ることによって測定される。
【0010】
触媒湿式酸化方法に係わる第1の手段として、処理対象廃水に所定量の酸素含有ガスを混合した状態で触媒のよって酸化処理する触媒湿式酸化方法において、上記処理対象廃水について測定されたCOD濃度に基づいて上記処理対象廃水に対する酸化処理済廃水のCOD低減率が最大となるように酸素含有ガスの量を設定するという手段を採用する。
【0011】
触媒湿式酸化方法に係わる第2の手段として、上記第1の手段において、上記酸化処理済廃水について検出された余剰酸素量と上記処理対象廃水について測定されたCOD濃度とに基づいて上記処理対象廃水に対する酸化処理済廃水のCOD低減率が最大となるように上記酸素含有ガスの量を設定するという手段を採用する。
【0012】
触媒湿式酸化方法に係わる第3の手段として、上記第1または第2の手段において、上記COD濃度とCOD低減率を最大とする単位酸素含有ガス量との関係に上記COD濃度を当てはめることによって上記酸素含有ガスの量を算出するという手段を採用する。
【0013】
触媒湿式酸化方法に係わる第4の手段にとして、上記第1〜第3いずれかの手段において、上記処理対象廃水に紫外線を照射し、上記紫外線の透過量に基づいてCOD濃度を測定するという手段を採用する。
【0014】
【発明の実施の形態】
以下、図面を参照して、本発明に係わる触媒湿式酸化装置及び方法の一実施形態について説明する。
【0015】
図1は本実施形態における触媒湿式酸化装置の処理系統図である。この図において、符号Xは処理対象廃水、1はCOD測定装置(COD測定手段)、2は流量計、3はポンプ、4は熱交換機、5は反応器、6はコンプレッサ、7は空気調節弁(酸素含有ガス調節手段)、8は気液分離器、9は圧力指示調節計、10は液面指示調節計、11は液体排出調節弁、12は気体排出調節弁、13は酸素濃度計(酸素検出手段)、また14は制御装置(制御手段)である。
【0016】
処理対象廃水Xは、各種の有機物や無機物を含んだ一般廃水であり、COD測定装置1、流量計2、ポンプ3及び熱交換機4を介して反応器5に供給される。COD測定装置1は、このような処理対象廃水XのCOD濃度(単位体積あたりの処理対象廃水Xに含まれる酸化処理対象物量)を一定のタイムインターバルで連続的に測定し制御装置14に順次出力する。このCOD測定装置1は、例えば処理対象廃水Xに照射した紫外線の透過量を検出することによってCOD濃度を測定するものであり、一例として横河電気製の「UV400G形 有機性汚濁物測定装置」がある。
【0017】
流量計2は、反応器5に供給される処理対象廃水Xの流量を測定し制御装置14に順次出力する。ポンプ3は、処理対象廃水Xを反応器5に送り込むためのものであり、上記流量を規定する。熱交換機4は、処理対象廃水Xと反応器5から排出された酸化処理済液X´との熱交換用に設けられている。
【0018】
このような熱交換機4とポンプ3との間においては、図示するように、処理対象廃水Xにコンプレッサ6によって加圧された圧縮空気が空気調節弁7を介して混合されるようになっている。すなわち、反応器5には、処理対象廃水Xに酸素含有ガスである空気が所定の割合で混合されたものが順次供給される。空気調節弁7は、制御装置14から入力される制御信号に基づいて処理対象廃水Xに混合する空気の量つまり空気混合量を調節する。反応器5は、内部に酸化分解用の触媒が充填されており、処理対象廃水Xと空気との気液混合水を触媒の作用によって酸化分解する。
【0019】
このような反応器5により酸化分解された酸化処理済廃水X´は、上記熱交換機4を介して気液分離器8に供給される。気液分離器8は、酸化処理済廃水X´を液体成分と気体成分とに分離するものである。液体成分は、液体排出調節弁11を介して気液分離器8から外部に排出され、気体成分は、気体排出調節弁12を介して気液分離器8から外部に排出される。
【0020】
上記気液分離器8と熱交換機4との間には圧力指示調節計9が設けられている。この圧力指示調節計9は、酸化処置済廃水X´の圧力を検出し、この検出値に基づいて液体排出弁11の開口度を自動調節する。また、上記気液分離器8には液面指示調節計10が備えられている。この液面指示調節計10は、気液分離器8内の酸化処理済廃水X´の液面を検出し、その検出値に基づいて液体排出調節弁11の開口度を自動調節する。さらに、上記気体成分の排出経路には酸素濃度計13が設けられている。この酸素濃度計13は、気体成分中に含まれる酸素の濃度(余剰酸素量)を連続的に測定して制御装置14に出力する。
【0021】
制御装置14は、上記COD測定装置1から入力される処理対象廃水XのCOD濃度、流量計2から入力される処理対象廃水Xの流量及び酸素濃度計13から入力される余剰酸素量に基づいて、酸素含有ガス調節手段である空気調節弁7の開口度つまり処理対象廃水Xの空気混合量を制御するものである。制御装置14の詳細な制御作動については後述するが、反応器5内では処理対象廃水Xが空気中の酸素によって酸化分解され、COD値(処理対象廃水Xの酸化処理対象物の量)が低下した状態の酸化処理済廃水X´が反応器5から排出される。制御装置14は、このCOD値の低減率(COD低減率)が最大となるように空気調節弁7つまり空気混合量を最適制御する。
【0022】
このような制御装置14内には、上記COD濃度とCOD低減率を最大とする単位空気量(単位酸素含有ガス量)との関係(COD濃度と単位空気量との関係)が制御データとして記憶されている。ここで、COD濃度とは処理対象廃水Xの単位体積あたりのCOD値を表しており、単位空気量とは単位体積あたりの処理対象廃水Xに混合させる空気の量を表している。このCOD濃度と単位空気量との関係をグラフに表したのが図2(a)である。この図2(a)におけるCOD濃度の範囲は処理対象廃水XのCOD濃度が取り得る範囲である。この図が示すように任意のCOD濃度に対し単位空気量が決定される。制御装置14は、COD測定装置1から入力されたCOD濃度をこのCOD濃度と単位空気量との関係に当てはめることによって単位体積あたりの処理対象廃水Xに含有させる空気の量を算出する。
【0023】
