JP2004013332A - Computating apparatus for reinforcement working specification - Google Patents

Computating apparatus for reinforcement working specification Download PDF

Info

Publication number
JP2004013332A
JP2004013332A JP2002163280A JP2002163280A JP2004013332A JP 2004013332 A JP2004013332 A JP 2004013332A JP 2002163280 A JP2002163280 A JP 2002163280A JP 2002163280 A JP2002163280 A JP 2002163280A JP 2004013332 A JP2004013332 A JP 2004013332A
Authority
JP
Japan
Prior art keywords
line segment
skeleton
coordinates
steel frame
dimensional coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002163280A
Other languages
Japanese (ja)
Other versions
JP3616382B2 (en
Inventor
Toru Nakajima
中島 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Architec KK
Original Assignee
Architec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Architec KK filed Critical Architec KK
Priority to JP2002163280A priority Critical patent/JP3616382B2/en
Publication of JP2004013332A publication Critical patent/JP2004013332A/en
Application granted granted Critical
Publication of JP3616382B2 publication Critical patent/JP3616382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcement working specification computing apparatus which numerically computes an interference state between internal members of the same kind or different kinds on a computer system or takes countermeasures against such an interference state. <P>SOLUTION: The reinforcement working specification computing apparatus is equipped with an interference coordinate computing means 1 which obtains three-dimensional coordinates specifying segments of reinforcing bars included in respective skeleton components according to arrangement data of the respective skeleton components and internal member list data, obtains three-dimensional coordinates specifying the surfaces or core surfaces of a steel frame included in the respective skeleton components, and stores coordinates of intersections with the segments penetrating the respective surfaces or core surfaces. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、鉄筋建造物を構築する際に用いる鉄筋の切断・屈曲・伸長仕様を算出する為の鉄筋加工仕様算出装置に関する。
【0002】
【従来の技術】
今日の躯体積算システムには、特開2001−123664号公報の如く図面編集装置等によってコンピュータシステムに予め登録した躯体構成要素の配置を示す配置データと、配置された躯体構成要素に各々与えられた内在部材リストデータに基づき、各躯体構成要素に含まれる内在部材の位置座標等を用いて三次元的な演算を施し、当該躯体に用いられる鉄筋の加工仕様を自動的に導き出す鉄筋加工仕様算出装置としての機能が備わっていた。
【0003】
【発明が解決しようとする課題】
しかしながら、躯体は多くの躯体構成要素の組合せによるものであるから、各躯体構成要素の配置によって生じる鉄筋間の干渉や、鉄筋と鉄骨など同種或いは異種の内在部材間の干渉が存在する。それにも関わらず、従来の躯体積算システムの分野では、その様な干渉状態を、当該干渉状態に係る各内在部材の仕様や寸法等に基づき数値的に算出し出力する手段が無く、現場での実物合わせに委ねることがほとんどであった。
【0004】
尚、前記寸法とは、各躯体構成要素の外寸である。前記内在部材とは、種々の躯体構成要素に内在する鉄筋や鉄骨等の主な部材を総称したものである。
【0005】
本発明は、上記実情に鑑みて成されたものであって、コンピュータシステム上で、同種或いは異種の内在部材間の干渉状態を数値的に算出し、若しくはその様な干渉状態に対する対策を事前に施すことが出来る鉄筋加工仕様算出装置の提供を目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために成された本発明による鉄筋加工仕様算出装置は、各躯体構成要素の配置データ、内在部材リストデータに基づき、各躯体構成要素に含まれる鉄筋の線分を特定する三次元座標を取得すると共に、各躯体構成要素に含まれる鉄骨の表面又は芯面を特定する三次元座標を取得し、前記各表面又は芯面について、当該面を貫通する前記線分との交点座標を保存する干渉座標算出手段を具備したことを特徴とする。
【0007】
各躯体構成要素の配置データ、内在部材リストデータに基づき、各躯体構成要素に含まれる鉄筋の線分の三次元座標及びその線分に関する属性を取得すると共に、各躯体構成要素に含まれる鉄骨の表面又は芯面の三次元座標及びその面に関する属性を取得し、前記各表面又は芯面について、当該面を貫通する線分との交点座標、貫通する線分のベクトル、並びに当該面及び線分各々の属性を保存する干渉座標算出手段を具備した構成としても良い。
【0008】
尚、配置データとは、躯体構成要素の仕様及び配置座標並びに通芯に対する偏芯量など、配置する部材及び場所を特定する為に必要なデータであり、内在部材リストデータとは、躯体構成要素の仕様に応じて設定された鉄骨の配設状態や配筋状態を納めたデータ群である。前記線分とは、隣接する通過基準点(例えば、各鉄筋の端点や屈曲点など、当該鉄筋の位置及び形状を示す際の基点となり得る部分を指す。)間において鉄筋が直線的である場合は、当該直線部を指し、隣接する通過基準点間において鉄筋が湾曲している場合は、当該基準点間の湾曲部の両端点を結ぶ曲線を指す。
【0009】
前記線分を特定する三次元座標、或いは表面又は芯面を特定する三次元座標とは、躯体が置かれる基準面(例えば水平面)をX軸及びY軸を含む平面と設定し、当該基準面と直交するZ軸を加えた三次元座標系で示された座標であって、前記線分、或いは表面又は芯面の、位置及び範囲の特定に必要な端点又は頂点などの位置基準点の座標を、前記配置データが示す配置状況及び内在部材リストデータが示す配筋態様から算出したものである。加工仕様とは、何mmの前記線分に続いて何処方向へ何度で屈曲させるといった加工の仕方を少なくとも数値的に示したものである。
【0010】
【発明の実施の形態】
以下、本発明による加工仕様算出装置の実施の形態を図面に基づき説明する。本発明による加工仕様算出装置は、図1の如くいわゆるパーソナルコンピュータ等と、当該パーソナルコンピュータ等へ各種インターフェースを介して接続される入力装置及び出力装置とから構成された躯体積算関連システムの一役を担い、通常は、通芯、平面図、及び階名・階高、並びに躯体構成要素リスト及びそれらの各仕様をはじめとする躯体仕様を入力する為の図面編集装置5や、躯体に用いた鉄筋、鉄骨、コンクリート等の積算を行う為の躯体積算装置6などと共に、ハードウエア資源を共用した躯体積算システムを構築したものである。
【0011】
前記パーソナルコンピュータ等は、周知の如く、CPU、メモリー、及び記憶装置等のハードウエア資源を備えた一種のコンピュータシステムであり、記憶装置にインストールされたプログラム、或いは外部記憶装置に記録されたプログラムが起動することによって当該加工仕様算出装置の諸機能が起動することとなる。
【0012】
上記図面編集装置によってパーソナルコンピュータへ前記躯体仕様が既に入力され、前記躯体仕様が、前記記憶装置等にデータベースとして保存されていることを前提として加工仕様算出装置を起動すれば、先ず、寸法決定手段8の稼働により各躯体構成要素の寸法が決定される(図2参照)。
【0013】
寸法の決定は、連続基礎、柱及び梁の断面寸法、並びに連続基礎、スラブ及び壁の厚さにあっては、表1に示す如く、平面図を入力する際に、その仕様が明示された設計図書の図面・数値内容を登録する入力操作(数値入力やマウス操作等)によって自動設定或いは手動設定された三次元座標(躯体が置かれる基準面(例えば水平面)をX軸及びY軸を含む平面と設定し、当該基準面と直交するZ軸を加えた三次元座標系で示された座標。以下同じ。)から算出される。
【0014】
【表1】

