JP2004014867A - Interference aligner - Google Patents

Interference aligner Download PDF

Info

Publication number
JP2004014867A
JP2004014867A JP2002167540A JP2002167540A JP2004014867A JP 2004014867 A JP2004014867 A JP 2004014867A JP 2002167540 A JP2002167540 A JP 2002167540A JP 2002167540 A JP2002167540 A JP 2002167540A JP 2004014867 A JP2004014867 A JP 2004014867A
Authority
JP
Japan
Prior art keywords
exposure
light
interference
optical system
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002167540A
Other languages
Japanese (ja)
Inventor
Hisao Osawa
大澤 日佐雄
Toru Fujii
藤井 透
Yasushi Oki
大木 裕史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2002167540A priority Critical patent/JP2004014867A/en
Publication of JP2004014867A publication Critical patent/JP2004014867A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interference aligner capable of creating various exposure patterns using interference of light without using a reticle. <P>SOLUTION: A pattern to form on a wafer is stored in a pattern memory 8 and, based on that information, an intensity/phase calculator 9 calculates the interference intensity at each incident angle θ, the phase between two light beams, and the angular variation of interference reflectors 6a and 6b. Based on the output from the intensity/phase calculator 9, a synchronization controller 10 transmits the angular variation of the interference reflectors 6a and 6b to reflector controllers 7a and 7b in order to vary the angle of the interference reflectors 6a and 6b. At the same time, the interference intensity is transmitted to an exposure light source 1 in order to regulate the exposure, and the phase variation is transmitted to a phase modulation controller 5 in order to vary the optical phase difference between two light beams by driving a phase modulation element 4. These operations are performed by varying the incident angle θ for a required amount in a desired mode, and the wafer is exposed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は干渉露光装置に関するものである。
【0002】
【従来の技術】
従来技術による露光装置の概略を、図2を用いて説明する。従来技術による露光装置は、少なくとも、露光のための光を発生する光源101、光源からの光をレチクルに照射する照明光学系102、レチクルとウエハの間の相対位置を調整するためのアライメント光学系103、レチクルを透過した光をウエハに投影する投影光学系110、レチクルステージ105、レチクル位置を制御するレチクルステージ制御機構104、ウエハステージ108、ウエハ位置を制御する為のウエハステージ制御機構107、全体を統括制御する制御機構109を備えている。
【0003】
レチクルステージ105にはレチクル105aが置かれ、ウエハステージ108上にはウエハ108aが置かれ、レチクル105aとウエハ108aはそれぞれ投影光学系110の物体面、像面となるように投影光学系110との位置関係が調整されている。
【0004】
露光光源101からの光は照明光学系102を通りレチクル105aを照明する。レチクル105a、投影光学系110、及びウエハ108aが上記の関係にあるためレチクル105aを透過した光は投影光学系110でウエハ108a上に結像し、ウエハ108a上に感光剤が塗布されていれば、レチクルのパターンをウエハ108a上に転写することができる。
【0005】
通常、投影光学系で転写できる面積はウエハ全面に比べ小さいため、レチクルステージ105とウエハステージ108により、それぞれレチクルとウエハの水平位置(光軸と垂直な面内の位置)を制御することで、ウエハ全面にレチクルパターンの転写を行えるようにしてある。このとき、ウエハ全面における転写パターンはウエハ全面において異なるパターンでもよいし、同一レチクルパターンの繰り返しでもよい。
【0006】
ところで、通常の露光装置では、光の回折限界からの制約により形成できるパターンの周期に下限があることが知られている。すなわち、照明光の波長をλ,光学系の開口数をNAとすると、形成できるパターンの周期の下限は光の回折限界から
min=λ/(2NA)
となり、これよりも微細な加工を行うことは原理的に不可能であった。
【0007】
一方で、回路パターンの微細化に伴い露光装置に要求される露光線幅、周期は年々微細化してきているため、上記の限界の範囲内でこれに対応するために、光学系の開口数NAを大きくするとともに照明波長λの短波長化が進められてきた。
【0008】
【発明が解決しようとする課題】
しかしながら、現在すでに光学系の開口数NAは大気中で使用する場合に上限となる1.0に極めて近づいている。さらに照明光に関しても、既に真空紫外光とも言える波長150nm程度の光が利用されつつあるため、露光光学系を構成するためにこれまで用いられてきた多くの光学材料が、透過率の点から利用不可能となり、光学設計の選択の幅が狭くなってきている。このため、要求される微細パターンを形成するために必要な性能を持った光学系の設計が非常に困難となってきている。
【0009】
本発明はこのような事情に鑑みてなされたもので、レチクル必要としない、光の干渉利用した露光装置を提供することを課題とする。
【0010】
【課題を解決するための手段】
前記課題を解決するための第1の手段は、光源と、当該光源からの光を異なる光路を通る2つの光路に分ける第1の光学系と、2つの光路に分かれた光を再び露光面で合成し、干渉縞を形成する第2の光学系を有する干渉露光装置であって、前記第2の光学系において、前記露光面上に各光が到達する際の露光面となす角度が可変とされていることを特徴とする干渉露光装置(請求項1)である。
【0011】
本手段の作用を説明するに先立ち、その前提となる一般的な部分コヒーレント結像条件の下での結像について述べる。
一般的に、周波数領域での位置ベクトルをv、v’とし、2つの光の瞳中での強度分布のフーリエ変換をそれぞれ
【0012】
【数1】