上記図2(a)に示されたCOD濃度と単位空気量との関係は、図2(b)に示すグラフ、つまり空気比とCOD低減率との関係を示す実験結果から導き出されたものである。空気比とは、処理対象廃水Xを完全に酸化処理するために必要な理論空気量と処理対象廃水Xに実際混合する空気量との比である。この図2(b)において、グラフAは処理対象廃水XのCOD濃度が3760ppmの場合における空気比とCOD低減率との関係を示し、グラフBは処理対象廃水XのCOD濃度が5780ppmの場合における空気比とCOD低減率との関係を示し、さらにグラフCは処理対象廃水XのCOD濃度が9500ppmの場合における空気比とCOD低減率との関係を示している。
【0024】
これら各グラフA〜Cの相互比較から容易に解るように、COD低減率を最大とする空気比は、処理対象廃水XのCOD濃度の変化に対して直線的に比例変化するのではなく、当該COD濃度に対して非直線関係にある。また、上記単位空気量は、このような空気比に直線的に比例する関係にあるので、よって上記図2(a)に示したように処理対象廃水XのCOD濃度に対して非直線関係にある。したがって、処理対象廃水XのCOD濃度に基づいてCOD低減率を最大とする単位空気量を求めるためには、実験によって当該単位空気量とCOD濃度との関係(非直線関係)を予め求め、この非直線関係に実際に測定された処理対象廃水XのCOD濃度を当てはめることによって単位空気量を求める必要がある。上記図2(a)に示したグラフ、すなわち制御データは、このような実験の結果に基づいて導き出されたものである。
【0025】
次に、本実施形態における触媒湿式酸化装置の動作を説明する。
【0026】
上述した構成から解るように、本触媒湿式酸化装置はフィードフォワード制御系とフィードバック制御系とを備えている。すなわち、COD測定装置1から入力される処理対象廃水XのCOD濃度と流量計2から入力される処理対象廃水Xの流量とに基づいて空気調節弁7の開口度(つまり空気混合量)を調節する系がフィードフォワード制御系であり、酸素濃度計13から入力される余剰酸素量に基づいて空気調節弁7の開口度を調節する系がフィードバック制御系である。
【0027】
ここで、フィードフォワード制御系のみを機能させた場合、COD濃度と流量とが精度良く測定され、かつ制御装置14に予め記憶されるCOD濃度と単位空気量との関係が精度の良い実験結果に基づくものであれば、時々刻々と変化する処理対象廃水XのCOD濃度に対してCOD低減率を最大に維持するように空気混合量を最適制御することができる。しかしながら、本触媒湿式酸化装置では、制御系の異常に対する信頼性の確保等にも配慮した結果、フィードフォワード制御系とフィードバック制御系とを併用する制御系を採用した。
【0028】
フィードフォワード制御系及びフィードバック制御系の個々の役割としては、フィードバック制御系によって空気混合量を主に最適制御し、このフィードバック制御系の「制御遅れ」に起因する空気混合量の最適値に対する偏差をフィードバック制御系に比較して応答速度の速いフィードフォワード制御系によって補助的に補正する。この結果、処理対象廃水Xに実際に混合される空気混合量は、COD低減率を最大化する最小空気量をより忠実に維持するものとなる。
【0029】
すなわち、制御装置14は、酸素濃度計13から入力される酸素濃度に対して、当該酸素濃度が「ゼロ」を維持するように、つまり必要最小限の空気混合量でCOD低減率を最大化させるように空気調節弁7の開口度をフィードバック制御する。この一方、制御装置14は、COD測定装置1から入力される処理対象廃水XのCOD濃度を予め記憶したCOD濃度と単位空気量との関係に当てはめることによりCOD低減率を最大とする単位空気量を求めると、当該単位空気量に流量計2から入力される処理対象廃水Xの流量とを掛け合わせることによって当該流量に見合った空気混合量を算出する。この空気混合量はフィードフォワード制御系における操作量であり、処理対象廃水Xの実際のCOD濃度に応答性良く追従するので、上記空気混合量の最適値に対する偏差を効果的に縮小補正する。
【0030】
ところで、圧力指示調節計9及び液面指示調節計10は気液分離器8内の安定化を図っており、具体的には圧力指示調節計9は反応器5内の圧力値を所定値に合わせるように気体排出調節弁13の開口度を調節し、液面指示調節器10は気液分離器8内の液面を所定位置に合わせるように液体排出調節弁11の開口度を調節する。
【0031】
なお、本発明は上記実施形態に限定されるものではなく、以下のような変形例が考えられる。
(1)上記実施形態では、空気混合量を余剰酸素量に基づいて制御するようにフィードバック制御系を構成した。しかし、この余剰酸素量に代えて、酸化処理済廃水X´のCOD濃度に基づいて空気混合量をフィードバック制御することも考えられる。すなわち、酸化処理済廃水X´の液体成分のCOD濃度を測定する第2の測定手段を用意し、この第2のCOD測定装置から出力される液体成分のCOD濃度に基づいて空気混合量をフィードバック制御する。
【0032】
(2)上記実施形態においてCOD測定装置1に処理対象廃水Xに照射した紫外線の透過量を検出することによってCOD濃度を測定するものを用いたが、超音波によってCOD濃度を測定するものでも良い。
【0033】
(3)上記実施形態において酸素含有ガスに空気を用いたが例えばオゾンガスを用いても良い。
【0034】
【発明の効果】
以上説明したように、本発明によれば、処理対象廃水に所定量の酸素含有ガスを混合した状態で触媒によって酸化処理する触媒湿式酸化装置において、処理対象廃水のCOD濃度を測定するCOD測定手段と、処理対象廃水に供給する前記酸素含有ガスの供給量を調節する酸素含有ガス調節手段と、COD測定手段のCOD濃度に基づいて、処理対象廃水に対する酸化処理済廃水のCOD低減率が最大となるように上記酸素含有ガス調節手段を最適制御する制御手段とを具備する。すなわち、処理対象廃水のCOD濃度に基づいて酸素含有ガス調節手段をフィードフォワード制御するので、処理対象廃水のCOD濃度が上記処理対象廃水の発生状況の変化により刻々と変化しても処理対象廃水に最適な酸素含有ガス量を混合することができる。したがって、酸化処理対象廃水のCOD濃度を安定化させることが可能となり、また、酸素含有ガスの処理対象廃水への混入に係わる無駄な動力を削減することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係わる触媒湿式酸化装置の処理系統図である。