Figure 2004013332
【0015】
また、連続基礎、柱及び梁の軸方向の寸法にあっては、表2に示す様に、当該躯体構成要素とその軸方向に存在する躯体構成要素との境界、又は当該躯体構成要素の始点と終点に基づいてその外縁が設定され、当該外縁の基点或いは始点又は終点など当該外縁を特定するに必要な三次元座標を算出し、当該三次元座標系における躯体構成要素の傾斜と湾曲を加味した増減を行う形で算出される。
【0016】
【表2】
Figure 2004013332
【0017】
更に、スラブや壁の平面寸法にあっては、当該躯体構成要素の周囲に存在する躯体構成要素との境界、又は躯体構成要素の端辺に基づいてその外縁が設定され、当該外縁の基点或いは始点又は終点など当該外縁を特定するに必要な三次元座標を算出し、それに当該三次元座標系における躯体構成要素の傾斜と湾曲を加味した増減を行う形で算出される。上記算出方法のいずれにあっても、基本的に前記三次元座標で示されるポイント間の直線距離或いは曲線距離を算出するという形で行われ、後に、内在部材特定手段28の稼働により予め設定された内在部材リストデータを参照して、躯体構成要素に含まれる内在部材及び当該躯体構成要素内における断面レイアウト(断面位置データ等)が特定され、前記の如く得られた寸法を用いて当該内在部材各々の加工仕様が導き出されることとなる。
【0018】
独立した躯体構成要素に含まれる内在部材の加工仕様は、前記寸法と予め設定された内在部材リストデータから導き出されるが、特別に、柱、梁、連続基礎、スラブ等の連続して躯体の一部を形作る躯体構成要素にあっては、前記寸法の決定の他、連続情報取得手段7の稼働により、平面図に含まれる配置データからそれら躯体構成要素の連続状態が導き出されると共に、前記内在部材リストデータ等を参照しつつ角度算出手段27によって前記連続状態にある躯体構成要素間の相対角度が算出される等して加工仕様が導き出される(図2参照)。
【0019】
以下、仮に、折れ曲がった状態で連なる梁、及びそれに内包される鉄筋の連続状態を導き出す際の例を図4に基づき説明する。連続情報取得手段7は、躯体仕様を参照して、図4(イ)の如く順次選択された梁の芯線Pが向かう方向に断面が一部でも重なる梁9を検出し、前記躯体構成要素リストに含まれる内在部材リストデータに則って、長手方向に連なる梁9の内部に配設されるべき鉄筋10を順次連結する(図4(ロ)参照)。特にこの例では、梁9を配置する際、その梁9の断面11を配置するという形で行われるので、連続する梁群の始端断面11aから終端断面11bに至るまで配置された梁9の断面を順次検出していくと言う形で行われる。
【0020】
この処理は、連結されるべき鉄筋10を内包する梁9を全て検出するまで行われるが、連結されるべき鉄筋10を内包する梁9が平面図や躯体構成要素リストから観てまだ存在するにも関わらず、途中で当該梁9の芯線Pの方向で続く梁9の断面を検出できなくなった場合、即ち、前の梁9の芯線Pの向かう方向が次の梁9にて大きく変化した場合は、変化の始点となる断面に続く部分の芯線P、例えば、当該梁9の始端と末端、始端と中間点、又は末端と中間点との断面の中心の三次元座標を結ぶ芯線Pが新たな芯線Pとなり、各芯線Pに対して平行に配設される鉄筋10の連結点が当該梁9の内部に配設される鉄筋10の通過基準点12となる。
【0021】
更に、座標変換手段13を起動し、各鉄筋10の通過基準点12の三次元座標を、鉄筋10の線分を2つ以上含んだ仮想の面を基面14とする相対的な三次元座標(以下、相対座標と記す。)に変換する。以下、図4(ロ)に示す柱の鉄筋の中から一本の鉄筋10aを抜粋して行った具体的な変換手順の一例を図5に基づき説明する。
【0022】
尚、基面14とは、前記加工仕様を表す際に最も都合が良いと選択された面である。具体的には、各鉄筋10に含まれる二つの線分15,15と平行な平面を以て基面14とするのが、折り曲げ作業を少しでも省略できる点で効率的であるが、基面14を構成するものとして選択される線分15によって加工時における作業性も異なり、各鉄筋10が含む線分15のうちで最も長い線分15aと2番目に長い線分15bを含む平面を以て基面14とすることが便利な場合が多く、同様の見方からすれば、各鉄筋10が含む線分15のうちで最も長い線分15aを基軸16とするのが便利な場合も多い。
【0023】
1) 前記通過基準点を結ぶ線分15のうち最も長い線分(この例ではこれを基軸16とする。)15aを鉄筋から検出する。
2) 前記基軸16が当該相対座標系のX軸と平行となるように複数の線分15が連結して成る対象鉄筋10a全体を移動させ、対象鉄筋10bとして各通過基準点12の座標を更新する。
3) 前記通過基準点12を結ぶ線分のうち2番目に長い線分15bを検出する。
4) 2番目に長い線分15bが当該相対座標系のXY平面に対して平行となるようにそのX軸と平行な軸を中心に前記鉄筋15b全体を回転させ、対象鉄筋10cとして各通過基準点12の座標を更新する(この例では、ここで更新された座標を相対座標とし、前記基軸16、即ち、最も長い線分15aと2番目に長い線分15bとで定まる面を基面14とした。)。
【0024】
続いて、角度算出手段27は、この様に変換されて成る相対座標を用いて、基軸16以外の各線分15について前記基軸16と他の線分15との相対角度を、前記基軸16を含んだ基面14に対する水平角α及び垂直角βという形で算出する。算出結果は、適宜設けられた出力装置へ、例えば、対象鉄筋10c全体を、図5(ロ)の如く、前記相対座標系のX−Y平面、X−Z平面、場合によってはY−Z平面へ投影した2次元の図面を以て表示し、それぞれの図面において各線分15にかかる水平角α及び垂直角β並びに長さを表記しておけば良い。
【0025】
尚、上記表示方法を挙げたことによって、必要に応じて基軸16以外の線分15との相対角度で示すことを妨げるものではなく、場合によっては、図8の二点鎖線円内に示す如く隣接する通過基準点12,12で定まる線分15の長さと、隣接する通過基準点12,12間の差分座標によって表す場合もある。隣接する通過基準点12,12間の差分座標とは、前記隣接する通過基準点12,12間の三次元座標の差分を絶対値で示したものであり、この場合も、前記相対角度で示す場合と同様の基準を持って相対座標系の基面14を設定することが有効となる。
【0026】
この様な加工仕様算出処理は、図6及び図7に示す曲線的な梁9を含む処理にも適用出来、その際も、各鉄筋10の加工仕様を、隣接する通過基準点12,12で定まる線分15の長さと、当該鉄筋10が含む線分15から選択した基軸16と他の線分15との相対角度又は隣接する通過基準点12,12間の差分座標により、当該湾曲部17の曲がり量をも含めて充分明確に示すことができるものである。
【0027】
前記のごとく、前記内在部材特定手段28の稼働によって、予め設定された躯体仕様を参照して、当該躯体構成要素に含まれる内在部材が特定されるが、内在部材として鉄骨が含まれる場合もあり得る。この様な場合、前記躯体仕様に含まれる内在部材リストデータには、例えば、梁や柱等の場合は、コンクリートの断面形状及び鉄骨の断面形状等がその相対位置を示す形で含まれており、因みに、内在部材に含まれないその他の鉄骨の位置情報は、前記躯体仕様に平面図や立面図としてその断面形状、並びに配置データに基づく絶対位置が登録されている。
【0028】
そして、折れ曲がった状態で連なる梁、及びそれに内包される鉄骨の連続状態を導き出すにあたり、連続情報取得手段7は、躯体仕様を参照して、図11(イ)の如く順次選択された梁の芯線Pが向かう方向に断面が一部でも重なる梁9を検出し、前記躯体構成要素リストに含まれる内在部材リストデータに則って、長手方向に連なる梁9の内部に配設されるべき鉄骨18を構成している各表面(ここでは表面19を用いたが、処理スピード等を考慮して芯面を用いても良い)19を順次連結する(図11(ロ)参照)。そして、必要に応じ、各表面19の端辺を連結することによって、連続する鉄骨18の連結部の断面が特定され、鉄骨18の連結等の作業に適宜利用される。尚、上記鉄骨前記鉄筋10の連続情報を得る場合と同様に、この例では、梁9を配置する際、その梁9の断面11を配置するという形で行われるので、連続する梁群の始端断面11aから終端断面11bに至るまで配置された梁9の断面を順次検出していくと言う形で行われる。
【0029】
しかしながら、前記の如く鉄筋10の加工仕様が導かれた躯体構成要素は、それ自体が単体で存在するわけではなく、複数の躯体構成要素と連結し、各躯体構成要素に包含される鉄筋10や鉄骨18が相互に組み合って存在する。よって、上記の如く単純に各躯体構成要素及びそれに包含される鉄筋10や鉄骨18の加工仕様を導き出すだけでは、相連結する躯体構成要素に含まれる鉄筋10や鉄骨18が相互に干渉し、実際の現場において極めて煩雑な修正加工を施す必要が生じる場合が少なくない。殊に、鉄筋10と鉄骨18とが、図9及び図10の如く干渉し合う場合には、鉄骨18に対して鉄筋10が通過する孔を設けなければならず、その様な孔を現場作業中に設けることは、予め孔を設けておく場合と比較して時間的なロスも大きくなる。
【0030】
上記実情に鑑み、当該加工仕様算出装置は、干渉座標算出手段1によって躯体構成要素に含まれる内在部材間の干渉座標の算出処理を行うことが出来るように設計されている。以下、当該干渉座標算出処理の具体例を、鉄骨18と鉄筋10とが相互に干渉している場合に基づき説明する。
【0031】
先ず、躯体仕様から各躯体構成要素に含まれる鉄筋10に含まれる線分15の前記三次元座標及びその線分15に関する属性(径をはじめとする鉄筋10の仕様等)を取得し、更に、同躯体仕様から各躯体構成要素に含まれる前記鉄骨18の表面(平面であるか曲面であるかは問わない。)19の三次元座標及びその面に関する属性(厚みや幅をはじめとする鉄骨の仕様等)を取得する。そして、前記各鉄骨18の表面19について、当該鉄骨18の表面19を貫通している鉄筋10の持つ線分15との交点座標と当該線分15の方向ベクトル、並びに当該表面19及び線分15各々の属性を保存する。
【0032】
尚、前記鉄筋10の持つ線分15として用いるものは、鉄筋の中心を通る軸であっても良いが、太さを考慮すべく、鉄筋10自体をN角柱として仮定し、前記軸を中心とした半径(鉄筋10の太さ/2)の周面上に存在するN(任意の自然数)本の稜線であっても良い(図3(ハ)(ニ)参照)。また、鉄骨18の面を表現するものとして用いられるものには、前記連続情報を得る場合と同様に、平面、旋回曲面、球面、ベジエ曲面、Bスプライン曲面等が挙げられる。前記干渉座標算出処理の対象となる鉄骨18の面(交点が算出される面)としては、鉄骨18の表面を採用しても良いし、面厚を考慮せず鉄骨18の芯面を採用しても良い(図3(イ)(ロ)参照)。
【0033】
上記の如く、鉄骨18の表面19を構成する平面或いは当該鉄骨18の芯となる芯面と、当該鉄骨18と干渉する鉄筋10の特定線分15との交点の算出結果及び前記鉄筋10及び鉄骨18の属性(或いは面及び線分15の属性)から、鉄骨18を貫通する鉄筋10が通過する為の孔の場所及び寸法を導き出すことができる。前記軸を用いる場合は、前記交点座標を中心とする孔として導かれ、前記稜線を用いる場合には、各稜線との交点座標を結んだ孔として導かれる。また、鉄筋10同士の干渉にあっても、相干渉する鉄筋10の特定線分15の三次元座標及びそれら鉄筋10に関する前記属性を取得し、それらの交点を算出することによって、切断等を行う箇所並びに寸法を導き出すことができる。
【0034】
【発明の効果】
以上の如く、本発明による加工仕様算出装置によれば、各躯体構成要素の配置データ、内在部材リストデータに基づき、各躯体構成要素に含まれる鉄筋の線分の三次元座標を取得すると共に、各躯体構成要素に含まれる鉄骨の表面又は芯面の三次元座標を取得し、前記各表面又は芯面について、当該面を貫通する線分との交点座標を保存する干渉座標算出手段を具備した構成によって、鉄骨表面を構成する平面或いは当該鉄骨の芯となる芯面と、当該鉄骨と干渉する鉄筋の線分との交点の算出結果から、鉄骨を貫通する鉄筋が通過する為の孔の場所を導き出すことができる。
【0035】
また、各躯体構成要素の配置データ、内在部材リストデータに基づき、各躯体構成要素に含まれる鉄筋の線分の三次元座標及びその線分に関する属性を取得すると共に、各躯体構成要素に含まれる鉄骨の表面又は芯面の三次元座標及びその面に関する属性を取得し、前記各表面又は芯面について、当該面を貫通する線分との交点座標、貫通する線分のベクトル、並びに当該面及び線分各々の属性を保存する干渉座標算出手段を具備した構成によって、鉄骨表面を構成する平面或いは当該鉄骨の芯となる芯面と、当該鉄骨と干渉する鉄筋の線分との交点の算出結果及び前記鉄筋及び鉄骨の属性から、鉄骨を貫通する鉄筋が通過する為の孔の場所及び寸法を導き出すことができる。現場での実物合わせという手間のかかる作業も回避できる。
【図面の簡単な説明】
【図1】本発明による加工仕様算出装置の躯体積算関連システムにおける位置づけを示すブロック図である。
【図2】本発明による加工仕様算出装置の一例を示すブロック図である。
【図3】(イ)(ロ)(ハ)(ニ)
本発明による加工仕様算出装置における干渉座標算出処理の基準となる面又は線分の例を示す説明図である。
【図4】(イ)(ロ)
連続した躯体構成要素の一例たる梁群の連続状況の一例を示す概略図である。
【図5】(イ)(ロ)
本発明による加工仕様算出装置の座標変換手段の処理態様の一例を示す説明図と、加工仕様の一態様であるところの2次元投影図の一例を示す説明図である。
【図6】(イ)(ロ)
連続した躯体構成要素の一例たる梁群の連続状況の一例を示す概略図である。
【図7】(イ)(ロ)
本発明による加工仕様算出装置の座標変換手段の処理態様の一例を示す説明図と、加工仕様の一態様であるところの2次元投影図の一例を示す説明図である。
【図8】
本発明による加工仕様算出装置で出力される加工仕様の一例を示す要部説明図である。
【図9】
躯体構成要素に含まれる内在部材の干渉状況の一例を示す説明図である。
【図10】
躯体構成要素に含まれる内在部材の干渉状況の一例を示す要部拡大図である。
【図11】(イ)(ロ)
連続した躯体構成要素の一例たる梁群の連続状況の一例を示す概略図である。
【符号の説明】
1 干渉座標算出手段,5 図面編集装置,6 躯体積算装置,
7 連続情報取得手段,8 寸法決定手段,
9 梁,10 鉄筋,11 断面,12 通過基準点,
13 座標変換手段,14 基面,15 線分,16 基軸,17 湾曲部,
18 鉄骨,19 表面,27 角度算出手段,28 内在部材特定手段,
α 水平角,β 垂直角,P 芯線,[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a rebar processing specification calculation device for calculating specifications of cutting, bending, and elongation of a rebar used when constructing a rebar building.
[0002]
[Prior art]
In today's skeleton integration system, as shown in Japanese Patent Application Laid-Open No. 2001-123664, layout data indicating the layout of skeleton components registered in advance in a computer system by a drawing editing device and the like, and the allocated skeleton components are given. Based on the internal member list data, a rebar processing specification calculation device that performs three-dimensional calculations using the position coordinates and the like of the internal members included in each skeleton component, and automatically derives the processing specifications of the rebar used for the skeleton. As a function.