Figure 2004014867
【0013】
とすると、この2つの光線の干渉による結像面上の強度分布は、結像面での位置ベクトルをrとして、
【0014】
【数2】
Figure 2004014867
【0015】
となる。ここで、
【0016】
【数3】
Figure 2004014867
【0017】

【0018】
【数4】
Figure 2004014867
【0019】
の複素共役数であり、(v−v’)・rは(v−v’)とrの内積、R(v,v’)は、投影光学系のTCC(Transmission of Cross Coefficient)である。また、(1)式の積分範囲は、瞳座標内である。
【0020】
(1)式には様々な空間周波数の成分が入っているので、
C=v−v’
とすれば、(1)式は
【0021】
【数5】
Figure 2004014867
【0022】
と書くことができるため、像面での光強度は、空間周波数Cごとに様々な強度と位相を持つ干渉縞の積分としてとらえることができる。空間周波数Cに関しては露光領域の長さをLとすると2π/Lが最低周波数となり、この周波数で量子化した周波数で級数展開ができるので、(2)式は、以下の形に展開できる。ただし、C=2nπ/Lである。
【0023】
【数6】
Figure 2004014867
【0024】
これは、形式的に
【0025】
【数7】
Figure 2004014867
【0026】
と書くことができる。このことは、
振幅が|I(C)|であり、位相がφ(C)である干渉縞を周波数Cごとに用意できれば、光干渉を利用して所望のパターンをウエハの上に投影できることを意味している。ここで、周波数C毎に用意する干渉縞の振幅と位相は、
【0027】
【数8】
Figure 2004014867
【0028】
のように、光源の強度分布のフーリエ変換
【0029】
【数9】
Figure 2004014867
【0030】
と、想定している投影光学系のTCCであるR(v,C)から計算できる各係数を、絶対値と位相因子に分けることで容易に求めることができる。ここでの位相因子は像面での位相を表しているが、光干渉の際には、2光束の位相差がこれと等しいため、2光束の一方の位相を他方に対してφ(C)ずらすことで達成することができる。
【0031】
2光束をウエハ上で干渉させる場合これら2光束がなす角を2θとすると、
2sinθ=|C|=|v−v’| …(6)
である。
【0032】
よって、1次元パターンに限れば、一方の光の位相を可変とした2光束干渉によって所望のパターンをウエハ上に形成することができる。
【0033】
実際には、I(r)が決定されると、それを(5)式に対応するようにフーリエ級数に展開することにより、C毎に振幅である|I(C)|と位相差φ(C)を求める。|I(C)|が、Cが与えられたときの投影光学系の強度(光源の強度×露光時間)に対応する。Cを与える2光束のなす角は、(6)式により決定する。
【0034】
また、R(v,v’)としては、理想的な投影光学系のものを持ってくればよく、それは中心位置が座標v,C−vにある半径NAの円と、中心位置が座標(0,0)半径σ×NAの円全てが重なった領域の面積であるため容易に計算できる。ここで、σは照明光学系のコヒーレンス度である。
【0035】
このようにして計算を行った後は、2光束のなす角度θを変えながら、それに対応するCに応じて、投影光学系の強度に対応する|I(C)|と2光束間の位相差φ(C)を変化させて露光を行えば、目的とするパターンを結像面に結像させることができる。
【0036】
2次元の像形成の場合は、感光材料の感光が光強度の積分強度に比例するため、2光束光干渉による像形成を、結像面を回転させながら行うことでも可能である。
【0037】
なお、本手法で非常に大きなパターン(低い空間周波数を持ったパターン)を形成するには2光束間の角度を非常に小さくしなければならず、装置が大型化するおそれがあるが、そのような大きなパターンの形成には従来の低解像度露光装置を用いることで可能であるため大きな問題とはならない。すなわち、パターン中の空間周波数に応じて本手法と従来の露光装置を使い分ければよい。
【0038】
本手段においては、このような原理に基づき、露光面に到達する光の入射角が可変とされているので、このような原理に基づき、入射角を変化させながら、各入射角ごとの露光量(光源の強さ、露光時間の少なくとも一方)を変化させることで、目的とする様々なピッチの露光パターンを露光面に形成することができる。すなわち、光の干渉を利用して所望のパターンをウエハ等の基板上に形成しているので、レチクル等を必要とせず、かつ、レチクル等に形成されたパターンを露光転写する場合に比して、微細なパターンを基板上に形成することができる。
【0039】
前記課題を解決するための第2の手段は、前記第1の手段であって、前記第2の光学系は、当該第2の光学系に含まれる反射鏡の角度を変化させることで、前記露光面上に各光が到達する際の、前記露光面となす角度を調整する機能を有することを特徴とするもの(請求項2)である。
【0040】
本手段においては、前記第2の光学系に角度が可変な反射鏡が含まれており、それにより、第1の手段で述べた入射角を可変することができる。よって、反射鏡の角度を変化させることにより、所望のCを形成することができる。
【0041】
前記課題を解決するための第3の手段は、前記第1の手段又は第2の手段であって、前記第2の光学系は、要求される露光パターンのフーリエ変換後の強度に応じて、前記露光面上に各光が到達する際の露光面となす角度毎の露光量を調整する機能を有することを特徴とするもの(請求項3)である。
【0042】
本発明においては、前記露光面上に各光が到達する際の露光面となす角度毎の露光量を調整する機能を有するので、前記第1の手段で説明したC毎に|I(C)|を変化させることができ、所望のピッチのパターンを所望の強さで被露光面上に形成することができる。
【0043】
前記課題を解決するための第4の手段は、前記第1の手段から第3の手段のいずれかであって、前記第2の光学系は、要求される露光パターンのフーリエ変換後の位相に応じて、前記露光面上に各光が到達する際の露光面となす角度毎の2つの光束の位相差を調整する機能を有することを特徴とするもの(請求項4)である。
【0044】
本手段においては、前記露光面上に各光が到達する際の露光面となす角度毎の2つの光束の位相差を調整する機能を有するので、前記第1の手段で説明したC毎に位相差φ(C)を調整することができ、所望のパターンの位相を変化させることができる。特に、要求される露光パターンのフーリエ変換強度に応じて、前記露光面上に各光が到達する際の露光面となす角度毎の露光量を調整しながら、同時に位相差を変化させて、C毎に露光を行って重ね合わせることにより、様々なパターンを被露光面上に形成することができる。
【0045】
前記課題を解決するための第5の手段は、前記第2の光学系は、要求される露光パターンのフーリエ変換後の位相に応じて、前記露光面上に各光が到達する際の露光面となす角度毎に、結像面に置かれた結像面の位置を変える機能を有することを特徴とするもの(請求項5)である。
【0046】
前記第4の手段においては、結像面に形成される干渉縞の位相の調整を、2つの光束の位相差を変えることによって行っていた。本手段はこの代わりに、結像面に置かれた結像面の位置を、C毎に代えることによって、干渉縞と被照射対の結像面との位相関係を変化させ、前記第4の手段と等価な関係を作り出している。
【0047】
【発明の実施の形態】
以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態の1例である干渉露光装置を利用した露光装置の光学系の概要を示す図である。
【0048】
図1に示す露光装置は、露光光源1、反射鏡2、半透過鏡3、位相変調素子4、及びそのドライバ5、光干渉用反射鏡6a,6b、及びその制御装置7a,7b、パターン記憶装置8、強度・位相計算装置9、同期制御装置10、ウエハステージ11、及びその制御装置12からなる。ウエハステージ11上には、感光剤を塗布したウエハ13が載せられている。
【0049】
露光光源1から射出された光は反射鏡2で反射され、半透過鏡3に入射する。半透過鏡3は入射した光の1/2が反射され、1/2が透過されるように作られている。半透過鏡3で反射した光は干渉用反射鏡6aで反射されウエハ13上に入射する。半透過鏡を透過した光は干渉用反射鏡6bで反射されウエハ13上に入射する。
【0050】
ウエハ13上では上記2つの光路を通ってきた光により光干渉が起こり、このときの2光束の入射角を両方ともθとすれば、ウエハ面上にピッチλ/2sinθの干渉縞が形成される。
【0051】
パターン記憶装置8にはウエハ上に形成したいパターンが記憶されており、強度・位相計算装置9はその情報を元に(4)式,(5)式を使って、各θに対して干渉強度、2光束間の位相、干渉用反射鏡6a,6bの角度変化量を計算する。
【0052】
同期制御装置10は強度・位相計算装置9の出力を基に、干渉用反射鏡6a,6bの角度変化量を反射鏡制御装置7a,7bに伝え、干渉用反射鏡6a,6bの角度を変化させる。同時に、干渉強度を露光光源1に伝えて露光量を調整し、位相変化量を位相変調制御装置5に伝え位相変調素子4を駆動して2光束間の
光位相差を変化させる。これらの動作を所望のパターンにおいて必要なだけ入射角θを変化させながらウエハ上に露光を行う。
【0053】
ところで、本実施例によるパターン形成手法であらゆる空間周波数をもったパターンを露光しようとすると1度に露光できる面積が限られる。干渉すべき2つのビームが完全に分離しているところに半透過鏡4を置かなければならないこと、最低空間周波数ではその波長がパターンサイズと等しいことを考慮して計算すると、一度に露光できる幅wはおおよそ
w=(Lλ/2)1/2
となる。ここで、ここで、λは使用する光の波長、Lは干渉用反射鏡6a,6bの高さである。例えば、λ=150nm、L=1000mmとすると、w=0.27mmとなってしまう。
【0054】
従って、露光パターンのうち低周波成分は従来の露光装置に任せ、本技術による露光では高周波成分を担当するのが望ましいが、すべての露光を本露光装置で行う場合には、ウエハステージ制御装置12によりウエハステージ11を上記幅wごとにずらしながら、ステップアンドリピート方式により露光を行っていけばよい。
【0055】
なお、上記のうち反射鏡3は半透過鏡への光の入射角により反射光、透過光の強度が異なることがあるため、これらの光強度が等しくなるよう調整するために設けてあるものであり、必須ではない。
【0056】
位相変調素子5は透過光側にのみ入っているが、反射光側のみ、もしくは透過光側,反射光側両方に入れることもできる。両方の光路に入れる場合は、両者の位相変調量の差を上記の位相変調量とすれば目的は達成できる。
【0057】
光源として時間コヒーレンスの悪い光源を用いた場合には両方の光路に同じ大きさの位相変調素子を入れることで光路長をほぼ等しくすることができ、干渉性を改善することができる。
【0058】
上記で、各入射角θごとに変化する干渉強度の調節を、露光光源1に制御を加えることで行っているが、露光光源1の強度を一定に保ったまま各入射角における干渉用反射鏡6a,6bの滞留時間で制御を行ってもよい。あるいは、上記の露光を連続的に入射角を変化させながら行う場合には、干渉用反射鏡6a,6bの角度変化の速度に制御を加えて行ってもよい。
【0059】
【発明の効果】
