JP2004016894A - Novel hydrogen occlusion material - Google Patents

Novel hydrogen occlusion material Download PDF

Info

Publication number
JP2004016894A
JP2004016894A JP2002173886A JP2002173886A JP2004016894A JP 2004016894 A JP2004016894 A JP 2004016894A JP 2002173886 A JP2002173886 A JP 2002173886A JP 2002173886 A JP2002173886 A JP 2002173886A JP 2004016894 A JP2004016894 A JP 2004016894A
Authority
JP
Japan
Prior art keywords
metal
hydrogen storage
oxygen
carbon
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002173886A
Other languages
Japanese (ja)
Inventor
Akira Yoshino
吉野  彰
Tomoko Shimoyamada
下山田 倫子
Toshihiro Moriga
森賀 俊広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002173886A priority Critical patent/JP2004016894A/en
Publication of JP2004016894A publication Critical patent/JP2004016894A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel hydrogen occlusion material which has high hydrogen occlusion capability and can occlude and desorb hydrogen under mild conditions. <P>SOLUTION: The hydrogen occlusion material is a metallic material containing a metal element, oxygen, and optionally carbon. The metallic material is prepared by heat-treating a carbon material and a metal and/or a metallic compound at 350-950°C in the presence of oxygen. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は水素吸蔵材料に係わり、特に水素吸蔵量の大きい金属元素と酸素を含む金属系材料に関する。
【0002】
【従来の技術】
近年エネルギー貯蔵技術の一つとして水素吸蔵材料が注目を集めており、水素吸蔵量の大きい材料の出現に対する社会的期待が大きい。
このような水素吸蔵材料としては、La−Ni、Ti−Fe,Fe−Ni−Ti等の水素吸蔵合金系材料が従来からよく知られており、ニッケル水素電池の負極材料として実用化されている。しかしながら、かかる水素吸蔵合金系材料は、重量当たりの水素吸蔵量が小さく、エネルギー貯蔵材料として用いるには不適であった。
【0003】
一方、ナノカーボン系炭素材料、特殊な活性炭等特定の炭素材料を水素吸蔵材料として使用する可能性についても、これまでに多くの提案がなされている。例えば、特開平10−277387号公報にはナトリウムが添加されたフラーレンが提案されている。また、特開2000−140629号公報にはステンレス鋼基板上に特殊な方法で生成された水素吸蔵性繊維状炭素が提案されている。また、特開2001−146408号公報にはカーボンナノチューブに白金等の特殊な触媒を担持させた炭素複合材が提案されている。また、特開2001−187338号公報には特殊な多孔性セラミックに繊維状炭素を担持させた炭素繊維集合体が提案されている。