JP2004012440A - Aligner for total reflection local fluorescent x-ray analysis - Google Patents

Aligner for total reflection local fluorescent x-ray analysis Download PDF

Info

Publication number
JP2004012440A
JP2004012440A JP2002170753A JP2002170753A JP2004012440A JP 2004012440 A JP2004012440 A JP 2004012440A JP 2002170753 A JP2002170753 A JP 2002170753A JP 2002170753 A JP2002170753 A JP 2002170753A JP 2004012440 A JP2004012440 A JP 2004012440A
Authority
JP
Japan
Prior art keywords
ray
total reflection
aligner
incident
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002170753A
Other languages
Japanese (ja)
Other versions
JP3740530B2 (en
Inventor
Tatsuya Zama
座間 達也
Masataka Okubo
大久保 雅隆
Hiroshi Nakagawa
仲川 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002170753A priority Critical patent/JP3740530B2/en
Publication of JP2004012440A publication Critical patent/JP2004012440A/en
Application granted granted Critical
Publication of JP3740530B2 publication Critical patent/JP3740530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that application to local analysis is difficult because highly accurate setting is required to each element device. <P>SOLUTION: In total reflection fluorescent X-ray analysis, a collimator for specifying the incident position and angle of an X-ray and a superconducting spectral element are integrated and brought close to or into contact with a sample, to thereby remove necessity of each independent alignment for the sample, the spectral element and the incident X-ray when performing the total reflection local fluorescent X-ray measurement. An allowance can be made to some extent for setting the incident position and the incident angle of the X-ray itself to the integrated device by fine adjustment by a jogging optical system. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
X線は、その光子エネルギーが高いため、原子核に近い内殻の電子を励起することができる。励起電子が元の殻に遷移する際には、蛍光X線と呼ばれる物質の原子番号に応じたエネルギーのX線を放射するが、内殻電子のエネルギー準位は、原子番号に強く依存するため、蛍光X線のエネルギー分布を測定することにより、物質を構成する元素を同定することが可能となる。この蛍光X線分析法は、現在、スタンダードな非破壊元素分析手法として広く用いられている。
【0002】
この手法を行うにあたり、試料からの鏡面反射によるX線は、入射X線の情報を多く含み、測定対象の蛍光X線に対してのノイズ源となるため、X線を測定試料表面すれすれの斜入射で入射し、入射X線の鏡面反射成分が入らないよう、検出器を試料の真上に置くやり方が多用されている。
【0003】
【従来の技術】
全反射を用いた蛍光X線分析は、非破壊元素分析手法として広く用いられているが、試料に対し全反射条件でX線を入射するためには、精度の良いアライメントが必要である。蛍光X線分析に必要な各装置(X線源、光学素子、試料、検出器、分光器等)は小さなものでも数十cm程度の大きさであるため、従来は、大きな固定治具を用い、各装置各々のアライメントを微調整する必要があり、光路調整に大きな労力を要していた。
【0004】
また、このような全反射型の蛍光X線分析装置は、試料のある範囲の蛍光X線分析を行うことを目的とするものがほとんどで、局所分析を目的としたものは少なかった。これは、従来の半導体検出器の有効検出面積は、大きく、局所分析のためには、検出器前面に別の光学系が必要となること、また、全反射条件のアライメントが微妙なため、試料上の目的とする局所にのみ全反射条件でX線を入射させ、スキャンすることが困難なこと等の理由による。
【0005】
つまり、従来の技術による限り、全反射蛍光X線分析装置には微妙なアライメントが必要で、システムの大型化は避けられなかった。局所分析も可能なシステムを構成しようとすると、さらに微妙なアライメントが必要で、技術的に簡便とは言いがたいものであった。
【0006】
【発明が解決しようとする課題】
全反射蛍光X線分析においては、各要素装置に対して高精度のセッティングが必要となるため、この手法をさらに高精度のセッティングが必要となる局所的な分析に適用することは従来困難であった。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本願発明においては、X線の入射位置、角度を規定するためのコリメータと超伝導分光素子を一体化する。超伝導分光素子は、半導体では達成不可能な高いエネルギー分解能を持ち、半導体検出器と比較すると、素子自体の寸法が数10〜数100μmと極めて微小であるため、近接させる事で局所的な分光をする事が可能である。これを試料に近接あるいは接触させることにより、全反射局所蛍光X線測定を行うに際して試料、分光素子、入射X線各々独立のアライメントの必要が無くなる。また、微動光学系による微調整により、本願発明に係る一体化装置に対するX線自体の入射位置、入射角度の設定にはある程度の幅を持たせることができるため、アライメントに要する時間、労力が軽減できると共に、X線自体を動かさずに、試料上で該一体化装置を移動させるだけで、全反射蛍光X線測定による局所分析が可能となる。また、本アライナーを微調整することにより、凹凸のある試料に対しても、局所分析を行うことが可能となる。
【0008】
【実施例】
図1に、本願発明によるX線アライナーの概念図を示す。アライナーは可動湾曲ミラー(3)および測定ブロック(10)より構成され、測定ブロックは、入射用コリメータ(3)、出射口(6)および微小分光素子(5)(例えば、超伝導分光素子)から成り、可動湾曲ミラー(3)は、図示しない微動光学系により微調整される。
【0009】
入射用コリメータ(4)および出射口(6)は、被測定試料(8)に当該測定ブロック(10)を接触させ、入射用コリメータ(4)にX線を通した時、被測定試料(8)上でX線の全反射条件が満たされ、かつ、反射X線(7)が出射口(6)を通って出て行く様、配置され、また微小分光素子(5)は、被測定試料から出てくる蛍光X線(9)を測定するため、X線照射点の直上に配置されている。局所分析が可能となるよう、入射用コリメータ(4)の径は充分小さいサイズとする。
【0010】