以上説明したように、本発明によれば、様々な露光パターンを、レチクルを使用せず、光の干渉を使用して作り出すことが可能な干渉露光装置を提供することができる。
【0060】
【図面の簡単な説明】
【図1】本発明の実施の形態の一例の光学系の概要を示す図である。
【図2】従来の露光装置の概要を示す図である。
【符号の説明】
1:露光光源、2:反射鏡、3:半透過鏡、4:位相変調素子、5:位相変調素子制御装置、6a,6b:光干渉用反射鏡、7a,7b:反射鏡制御装置、8:パターン記憶装置、9:強度・位相計算装置、10:同期制御装置、11:ウエハステージ、12:ウエハステージ制御装置、13:ウエハ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an interference exposure apparatus.
[0002]
[Prior art]
An outline of a conventional exposure apparatus will be described with reference to FIG. An exposure apparatus according to the related art includes at least a light source 101 for generating light for exposure, an illumination optical system 102 for irradiating the reticle with light from the light source, and an alignment optical system for adjusting a relative position between the reticle and the wafer. 103, a projection optical system 110 for projecting light transmitted through the reticle onto the wafer, a reticle stage 105, a reticle stage control mechanism 104 for controlling the reticle position, a wafer stage 108, a wafer stage control mechanism 107 for controlling the wafer position, overall Is provided with a control mechanism 109 that performs overall control.
[0003]
A reticle 105a is placed on the reticle stage 105, and a wafer 108a is placed on the wafer stage 108. The reticle 105a and the wafer 108a are connected to the projection optical system 110 so that they are the object plane and the image plane of the projection optical system 110, respectively. The positional relationship has been adjusted.
[0004]
Light from the exposure light source 101 passes through the illumination optical system 102 and illuminates the reticle 105a. Since the reticle 105a, the projection optical system 110, and the wafer 108a have the above relationship, the light transmitted through the reticle 105a forms an image on the wafer 108a by the projection optical system 110, and the photosensitive agent is applied on the wafer 108a. The reticle pattern can be transferred onto the wafer 108a.
[0005]
Usually, since the area that can be transferred by the projection optical system is smaller than the entire surface of the wafer, the reticle stage 105 and the wafer stage 108 control the horizontal position (the position in a plane perpendicular to the optical axis) of the reticle and the wafer, respectively. The reticle pattern can be transferred to the entire surface of the wafer. At this time, the transfer pattern on the entire surface of the wafer may be a different pattern on the entire surface of the wafer, or the same reticle pattern may be repeated.
[0006]
By the way, it is known that in a normal exposure apparatus, there is a lower limit to the period of a pattern that can be formed due to the restriction from the diffraction limit of light. That is, when the wavelength of the illumination light is λ and the numerical aperture of the optical system is NA, the lower limit of the period of the pattern that can be formed is P min = λ / (2NA) from the diffraction limit of light.
It was impossible in principle to perform finer processing than this.
[0007]
On the other hand, since the exposure line width and the cycle required for the exposure apparatus have been miniaturized year by year with the miniaturization of circuit patterns, the numerical aperture NA of the optical system has to be adjusted within the above-mentioned limits. And the shortening of the illumination wavelength λ has been promoted.
[0008]
[Problems to be solved by the invention]
However, at present, the numerical aperture NA of the optical system has already approached the upper limit of 1.0 when used in the atmosphere. Furthermore, as for illumination light, since light having a wavelength of about 150 nm, which can be called vacuum ultraviolet light, is already being used, many optical materials that have been used to construct an exposure optical system have been used from the viewpoint of transmittance. It has become impossible and the choice of optical design has become narrower. For this reason, it has become very difficult to design an optical system having the performance required to form the required fine pattern.
[0009]
The present invention has been made in view of such circumstances, and has as its object to provide an exposure apparatus that does not require a reticle and utilizes light interference.
[0010]
[Means for Solving the Problems]
A first means for solving the above problems is a light source, a first optical system for dividing light from the light source into two optical paths passing through different optical paths, and a light split into two optical paths on the exposure surface again. An interference exposure apparatus having a second optical system for combining and forming interference fringes, wherein in the second optical system, an angle between each light and the exposure surface when the light reaches the exposure surface is variable. An interference exposure apparatus (Claim 1).
[0011]