[0003]
[Problems to be solved by the invention]
However, since the skeleton is based on a combination of many skeleton components, there is interference between reinforcing bars caused by the arrangement of each skeleton component, and interference between the same type or different types of internal members such as reinforcing bars and steel frames. Nevertheless, in the field of the conventional skeleton integration system, there is no means for numerically calculating and outputting such an interference state based on the specifications and dimensions of the respective internal members related to the interference state. In most cases, it was left to actual matching.
[0004]
In addition, the said dimension is an outer dimension of each skeleton component. The term "internal members" is a general term for the main members such as reinforcing bars and steel frames existing in various structural elements.
[0005]
The present invention has been made in view of the above circumstances, and numerically calculates an interference state between similar or different types of internal members on a computer system, or takes measures against such an interference state in advance. It is an object of the present invention to provide a rebar processing specification calculation device that can be applied.
[0006]
[Means for Solving the Problems]
The rebar processing specification calculation device according to the present invention made to solve the above-mentioned problem is based on a tertiary line that specifies a line segment of a reinforcing bar included in each skeleton component based on the arrangement data of each skeleton component and the list of inherent members. Acquire the original coordinates, obtain the three-dimensional coordinates that specify the surface or the core surface of the steel frame included in each skeleton component, for each of the surfaces or the core surface, the intersection coordinates with the line segment passing through the surface Is provided.
[0007]
Based on the arrangement data of each skeleton component and the list of intrinsic members, acquire the three-dimensional coordinates of the line segments of the reinforcing bars included in each skeleton component and the attributes related to the line segments, as well as the attributes of the steel frames included in each skeleton component. Obtain the three-dimensional coordinates of the surface or the core surface and the attributes related to the surface, and for each surface or core surface, the coordinates of the intersection with the line segment passing through the surface, the vector of the line segment passing through, and the surface and the line segment A configuration including interference coordinate calculation means for storing each attribute may be employed.
[0008]
Note that the arrangement data is data necessary for specifying a member and a place to be arranged, such as the specification and arrangement coordinates of the skeleton component and the amount of eccentricity with respect to the grid. The inherent member list data is the skeleton component element. Is a data group containing the arrangement state and the arrangement state of the steel frames set according to the specifications of FIG. The above-mentioned line segment is a case where a reinforcing bar is linear between adjacent passing reference points (for example, a portion that can be a base point when indicating the position and shape of the reinforcing bar, such as an end point or a bending point of each reinforcing bar). Indicates the straight line portion, and when the rebar is curved between adjacent passing reference points, indicates a curve connecting both end points of the curved portion between the reference points.
[0009]
The three-dimensional coordinates for specifying the line segment or the three-dimensional coordinates for specifying the surface or the core surface refer to a reference plane (for example, a horizontal plane) on which a skeleton is placed as a plane including the X axis and the Y axis, and the reference plane. And coordinates of a position reference point such as an end point or a vertex necessary for specifying the position and range of the line segment or the surface or the core surface, the coordinate being indicated by a three-dimensional coordinate system to which the Z axis orthogonal to the above is added. Is calculated from the arrangement state indicated by the arrangement data and the arrangement of bars indicated by the intrinsic member list data. The processing specification indicates at least numerically a processing method in which the line segment of several millimeters is bent in any direction after the line segment.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a processing specification calculation device according to the present invention will be described with reference to the drawings. The processing specification calculation apparatus according to the present invention plays a role of a skeleton integration system including a so-called personal computer as shown in FIG. 1 and an input device and an output device connected to the personal computer and the like via various interfaces. , Usually, a drawing editing apparatus 5 for inputting a core specification, such as a grid, a floor plan, a floor name and a floor height, and a list of frame component elements and their specifications, and a reinforcing bar used for the frame, A skeleton integration system that shares hardware resources is constructed together with a skeleton integration device 6 for integrating steel frames, concrete, and the like.
[0011]
As is well known, the personal computer or the like is a type of computer system having hardware resources such as a CPU, a memory, and a storage device, and a program installed in the storage device or a program recorded in an external storage device is stored in the storage device. Upon activation, various functions of the processing specification calculation device are activated.
[0012]
If the machining specification calculator is started on the premise that the skeleton specification has already been input to the personal computer by the drawing editing apparatus and the skeleton specification is stored as a database in the storage device or the like, first, the dimension determining means The operation of 8 determines the dimensions of each frame component (see FIG. 2).
[0013]
As for the determination of the dimensions, as for the continuous foundation, the cross-sectional dimensions of columns and beams, and the thickness of the continuous foundation, slabs and walls, as shown in Table 1, the specifications were specified when entering the plan view. The three-dimensional coordinates (reference plane (for example, horizontal plane) on which the skeleton is placed) including the X axis and the Y axis automatically set or manually set by an input operation (numerical input, mouse operation, etc.) for registering drawings and numerical contents of design documents The coordinates are expressed in a three-dimensional coordinate system in which a plane is set and a Z axis orthogonal to the reference plane is added.