【図2】本発明の一実施形態における制御データ及び当該制御データの根拠となる実験結果である。(a)はCOD濃度と単位空気量との関係グラフであり、(b)は空気比とCOD低減率との関係グラフである。
【符号の説明】
1……COD測定装置(COD測定手段)
2……流量計
3……ポンプ
4……熱交換機
5……反応器
6……空気コンプレッサ
7……空気調節弁(酸素含有ガス調節手段)
8……気液分離器
9……圧力指示調節計
10……液面指示調節計
11……液体排出調節弁
12……気体排出調節弁
13……酸素濃度計(酸素検出手段)
14……制御装置(制御手段)
X……処理対象廃水
X´……酸化処理済廃水
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalytic wet oxidation apparatus and method for oxidizing an object using a catalyst.
[0002]
[Prior art]
As is well known, a catalytic wet oxidizing apparatus is an apparatus in which an object is mixed with an oxygen-containing gas such as air and oxidized by a catalyst. Such a catalytic wet oxidation device is used for an oxidation treatment of wastewater as an object.
[0003]
For example, Japanese Patent Application Laid-Open No. 6-277680 discloses, as one of the oxidation treatment techniques for wastewater using such a catalytic wet oxidation apparatus, the optimal amount of oxygen-containing gas mixed into the wastewater based on the treatment result of the wastewater. Discloses a control technique. That is, this technique focuses on the point that when excess oxygen-containing gas is mixed into wastewater, oxygen (excess oxygen) that did not contribute to the oxidation reaction is contained in the gas generated by the oxidation treatment of the wastewater. By controlling the mixing amount of the oxygen-containing gas based on the amount of the excess oxygen, the minimum amount of the oxygen-containing gas necessary for the oxidation treatment of the wastewater is mixed into the wastewater.
[0004]
[Problems to be solved by the invention]
By the way, the technique disclosed in Japanese Patent Application Laid-Open No. 6-277680 is for optimally controlling the amount of oxygen-containing gas mixed into wastewater based on the treatment result of wastewater. I can't. That is, since the oxidation reaction requires a certain amount of time, if the mixed amount of the oxygen-containing gas is controlled based on the detection result of the excess oxygen, a so-called “control delay” occurs, and the mixed amount of the oxygen-containing gas becomes the original amount. It fluctuates greatly from the optimal value. As a result, there arises a problem that wasteful power must be given to a supply device for mixing the oxygen-containing gas into the wastewater, or that the COD concentration of the wastewater after the oxidation treatment (oxidized wastewater) fluctuates.
[0005]
The present invention has been made in view of the above problems, and has the following objects.
(1) The fluctuation of the mixed amount of the oxygen-containing gas from the optimum value is suppressed.