Before describing the operation of the present means, image formation under general partial coherent image formation conditions as a premise thereof will be described.
In general, the position vectors in the frequency domain are v and v ′, and the Fourier transform of the intensity distribution of the two lights in the pupil is respectively
(Equation 1)
Figure 2004014867
[0013]
Then, the intensity distribution on the imaging plane due to the interference of the two light rays is represented by a position vector r on the imaging plane.
[0014]
(Equation 2)
Figure 2004014867
[0015]
It becomes. here,
[0016]
[Equation 3]
Figure 2004014867
[0017]
Is [0018]
(Equation 4)
Figure 2004014867
[0019]
Where (v−v ′) · r is the inner product of (v−v ′) and r, and R (v, v ′) is the TCC (Transmission of Cross Coefficient) of the projection optical system. Further, the integration range of the expression (1) is within the pupil coordinates.
[0020]
Since equation (1) contains various spatial frequency components,
C = v−v ′
Then, the expression (1) becomes
(Equation 5)
Figure 2004014867
[0022]
Therefore, the light intensity on the image plane can be regarded as an integral of interference fringes having various intensities and phases for each spatial frequency C. As for the spatial frequency C, when the length of the exposure area is L, 2π / L is the lowest frequency, and the series can be expanded at a frequency quantized at this frequency. Therefore, the equation (2) can be expanded into the following form. Here, C n = 2nπ / L.
[0023]
(Equation 6)
Figure 2004014867
[0024]
This is formally:
(Equation 7)
Figure 2004014867
[0026]
Can be written. This means
If an interference fringe having an amplitude of | I (C n ) | and a phase of φ (C n ) can be prepared for each frequency C n , it means that a desired pattern can be projected on a wafer using optical interference. are doing. Here, the amplitude and phase of the interference fringes prepared for each frequency C n are
[0027]
(Equation 8)
Figure 2004014867
[0028]
Fourier transform of the intensity distribution of the light source, as follows:
(Equation 9)
Figure 2004014867
[0030]
And the respective coefficients that can be calculated from R (v, C n ), which is the TCC of the assumed projection optical system, can be easily obtained by dividing the coefficients into absolute values and phase factors. Here, the phase factor represents the phase on the image plane. In the case of optical interference, the phase difference between the two light beams is equal to this, so that one phase of the two light beams is φ (C n ) Can be achieved by shifting.
[0031]
When two light beams interfere with each other on the wafer, the angle formed by the two light beams is 2θ, and
2 sin θ = | C | = | v−v ′ | (6)
It is.
[0032]
Therefore, if the pattern is limited to a one-dimensional pattern, a desired pattern can be formed on the wafer by two-beam interference in which the phase of one light is made variable.
[0033]
In fact, I (r) is determined, by developing the Fourier series so as to correspond it to (5), is the amplitude for each C n | I (C n) | and phase difference Find φ (C n ). | I (C n ) | corresponds to the intensity of the projection optical system (intensity of light source × exposure time) when C n is given. The angle between the two light beams giving C n is determined by equation (6).
[0034]
R (v, v ') may be an ideal projection optical system. The center position is a circle having a radius NA at coordinates v and Cv, and the center position is coordinates ( (0,0) It is easy to calculate the area of the area where all the circles of radius σ × NA overlap. Here, σ is the degree of coherence of the illumination optical system.
[0035]
After performing the calculations in this way, while changing the angle θ of the two light beams, depending on the C n corresponding thereto, corresponding to the intensity of the projection optical system | I (C n) | and between two beams If exposure is performed while changing the phase difference φ (C n ), a target pattern can be formed on an image forming surface.
[0036]
In the case of two-dimensional image formation, since the sensitivity of the photosensitive material is proportional to the integrated intensity of the light intensity, it is also possible to perform image formation by two-beam light interference while rotating the imaging surface.
[0037]
Note that in order to form a very large pattern (a pattern having a low spatial frequency) in this method, the angle between the two light beams must be made very small, which may increase the size of the apparatus. Since formation of a very large pattern can be performed by using a conventional low-resolution exposure apparatus, it does not pose a major problem. That is, it is sufficient to use the present method and the conventional exposure apparatus properly according to the spatial frequency in the pattern.
[0038]