また、特開2001−208295号公報には一端もしくは両端がグラファイトで閉じられている内部空間を有するグラファイトナノファイバーが提案されている。また、特開2001−212453号公報には特殊なアイスクリーム形状の結晶が積層されたグラファイトナノファイバーが提案されている。また、特開2001−220101号公報には特殊な細孔を有する多孔性炭素材料が提案されている。また、特開2001−302224号公報には水素気流中で粉砕されたグラファイトが提案されている。また、特開2001−316104号公報には異方性の高い炭素質材料の結晶軸を配向させた炭素質材料が提案されている。また、特開2001−316104号公報には炭素繊維を酸性溶液中で電気化学処理した炭素繊維層間反応生成物が提案されている。また、特開2002−18281号公報にはスキン層が除去されたラジアル構造ピッチ系炭素繊維が提案されている。また、特開2002−28483号公報には非晶質炭素とアルカリ金属との反応生成物からなる複合炭素材料が提案されている。また、特表2002−502793号公報にはコーン構造の炭素材料に特定の圧力で水素を吸蔵させる方法が提案されている。また、特開2002−53301号公報には炭素繊維を酸性溶液中で電気化学処理した炭素繊維層間反応生成物が提案されている。また、特開2002−88589号公報には直径が40nm以下の微細な繊維状グラファイトが提案されている。
【0004】
しかしながら、どの材料も原理的にわずかな水素が吸蔵することが確認されているだけで水素吸蔵量が小さく、一つの目標値とされている6重量%には程遠いこと、水素を吸蔵させる時に超低温という温度条件が必要なこと、吸蔵された水素が脱離できないこと等の問題点が多々残っており実用に供する材料は未だに見出されていないのが現状である。
【0005】
【発明が解決しようとする課題】
本発明は上記従来技術に鑑み、金属元素と酸素を含む金属系材料よりなる水素吸蔵能力が高く、温和な条件で水素を吸蔵、脱離できる水素吸蔵材料を提供せんとするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明では、金属元素と酸素を含む金属系材料からなることを特徴とする下記の水素吸蔵材料を提供するものである。
1.金属元素と酸素を含む金属系材料からなることを特徴とする水素吸蔵材料。2.上記金属系材料が、さらに炭素を含むことを特徴とする上記1.記載の水素吸蔵材料。
3.上記金属系材料が、炭素材料と金属及び/又は金属化合物を酸素存在下で350〜950℃の温度範囲で熱処理することによって得られたものであることを特徴とする上記1.または2.記載の水素吸蔵材料。
4.上記金属系材料が、金属及び/又は金属化合物を含有するカーボンナノチューブを酸素存在下で350〜950℃の温度範囲で熱処理することによって得られたものであることを特徴とする上記1.または2.記載の水素吸蔵材料。
5.上記金属元素が遷移金属元素であることを特徴とする上記1.〜4.のいずれかに記載の水素吸蔵材料。
6.上記遷移金属元素が、希土類元素及び/又は鉄族元素に属する元素であることを特徴とする上記5.記載の水素吸蔵材料。
7.上記金属系材料がニッケル酸化物、イットリウム酸化物、鉄酸化物、コバルト酸化物からなる群から選ばれた1つないしは2つ以上の酸化物を含むことを特徴とする上記1.〜4.のいずれかに記載の水素吸蔵材料。
【0007】
【発明の実施の形態】
本発明によれば金属元素と酸素を含む金属系材料からなる水素吸蔵能力の高い水素吸蔵材料が得られる。
本発明における上記金属元素としては、ニッケル、イットリウム、鉄、コバルト、クロム、チタン、ジルコニウム、モリブデン、マンガン、銅等の長周期型周期表において、3(III A)族〜11(I B)族の元素に属する遷移金属元素を用いることが好ましく、希土類元素に属する元素及び/又は鉄族元素に属する元素を用いることがより好ましい。
【0008】
本発明における金属系材料としては、上述の金属元素と酸素を含むものを使用することができるが、特にニッケル酸化物、イットリウム酸化物、鉄酸化物、コバルト酸化物のうちのいずれか1つ、または2つ以上の混合物を主成分とする金属系材料を用いた場合には、水素吸蔵量が大きく、また脱離も容易となるので最も好ましい。