(2) Reduce wasteful power involved in mixing oxygen-containing gas into wastewater.
(3) Stabilize the COD concentration of the oxidized wastewater.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a COD measurement for measuring the COD concentration of the above-mentioned wastewater to be treated is performed in a catalytic wet oxidizing apparatus in which a predetermined amount of an oxygen-containing gas is mixed with the wastewater to be treated by a catalyst. Means, oxygen-containing gas adjusting means for adjusting the supply amount of the oxygen-containing gas mixed with the wastewater to be treated, and COD reduction of the oxidized wastewater with respect to the wastewater to be treated based on the COD concentration of the COD measuring means. Control means for optimally controlling the oxygen-containing gas adjusting means so as to maximize the rate.
That is, according to the first means, the supply amount of the oxygen-containing gas to be mixed with the wastewater to be treated is feedforward controlled based on the COD concentration of the wastewater before the oxidation treatment.
[0007]
As a second means relating to the catalytic wet oxidizing apparatus, the first means further comprises an oxygen detecting means for detecting an excess amount of oxygen contained in the oxidized wastewater, and the control means detects the surplus oxygen amount by the oxygen detecting means. A means for optimally controlling the oxygen-containing gas adjusting means based on the surplus oxygen amount obtained and the COD concentration is employed.
That is, according to the second means, the supply amount of the oxygen-containing gas to be mixed with the wastewater to be treated is feed-forward controlled based on the COD concentration of the wastewater to be treated before the oxidation treatment, and the wastewater having been subjected to the oxidation treatment is controlled. Feedback control is performed based on the surplus oxygen amount.
[0008]
As third means relating to the catalytic wet oxidation apparatus, in the first or second means, the control means stores in advance a relationship between a COD concentration and a unit oxygen-containing gas amount that maximizes a COD reduction rate, When the COD concentration is input from the COD measuring means, a means for calculating the amount of the oxygen-containing gas by applying the COD concentration to the relationship is adopted.
That is, according to the third means, by applying the relationship between the COD concentration and the unit oxygen-containing gas amount stored in advance in the control means, that is, the actually measured COD concentration to the control data for feedforward, the oxygen-containing gas is applied. Is calculated.
[0009]
As a fourth means relating to the catalytic wet oxidation apparatus, in any one of the first to third means, the COD measuring means measures a COD concentration based on a transmission amount of ultraviolet light applied to the wastewater to be treated. Adopt means.
That is, according to the fourth means, the COD concentration of the wastewater to be treated is measured by measuring the amount of transmitted ultraviolet light emitted from the COD measuring means.
[0010]
As a first means related to the catalytic wet oxidation method, in a catalytic wet oxidation method in which a predetermined amount of an oxygen-containing gas is mixed with a wastewater to be treated by a catalyst, the COD concentration measured for the wastewater to be treated is reduced. On the basis of this, means for setting the amount of the oxygen-containing gas so as to maximize the COD reduction rate of the oxidized wastewater with respect to the wastewater to be treated is adopted.
[0011]
As a second means related to the catalytic wet oxidation method, in the first means, the wastewater to be treated is based on the amount of excess oxygen detected in the wastewater subjected to oxidation treatment and the COD concentration measured in the wastewater to be treated. The amount of the oxygen-containing gas is set so that the COD reduction rate of the oxidized wastewater with respect to the maximum is reduced.
[0012]
As a third means relating to the catalytic wet oxidation method, in the first or second means, the COD concentration is applied to the relationship between the COD concentration and the unit oxygen-containing gas amount that maximizes the COD reduction rate. Means of calculating the amount of the oxygen-containing gas is employed.
[0013]
As a fourth means related to the catalytic wet oxidation method, in any one of the first to third means, the treatment target wastewater is irradiated with ultraviolet rays, and the COD concentration is measured based on the amount of transmitted ultraviolet rays. Is adopted.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a catalytic wet oxidation apparatus and method according to the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a processing system diagram of the catalytic wet oxidation apparatus in the present embodiment. In this figure, the symbol X is the wastewater to be treated, 1 is a COD measuring device (COD measuring means), 2 is a flow meter, 3 is a pump, 4 is a heat exchanger, 5 is a reactor, 6 is a compressor, and 7 is an air control valve. (Oxygen-containing gas adjusting means), 8 is a gas-liquid separator, 9 is a pressure indicating controller, 10 is a liquid level indicating controller, 11 is a liquid discharge control valve, 12 is a gas discharge control valve, and 13 is an oxygen concentration meter ( Reference numeral 14 denotes a control device (control means).
[0016]
The wastewater X to be treated is general wastewater containing various organic substances and inorganic substances, and is supplied to the reactor 5 via the COD measuring device 1, the flow meter 2, the pump 3, and the heat exchanger 4. The COD measuring device 1 continuously measures the COD concentration of the wastewater X to be treated (the amount of the oxidation treatment target contained in the wastewater X to be treated per unit volume) at a constant time interval and sequentially outputs the COD concentration to the control device 14. I do. The COD measuring device 1 measures the COD concentration by detecting, for example, the amount of transmitted ultraviolet light applied to the wastewater X to be treated, and as an example, “UV400G type organic pollutant measuring device” manufactured by Yokogawa Electric Corporation. There is.