In the present means, the incident angle of light reaching the exposure surface is variable based on such a principle, so that the exposure amount for each incident angle is changed while changing the incident angle based on such a principle. By changing (at least one of the intensity of the light source and the exposure time), it is possible to form exposure patterns having various desired pitches on the exposure surface. That is, since a desired pattern is formed on a substrate such as a wafer using light interference, a reticle or the like is not required, and compared with a case where a pattern formed on the reticle or the like is exposed and transferred. A fine pattern can be formed on a substrate.
[0039]
A second means for solving the problem is the first means, wherein the second optical system changes an angle of a reflecting mirror included in the second optical system, According to a second aspect of the present invention, there is provided a function of adjusting an angle formed between the light and the exposure surface when the light reaches the exposure surface.
[0040]
In this means, the second optical system includes a reflecting mirror having a variable angle, whereby the incident angle described in the first means can be changed. Therefore, by changing the angle of the reflecting mirror, it is possible to form the desired C n.
[0041]
A third means for solving the above-mentioned problem is the first means or the second means, wherein the second optical system has a required exposure pattern according to the intensity after Fourier transform. According to a third aspect of the present invention, there is provided a semiconductor device having a function of adjusting an exposure amount at each angle formed with the exposure surface when each light reaches the exposure surface.
[0042]
The present invention has a function of adjusting the amount of exposure at each angle formed by the light exposure surface when each light reaches the light exposure surface. Therefore, for each C n described in the first means, | I (C n ) | can be changed, and a pattern having a desired pitch can be formed on the surface to be exposed with a desired strength.
[0043]
A fourth means for solving the above-mentioned problem is any one of the first means to the third means, wherein the second optical system sets a required phase of the exposure pattern after a Fourier transform. Accordingly, it has a function of adjusting a phase difference between two luminous fluxes at each angle formed by the light exposure surface when each light reaches the light exposure surface (claim 4).
[0044]
Since the present means has a function of adjusting the phase difference between two light beams at each angle formed with the exposure surface when each light reaches the exposure surface, for each C n described in the first means, The phase difference φ (C n ) can be adjusted, and the phase of a desired pattern can be changed. In particular, according to the required Fourier transform intensity of the exposure pattern, while adjusting the amount of exposure at each angle formed with the exposure surface when each light reaches the exposure surface, simultaneously changing the phase difference, C Various patterns can be formed on the surface to be exposed by performing exposure for each n and superimposing.
[0045]
A fifth means for solving the above-mentioned problem is that the second optical system is arranged such that an exposure surface when each light reaches the exposure surface according to a phase after Fourier transform of a required exposure pattern. And a function of changing the position of the image plane placed on the image plane for each angle made (claim 5).
[0046]
In the fourth means, the phase of the interference fringes formed on the image plane is adjusted by changing the phase difference between the two light beams. Instead of this, the present means changes the phase relationship between the interference fringes and the image plane of the irradiation target pair by changing the position of the image plane placed on the image plane for each C n , And create an equivalent relationship.
[0047]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of an optical system of an exposure apparatus using an interference exposure apparatus which is an example of an embodiment of the present invention.
[0048]
The exposure apparatus shown in FIG. 1 includes an exposure light source 1, a reflecting mirror 2, a semi-transmissive mirror 3, a phase modulation element 4, and its driver 5, light interference reflecting mirrors 6a and 6b, and its control devices 7a and 7b, and pattern storage. It comprises a device 8, an intensity / phase calculation device 9, a synchronization control device 10, a wafer stage 11, and its control device 12. On the wafer stage 11, a wafer 13 coated with a photosensitive agent is placed.
[0049]
Light emitted from the exposure light source 1 is reflected by the reflecting mirror 2 and enters the semi-transmissive mirror 3. The semi-transmissive mirror 3 is formed such that half of the incident light is reflected and half is transmitted. The light reflected by the semi-transmissive mirror 3 is reflected by the interference reflecting mirror 6a and is incident on the wafer 13. The light transmitted through the semi-transmissive mirror is reflected by the interference reflecting mirror 6b and is incident on the wafer 13.