[0014]
[Table 1]
Figure 2004013332
[0015]
In addition, for the dimensions of the continuous foundation, columns and beams in the axial direction, as shown in Table 2, the boundary between the skeleton component and the skeleton component existing in the axial direction, or the starting point of the skeleton component The outer edge is set based on the and the end point, and the three-dimensional coordinates necessary to specify the outer edge such as the base point or the start point or the end point of the outer edge are calculated, and the inclination and curvature of the skeleton component in the three-dimensional coordinate system are taken into account. It is calculated in such a way as to increase or decrease it.
[0016]
[Table 2]
Figure 2004013332
[0017]
Furthermore, in the plane dimensions of the slab or the wall, the outer edge is set based on the boundary with the skeleton component existing around the skeleton component, or the edge of the skeleton component, and the base point of the outer edge or The three-dimensional coordinates required to specify the outer edge such as the start point or the end point are calculated, and the calculation is performed in such a manner as to increase or decrease the inclination and curvature of the skeleton component in the three-dimensional coordinate system. In any of the above calculation methods, the calculation is basically performed by calculating a linear distance or a curve distance between the points indicated by the three-dimensional coordinates, and is set in advance by the operation of the intrinsic member specifying unit 28. With reference to the internal member list data, the internal members included in the skeleton component and the cross-sectional layout (cross-sectional position data and the like) in the skeleton component are specified, and the internal members are determined using the dimensions obtained as described above. Each processing specification will be derived.
[0018]
The processing specifications for the internal members included in the independent skeleton components are derived from the above dimensions and the preset internal member list data, but in particular, columns, beams, continuous foundations, slabs, etc. In the skeleton components forming the part, in addition to the determination of the dimensions, the operation of the continuous information acquisition means 7 derives the continuity of the skeleton components from the arrangement data included in the plan view, The processing specification is derived by calculating the relative angle between the skeleton components in the continuous state by the angle calculating means 27 while referring to the list data or the like (see FIG. 2).
[0019]
Hereinafter, an example of deriving a continuous state of the beams connected in a bent state and the reinforcing bars included therein will be described with reference to FIG. The continuity information acquisition means 7 detects the beam 9 whose cross section partially overlaps in the direction toward the core line P of the sequentially selected beam as shown in FIG. The rebars 10 to be disposed inside the beams 9 extending in the longitudinal direction are sequentially connected in accordance with the intrinsic member list data included in (1) (see FIG. 4B). In particular, in this example, when arranging the beam 9, the cross section 11 of the beam 9 is arranged. Therefore, the cross section of the beam 9 arranged from the start end section 11 a to the end section 11 b of the continuous beam group is performed. Are sequentially detected.
[0020]
This process is performed until all the beams 9 including the reinforcing bars 10 to be connected are detected. However, if the beams 9 including the reinforcing bars 10 to be connected still exist as viewed from the plan view or the skeleton component list. Nevertheless, when the cross section of the beam 9 that continues in the direction of the core P of the beam 9 cannot be detected on the way, that is, when the direction of the core P of the previous beam 9 changes greatly in the next beam 9 Is the center line P of the portion following the cross section serving as the start point of the change, for example, the center line P connecting the three-dimensional coordinates of the center of the cross section between the start end and the end, the start end and the middle point, or the end and the middle point of the beam 9 is newly added. The connection points of the reinforcing bars 10 arranged in parallel to the respective core lines P become the passage reference points 12 of the reinforcing bars 10 disposed inside the beam 9.
[0021]
Further, the coordinate conversion means 13 is activated, and the three-dimensional coordinates of the passage reference point 12 of each reinforcing bar 10 are set as relative three-dimensional coordinates with a virtual surface including two or more line segments of the reinforcing bar 10 as the base surface 14. (Hereinafter referred to as relative coordinates). Hereinafter, an example of a specific conversion procedure performed by extracting one reinforcing bar 10a from the column reinforcing bars illustrated in FIG. 4B will be described with reference to FIG.
[0022]
In addition, the base surface 14 is a surface selected to be most convenient when expressing the processing specifications. Specifically, it is efficient to use a plane parallel to the two line segments 15 and 15 included in each rebar 10 as the base surface 14 in that the bending operation can be omitted even a little. The workability at the time of machining differs depending on the line segment 15 selected as a constituent, and the base surface 14 has a plane including the longest line segment 15a and the second longest line segment 15b among the line segments 15 included in each reinforcing bar 10. In many cases, it is convenient to use the longest line segment 15a among the line segments 15 included in each reinforcing bar 10 as the base axis 16.
[0023]
1) The longest line segment 15a (in this example, the base axis 16) of the line segments 15 connecting the passing reference points is detected from the reinforcing bar.
2) The entire target rebar 10a formed by connecting the plurality of line segments 15 is moved so that the base axis 16 is parallel to the X axis of the relative coordinate system, and the coordinates of each passage reference point 12 are updated as the target rebar 10b. I do.
3) The second longest line segment 15b among the line segments connecting the passage reference points 12 is detected.
4) The entire reinforcing bar 15b is rotated around an axis parallel to the X axis so that the second longest line segment 15b is parallel to the XY plane of the relative coordinate system, and each passing reference is set as the target reinforcing bar 10c. The coordinates of the point 12 are updated (in this example, the updated coordinates are set as relative coordinates, and the base axis 16, that is, a plane defined by the longest line segment 15a and the second longest line segment 15b is set as the base surface 14). And.).