[0017]
The flow meter 2 measures the flow rate of the wastewater X to be treated, which is supplied to the reactor 5, and sequentially outputs the measured flow rate to the control device 14. The pump 3 is for feeding wastewater X to be treated into the reactor 5 and regulates the flow rate. The heat exchanger 4 is provided for heat exchange between the wastewater X to be treated and the oxidized liquid X ′ discharged from the reactor 5.
[0018]
As shown in the drawing, between the heat exchanger 4 and the pump 3, compressed air pressurized by the compressor 6 into the wastewater X to be treated is mixed via the air control valve 7. . That is, a mixture of the wastewater X to be treated and the air containing oxygen as the oxygen-containing gas at a predetermined ratio is sequentially supplied to the reactor 5. The air control valve 7 adjusts the amount of air mixed with the wastewater X to be treated, that is, the air mixing amount, based on a control signal input from the control device 14. The reactor 5 is filled with a catalyst for oxidative decomposition, and oxidatively decomposes the gas-liquid mixed water of the wastewater X to be treated and air by the action of the catalyst.
[0019]
The oxidized wastewater X ′ oxidized and decomposed by the reactor 5 is supplied to the gas-liquid separator 8 via the heat exchanger 4. The gas-liquid separator 8 separates the oxidized wastewater X ′ into a liquid component and a gas component. The liquid component is discharged to the outside from the gas-liquid separator 8 via the liquid discharge control valve 11, and the gas component is discharged to the outside from the gas-liquid separator 8 via the gas discharge control valve 12.
[0020]
A pressure indicating controller 9 is provided between the gas-liquid separator 8 and the heat exchanger 4. The pressure indicating controller 9 detects the pressure of the oxidized wastewater X ′, and automatically adjusts the opening of the liquid discharge valve 11 based on the detected value. The gas-liquid separator 8 is provided with a liquid level indicating controller 10. The liquid level indicating controller 10 detects the liquid level of the oxidized wastewater X ′ in the gas-liquid separator 8 and automatically adjusts the opening of the liquid discharge control valve 11 based on the detected value. Further, an oxygen concentration meter 13 is provided in a discharge path of the gas component. The oxygen concentration meter 13 continuously measures the concentration of oxygen (excess oxygen amount) contained in the gas component and outputs the result to the control device 14.
[0021]
The control device 14 is based on the COD concentration of the wastewater X to be treated inputted from the COD measuring device 1, the flow rate of the wastewater X to be treated inputted from the flow meter 2, and the excess oxygen amount inputted from the oximeter 13. The opening degree of the air control valve 7, which is an oxygen-containing gas adjusting means, that is, the amount of air mixed with the wastewater X to be treated is controlled. Although the detailed control operation of the control device 14 will be described later, the wastewater X to be treated is oxidatively decomposed in the reactor 5 by oxygen in the air, and the COD value (the amount of the wastewater X to be treated) decreases. The oxidized wastewater X ′ in the state as described above is discharged from the reactor 5. The controller 14 optimally controls the air control valve 7, that is, the air mixing amount, so that the COD reduction rate (COD reduction rate) is maximized.
[0022]
In such a control device 14, the relationship between the COD concentration and the unit air amount (unit oxygen-containing gas amount) that maximizes the COD reduction rate (the relationship between the COD concentration and the unit air amount) is stored as control data. Have been. Here, the COD concentration represents a COD value per unit volume of the wastewater X to be treated, and the unit air amount represents an amount of air mixed with the wastewater X to be treated per unit volume. FIG. 2A is a graph showing the relationship between the COD concentration and the unit air amount. The range of the COD concentration in FIG. 2A is a range in which the COD concentration of the wastewater X to be treated can be taken. As shown in this figure, the unit air amount is determined for an arbitrary COD concentration. The controller 14 calculates the amount of air contained in the wastewater X to be treated per unit volume by applying the COD concentration input from the COD measuring device 1 to the relationship between the COD concentration and the unit air amount.
[0023]
The relationship between the COD concentration and the unit air amount shown in FIG. 2A is derived from the graph shown in FIG. 2B, that is, the experimental result showing the relationship between the air ratio and the COD reduction rate. is there. The air ratio is the ratio between the theoretical amount of air required to completely oxidize the wastewater X to be treated and the amount of air actually mixed with the wastewater X to be treated. In FIG. 2B, graph A shows the relationship between the air ratio and the COD reduction rate when the COD concentration of the wastewater X to be treated is 3760 ppm, and graph B shows the relationship when the COD concentration of the wastewater X to be treated is 5780 ppm. The relationship between the air ratio and the COD reduction rate is shown. Further, the graph C shows the relationship between the air ratio and the COD reduction rate when the COD concentration of the wastewater X to be treated is 9500 ppm.