[0050]
Optical interference occurs on the wafer 13 due to the light passing through the two optical paths. If the incident angles of the two light beams at this time are both θ, interference fringes with a pitch λ / 2 sin θ are formed on the wafer surface. .
[0051]
The pattern storage device 8 stores the pattern to be formed on the wafer, and the intensity / phase calculation device 9 uses the information (4) and (5) to calculate the interference intensity for each θ. Calculate the phase between the two light fluxes and the angle change of the interference reflecting mirrors 6a and 6b.
[0052]
Based on the output of the intensity / phase calculation device 9, the synchronization control device 10 transmits the angle change amount of the interference reflection mirrors 6a and 6b to the reflection mirror control devices 7a and 7b, and changes the angles of the interference reflection mirrors 6a and 6b. Let it. At the same time, the interference intensity is transmitted to the exposure light source 1 to adjust the exposure amount, and the phase change amount is transmitted to the phase modulation control device 5 to drive the phase modulation element 4 to change the optical phase difference between the two light beams. These operations are performed on the wafer while changing the incident angle θ as necessary in a desired pattern.
[0053]
By the way, when an attempt is made to expose a pattern having any spatial frequency by the pattern forming method according to the present embodiment, the area that can be exposed at one time is limited. Calculating considering that the transflective mirror 4 must be placed where the two beams to be interfered are completely separated, and that the wavelength is equal to the pattern size at the lowest spatial frequency, the width that can be exposed at one time w is approximately w = (Lλ / 2) 1/2
It becomes. Here, λ is the wavelength of the light to be used, and L is the height of the interference reflecting mirrors 6a and 6b. For example, if λ = 150 nm and L = 1000 mm, w = 0.27 mm.
[0054]
Therefore, it is desirable to leave the low-frequency component of the exposure pattern to the conventional exposure apparatus, and to handle the high-frequency component in the exposure according to the present technology. However, when all the exposure is performed by the exposure apparatus, the wafer stage controller 12 is required. Exposure may be performed by the step-and-repeat method while shifting the wafer stage 11 for each width w.
[0055]
The reflection mirror 3 is provided for adjusting the intensity of the reflected light and the transmitted light to be equal to each other depending on the incident angle of the light to the semi-transmissive mirror. Yes, not required.
[0056]
Although the phase modulation element 5 is provided only on the transmitted light side, it can be provided only on the reflected light side or on both the transmitted light side and the reflected light side. In the case of entering both optical paths, the object can be achieved by setting the difference between the two phase modulation amounts to the above-mentioned phase modulation amount.
[0057]
When a light source having poor time coherence is used as the light source, the optical path lengths can be made substantially equal by inserting a phase modulation element of the same size in both optical paths, and the coherence can be improved.
[0058]
In the above, the adjustment of the interference intensity that changes for each incident angle θ is performed by controlling the exposure light source 1, but the interference reflecting mirror at each incident angle is maintained while the intensity of the exposure light source 1 is kept constant. The control may be performed with the residence time of 6a, 6b. Alternatively, in the case where the above-described exposure is performed while continuously changing the incident angle, control may be performed on the speed of the angle change of the interference reflecting mirrors 6a and 6b.
[0059]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an interference exposure apparatus capable of producing various exposure patterns using light interference without using a reticle.
[0060]
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an outline of an optical system according to an example of an embodiment of the present invention.
FIG. 2 is a diagram showing an outline of a conventional exposure apparatus.
[Explanation of symbols]
1: Exposure light source, 2: Reflective mirror, 3: Semi-transmissive mirror, 4: Phase modulation element, 5: Phase modulation element control device, 6a, 6b: Reflection mirror for light interference, 7a, 7b: Reflection mirror control device, 8 : Pattern storage device, 9: intensity / phase calculation device, 10: synchronization control device, 11: wafer stage, 12: wafer stage control device, 13: wafer