該金属系材料は上記の金属元素と酸素以外にも他の元素を含むことができる。一例としては、後述する炭素が上げられる。また該金属系材料の形状は粉末状、球状、繊維状、塊状等、任意の形状を選択できる。
【0009】
本発明の金属元素と酸素を含む金属系材料を得る方法としては、金属及び/又は金属化合物を酸素の存在下で熱処理する方法が挙げられる。
また、本発明の金属元素と酸素と炭素を含む金属系材料を得る方法としては、炭素材料に金属及び/又は金属化合物を、吸着や含浸等によって保持させたものを酸素の存在下で熱処理をする方法が挙げられる。本方法で得られた金属系材料は水素吸蔵量が大きく、また水素の脱離も容易となるのでより好ましい。
【0010】
上述の製法で得られた金属系材料の水素吸蔵量が大きい理由については定かではないが、該炭素材料自体が水素吸蔵に好ましい活性サイトを形成することに加えて、熱処理によって該炭素材料の一部が酸化されて気化脱離することにより残った該金属系材料が水素吸蔵に好ましい構造になっているものと推察される。具体的な方法としては、金属及び/又は金属化合物を含有するカーボンナノチューブ、気相成長法炭素繊維等の気相堆積法炭素材料を酸素の存在下で熱処理を行う方法が挙げられる。
上述の熱処理における雰囲気中の酸素濃度は0.1%〜50%の範囲が好ましく、最も簡便には空気中で行うことができる。酸素濃度が0.1%未満で行った場合には本発明での熱処理効果が十分でなく、水素吸蔵量が小さくなる。また酸素濃度が50%を超す場合には過度の酸化反応が起こり熱処理を制御するのが困難となり好ましくない。
【0011】
熱処理温度は350℃〜950℃の範囲、好ましくは450℃〜850℃の範囲、更に好ましくは550℃〜750℃の範囲である。熱処理温度が350℃未満の場合は本発明での熱処理効果が十分でなく、水素吸蔵量が小さくなる。また950℃を超す温度で熱処理をした場合には過度の酸化反応が起こり熱処理を制御するのが困難となり好ましくない。
熱処理時間は通常1分から10時間程度の処理で十分である。
本発明による金属系材料を用いた水素吸蔵材料は、重量あたりの水素吸蔵量が6%以上と大きく、製造条件によっては10%以上のものを得ることが可能である。
【0012】
本発明による金属系材料を用いた水素吸蔵材料は、前述の水素吸蔵量が大きいという特徴の他に、温和な条件で水素を吸蔵させることができるという特徴をも有する。すなわち水素吸蔵させるのに超低温等の特殊な温度条件は必要ではなく、室温近辺の温度で容易に水素を吸蔵させることができる。
本発明による金属系材料に水素を吸蔵させる時に必要な水素圧力としては、超高圧は必要ではなく、通常10Kg/cm以上もあれば十分であり、20Kg/cm以上で効果が大きくなり、30Kg/cm以上で更に大きくなる。また、常圧に戻すことにより、吸蔵させた水素を常温で容易に脱離させることができる。
【0013】
【実施例】
以下、本発明を実施例により具体的に説明する。
(実施例1)
ニッケル、イットリウムを含有するカーボンナノチューブ(商品名:CarboLexAP グレード、アルドリッチ社製)を空気雰囲気下700℃にて15分間熱処理をした。この熱処理物を元素分析した結果、ニッケル元素を55.6重量%、イットリウム元素を13.4重量%、炭素元素を12.2重量%、酸素元素18.8重量%含有する金属系材料が得られた。この金属系材料は粉末X 線(Cu−Kα)回折において、2θ=26.1°、26.3°、29.1°、33.8°、37.2°、43.2°、48.4°、57.2°、62.8°、75.3°、79.3°に回折パターンを有していた。
【0014】
この金属系材料を用いて水素吸蔵特性の評価を行った。水素吸蔵は室温で水素圧50kg/cmで5時間放置することで行った。この時の水素吸蔵量[(水素吸蔵後の金属系材料の重量−水素吸蔵前の金属系材料の重量)/水素吸蔵後の金属系材料の重量×100]は10.8重量%であった。
この水素吸蔵した金属系材料を常圧に戻し、室温で3時間放置したところ10.7重量%に相当する水素が脱離した。脱離した水素量の吸蔵した水素量に対する割合、脱離率は99.1%であった。またこの金属酸化物の酸素量論比を測定したところ酸素欠損型の金属酸化物であった。
【0015】
(実施例2〜実施例8)、(比較例1〜比較例3)
実施例1において熱処理温度を表1に示す温度に変えた以外は全く同様の条件で水素吸蔵特性の評価を行った。この時の水素吸蔵量(重量%)は表1の通りであった。
【表1】