[0024]
As can be easily understood from the intercomparison of these graphs A to C, the air ratio that maximizes the COD reduction rate does not change linearly in proportion to the change in the COD concentration of the wastewater X to be treated, but rather does not change linearly. There is a non-linear relationship with COD concentration. Further, since the unit air amount has a relationship linearly proportional to the air ratio, the unit air amount has a non-linear relationship with the COD concentration of the wastewater X to be treated as shown in FIG. is there. Therefore, in order to determine the unit air amount that maximizes the COD reduction rate based on the COD concentration of the wastewater X to be treated, the relationship (non-linear relationship) between the unit air amount and the COD concentration is determined in advance by an experiment. It is necessary to determine the unit air amount by applying the actually measured COD concentration of the wastewater X to be treated to a non-linear relationship. The graph shown in FIG. 2A, that is, the control data, is derived based on the results of such an experiment.
[0025]
Next, the operation of the catalytic wet oxidation apparatus according to the present embodiment will be described.
[0026]
As understood from the above-described configuration, the present catalytic wet oxidizing apparatus includes a feedforward control system and a feedback control system. That is, the opening degree (that is, the amount of mixed air) of the air control valve 7 is adjusted based on the COD concentration of the wastewater X to be treated input from the COD measuring device 1 and the flow rate of the wastewater X to be treated inputted from the flow meter 2. Is a feedforward control system, and a system that adjusts the degree of opening of the air control valve 7 based on the amount of excess oxygen input from the oximeter 13 is a feedback control system.
[0027]
Here, when only the feedforward control system is operated, the COD concentration and the flow rate are accurately measured, and the relationship between the COD concentration and the unit air amount stored in advance in the control device 14 becomes an accurate experimental result. Based on this, it is possible to optimally control the air mixing amount so as to maintain the COD reduction rate at the maximum with respect to the COD concentration of the wastewater X to be treated, which changes every moment. However, in the present catalytic wet oxidizer, a control system that uses both a feedforward control system and a feedback control system was adopted as a result of taking into account ensuring reliability against control system abnormalities.
[0028]
The individual roles of the feedforward control system and the feedback control system are mainly to optimally control the air mixing amount by the feedback control system, and to determine the deviation from the optimum value of the air mixing amount due to the “control delay” of the feedback control system. The correction is supplementarily performed by a feedforward control system having a higher response speed than the feedback control system. As a result, the air mixing amount actually mixed with the wastewater X to be treated maintains the minimum air amount that maximizes the COD reduction rate more faithfully.
[0029]
That is, the control device 14 maximizes the COD reduction rate with respect to the oxygen concentration input from the oximeter 13 so that the oxygen concentration maintains “zero”, that is, the minimum necessary air mixing amount. Thus, the opening degree of the air control valve 7 is feedback-controlled. On the other hand, the control device 14 applies the COD concentration of the wastewater X to be treated inputted from the COD measuring device 1 to the relationship between the previously stored COD concentration and the unit air amount to thereby increase the COD reduction rate to the maximum unit air amount. Is calculated by multiplying the unit air amount by the flow rate of the wastewater X to be treated, which is input from the flowmeter 2, to calculate an air mixing amount corresponding to the flow rate. This air mixing amount is an operation amount in the feedforward control system and follows the actual COD concentration of the wastewater X to be treated with good responsiveness, so that the deviation of the air mixing amount from the optimum value is effectively reduced and corrected.
[0030]
The pressure indicating controller 9 and the liquid level indicating controller 10 stabilize the inside of the gas-liquid separator 8. Specifically, the pressure indicating controller 9 sets the pressure value in the reactor 5 to a predetermined value. The opening of the gas discharge control valve 13 is adjusted so as to match, and the liquid level indicating controller 10 adjusts the opening of the liquid discharge control valve 11 so that the liquid level in the gas-liquid separator 8 is adjusted to a predetermined position.
[0031]
Note that the present invention is not limited to the above embodiment, and the following modified examples can be considered.
(1) In the above embodiment, the feedback control system is configured to control the air mixing amount based on the surplus oxygen amount. However, instead of this surplus oxygen amount, it is conceivable to perform feedback control of the air mixing amount based on the COD concentration of the oxidized wastewater X '. That is, a second measuring means for measuring the COD concentration of the liquid component of the oxidized wastewater X 'is prepared, and the air mixing amount is fed back based on the COD concentration of the liquid component output from the second COD measuring device. Control.
[0032]
(2) In the above embodiment, the COD measuring apparatus 1 is used to measure the COD concentration by detecting the amount of transmitted ultraviolet light irradiated to the wastewater X to be treated, but the COD concentration may be measured by ultrasonic waves. .
[0033]
(3) Although air is used as the oxygen-containing gas in the above embodiment, for example, ozone gas may be used.
[0034]
【The invention's effect】
As described above, according to the present invention, in a catalytic wet oxidizing apparatus that oxidizes with a catalyst in a state where a predetermined amount of oxygen-containing gas is mixed with wastewater to be treated, a COD measuring unit that measures the COD concentration of the wastewater to be treated And an oxygen-containing gas adjusting means for adjusting the supply amount of the oxygen-containing gas supplied to the wastewater to be treated, and a COD reduction rate of the oxidized wastewater with respect to the wastewater to be treated being maximum based on the COD concentration of the COD measuring means. And control means for optimally controlling the oxygen-containing gas adjusting means. That is, since the oxygen-containing gas adjusting means is feedforward-controlled based on the COD concentration of the wastewater to be treated, even if the COD concentration of the wastewater to be treated changes every moment due to the change in the generation state of the wastewater to be treated, the wastewater to be treated is treated as the wastewater. An optimal oxygen-containing gas amount can be mixed. Therefore, it is possible to stabilize the COD concentration of the wastewater to be subjected to the oxidation treatment, and it is possible to reduce unnecessary power related to the mixing of the oxygen-containing gas into the wastewater to be treated.