Claims (5)

光源と、当該光源からの光を異なる光路を通る2つの光路に分ける第1の光学系と、2つの光路に分かれた光を再び露光面で合成し、干渉縞を形成する第2の光学系を有する干渉露光装置であって、前記第2の光学系において、前記露光面上に各光が到達する際の露光面となす角度が可変とされていることを特徴とする干渉露光装置。A light source, a first optical system that splits light from the light source into two optical paths passing through different optical paths, and a second optical system that combines the light split into the two optical paths again on the exposure surface to form interference fringes An interference exposure apparatus comprising: the second optical system, wherein an angle between each light reaching the exposure surface and the exposure surface is variable. 請求項1に記載の干渉露光装置であって、前記第2の光学系は、当該第2の光学系に含まれる反射鏡の角度を変化させることで、前記露光面上に各光が到達する際の、前記露光面となす角度を調整する機能を有することを特徴とする干渉露光装置。2. The interference exposure apparatus according to claim 1, wherein the second optical system changes an angle of a reflecting mirror included in the second optical system so that each light reaches the exposure surface. An interference exposure apparatus having a function of adjusting an angle formed with the exposure surface. 請求項1又は請求項2に記載の干渉露光装置であって、前記第2の光学系は、要求される露光パターンのフーリエ変換後の強度に応じて、前記露光面上に各光が到達する際の露光面となす角度毎の露光量を調整する機能を有することを特徴とする干渉露光装置。3. The interference exposure apparatus according to claim 1, wherein each light reaches the exposure surface in the second optical system according to a required intensity of the exposure pattern after Fourier transform. 4. An interference exposure apparatus having a function of adjusting an exposure amount for each angle formed with an exposure surface at the time. 請求項1から請求項3のうちいずれか1項に記載の干渉露光装置であって、前記第2の光学系は、要求される露光パターンのフーリエ変換後の位相に応じて、前記露光面上に各光が到達する際の露光面となす角度毎の2つの光束の位相差を調整する機能を有することを特徴とする干渉露光装置。4. The interference exposure apparatus according to claim 1, wherein the second optical system is arranged on the exposure surface according to a required phase after Fourier transform of the required exposure pattern. 5. An interference exposure apparatus having a function of adjusting a phase difference between two light beams at each angle formed by an exposure surface when each light reaches the light exposure surface. 請求項1から請求項3のうちいずれか1項に記載の干渉露光装置であって、前記第2の光学系は、要求される露光パターンのフーリエ変換に応じて、前記露光面上に各光が到達する際の露光面となす角度毎に、結像面に置かれた露光面の位置を変える機能を有することを特徴とする干渉露光装置。4. The interference exposure apparatus according to claim 1, wherein the second optical system emits each light on the exposure surface according to a required Fourier transform of an exposure pattern. 5. An interference exposure apparatus having a function of changing a position of an exposure surface placed on an image forming surface for each angle formed by the exposure surface when the light beam reaches.
JP2002167540A 2002-06-07 2002-06-07 Interference aligner Pending JP2004014867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167540A JP2004014867A (en) 2002-06-07 2002-06-07 Interference aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167540A JP2004014867A (en) 2002-06-07 2002-06-07 Interference aligner