可動湾曲ミラー(3)は、弾性変形可能なミラーであり、微小な径を持つ入射コリメータ(4)にX線を通過させるため、X線自体を精度良くアライメントするために用いられ、ミラー各所の曲率を任意にコントロールし、入射コリメータにX線を導入する。ミラーの曲率コントロールには、ピエゾ素子を用いることにより行うことができる。これにより、本願発明アライナーに導入するX線自体のアライメントにはある程度の幅を持たせることができる。また、X線自体は、動かさずに、試料上で本アライナーを移動させるだけで、全反射局所蛍光X線測定による試料スキャンが可能となる。また、微動光学系による微調整により、凹凸のある試料に対しても、局所分析を行うことが可能となる。
【0011】
【発明の効果】
本願発明によれば、従来大型の装置を必要とし、微妙なアライメントが不可欠だった全反射局所蛍光X線分析を、小型で手軽なシステムにより実現することができる。微妙なアライメントは、不要となり、従来装置においては困難であった凹凸のある試料に対しても、全反射局所蛍光X線分析が可能となる。また、小型化により、試料とX線源との間を近づけることも可能となるため、必要なX線源の出力パワーも小さくすることが可能で、安全性と省エネルギーに優れる分析装置を開発することができる。
【図面の簡単な説明】
【図1】本願発明に係るX線分析用アライナーの概念図
【符号の説明】
1……入射X線
2……入射X線(可動湾曲ミラーにより反射)
3……可動湾曲ミラー
4……入射コリメータ
5……微少光学素子
6……出射口
7……反射X線
8……被測定試料
9……蛍光X線
10……測定ブロック
[0001]
TECHNICAL FIELD OF THE INVENTION
X-rays can excite inner-shell electrons close to atomic nuclei because of their high photon energy. When the excited electrons transition to the original shell, they emit X-rays of energy corresponding to the atomic number of the substance called fluorescent X-rays, but the energy level of the inner-shell electrons strongly depends on the atomic number. By measuring the energy distribution of fluorescent X-rays, it is possible to identify the elements constituting the substance. This X-ray fluorescence analysis is currently widely used as a standard non-destructive element analysis method.
[0002]
In performing this method, X-rays due to specular reflection from the sample contain much information on incident X-rays and become a noise source for fluorescent X-rays to be measured. A method is often used in which a detector is placed directly above a sample so as to be incident upon incidence and prevent specular reflection components of incident X-rays from entering.
[0003]
[Prior art]
X-ray fluorescence analysis using total reflection is widely used as a non-destructive element analysis method, but accurate alignment is necessary to make X-rays incident on a sample under total reflection conditions. Each device (X-ray source, optical element, sample, detector, spectrometer, etc.) required for X-ray fluorescence analysis is about several tens of centimeters in size even if it is small. In addition, it is necessary to finely adjust the alignment of each device, and a great effort is required for adjusting the optical path.
[0004]
Most of such total reflection type fluorescent X-ray analyzers are intended to perform fluorescent X-ray analysis of a certain range of a sample, and few are intended for local analysis. This is because the effective detection area of the conventional semiconductor detector is large, another optical system is required in front of the detector for local analysis, and the alignment of the total reflection condition is delicate, This is because, for example, it is difficult to scan with the X-rays incident on the target area only under the total reflection condition under the total reflection condition.
[0005]
That is, as far as the prior art is concerned, delicate alignment is required for the total reflection X-ray fluorescence spectrometer, and the system size cannot be avoided. In order to construct a system capable of local analysis, more delicate alignment was required, and it was difficult to say that it was technically simple.
[0006]
[Problems to be solved by the invention]
In total reflection X-ray fluorescence analysis, it is conventionally difficult to apply this method to local analysis that requires even higher precision settings, since high precision settings are required for each element device. Was.