Figure 2004016894
【0016】
(実施例9〜実施例15)
実施例1において得られた金属系材料を用い、表2に示す種々の圧力での水素吸蔵特性の評価を行った。この時の水素吸蔵量は表2の通りであった。
【表2】
Figure 2004016894
【0017】
【発明の効果】
本発明により、金属元素と酸素を含む金属系材料よりなる水素吸蔵能力が高く、温和な条件で水素を吸蔵、脱離できる水素吸蔵材料を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen storage material, and more particularly to a metal material containing oxygen and a metal element having a large hydrogen storage amount.
[0002]
[Prior art]
In recent years, hydrogen storage materials have attracted attention as one of the energy storage technologies, and there is great social expectation for the emergence of materials having a large hydrogen storage capacity.
As such a hydrogen storage material, hydrogen storage alloy materials such as La-Ni, Ti-Fe, and Fe-Ni-Ti have been well known, and have been put to practical use as negative electrode materials for nickel-metal hydride batteries. . However, such a hydrogen storage alloy material has a small amount of hydrogen storage per weight, and is not suitable for use as an energy storage material.
[0003]
On the other hand, many proposals have been made on the possibility of using a specific carbon material such as a nanocarbon-based carbon material or a special activated carbon as a hydrogen storage material. For example, JP-A-10-277387 proposes a fullerene to which sodium is added. Japanese Patent Application Laid-Open No. 2000-140629 proposes a hydrogen-absorbing fibrous carbon produced on a stainless steel substrate by a special method. JP-A-2001-146408 proposes a carbon composite material in which a special catalyst such as platinum is supported on carbon nanotubes. Japanese Patent Application Laid-Open No. 2001-187338 proposes a carbon fiber aggregate in which fibrous carbon is supported on a special porous ceramic. Japanese Patent Application Laid-Open No. 2001-208295 proposes a graphite nanofiber having an internal space closed at one end or both ends by graphite. JP-A-2001-212453 proposes a graphite nanofiber in which special ice cream-shaped crystals are laminated. JP-A-2001-220101 proposes a porous carbon material having special pores. JP-A-2001-302224 proposes graphite pulverized in a hydrogen stream. Japanese Patent Application Laid-Open No. 2001-316104 proposes a carbonaceous material in which the crystal axis of a highly anisotropic carbonaceous material is oriented. Japanese Patent Application Laid-Open No. 2001-316104 proposes a carbon fiber interlayer reaction product obtained by electrochemically treating carbon fibers in an acidic solution. JP-A-2002-18281 proposes a radial-structure pitch-based carbon fiber from which a skin layer has been removed. JP-A-2002-28483 proposes a composite carbon material comprising a reaction product of amorphous carbon and an alkali metal. Further, Japanese Patent Application Publication No. 2002-502793 proposes a method of absorbing hydrogen at a specific pressure in a carbon material having a cone structure. JP-A-2002-53301 proposes a carbon fiber interlayer reaction product obtained by electrochemically treating carbon fibers in an acidic solution. JP-A-2002-88589 proposes fine fibrous graphite having a diameter of 40 nm or less.
[0004]
However, it has been confirmed that all materials absorb only a small amount of hydrogen in principle, and the amount of hydrogen storage is small. It is far from one target value of 6% by weight. There are still many problems such as the need for such temperature conditions and the inability of the occluded hydrogen to be desorbed. At present, no practical material has been found yet.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above prior art, and has as its object to provide a hydrogen storage material which is made of a metal material containing a metal element and oxygen and has a high hydrogen storage capacity and can store and desorb hydrogen under mild conditions.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides the following hydrogen storage material, which is made of a metal material containing a metal element and oxygen.
1. A hydrogen storage material comprising a metal material containing a metal element and oxygen. 2. The above-mentioned 1., wherein the metal-based material further contains carbon. The hydrogen storage material as described in the above.
3. (1) The metal-based material is obtained by heat-treating a carbon material and a metal and / or a metal compound in a temperature range of 350 to 950 ° C in the presence of oxygen. Or 2. The hydrogen storage material as described in the above.
4. (1) The metal material is obtained by heat-treating a carbon nanotube containing a metal and / or a metal compound in the presence of oxygen at a temperature in the range of 350 to 950 ° C. Or 2. The hydrogen storage material as described in the above.
5. The above-mentioned 1., wherein the metal element is a transition metal element. ~ 4. A hydrogen storage material according to any one of the above.
6. 4. The above transition metal element, wherein the transition metal element is an element belonging to a rare earth element and / or an iron group element. The hydrogen storage material as described in the above.
7. (1) The metal material includes one or two or more oxides selected from the group consisting of nickel oxide, yttrium oxide, iron oxide, and cobalt oxide. ~ 4. A hydrogen storage material according to any one of the above.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
ADVANTAGE OF THE INVENTION According to this invention, the hydrogen storage material with a high hydrogen storage capacity which consists of a metal material containing a metal element and oxygen is obtained.
Examples of the metal element in the present invention include nickel, yttrium, iron, cobalt, chromium, titanium, zirconium, molybdenum, manganese, copper, and other long-period periodic tables of groups 3 (IIIA) to 11 (IB). It is preferable to use a transition metal element belonging to the above element, and it is more preferable to use an element belonging to the rare earth element and / or an element belonging to the iron group element.
[0008]
As the metal-based material in the present invention, those containing the above-described metal element and oxygen can be used. In particular, any one of nickel oxide, yttrium oxide, iron oxide, and cobalt oxide, Alternatively, when a metal material containing two or more mixtures as a main component is used, the amount of hydrogen occlusion is large, and desorption is easy, which is the most preferable.