Publications (1)

Publication Number Publication Date
JP2004014867A true JP2004014867A (en) 2004-01-15

Family

ID=30434753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167540A Pending JP2004014867A (en) 2002-06-07 2002-06-07 Interference aligner

Country Status (1)

Country Link
JP (1) JP2004014867A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161684B2 (en) 2000-02-15 2007-01-09 Asml Holding, N.V. Apparatus for optical system coherence testing
US7242464B2 (en) 1999-06-24 2007-07-10 Asml Holdings N.V. Method for characterizing optical systems using holographic reticles
CN100383629C (en) * 2004-04-22 2008-04-23 鸿富锦精密工业(深圳)有限公司 Device for manufacturing mesh points of a light conducting plate
US7440078B2 (en) 2005-12-20 2008-10-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and maskless exposure units
US7443514B2 (en) 2006-10-02 2008-10-28 Asml Holding N.V. Diffractive null corrector employing a spatial light modulator
US7561252B2 (en) 2005-12-29 2009-07-14 Asml Holding N.V. Interferometric lithography system and method used to generate equal path lengths of interfering beams
JP2009278136A (en) * 2004-08-25 2009-11-26 Seiko Epson Corp Method of manufacturing microstructure
US7751030B2 (en) 2005-02-01 2010-07-06 Asml Holding N.V. Interferometric lithographic projection apparatus
US8264667B2 (en) 2006-05-04 2012-09-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and other exposure
US8934084B2 (en) 2006-05-31 2015-01-13 Asml Holding N.V. System and method for printing interference patterns having a pitch in a lithography system
CN107121894A (en) * 2017-06-14 2017-09-01 福建中科晶创光电科技有限公司 A kind of method of adjustment of beam interference angle regulating device and interference angle
CN107643656A (en) * 2017-10-25 2018-01-30 中国科学院光电技术研究所 Laser double-beam interference lithography system
CN116851922A (en) * 2023-07-25 2023-10-10 中国船舶集团有限公司第七一九研究所 System and method for preparing decontamination surface structure by laser interference additive manufacturing

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242464B2 (en) 1999-06-24 2007-07-10 Asml Holdings N.V. Method for characterizing optical systems using holographic reticles
US7804601B2 (en) 1999-06-24 2010-09-28 Asml Holding N.V. Methods for making holographic reticles for characterizing optical systems
US7161684B2 (en) 2000-02-15 2007-01-09 Asml Holding, N.V. Apparatus for optical system coherence testing
CN100383629C (en) * 2004-04-22 2008-04-23 鸿富锦精密工业(深圳)有限公司 Device for manufacturing mesh points of a light conducting plate
JP2009278136A (en) * 2004-08-25 2009-11-26 Seiko Epson Corp Method of manufacturing microstructure
US7751030B2 (en) 2005-02-01 2010-07-06 Asml Holding N.V. Interferometric lithographic projection apparatus
US7440078B2 (en) 2005-12-20 2008-10-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and maskless exposure units
US7561252B2 (en) 2005-12-29 2009-07-14 Asml Holding N.V. Interferometric lithography system and method used to generate equal path lengths of interfering beams
US8264667B2 (en) 2006-05-04 2012-09-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and other exposure
US8934084B2 (en) 2006-05-31 2015-01-13 Asml Holding N.V. System and method for printing interference patterns having a pitch in a lithography system
US7443514B2 (en) 2006-10-02 2008-10-28 Asml Holding N.V. Diffractive null corrector employing a spatial light modulator
CN107121894A (en) * 2017-06-14 2017-09-01 福建中科晶创光电科技有限公司 A kind of method of adjustment of beam interference angle regulating device and interference angle
CN107643656A (en) * 2017-10-25 2018-01-30 中国科学院光电技术研究所 Laser double-beam interference lithography system
CN116851922A (en) * 2023-07-25 2023-10-10 中国船舶集团有限公司第七一九研究所 System and method for preparing decontamination surface structure by laser interference additive manufacturing
CN116851922B (en) * 2023-07-25 2024-04-30 中国船舶集团有限公司第七一九研究所 System and method for preparing decontamination surface structure by laser interference additive manufacturing

Similar Documents

Publication Publication Date Title
KR100993851B1 (en) Original plate data generation method, original plate generation method, exposure method, device manufacturing method, and computer-readable storage medium for generating original plate data
TWI307453B (en) Illumination apparatus, exposure apparatus and device manufacturing method
US8368871B2 (en) Lithographic fabrication of general periodic structures
JP2732498B2 (en) Reduction projection type exposure method and apparatus
TWI432913B (en) Lithographic system, device manufacturing method, setpoint data optimization method, and apparatus for producing optimized setpoint data
JPH0567558A (en) Exposure method
KR100700367B1 (en) Lithographic apparatus and device manufacturing method
JP4824665B2 (en) Device manufacturing method, computer program product, and lithographic apparatus
JP2004014866A (en) Multiphoton interference aligner
JP2004014867A (en) Interference aligner
US7471375B2 (en) Correction of optical proximity effects by intensity modulation of an illumination arrangement
TWI545619B (en) Improved polarization designs for lithographic apparatus
JP2000058442A (en) Lithographic projection apparatus
US20160062246A1 (en) Methods and systems for printing periodic patterns
Schellenberg A little light magic [optical lithography]
JPH0590128A (en) Aligner
JP5063740B2 (en) A reflective loop system that generates incoherent radiation.
US5458999A (en) Interferometric phase shifting method for high resolution microlithography
JPH05109601A (en) Aligner and exposure method
JP2019525227A (en) Alignment method
JP6244462B2 (en) Lithographic method and lithographic apparatus
TW200921285A (en) Adjustment method, exposure method, device manufacturing method, and exposure apparatus
JP6844363B2 (en) Light irradiation method, manufacturing method of structure on substrate and exposure equipment
US5757505A (en) Exposure apparatus
JP2000021716A (en) Exposure device and device manufacturing method using the exposure device