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the present invention, a collimator for defining an incident position and an angle of an X-ray and a superconducting spectroscopic element are integrated. Superconducting spectroscopy has a high energy resolution that cannot be achieved with semiconductors, and the dimensions of the element itself are extremely small, several tens to several hundreds of micrometers, compared to semiconductor detectors. It is possible to do. When this is brought close to or in contact with the sample, the need for independent alignment of the sample, the spectroscopic element, and the incident X-ray is eliminated when performing total reflection local fluorescent X-ray measurement. Further, the fine adjustment by the fine movement optical system allows the setting of the incident position and the incident angle of the X-ray itself to the integrated device according to the present invention to have a certain width, thereby reducing the time and labor required for the alignment. In addition to this, local analysis by total reflection X-ray fluorescence measurement becomes possible only by moving the integrated device on the sample without moving the X-ray itself. Further, by finely adjusting the present aligner, it is possible to perform local analysis even on a sample having irregularities.
[0008]
【Example】
FIG. 1 shows a conceptual diagram of an X-ray aligner according to the present invention. The aligner is composed of a movable curved mirror (3) and a measurement block (10), and the measurement block includes an input collimator (3), an output port (6), and a microspectroscopic element (5) (for example, a superconducting spectroscopic element). The movable curved mirror (3) is finely adjusted by a fine movement optical system (not shown).
[0009]
The input collimator (4) and the output port (6) contact the measurement block (10) with the sample to be measured (8), and when the X-ray passes through the incident collimator (4), the sample to be measured (8). ) Are arranged such that the condition for total reflection of X-rays is satisfied, and the reflected X-rays (7) exit through the exit (6). In order to measure the fluorescent X-rays (9) coming out of the apparatus, it is arranged immediately above the X-ray irradiation point. The diameter of the incident collimator (4) is set to a sufficiently small size to enable local analysis.
[0010]
The movable curved mirror (3) is an elastically deformable mirror, and is used to allow X-rays to pass through an incident collimator (4) having a small diameter and to precisely align the X-rays themselves. The curvature is arbitrarily controlled, and X-rays are introduced into the incident collimator. The curvature of the mirror can be controlled by using a piezo element. Thereby, the alignment of the X-rays introduced into the aligner of the present invention can have a certain width. In addition, the X-ray itself can be scanned by total reflection local fluorescent X-ray measurement only by moving the present aligner on the sample without moving it. In addition, by performing fine adjustment using the fine movement optical system, local analysis can be performed even on a sample having irregularities.
[0011]
【The invention's effect】
According to the present invention, a total reflection local fluorescent X-ray analysis, which conventionally required a large-sized apparatus and in which delicate alignment was indispensable, can be realized by a small and simple system. Fine alignment becomes unnecessary, and total reflection local X-ray fluorescence analysis can be performed even on a sample having irregularities, which has been difficult in the conventional apparatus. In addition, the miniaturization allows the sample to be closer to the X-ray source, so that the required output power of the X-ray source can be reduced, and an analyzer that is excellent in safety and energy saving is developed. be able to.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an aligner for X-ray analysis according to the present invention.
1 incident X-ray 2 incident X-ray (reflected by movable curved mirror)
3 movable curved mirror 4 incident collimator 5 minute optical element 6 exit port 7 reflected X-ray 8 sample under test 9 fluorescent X-ray 10 measurement block