[Brief description of the drawings]
FIG. 1 is a processing system diagram of a catalytic wet oxidation apparatus according to an embodiment of the present invention.
FIG. 2 shows control data according to an embodiment of the present invention and experimental results which are the basis of the control data. (A) is a graph showing the relationship between the COD concentration and the unit air amount, and (b) is a graph showing the relationship between the air ratio and the COD reduction rate.
[Explanation of symbols]
1. COD measuring device (COD measuring means)
2 ... Flow meter 3 ... Pump 4 ... Heat exchanger 5 ... Reactor 6 ... Air compressor 7 ... Air regulating valve (oxygen-containing gas regulating means)
8 ... gas-liquid separator 9 ... pressure indicating controller 10 ... liquid level indicating controller 11 ... liquid discharge control valve 12 ... gas discharge control valve 13 ... oxygen concentration meter (oxygen detecting means)
14 Control device (control means)
X: Wastewater to be treated X ': Oxidized wastewater

Claims (8)

処理対象廃水(X)に所定量の酸素含有ガスを混合した状態で触媒によって酸化処理する触媒湿式酸化装置において、
前記処理対象廃水(X)のCOD濃度を測定するCOD測定手段(1)と、
前記処理対象廃水(X)に混合させる前記酸素含有ガスの供給量を調節する酸素含有ガス調節手段(7)と、
前記COD測定手段(1)のCOD濃度に基づいて、前記処理対象廃水(X)に対する酸化処理済廃水(X´)のCOD低減率が最大となるように前記酸素含有ガス調節手段(7)を最適制御する制御手段(14)と
を具備することを特徴とする触媒湿式酸化装置。
In a catalytic wet oxidizing apparatus in which a predetermined amount of an oxygen-containing gas is mixed with a wastewater to be treated (X) by a catalyst,
COD measuring means (1) for measuring the COD concentration of the wastewater to be treated (X);
Oxygen-containing gas adjusting means (7) for adjusting the supply amount of the oxygen-containing gas to be mixed with the wastewater (X) to be treated;
Based on the COD concentration of the COD measuring means (1), the oxygen-containing gas adjusting means (7) is controlled so that the COD reduction rate of the oxidized wastewater (X ') with respect to the wastewater (X) to be treated is maximized. A catalytic wet oxidation apparatus comprising: a control unit (14) for performing optimal control.
前記酸化処理済廃水(X´)に含まれる余剰酸素量を検出する酸素検出手段(13)をさらに備え、前記制御手段(14)は前記酸素検出手段(13)によって検出された余剰酸素量と前記COD濃度に基づいて前記酸素含有ガス調節手段(7)を最適制御することを特徴とする請求項1記載の触媒湿式酸化装置。The apparatus further comprises oxygen detection means (13) for detecting the amount of excess oxygen contained in the oxidized wastewater (X '), and the control means (14) controls the amount of excess oxygen detected by the oxygen detection means (13). The catalytic wet oxidation apparatus according to claim 1, wherein the oxygen-containing gas adjusting means (7) is optimally controlled based on the COD concentration. 前記制御手段(14)は、COD濃度とCOD低減率を最大とする単位酸素含有ガス量との関係を予め記憶し、前記COD測定手段(1)からCOD濃度が入力されると、当該COD濃度を前記関係に当てはめることによって前記酸素含有ガスの量を算出することを特徴とする請求項1または2記載の触媒湿式酸化装置。The control means (14) stores in advance the relationship between the COD concentration and the unit oxygen-containing gas amount which maximizes the COD reduction rate, and when the COD concentration is input from the COD measurement means (1), the COD concentration is stored. 3. The catalytic wet oxidation apparatus according to claim 1, wherein the amount of the oxygen-containing gas is calculated by applying the following formula to the relationship. 前記COD測定手段(1)は、前記処理対象廃水(X)に照射した紫外線の透過量に基づいてCOD濃度を測定することを特徴とする請求項1〜3いずれかに記載の触媒湿式酸化装置。The catalytic wet oxidizer according to any one of claims 1 to 3, wherein the COD measuring means (1) measures a COD concentration based on an amount of transmitted ultraviolet light applied to the wastewater (X) to be treated. . 処理対象廃水(X)に所定量の酸素含有ガスを混合した状態で触媒のよって酸化処理する触媒湿式酸化方法において、
前記処理対象廃水(X)について測定されたCOD濃度に基づいて前記処理対象廃水(X)に対する酸化処理済廃水(X´)のCOD低減率が最大となるように酸素含有ガスの量を設定することを特徴とする触媒湿式方法。
In a catalytic wet oxidation method in which a predetermined amount of an oxygen-containing gas is mixed with a wastewater to be treated (X) by a catalyst in a wet state,
The amount of the oxygen-containing gas is set based on the COD concentration measured for the wastewater to be treated (X) so that the COD reduction rate of the oxidized wastewater (X ′) with respect to the wastewater to be treated (X) is maximized. A catalytic wet method, comprising:
前記酸化処理済廃水(X´)について検出された余剰酸素量と前記処理対象廃水(X)について測定されたCOD濃度とに基づいて前記処理対象廃水(X)に対する酸化処理済廃水(X´)のCOD低減率が最大となるように前記酸素含有ガスの量を設定することを特徴とする請求項5記載の触媒湿式酸化方法。Oxidized wastewater (X ') for the wastewater (X) based on the amount of excess oxygen detected for the oxidized wastewater (X') and the COD concentration measured for the wastewater (X). The catalytic wet oxidation method according to claim 5, wherein the amount of the oxygen-containing gas is set so that the COD reduction rate of the catalyst becomes maximum. 前記COD濃度とCOD低減率を最大とする単位酸素含有ガス量との関係に前記COD濃度を当てはめることによって前記酸素含有ガスの量を算出することを特徴とする請求項5または6記載の触媒湿式酸化方法。The catalytic wet method according to claim 5 or 6, wherein the amount of the oxygen-containing gas is calculated by applying the COD concentration to the relationship between the COD concentration and the unit oxygen-containing gas amount that maximizes the COD reduction rate. Oxidation method. 前記処理対象廃水(X)に紫外線を照射し、前記紫外線の透過量に基づいてCOD濃度を測定することを特徴とする請求項5〜7いずれかに記載の触媒湿式酸化方法。The catalyst wet oxidation method according to any one of claims 5 to 7, wherein the treatment target wastewater (X) is irradiated with ultraviolet rays, and the COD concentration is measured based on the transmission amount of the ultraviolet rays.
JP2002178840A 2002-06-19 2002-06-19 Catalytic wet oxidation apparatus and method Pending JP2004017003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178840A JP2004017003A (en) 2002-06-19 2002-06-19 Catalytic wet oxidation apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178840A JP2004017003A (en) 2002-06-19 2002-06-19 Catalytic wet oxidation apparatus and method

Publications (1)

Publication Number Publication Date
JP2004017003A true JP2004017003A (en) 2004-01-22

Family

ID=31176440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178840A Pending JP2004017003A (en) 2002-06-19 2002-06-19 Catalytic wet oxidation apparatus and method

Country Status (1)

Country Link
JP (1) JP2004017003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043774A (en) * 2012-12-28 2013-04-17 中唯炼焦技术国家工程研究中心有限责任公司 Device and method for processing waste water with high COD concentration through catalytic wet oxidation
CN105600909A (en) * 2014-11-20 2016-05-25 中国石油化工股份有限公司 Catalytic wet oxidation treatment method for organic waste water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043774A (en) * 2012-12-28 2013-04-17 中唯炼焦技术国家工程研究中心有限责任公司 Device and method for processing waste water with high COD concentration through catalytic wet oxidation
CN105600909A (en) * 2014-11-20 2016-05-25 中国石油化工股份有限公司 Catalytic wet oxidation treatment method for organic waste water
CN105600909B (en) * 2014-11-20 2019-06-11 中国石油化工股份有限公司 The method of catalytic wet oxidation processing organic wastewater

Similar Documents

Publication Publication Date Title
CA2559068A1 (en) System for predicting reduction in concentration of a target material in a flow of fluid
KR20070092713A (en) Water treatment control systems and methods of use
JP3150615B2 (en) Oxidation control method in flue gas desulfurization treatment
WO2006126296A1 (en) Measuring method for total organic carbon, measuring method for total nitrogen and measuring apparatus for the methods
JP2012066231A5 (en)
WO2007086283A1 (en) Apparatus for treating exhaust gas
JP2004017003A (en) Catalytic wet oxidation apparatus and method
WO2019198831A1 (en) Accelerated oxidation water treatment system and method
KR100294991B1 (en) Method and apparatus for controlling the amount of treated material administered to reduce the content of nitrogen oxides in the exhaust gases emitted from the combustion process
JP2005169331A (en) Denitrification control method and program for the same
JP4660211B2 (en) Water treatment control system and water treatment control method
JP4683977B2 (en) Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
JP2002219480A (en) Equipment for controlling concentration of dissolved oxygen in aerating tank
JP4542815B2 (en) Water treatment equipment
JP4690597B2 (en) Combustion type abatement system
JP4302909B2 (en) Control method in intermittent sewage treatment
JP2005116220A (en) Control unit of fuel cell system
CN113651413A (en) Ozone adding control method and system based on antibiotic on-line monitoring
JP2002219481A (en) Equipment for controlling concentration of dissolved oxygen in aerating tank
JP5175447B2 (en) GAS FLOW CONTROL DEVICE, FUEL CELL SYSTEM, AND GAS FLOW CONTROL METHOD
KR20210038980A (en) Ozone water delivery system and method of use
JP2003001265A (en) Sewage disinfecting system
JP4481730B2 (en) Ozone treatment equipment
JP2010142726A (en) Ozone treatment apparatus
JPS58124596A (en) Apparatus for controlling active sludge process