[0024]
Subsequently, the angle calculation unit 27 uses the relative coordinates converted in this way to calculate the relative angle between the base axis 16 and the other line segments 15 for each of the line segments 15 other than the base axis 16, including the base axis 16. The horizontal angle α and the vertical angle β with respect to the base surface 14 are calculated. The calculation result is output to an appropriately provided output device by, for example, transferring the entire target reinforcing bar 10c to the XY plane, the XZ plane, or the YZ plane of the relative coordinate system as shown in FIG. , The horizontal angle α and the vertical angle β and the length of each line segment 15 may be described in each drawing.
[0025]
It should be noted that the above display method does not prevent the relative angle with the line segment 15 other than the base axis 16 from being indicated as necessary. In some cases, as shown in a two-dot chain line circle in FIG. In some cases, the distance may be represented by the length of a line segment 15 determined by the adjacent passage reference points 12 and 12 and the difference coordinates between the adjacent passage reference points 12 and 12. The difference coordinates between the adjacent passage reference points 12 and 12 indicate the difference between the three-dimensional coordinates between the adjacent passage reference points 12 and 12 by an absolute value, and also in this case, are indicated by the relative angles. It is effective to set the base surface 14 of the relative coordinate system with the same reference as in the case.
[0026]
Such processing specification calculation processing can also be applied to the processing including the curved beam 9 shown in FIGS. 6 and 7, and also in this case, the processing specifications of each reinforcing bar 10 are set at the adjacent passage reference points 12 and 12. The curved portion 17 is determined by the length of the determined line segment 15 and the relative angle between the base axis 16 selected from the line segment 15 included in the rebar 10 and another line segment 15 or the difference coordinates between the adjacent passage reference points 12 and 12. Can be sufficiently clearly shown, including the amount of bending.
[0027]
As described above, the operation of the intrinsic member specifying means 28 refers to a preset skeleton specification to identify the intrinsic member included in the skeleton component.However, a steel frame may be included as the intrinsic member. obtain. In such a case, the inherent member list data included in the skeleton specification includes, for example, in the case of a beam or a column, the cross-sectional shape of concrete and the cross-sectional shape of a steel frame are included in a form indicating their relative positions. Incidentally, as for the position information of other steel frames not included in the inherent members, the sectional shape and the absolute position based on the arrangement data are registered in the frame specification as a plan view or an elevation view.
[0028]
Then, in deriving the continuous state of the beam connected in the bent state and the steel frame included therein, the continuous information obtaining means 7 refers to the frame specification and refers to the core line of the beam sequentially selected as shown in FIG. The beam 9 whose cross section is partially overlapped in the direction of P is detected, and the steel frame 18 to be disposed inside the beam 9 extending in the longitudinal direction is determined in accordance with the intrinsic member list data included in the skeleton component list. The constituent surfaces (the surface 19 is used here, but a core surface may be used in consideration of the processing speed and the like) 19 are sequentially connected (see FIG. 11B). Then, if necessary, by connecting the edges of the respective surfaces 19, the cross section of the continuous connecting portion of the steel frame 18 is specified, and the cross section of the connecting portion of the steel frame 18 is appropriately used for operations such as the connection of the steel frame 18. In this example, as in the case where the continuous information of the steel bars 10 is obtained, in this example, when arranging the beam 9, the cross section 11 of the beam 9 is arranged. This is performed by sequentially detecting the cross sections of the beams 9 arranged from the cross section 11a to the terminal cross section 11b.
[0029]
However, the skeleton component from which the processing specifications of the reinforcing bar 10 are derived as described above does not exist as a single unit, but is connected to a plurality of skeleton components, and the reinforcing bar 10 included in each skeleton component and Steel frames 18 are present in combination with each other. Therefore, as described above, simply deriving the processing specifications of each skeleton component and the reinforcing bars 10 and the steel frames 18 included therein will cause the reinforcing bars 10 and the steel frames 18 included in the mutually connected skeleton components to interfere with each other. In many cases, it is necessary to perform extremely complicated correction processing at the site. In particular, when the reinforcing bar 10 and the steel frame 18 interfere with each other as shown in FIGS. 9 and 10, a hole through which the reinforcing bar 10 passes must be provided in the steel frame 18. The provision in the inside also increases the time loss compared to the case where holes are provided in advance.
[0030]
In view of the above circumstances, the machining specification calculation device is designed so that the interference coordinate calculation means 1 can perform a process of calculating interference coordinates between the internal members included in the skeleton component. Hereinafter, a specific example of the interference coordinate calculation process will be described based on a case where the steel frame 18 and the reinforcing bar 10 interfere with each other.
[0031]
First, the three-dimensional coordinates of the line segment 15 included in the reinforcing bar 10 included in each skeleton component and attributes (such as the diameter of the reinforcing bar 10 and the like) of the line segment 15 are acquired from the skeleton specification, and further, From the same frame specification, the three-dimensional coordinates of the surface 19 (regardless of whether it is a flat surface or a curved surface) 19 of the steel frame 18 included in each frame component and attributes related to the surface (thickness and width, etc. Specifications etc.). Then, for the surface 19 of each steel frame 18, the coordinates of the intersection with the line 15 of the reinforcing bar 10 penetrating the surface 19 of the steel frame 18, the direction vector of the line 15, and the surface 19 and the line 15. Save each attribute.
[0032]