The metal-based material can contain other elements in addition to the above-mentioned metal elements and oxygen. As an example, carbon described below is raised. The shape of the metal-based material may be any shape such as a powder, a sphere, a fiber, and a lump.
[0009]
Examples of a method for obtaining a metal-based material containing a metal element and oxygen according to the present invention include a method of heat-treating a metal and / or a metal compound in the presence of oxygen.
In addition, as a method for obtaining a metal-based material containing a metal element, oxygen and carbon according to the present invention, a material obtained by holding a metal and / or a metal compound on a carbon material by adsorption or impregnation is subjected to a heat treatment in the presence of oxygen. Method. The metal-based material obtained by this method is more preferable because it has a large hydrogen storage capacity and facilitates desorption of hydrogen.
[0010]
It is not clear why the metal-based material obtained by the above-described production method has a large hydrogen storage capacity. However, in addition to the formation of active sites that are favorable for hydrogen storage, the carbon material itself also has one heat-treated carbon material. It is presumed that the metal-based material remaining after the portion was oxidized and vaporized and desorbed had a structure preferable for hydrogen storage. As a specific method, a method in which a carbon material containing a metal and / or a metal compound, such as a carbon nanotube or a vapor growth carbon fiber, is subjected to a heat treatment in the presence of oxygen.
The oxygen concentration in the atmosphere in the above-mentioned heat treatment is preferably in the range of 0.1% to 50%, and can be most conveniently performed in air. When the oxygen concentration is less than 0.1%, the effect of the heat treatment in the present invention is not sufficient, and the hydrogen storage amount becomes small. If the oxygen concentration exceeds 50%, an excessive oxidation reaction occurs, making it difficult to control the heat treatment, which is not preferable.
[0011]
The heat treatment temperature is in the range of 350C to 950C, preferably in the range of 450C to 850C, and more preferably in the range of 550C to 750C. When the heat treatment temperature is lower than 350 ° C., the heat treatment effect of the present invention is not sufficient, and the hydrogen storage amount becomes small. Further, when the heat treatment is performed at a temperature exceeding 950 ° C., an excessive oxidation reaction occurs and it is difficult to control the heat treatment, which is not preferable.
A heat treatment time of usually about 1 minute to 10 hours is sufficient.
The hydrogen storage material using the metal-based material according to the present invention has a large hydrogen storage amount per weight of 6% or more, and it is possible to obtain a hydrogen storage material of 10% or more depending on production conditions.
[0012]
The hydrogen storage material using the metal-based material according to the present invention has a feature that it can store hydrogen under mild conditions, in addition to the above-described feature of a large hydrogen storage amount. That is, special temperature conditions such as ultra-low temperature are not required for storing hydrogen, and hydrogen can be easily stored at a temperature near room temperature.
As the hydrogen pressure required when occluding hydrogen to metal-based material according to the present invention, ultra-high pressure is not required, a sufficient also typically 10 Kg / cm 2 or more, the effect is increased at 20 Kg / cm 2 or more, It becomes even larger at 30 kg / cm 2 or more. Further, by returning the pressure to normal pressure, the stored hydrogen can be easily desorbed at normal temperature.
[0013]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
(Example 1)
A carbon nanotube (trade name: CarboLexAP grade, manufactured by Aldrich) containing nickel and yttrium was heat-treated at 700 ° C. for 15 minutes in an air atmosphere. As a result of elemental analysis of this heat-treated product, a metal-based material containing 55.6% by weight of nickel, 13.4% by weight of yttrium, 12.2% by weight of carbon, and 18.8% by weight of oxygen was obtained. Was done. In a powder X-ray (Cu-Kα) diffraction, this metal material has 2θ = 26.1 °, 26.3 °, 29.1 °, 33.8 °, 37.2 °, 43.2 °, 48. It had diffraction patterns at 4 °, 57.2 °, 62.8 °, 75.3 °, and 79.3 °.
[0014]
The hydrogen storage characteristics were evaluated using this metal material. The hydrogen absorption was carried out by leaving at room temperature under a hydrogen pressure of 50 kg / cm 2 for 5 hours. At this time, the hydrogen storage amount [(weight of metal material after hydrogen storage−weight of metal material before hydrogen storage) / weight of metal material after hydrogen storage × 100] was 10.8% by weight. .
The hydrogen-absorbed metal material was returned to normal pressure and left at room temperature for 3 hours to remove 10.7% by weight of hydrogen. The ratio of the amount of desorbed hydrogen to the amount of stored hydrogen, that is, the desorption rate, was 99.1%. When the stoichiometric ratio of this metal oxide was measured, it was an oxygen-deficient metal oxide.
[0015]
(Examples 2 to 8), (Comparative Examples 1 to 3)
The hydrogen storage properties were evaluated under exactly the same conditions as in Example 1 except that the heat treatment temperature was changed to the temperature shown in Table 1. The hydrogen storage amount (% by weight) at this time was as shown in Table 1.
[Table 1]
Figure 2004016894
[0016]
(Examples 9 to 15)
Using the metal-based material obtained in Example 1, the hydrogen storage characteristics at various pressures shown in Table 2 were evaluated. The hydrogen storage amount at this time was as shown in Table 2.
[Table 2]
Figure 2004016894
[0017]
【The invention's effect】
According to the present invention, it is possible to provide a hydrogen storage material that is made of a metal material containing a metal element and oxygen and has a high hydrogen storage capacity and can store and desorb hydrogen under mild conditions.