Claims (3)

全反射局所蛍光X線分析用アライナーにおいて、該アライナーは、測定ブロック及び可変湾曲ミラーにより構成され、該測定ブロックは、分光素子と一体化したX線入射コリメータ及び出射口から成り、該測定ブロックを測定試料表面に近接又は接触させることにより、入射及び出射X線の光路を規定し、試料に対する全反射条件を満たすと共に、入射コリメータ前面に上記可変湾曲ミラーを設け、X線の入射位置、入射方向の設定ずれを微調整することを特徴とする蛍光X線分析用アライナー。In the aligner for total reflection local X-ray fluorescence analysis, the aligner is configured by a measurement block and a variable bending mirror, and the measurement block is configured by an X-ray incident collimator and an exit that are integrated with a spectroscopic element. The optical path of incident X-rays and outgoing X-rays are defined by approaching or contacting the measurement sample surface, satisfying the condition of total reflection on the sample, and the above-mentioned variable bending mirror is provided in front of the incident collimator. An aligner for fluorescent X-ray analysis, characterized by finely adjusting the deviation of the setting. 上記分光素子は、超伝導分光素子であることを特徴とする請求項1記載の蛍光X線分析用アライナー。2. The aligner for fluorescent X-ray analysis according to claim 1, wherein the spectroscopic element is a superconducting spectroscopic element. 上記可変湾曲ミラーにおける湾曲は、ピエゾ素子により駆動されることを特徴とする請求項1記載の蛍光X線分析用アライナー。The aligner for fluorescent X-ray analysis according to claim 1, wherein the bending in the variable bending mirror is driven by a piezo element.
JP2002170753A 2002-06-12 2002-06-12 Aligner for total internal reflection X-ray fluorescence analysis Expired - Lifetime JP3740530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170753A JP3740530B2 (en) 2002-06-12 2002-06-12 Aligner for total internal reflection X-ray fluorescence analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170753A JP3740530B2 (en) 2002-06-12 2002-06-12 Aligner for total internal reflection X-ray fluorescence analysis

Publications (2)

Publication Number Publication Date
JP2004012440A true JP2004012440A (en) 2004-01-15
JP3740530B2 JP3740530B2 (en) 2006-02-01

Family

ID=30436891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170753A Expired - Lifetime JP3740530B2 (en) 2002-06-12 2002-06-12 Aligner for total internal reflection X-ray fluorescence analysis

Country Status (1)

Country Link
JP (1) JP3740530B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058300A (en) * 2006-07-05 2008-03-13 Rigaku Industrial Co Sample holder and oblique-incidence fluorescent x-ray analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058300A (en) * 2006-07-05 2008-03-13 Rigaku Industrial Co Sample holder and oblique-incidence fluorescent x-ray analyzer
JP4522438B2 (en) * 2006-07-05 2010-08-11 株式会社リガク Oblique-incidence X-ray fluorescence spectrometer with sample holder

Also Published As

Publication number Publication date
JP3740530B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
JP3803550B2 (en) Spectroscopic ellipsometer
US7600916B2 (en) Target alignment for X-ray scattering measurements
CN110062180A (en) The sensor and metering system with electrically controllable aperture for inspection
US7023954B2 (en) Optical alignment of X-ray microanalyzers
JP2014521067A (en) Measuring critical dimensions
JP2004184314A (en) X-ray fluorescence analytical device
JP3511826B2 (en) X-ray fluorescence analyzer
US20240295436A1 (en) Optical technique for material characterization
JPH11211654A (en) Polarization analysis device
JP2720131B2 (en) X-ray reflection profile measuring method and apparatus
JP2002189004A (en) X-ray analyzer
JPH05113418A (en) Surface analyzing apparatus
CN111829971A (en) Method for reducing measurement error of wide spectrum transmittance
CN101893509B (en) Device and method for measuring modulation transfer function of large-numerical aperture micro objective
US20220187125A1 (en) Light source for variable path length systems
JP3740530B2 (en) Aligner for total internal reflection X-ray fluorescence analysis
JPH08136479A (en) Total reflection-type fluorescent x-ray analyzing apparatus
JP2921597B2 (en) Total reflection spectrum measurement device
JPH11330187A (en) In-process thin-film analyzing equipment
KR0172623B1 (en) Method and apparatus for analyzing contaminative element concentrations
JPH0382943A (en) Total reflection fluorescent x-ray analyzing apparatus
JP2001004544A (en) Raman spectrometric apparatus
Ocola et al. Synchrotron radiation micro-Fourier transform infrared spectroscopy applied to photoresist imaging
JP2008008864A (en) X-ray analyzer
JPS6353457A (en) 2-d scan type state analyzer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Ref document number: 3740530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term