In addition, what is used as the line segment 15 of the rebar 10 may be an axis passing through the center of the rebar, but in consideration of the thickness, the rebar 10 itself is assumed to be an N prism, and the axis is defined as the center. N (arbitrary natural number) ridges may be present on the peripheral surface of the radius (the thickness of the reinforcing bar 10/2) (see FIGS. 3 (c) and (d)). In addition, as those used to express the surface of the steel frame 18, a plane, a turning surface, a spherical surface, a Bezier surface, a B-spline surface, and the like can be used as in the case of obtaining the continuous information. As the surface of the steel frame 18 (the surface on which the intersection is calculated) to be subjected to the interference coordinate calculation processing, the surface of the steel frame 18 may be employed, or the core surface of the steel frame 18 may be employed without considering the surface thickness. (See FIGS. 3A and 3B).
[0033]
As described above, the calculation result of the intersection between the plane constituting the surface 19 of the steel frame 18 or the core surface serving as the core of the steel frame 18 and the specific line segment 15 of the reinforcing bar 10 which interferes with the steel frame 18 and the calculation result of the intersection point between the rebar 10 and the steel frame From the attribute 18 (or the attribute of the surface and the line segment 15), it is possible to derive the location and size of the hole through which the reinforcing bar 10 passing through the steel frame 18 passes. When the axis is used, it is guided as a hole centered on the intersection coordinates, and when the ridge line is used, it is guided as a hole connecting the intersection coordinates with each ridge line. Further, even in the case of interference between the reinforcing bars 10, cutting or the like is performed by acquiring the three-dimensional coordinates of the specific line segment 15 of the reinforcing bars 10 that interfere with each other and the above-described attributes related to the reinforcing bars 10, and calculating their intersections. Locations and dimensions can be derived.
[0034]
【The invention's effect】
As described above, according to the processing specification calculation device according to the present invention, the three-dimensional coordinates of the line segments of the reinforcing bars included in each skeleton component are acquired, based on the layout data of each skeleton component and the underlying member list data, Interference coordinate calculation means for acquiring three-dimensional coordinates of the surface or core surface of the steel frame included in each skeleton component, and for each of the surfaces or core surfaces, storing coordinates of intersections with line segments passing through the surface. Depending on the configuration, from the calculation result of the intersection of the plane constituting the steel frame surface or the core surface serving as the core of the steel frame and the line segment of the reinforcing bar interfering with the steel frame, the location of the hole through which the reinforcing bar penetrates the steel frame passes. Can be derived.
[0035]
In addition, based on the layout data of each skeleton component and the list of inherent members, the three-dimensional coordinates of the line of the reinforcing bar included in each skeleton component and the attribute related to the line segment are acquired and included in each skeleton component. Obtain the three-dimensional coordinates of the surface or the core surface of the steel frame and the attributes related to the surface, and for each of the surfaces or the core surface, the intersection coordinates with the line segment passing through the surface, the vector of the line segment passing through, and the surface and With the configuration including the interference coordinate calculation means for storing the attribute of each line segment, the calculation result of the intersection of the plane constituting the steel frame surface or the core surface serving as the core of the steel frame and the line segment of the reinforcing bar interfering with the steel frame Further, from the attributes of the reinforcing bars and the steel frames, it is possible to derive the locations and dimensions of the holes through which the reinforcing bars passing through the steel frames pass. The troublesome work of actual matching on site can also be avoided.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the position of a processing specification calculation device according to the present invention in a skeleton integration system.
FIG. 2 is a block diagram illustrating an example of a processing specification calculation device according to the present invention.
FIG. 3 (a) (b) (c) (d)
It is explanatory drawing which shows the example of the surface or line segment used as the reference of the interference coordinate calculation process in the processing specification calculation apparatus by this invention.
FIG. 4 (a) (b)
It is the schematic which shows an example of the continuous state of the beam group which is an example of the continuous frame component.
FIG. 5 (a) (b)
FIG. 4 is an explanatory diagram illustrating an example of a processing mode of a coordinate conversion unit of the processing specification calculation device according to the present invention, and an explanatory diagram illustrating an example of a two-dimensional projection diagram as an example of the processing specification.
FIG. 6 (a) (b)
It is the schematic which shows an example of the continuous state of the beam group which is an example of the continuous frame component.
FIG. 7 (a) (b)
FIG. 4 is an explanatory diagram illustrating an example of a processing mode of a coordinate conversion unit of the processing specification calculation device according to the present invention, and an explanatory diagram illustrating an example of a two-dimensional projection diagram as an example of the processing specification.
FIG. 8
It is a principal part explanatory view which shows an example of the processing specification output by the processing specification calculation apparatus by this invention.
FIG. 9
It is explanatory drawing which shows an example of the interference situation of the intrinsic member contained in a skeleton component.
FIG. 10
It is a principal part enlarged view which shows an example of the interference situation of the intrinsic member contained in a skeleton component.
FIG. 11 (a) (b)
It is the schematic which shows an example of the continuous state of the beam group which is an example of the continuous frame component.
[Explanation of symbols]
1 interference coordinate calculation means, 5 drawing editing device, 6 frame integration device,
7 Continuous information acquisition means, 8 Dimension determination means,
9 beams, 10 rebars, 11 sections, 12 passage reference points,
13 coordinate transformation means, 14 base plane, 15 line segments, 16 base axis, 17 curved part,
18 steel frame, 19 surface, 27 angle calculating means, 28 intrinsic member specifying means,
α horizontal angle, β vertical angle, P core wire,