Claims (7)

金属元素と酸素を含む金属系材料からなることを特徴とする水素吸蔵材料。A hydrogen storage material comprising a metal material containing a metal element and oxygen. 上記金属系材料が、さらに炭素を含むことを特徴とする請求項1記載の水素吸蔵材料。The hydrogen storage material according to claim 1, wherein the metal-based material further contains carbon. 上記金属系材料が、炭素材料と金属及び/又は金属化合物を酸素存在下で350〜950℃の温度範囲で熱処理することによって得られたものであることを特徴とする請求項1または請求項2記載の水素吸蔵材料。3. The metal material according to claim 1, wherein the metal material is obtained by heat-treating a carbon material and a metal and / or a metal compound in a temperature range of 350 to 950 [deg.] C. in the presence of oxygen. The hydrogen storage material as described in the above. 上記金属系材料が、金属及び/又は金属化合物を含有するカーボンナノチューブを酸素存在下で350〜950℃の温度範囲で熱処理することによって得られたものであることを特徴とする請求項1または請求項2記載の水素吸蔵材料。The metal-based material is obtained by subjecting a carbon nanotube containing a metal and / or a metal compound to a heat treatment in the temperature range of 350 to 950 ° C. in the presence of oxygen. Item 6. A hydrogen storage material according to Item 2. 上記金属元素が遷移金属元素であることを特徴とする請求項1〜4のいずれか1項に記載の水素吸蔵材料。The hydrogen storage material according to any one of claims 1 to 4, wherein the metal element is a transition metal element. 上記遷移金属元素が、希土類元素及び/又は鉄族元素に属する元素であることを特徴とする請求項5記載の水素吸蔵材料。The hydrogen storage material according to claim 5, wherein the transition metal element is an element belonging to a rare earth element and / or an iron group element. 上記金属系材料がニッケル酸化物、イットリウム酸化物、鉄酸化物、コバルト酸化物からなる群から選ばれた1つないしは2つ以上の酸化物を含むことを特徴とする請求項1〜4のいずれか1項に記載の水素吸蔵材料。5. The method according to claim 1, wherein the metal-based material contains one or more oxides selected from the group consisting of nickel oxide, yttrium oxide, iron oxide, and cobalt oxide. The hydrogen storage material according to claim 1.
JP2002173886A 2002-06-14 2002-06-14 Novel hydrogen occlusion material Withdrawn JP2004016894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173886A JP2004016894A (en) 2002-06-14 2002-06-14 Novel hydrogen occlusion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173886A JP2004016894A (en) 2002-06-14 2002-06-14 Novel hydrogen occlusion material

Publications (1)

Publication Number Publication Date
JP2004016894A true JP2004016894A (en) 2004-01-22

Family

ID=31172996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173886A Withdrawn JP2004016894A (en) 2002-06-14 2002-06-14 Novel hydrogen occlusion material

Country Status (1)

Country Link
JP (1) JP2004016894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672740A (en) * 2022-03-31 2022-06-28 包头稀土研究院 Yttrium-iron-based hydrogen storage alloy, battery and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672740A (en) * 2022-03-31 2022-06-28 包头稀土研究院 Yttrium-iron-based hydrogen storage alloy, battery and preparation method

Similar Documents

Publication Publication Date Title
Poudel et al. Novel insight into the adsorption of Cr (VI) and Pb (II) ions by MOF derived Co-Al layered double hydroxide@ hematite nanorods on 3D porous carbon nanofiber network
Hitam et al. Magnesium-based alloys for solid-state hydrogen storage applications: a review
EP1209119B1 (en) Hydrogen storage using carbon-metal hybrid compositions
KR100835883B1 (en) Negative electrode material hybridizing carbon nanofiber for lithium ion secondary battery
KR100905691B1 (en) Anode active material hybridizing carbon nanofiber for lithium secondary battery
JP2003201108A (en) Carbon material
JP2006152376A (en) Nano transition metal particle, its production method, and hydrogen absorption composite material composited with nano transition metal particle
Ren et al. Improved tolerance of Pd/Cu-treated metal hydride alloys towards air impurities
JP5449989B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage device
Balcerzak et al. Influence of carbon catalysts on the improvement of hydrogen storage properties in a body-centered cubic solid solution alloy
JP3712972B2 (en) Manufacturing method of fibrous carbon nanomaterial and electrode material for electrochemical capacitor using the same
JP2004016894A (en) Novel hydrogen occlusion material
US20050163697A1 (en) Method for opening carbon nanotubes at the ends thereof and implementation
JP4280816B2 (en) Hydrogen storage material and manufacturing method thereof
KR100624084B1 (en) Nano-structured metal-carbon composite and process for preparing said composite
EP1637223A1 (en) Single walled carbon nanohorn adsorptive material and method for production thereof
Viswanathan et al. Carbon nanomaterials: are they appropriate candidates for hydrogen storage?
JP2006051473A (en) Hydrogen storing/releasing catalyst and hydrogen storing compound material using the same
JP3894163B2 (en) Hydrogen storage material and manufacturing method thereof
JP2003047843A (en) Carbon material for hydrogen storage and method of producing the same
KR100911575B1 (en) Titania-palladium compositesand preparing method for the same
JP2002309331A (en) Hydrogen occlusing/discharging material and its manufacturing method
Li et al. Porous silicon carbide/carbon composite microspherules for methane storage
JP2003321216A (en) Graphite-based hydrogen-occluding material and method for producing the same
JP2003321215A (en) Graphite-based hydrogen-occluding material and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906