Claims (2)

各躯体構成要素の配置データ、内在部材リストデータに基づき、各躯体構成要素に含まれる鉄筋(10)の線分(15)を特定する三次元座標を取得すると共に、各躯体構成要素に含まれる鉄骨(18)の表面(19)又は芯面を特定する三次元座標を取得し、前記各表面(19)又は芯面について、当該面を貫通する前記線分(15)との交点座標を保存する干渉座標算出手段(1)を具備した鉄筋加工仕様算出装置。The three-dimensional coordinates for specifying the line segment (15) of the reinforcing bar (10) included in each skeleton component are acquired based on the arrangement data of each skeleton component and the inherent member list data, and are included in each skeleton component. The three-dimensional coordinates specifying the surface (19) or the core surface of the steel frame (18) are acquired, and the coordinates of the intersections of the surface (19) or the core surface with the line segment (15) passing through the surface are stored. A rebar processing specification calculation device comprising interference coordinate calculation means (1). 各躯体構成要素の配置データ、内在部材リストデータに基づき、各躯体構成要素に含まれる鉄筋(10)の線分(15)の三次元座標及びその線分(15)に関する属性を取得すると共に、各躯体構成要素に含まれる鉄骨(18)の表面(19)又は芯面の三次元座標及びその面に関する属性を取得し、前記各表面(19)又は芯面について、当該面を貫通する線分(15)との交点座標、貫通する線分(15)のベクトル、並びに当該面及び線分(15)各々の属性を保存する干渉座標算出手段(1)を具備した鉄筋加工仕様算出装置。Based on the arrangement data of each skeleton component and the list of inherent members, the three-dimensional coordinates of the line (15) of the reinforcing bar (10) included in each skeleton and the attributes related to the line (15) are acquired, The three-dimensional coordinates of the surface (19) or the core surface of the steel frame (18) included in each structural element and the attributes related to the surface are acquired, and for each of the surface (19) or the core surface, a line segment passing through the surface A rebar machining specification calculation device comprising interference coordinate calculation means (1) for storing coordinates of an intersection with (15), a vector of a penetrating line segment (15), and attributes of the surface and the line segment (15).
JP2002163280A 2002-06-04 2002-06-04 Rebar processing specification calculation device Expired - Fee Related JP3616382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163280A JP3616382B2 (en) 2002-06-04 2002-06-04 Rebar processing specification calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163280A JP3616382B2 (en) 2002-06-04 2002-06-04 Rebar processing specification calculation device

Publications (2)

Publication Number Publication Date
JP2004013332A true JP2004013332A (en) 2004-01-15
JP3616382B2 JP3616382B2 (en) 2005-02-02

Family

ID=30431809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163280A Expired - Fee Related JP3616382B2 (en) 2002-06-04 2002-06-04 Rebar processing specification calculation device

Country Status (1)

Country Link
JP (1) JP3616382B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798848A (en) * 2010-03-05 2010-08-11 北京纽曼帝莱蒙膜建筑技术有限公司 Method for dynamically simulating construction of tension structure by using mechanical movement simulation model
JP2014020143A (en) * 2012-07-19 2014-02-03 System Meisei Kk Bar arrangement inspection support system and bar arrangement inspection support method
JP2014229254A (en) * 2013-05-27 2014-12-08 株式会社ア−キテック CAD system
KR101619921B1 (en) 2014-10-21 2016-05-13 재단법인대구경북과학기술원 Apparatus For Detecting Position Information of Target
CN108829954A (en) * 2018-06-01 2018-11-16 广州图石科技有限公司 A kind of reinforcing bar configuration method based on structural model profile features
CN115182594A (en) * 2022-07-21 2022-10-14 鲁班软件股份有限公司 Longitudinal member cross-layer steel bar blanking method
JP2023156947A (en) * 2022-04-13 2023-10-25 株式会社ベクトル・ジャパン Construction support method, construction support program and construction support device
JP2023156948A (en) * 2022-04-13 2023-10-25 株式会社ベクトル・ジャパン Construction support method, construction support program and construction support device
JP2023171192A (en) * 2022-05-20 2023-12-01 株式会社ベクトル・ジャパン Reinforcing bar delivery support system and reinforcing bar delivery support method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798848A (en) * 2010-03-05 2010-08-11 北京纽曼帝莱蒙膜建筑技术有限公司 Method for dynamically simulating construction of tension structure by using mechanical movement simulation model
JP2014020143A (en) * 2012-07-19 2014-02-03 System Meisei Kk Bar arrangement inspection support system and bar arrangement inspection support method
JP2014229254A (en) * 2013-05-27 2014-12-08 株式会社ア−キテック CAD system
KR101619921B1 (en) 2014-10-21 2016-05-13 재단법인대구경북과학기술원 Apparatus For Detecting Position Information of Target
CN108829954A (en) * 2018-06-01 2018-11-16 广州图石科技有限公司 A kind of reinforcing bar configuration method based on structural model profile features
JP2023156947A (en) * 2022-04-13 2023-10-25 株式会社ベクトル・ジャパン Construction support method, construction support program and construction support device
JP2023156948A (en) * 2022-04-13 2023-10-25 株式会社ベクトル・ジャパン Construction support method, construction support program and construction support device
JP2023171192A (en) * 2022-05-20 2023-12-01 株式会社ベクトル・ジャパン Reinforcing bar delivery support system and reinforcing bar delivery support method
CN115182594A (en) * 2022-07-21 2022-10-14 鲁班软件股份有限公司 Longitudinal member cross-layer steel bar blanking method
CN115182594B (en) * 2022-07-21 2023-12-29 鲁班软件股份有限公司 Longitudinal member cross-layer steel bar blanking method

Also Published As

Publication number Publication date
JP3616382B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
Bosche et al. Automated retrieval of 3D CAD model objects in construction range images
EP3783519A1 (en) Automatic generation of an analytical model for analysis
CN113010937B (en) Parametric modeling method of member section steel bar and related device
WO2021129788A1 (en) Map rendering method and apparatus, computer device, and storage medium
CN113779682B (en) Method and device for generating construction reinforcing steel bar model, computer equipment and storage medium
JP2004013332A (en) Computating apparatus for reinforcement working specification
JP2003288372A (en) Analytic result data processor for cad, analytic result data processing method for cad, and analytic result data processing program for cad
JP6074318B2 (en) CAD system
CN113887043A (en) Method, device and equipment for determining breakpoint on steel bar primitive and storage medium
CN109918716B (en) Three-dimensional rapid generation method for steel bars
CN115270242B (en) BIM-based basic big sample reinforcement map generation method, equipment and readable medium
CN112560147A (en) BIM modeling calculation method and system for special-shaped roof lower column structure
CN115994404B (en) Pier top cap steel bar large sample rapid generation and engineering calculation method
JP2003242186A (en) Cad data processing device
JP4771807B2 (en) Computer-aided design apparatus, program and method thereof
JP3448528B2 (en) Rebar processing specification creation device
CN113223178A (en) Method and device for determining selected structural characteristic parameters of pipeline
JP2006277672A (en) Three-dimensional model processing method
Dhondt Unstructured 20-node brick element meshing
JP5203690B2 (en) Graphic element arrangement apparatus and program
JP4024571B2 (en) Design support program
JP2020134393A (en) System and method for inspecting layout of reinforcement
JP2001209666A (en) Reinforcing bar working table preparation device
JP2942457B2 (en) Structural integration system
CN113722807B (en) Method, device and equipment for calculating steel bar patterns and sizes at beam ends

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent or registration of utility model

Ref document number: 3616382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees