JP2004012244A - Measuring instrument and method using fine particulate probe trapped by optical radiation pressure - Google Patents

Measuring instrument and method using fine particulate probe trapped by optical radiation pressure Download PDF

Info

Publication number
JP2004012244A
JP2004012244A JP2002164738A JP2002164738A JP2004012244A JP 2004012244 A JP2004012244 A JP 2004012244A JP 2002164738 A JP2002164738 A JP 2002164738A JP 2002164738 A JP2002164738 A JP 2002164738A JP 2004012244 A JP2004012244 A JP 2004012244A
Authority
JP
Japan
Prior art keywords
fine particles
laser light
light
laser
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002164738A
Other languages
Japanese (ja)
Other versions
JP4117600B2 (en
JP2004012244A5 (en
Inventor
Yasuhiro Takatani
高谷 裕浩
Takashi Miyoshi
三好 隆志
Satoru Takahashi
高橋 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Industrial Promotion Organization
Original Assignee
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization filed Critical Osaka Industrial Promotion Organization
Priority to JP2002164738A priority Critical patent/JP4117600B2/en
Publication of JP2004012244A publication Critical patent/JP2004012244A/en
Publication of JP2004012244A5 publication Critical patent/JP2004012244A5/ja
Application granted granted Critical
Publication of JP4117600B2 publication Critical patent/JP4117600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring instrument which can measure the shape or the like of an object with precision of nanometer order. <P>SOLUTION: This measuring instrument 10 is provided with a first laser light source 14 for irradiating fine particulates 12 with a first laser beam 24, and a second laser beam source 28 for emitting a second laser beam 34 having a wavelength different from that of the first laser beam to irradiating the fine particulates with the second beam. Intensity of the second laser beam is varied with the lapse of time under the condition where the particulates are trapped by optical radiation pressure of the first laser beam. By bringing the particulates to the measured object 36, and by detecting variations in vibration of the particulates 12 based on the intensity of a reflected beam received by a photodetector 52, it is possible to measure the position of a portion of the measured object 36. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光放射圧によりトラップした微粒子プローブを用いて被測定物、特にマイクロメートルオーダの微細形状の測定を行う測定装置及び方法に関する。
【0002】
【発明の背景】
現在、マイクロマシン技術の発達により、マイクロメートルオーダの微細形状を有するマイクロ部品の製作が可能となっている。このようなマイクロ部品の形状・寸法の測定は顕微鏡を用いて行われるのが一般的であり、マイクロ部品のあらゆる部位を3次元的に定量評価する方法は未発達のままである。したがって、マイクロメートルオーダの微細形状をナノメートルオーダの精度で測定可能な3次元座標測定機(以下、ナノCMM(Coordinate Measuring Machine)という。)の開発が求められている。
【0003】
従来のCMMは、一般に、スタイラスの一端(先端)にプローブ球を設けるとともに、スタイラスの他端にばねを設けた構成を有し、プローブ球を被測定物に接触した際のプローブ球の位置から被測定物の所定部位の座標を求めるようになっている。このようなCMMの仕様として、例えば、測定レンジが1m程度、プローブ径が5mm程度に対し、分解能が1μmオーダ、被対象物との接触力が10−1Nオーダとされているが、ナノCMMの仕様として、例えば、測定レンジが10mm程度、プローブ径が10μm程度に対し、10nmオーダの分解能、及び10−5Nオーダの接触力が要求される。しかしながら、上記のような機械的な構成では、上記分解能及び接触力の仕様を満足することは困難である。
【0004】
そこで、本発明は、ナノメートルオーダの高精度で被対象物の形状等を測定可能な測定装置及び測定方法を提供することを目的とする。
【0005】
【発明の概要】
上記目的を達成するために、請求項1に係る測定装置は、
レーザ光を照射するレーザ照射部と、
レーザ照射部より照射されたレーザ光の放射圧によりトラップされた微粒子と、
微粒子に照射するレーザ光の強度を変調させる制御部と、
微粒子を被測定物に相対的に移動する移動機構と、
微粒子からの反射光を受光する受光系と、
移動機構により微粒子を被測定物に接近させ、このとき受光系が受光した反射光の強度に基づいて、被測定物の位置を演算する演算部とを備えることを特徴とする。
【0006】
請求項2に係る測定装置は、請求項1の測定装置において、レーザ照射部は、第1のレーザ光を微粒子に照射する第1のレーザ照射ユニットと、第1のレーザ光と波長の異なる第2のレーザ光を微粒子に照射する第2のレーザ照射ユニットを有し、
制御部は、第1のレーザ照射部より照射された第1のレーザ光の放射圧により微粒子をトラップした状態で、第2のレーザ光の強度を時間的に変化させることを特徴とする。
【0007】
請求項3に係る測定装置は、請求項2の測定装置において、
第1のレーザ光としてリング状のビームが微粒子に照射され、第2のレーザ光は、リング状の第1のレーザ光の内側を通って微粒子に照射されることを特徴とする。
【0008】
請求項4に係る測定装置は、請求項2又は3の測定装置において、
微粒子で反射した反射光は、第2のレーザ光のみを通過させるフィルタを介して受光系に受光させることを特徴とする。
【0009】
請求項5に係る測定装置は、請求項1〜4のいずれかに記載の測定装置において、微粒子はレーザ照射部から照射されるレーザ光に対し透過であることを特徴とする。
【0010】
請求項6に係る測定装置は、請求項1〜5のいずれかに記載の測定装置において、微粒子は球体であることを特徴とする。
【0011】
請求項7に係る測定装置は、請求項1〜6のいずれかに記載の測定装置において、微粒子はシリカであることを特徴とする。
【0012】
請求項8に係る測定方法は、レーザ光を照射してレーザ光の放射圧により微粒子をトラップし、微粒子に照射するレーザ光の強度を変調させながら、微粒子を被測定物に接近させ、このときの微粒子の振動状態をモニタし、このモニタ情報に基づいて被測定物の位置を演算することを特徴とする。
【0013】
請求項9に係る測定方法は、請求項8の測定方法において、
微粒子の振動状態は、微粒子からの反射光の強度を検出することによりモニタすることを特徴とする。
【0014】
請求項10に係る測定方法は、請求項8の測定方法において、
上記レーザ光は、互いに波長の異なる第1のレーザ光と第2のレーザ光からなり、
第1のレーザ光の放射圧により微粒子をトラップした状態で、第2のレーザ光の強度を変調させることを特徴とする。
【0015】
請求項11に係る測定方法は、請求項10の測定方法において、
第1のレーザ光としてリング状のビームが微粒子に照射され、第2のレーザ光は、リング状の第1のレーザ光の内側を通って微粒子に照射されることを特徴とする。
【0016】
請求項12に係る測定方法は、請求項10又は11の測定方法において、
微粒子の振動状態は、微粒子からの反射光の強度を検出することによりモニタすることを特徴とする。
【0017】
請求項13に係る測定方法は、請求項12の測定方法において、
微粒子で反射した反射光は、第2のレーザ光のみを通過させるフィルタを介して、光の強度を検出する光検出器に受光させることを特徴とする。
【0018】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を説明する。なお、以下の説明において、方向を表す用語(「上方向」、「下方向」、「右方向」、「左方向」)を適宜用いるが、これは説明のためのものであって、これらの用語は本発明を限定するものでない。
【0019】
図1を参照して、全体を符号10で示す測定装置は、微粒子プローブ12と、レーザ光を出射するレーザ光源14と、レーザ光源14からのレーザ光を集光して微粒子12に照射し光放射圧により微粒子12をトラップするための集光レンズ16(図の例では顕微鏡用対物レンズを用いている。)とを備える。レーザ光源14として、発振モードすなわちQ−SwitchおよびCWが切り替え可能なNd:YAGレーザが用いられている。微粒子12は、レーザ光に対し透過で、真球度の高い球体(例えば径が約1〜10μm)である。微粒子12の材料としてシリカが好適に使用できるが、その他PMMA(polymethyl methacrylate)、ポリスチレンなどを用いてもよい。光源14から集光レンズ16に到る光路上には、遮光マスク17、偏光ビームスプリッタ18、及び偏光ビームスプリッタ20が順に配置されている。遮光マスク17はレーザ光をリング状に整形するためのものである。偏光ビームスプリッタ18は、左方向に向かうS偏光成分を透過しP偏光成分を下方向に反射するとともに、下方向に向かうS偏光成分を左方向に反射しP偏光成分を透過する。偏光ビームスプリッタ20は、左方向に向かうS偏光成分を下方向に反射しP偏光成分を透過するとともに、上方向に向かうS偏光成分を右方向に反射しP偏光成分を透過する。したがって、光源14から左方向に出射したレーザ光は、遮光マスク17を通過してリング状に整形され、偏光ビームスプリッタ18でS偏光成分のみが左方向に透過し、偏光ビームスプリッタ20で下方向に反射して、集光レンズ16に入射する。
【0020】
図2を参照して、集光レンズ16により集光して微粒子12に照射されるレーザ光24は、微粒子12と外部(大気)との境界面で反射・屈折するため、光放射圧が発生する。このような光放射圧の上方向の合力(トラップ力)Ftが微粒子12に対し自重Fg以上の力を作用することで、微粒子12を保持できる。図2において微粒子12の周囲に示した矢印は、各位置で微粒子12に作用する光放射圧を示す。光軸26付近のレーザ光により光放射圧が発生する場合、微粒子12を押し下げる力が支配的なのに対し、本実施形態のようにリング状のレーザ光24を用いた場合(より一般的には、光軸26を中心とする中央部の強度がその周辺部よりも小さい光強度分布を有するレーザ光を用いる場合)、効率のよいトラッピングを行うことができる(本発明者らによる文献「レーザトラッピングを用いたナノ3次元検出プローブに関する研究−プローブの基本特性−」(1996年度精密工学会春季大会学術講演会講演論文集)参照)。
【0021】
図1に戻って、測定装置10はさらに、トラッピング用のレーザ光24を照射する光源14とは別のレーザ光源として、レーザダイオード(LD)28を有する。LD28から偏光ビームスプリッタ18に向かう光路上には光変調器30が配置され、光変調器30には信号発生器32が接続されている。光変調器30として、例えば音響光学変調素子、電気光学変調素子、磁気光学変調素子などが用いられる。また、変調機能を有するLDドライバを用いても変調が可能である。信号発生器32は、所定の周波数fで発振した信号を光変調器30に入力し、これにより、LDから出射したレーザ光34は、周波数fの強度変調光として光変調器34から出射される。レーザ光34とレーザ光24は、互いに波長が異なる。光変調器30から出射されたレーザ光34は下方向に進行し、偏光ビームスプリッタ18でS偏光成分のみが左方向に反射する。偏光ビームスプリッタ18で反射したS偏光成分は、リング状のレーザ光24のS偏光成分の内側を、その光軸がレーザ光24の光軸と等しくなった状態で左方向に進行する。このS偏光成分は、さらに偏光ビームスプリッタ20で下方向に反射し、集光レンズ16に入射する。
【0022】
図3を参照して、レーザ光24によりトラップされた微粒子12には、さらに強度変調されたレーザ光34が照射されることになる。この結果、トラップ力Ftは周期的に変化することになり、微粒子12に強制振動を引き起こすことができる。また、信号発生器32で発振する信号の周波数fを調整することにより微粒子12の振動の周波数を変えることができ、変調強度の大きさによって振幅を変えることができる。
【0023】
図1に示すように、レーザ光24によりトラップされた微粒子12に対向して、被測定物36を載置するための例えばガラスからなるステージ(平板)38が配置してある。ステージ38は、圧電アクチュエータ40によりその高さ(上下方向(Z方向)に関する位置)及び紙面に垂直なXY平面内での位置が調整できるようにしてある。
【0024】
圧電アクチュエータ40を駆動して微粒子12に被測定物36を近づけた場合、微粒子12と被測定物36が十分離れていれば、図4(a)に示すように微粒子12は、制御した振幅Aで振動する。しかしながら、微粒子12が被測定物36に近接あるいは接触すると、図4(b)に示すように、微粒子12の振動は、被測定物36との干渉により大きく減衰(振幅A’<<A)あるいは消滅する。このように、微粒子12を被測定物36に接近させ、微粒子12の振動の変化を検出することで、被測定物36の部位の3次元的な位置を測定することができる。
【0025】
微粒子12の振動状態を検出するために、本実施形態では、トラッピング用レーザ光24の微粒子12からの後方散乱光を利用する。具体的に、図1を参照して、偏光ビームスプリッタ20を挟んで集光レンズ16の反対側には、YAGレーザ14から出射して微粒子で反射した光のみを透過させるフィルタ42が配置してあり、レーザ光24、34が照射され微粒子12で反射した光44は、偏光ビームスプリッタ20でそのP偏光成分が透過した後、フィルタ42で強制振動用レーザ光34に対応する光が除去され、トラッピング用レーザ24に対応する光46がそのまま通過する。この光46は、ミラー48で反射して集光レンズ50に入射し、フォトディテクタ(PD)52に集光される。PD52から出力される検出信号は、FFT(fast Fourier transform)アナライザ54に送信される。FFTアナライザ54で得られたパワースペクトル密度分布は、パーソナルコンピュータ(PC)56に送られ、各種処理がなされてディスプレイ58に表示される。後述する実験結果にも示されるように、微粒子12は、パワースペクトル密度分布のピークに対応する周波数で振動しており、微粒子12をZ方向に被測定物36に十分に近づけることで、このピークが消滅する。このときを位置検出基準とすることで被測定物36の部位の位置を検出できる。
【0026】
(実験1)
本発明者らは、以下の条件のもと図1に示す測定装置10を用いて微粒子12の振動状態(パワースペクトル)を検出した。微粒子の捕捉は、ガラス基板38上に散布した多数の微粒子にレーザ光を照射することで行った。
【0027】
・微粒子12:径8μm、質量5×10−13kgのシリカ(製品名真絲球SW8.0μ;触媒化成工業(株)社製)
・YAGレーザ14:波長1064nm、TEM00モード、ビーム径3.6mm、対物レンズ16への入射パワー800mW(製品名818STQ−SW;Lee Laser社製)
・対物レンズ16:開口度0.95、作動距離(Work Distance)0.30mm((製品名NikonCFICEPIPlan;ニコン社製)
・遮光マスク17:レーザ遮光部分の径1.6mm
・LD28:波長687nm、ビーム径1.0mm、対物レンズ16への入射パワー30mW、変調周波数23Hz
・フィルタ42:赤外透過フィルタ(製品名ITF−50S−90RM−85IR;シグマ光機社製)
【0028】
PD52から出力される検出信号の時間的変化を図5に示す。図に示すように、微粒子12から反射される光の強度が周期的に変化していることから、微粒子12が振動していることがわかる。PD52からの出力信号からFTTアナライザ54により得られたパワースペクトル密度分布を図6に示す。図に示すように、変調周波数23Hzと略同一の周波数で微粒子12を強制振動できることがわかる。なお、比較のため、変調を行わない場合のパワースペクトル密度分布を取得したが、図に示すようにピークは存在しなかった。
【0029】
(実験2)
変調周波数として500Hzに設定した以外は実験1と同一の条件で、被測定物であるマイクロガラス球(直径168±8.4μm)への微粒子の接近実験を行った。ガラス球の中心軸から水平方向に40μm離れた初期位置に微粒子を配置し、上方向にガラス球を移動させた。図7(a)は初期位置での微粒子とガラス球との位置関係を示し、図7(b)はガラス球を上方向に4000nm移動させたときの微粒子とガラス球との位置関係を示したものである。
【0030】
図8(a)、(b)に示すように、ガラス球を初期位置から上方向に4900nm移動させても、パワースペクトル密度分布のピークは変調周波数と同じ500Hzであったが、さらに移動する間にピークが小さくなり、図8(c)に示すように4925nmに達した時点でピークが消滅した。ガラス球を下方向に移動するとピークが再度現れた。図8(d)は、初期位置から4900nmまで戻したときのパワースペクトル密度分布である。これは、微粒子を強制振動させるプローブを測定対象へ接近させ、パワースペクトル密度分布のピークが消滅する点を位置検出基準として用いることで、数十nm程度の分解能を得ることが可能であることを示している。
【0031】
(実験3)
微粒子に対しZ方向に外力Fを与えたときの微粒子のZ方向の運動は、

Figure 2004012244
のように1自由度強制振動系としてモデル化できる。ここで、mは微粒子の質量、Dは空気による粘性減衰係数、kはばね定数である。そこで、外力Fとして調和的な力を与えた(すなわち、光変調器32によるLD30の変調振幅を一定にしたまま周波数fを変化させる)場合の周波数応答を調べることで、振動系のばね定数を求めた。
【0032】
周波数応答関数H(f)は、
H(f)=1/[{1−(f/f}+j(2ζf/f)]
で表される。ここで、fは固有振動数、ζ=D/4πmf、jは虚数である。
【0033】
図9は、周波数fと周波数応答関数の絶対値|H(f)|とについて41点をプロットしたものである。また、41点のデータから最小二乗法による回帰曲線を求めた。この曲線において|H(f)|の最大値に対応する周波数が固有振動数に相当することから固有振動数f=759Hzと求まり、
Figure 2004012244
よりばね定数k=1×10−5N/mが得られた。これは、本発明に係る測定装置がナノCMMの仕様として要求される10−5Nオーダの接触力を実現できることを示している。
【0034】
以上の説明は、本発明の一実施形態にかかるもので、本発明はこれに限らず種々改変可能である。例えば、上記実施形態では、トラッピング用及び強制振動用のレーザ光24、34にそれぞれYAGレーザ14及びLD28を光源として用いたが、本発明はこれに限定されるものではない。
【0035】
また、上記実施形態では、微粒子を鉛直方向(重力方向)に沿って振動させているが、水平方向その他の方向に沿って振動させてもよい。これを実現させるため、トラッピング用のレーザ光及び強制振動用のレーザ光の微粒子への照射方向は適宜選択される。このように鉛直方向以外の振動方向を有する微粒子プローブを用いれば、オーバハングなど種々の形状に対しても測定を行うことができる。
【0036】
さらに、上記実施形態では、トラッピングの効率を上げるために、トラッピング用のレーザ光24としてリング状に整形したものを用い、その内側に強制振動用のレーザ光34を通過させているが、この構成は本発明を限定するものではなく、微粒子を振動できれば2つのレーザ光をどのように整形してもよく、また、2つのレーザ光の照射方向は同一である必要はない。
【0037】
加えて、レーザ光は、トラッピング用と強制振動用の2本に分けずに、トラッピング用のレーザ光を照射して微粒子を捕捉した状態で、このレーザ光の強度変調を行うことによっても、微粒子に振動を行わせることができる。但し、この場合は、上記実施形態のようにトラッピング用のレーザ光が微粒子で反射した光を利用して微粒子の振動状態をモニタすることはできないため、別のモニタ手段が必要となる。例えば、トラッピング及び強制振動用とは無関係の光を微粒子に当てこの反射光をモニタする方法や、白色光干渉計を用いる方法が挙げられる。
【0038】
さらにまた、レーザ光源から出射するレーザ光を複数の光路に切換え、各光路上に配置した集光レンズを介して種々の方向に向けて照射する構成とすることで、一つの測定装置で、種々の方向に沿って複数の微粒子を振動できるようにしてもよい。
【0039】
【発明の効果】
本発明によれば、ナノメートルオーダの高精度で被対象物の形状等を測定できる。
【図面の簡単な説明】
【図1】本発明に係る測定装置の一実施形態を示す概略図。
【図2】光放射圧による微粒子のトラッピング状態を示す図。
【図3】トラッピング用のレーザ光とともに強制振動用のレーザ光が照射された微粒子の状態を示す図。
【図4】微粒子と被対象物との位置関係に応じて微粒子の振動の状態が変化する様子を示す図。
【図5】実験1において、図1のPDから出力される検出信号の時間的変化を示すグラフであって、微粒子が振動している状態を表している。
【図6】実験1において、図1のFTTアナライザにより得られるパワースペクトル密度分布を示すグラフ。
【図7】実験2において、被測定物であるマイクロガラス球と微粒子との位置関係を示す図。
【図8】実験2において、マイクロガラス球と微粒子とが所定の位置関係にある場合のパワースペクトル密度分布を示すグラフ。
【図9】実験3で得られた、周波数と周波数応答関数の絶対値との関係を示すグラフ。
【符号の説明】
10:測定装置、12:微粒子プローブ、14:トラッピング用レーザ光源、16:集光レンズ、28:強制振動用レーザ光源、30:光変調器、36:被測定物、52:光検出器。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a measuring apparatus and method for measuring an object to be measured, particularly a fine shape on the order of micrometers, using a fine particle probe trapped by light radiation pressure.
[0002]
BACKGROUND OF THE INVENTION
At present, with the development of micromachine technology, it has become possible to manufacture microparts having a fine shape on the order of micrometers. The measurement of the shape and size of such a micro component is generally performed using a microscope, and a method of three-dimensionally quantitatively evaluating any part of the micro component has not been developed. Therefore, the development of a three-dimensional coordinate measuring machine (hereinafter, referred to as a nano CMM (Coordinate Measuring Machine)) capable of measuring a fine shape on the order of micrometers with a precision on the order of nanometers is required.
[0003]
Conventional CMMs generally have a configuration in which a probe ball is provided at one end (tip) of a stylus and a spring is provided at the other end of the stylus. The coordinates of a predetermined part of the object to be measured are determined. As specifications of such a CMM, for example, for a measurement range of about 1 m 3 and a probe diameter of about 5 mm, the resolution is on the order of 1 μm and the contact force with the object is on the order of 10 −1 N. For example, a CMM specification requires a resolution of the order of 10 nm and a contact force of the order of 10 −5 N for a measurement range of about 10 mm 3 and a probe diameter of about 10 μm. However, with the above mechanical configuration, it is difficult to satisfy the specifications of the resolution and the contact force.
[0004]
Therefore, an object of the present invention is to provide a measuring apparatus and a measuring method capable of measuring the shape and the like of an object with high accuracy on the order of nanometers.
[0005]
Summary of the Invention
In order to achieve the above object, a measuring device according to claim 1 is
A laser irradiation unit that irradiates a laser beam;
Fine particles trapped by the radiation pressure of laser light emitted from the laser irradiation unit,
A control unit for modulating the intensity of the laser light applied to the fine particles,
A moving mechanism for moving the fine particles relatively to the object to be measured,
A light receiving system for receiving light reflected from the fine particles,
A moving unit that moves the fine particles toward the object to be measured by the moving mechanism, and calculates a position of the object to be measured based on the intensity of the reflected light received by the light receiving system at this time.
[0006]
The measuring device according to claim 2 is the measuring device according to claim 1, wherein the laser irradiating unit includes a first laser irradiating unit that irradiates the first laser light to the fine particles, A second laser irradiation unit for irradiating the fine particles with the second laser light,
The control unit changes the intensity of the second laser light with time while the fine particles are trapped by the radiation pressure of the first laser light emitted from the first laser irradiation unit.
[0007]
The measuring device according to claim 3 is the measuring device according to claim 2,
As a first laser beam, a ring-shaped beam is irradiated on the fine particles, and the second laser beam is irradiated on the fine particles through the inside of the ring-shaped first laser light.
[0008]
The measuring device according to claim 4 is the measuring device according to claim 2 or 3,
The light reflected by the fine particles is received by a light receiving system via a filter that allows only the second laser light to pass therethrough.
[0009]
According to a fifth aspect of the present invention, there is provided the measurement apparatus according to any one of the first to fourth aspects, wherein the fine particles are transparent to the laser light emitted from the laser irradiation unit.
[0010]
A measuring device according to claim 6 is the measuring device according to any one of claims 1 to 5, wherein the fine particles are spherical.
[0011]
The measuring device according to claim 7 is the measuring device according to any one of claims 1 to 6, wherein the fine particles are silica.
[0012]
The measuring method according to claim 8 is to irradiate the laser beam to trap the fine particles by the radiation pressure of the laser light, and to bring the fine particles close to the measured object while modulating the intensity of the laser light irradiating the fine particles. The vibration state of the fine particles is monitored, and the position of the object to be measured is calculated based on the monitor information.
[0013]
The measuring method according to claim 9 is the measuring method according to claim 8,
The vibration state of the fine particles is monitored by detecting the intensity of the reflected light from the fine particles.
[0014]
The measuring method according to claim 10 is the measuring method according to claim 8,
The laser light includes a first laser light and a second laser light having different wavelengths from each other,
The method is characterized in that the intensity of the second laser light is modulated while the fine particles are trapped by the radiation pressure of the first laser light.
[0015]
The measuring method according to claim 11 is the measuring method according to claim 10,
As a first laser beam, a ring-shaped beam is irradiated on the fine particles, and the second laser beam is irradiated on the fine particles through the inside of the ring-shaped first laser light.
[0016]
The measuring method according to claim 12 is the measuring method according to claim 10 or 11,
The vibration state of the fine particles is monitored by detecting the intensity of the reflected light from the fine particles.
[0017]
The measuring method according to claim 13 is the measuring method according to claim 12,
The light reflected by the fine particles is received by a photodetector that detects the intensity of the light via a filter that allows only the second laser light to pass therethrough.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the following description, the terms indicating the directions (“upward”, “downward”, “rightward”, “leftward”) are used as appropriate, but these are only for explanation and these The terms do not limit the invention.
[0019]
Referring to FIG. 1, a measuring apparatus indicated generally by reference numeral 10 includes a fine particle probe 12, a laser light source 14 that emits laser light, and a laser light from laser light source 14 that condenses and irradiates fine particles 12 with light. And a condenser lens 16 (in the example of the figure, a microscope objective lens is used) for trapping the fine particles 12 by radiation pressure. As the laser light source 14, an Nd: YAG laser capable of switching between oscillation modes, ie, Q-Switch and CW, is used. The microparticles 12 are spheres (for example, having a diameter of about 1 to 10 μm) that transmit laser light and have high sphericity. Silica can be suitably used as the material of the fine particles 12, but other materials such as PMMA (polymethyl methacrylate) and polystyrene may also be used. On an optical path from the light source 14 to the condenser lens 16, a light shielding mask 17, a polarizing beam splitter 18, and a polarizing beam splitter 20 are sequentially arranged. The light shielding mask 17 is for shaping the laser light into a ring shape. The polarizing beam splitter 18 transmits the S-polarized component going leftward and reflects the P-polarized component downward, and reflects the S-polarized component going downward to the left and transmits the P-polarized component. The polarization beam splitter 20 reflects the S-polarized component going leftward downward and transmits the P-polarized component, and reflects the upward S-polarized component rightward and transmits the P-polarized component. Therefore, the laser light emitted from the light source 14 in the left direction passes through the light-shielding mask 17 and is shaped into a ring. Only the S-polarized light component is transmitted to the left by the polarization beam splitter 18, and the laser beam is And is incident on the condenser lens 16.
[0020]
Referring to FIG. 2, laser light 24 condensed by condensing lens 16 and applied to fine particles 12 is reflected and refracted at a boundary surface between fine particles 12 and the outside (atmosphere), so that a light radiation pressure is generated. I do. Such an upward resultant force (trapping force) Ft of the light radiation pressure acts on the fine particles 12 by a force greater than its own weight Fg, whereby the fine particles 12 can be held. In FIG. 2, arrows shown around the fine particles 12 indicate the light radiation pressure acting on the fine particles 12 at each position. When the light radiation pressure is generated by the laser light near the optical axis 26, the force for pushing down the fine particles 12 is dominant, whereas when the ring-shaped laser light 24 is used as in the present embodiment (more generally, In the case where a laser beam having a light intensity distribution in which the intensity of the central portion around the optical axis 26 is smaller than that of the peripheral portion is used, efficient trapping can be performed (see the document "Laser trapping by the present inventors"). Research on Nano Three-Dimensional Detection Probe Used-Basic Characteristics of Probe-"(1996 Annual Meeting of the Japan Society of Precision Engineering).
[0021]
Returning to FIG. 1, the measuring apparatus 10 further has a laser diode (LD) 28 as a laser light source different from the light source 14 that irradiates the trapping laser light 24. An optical modulator 30 is arranged on an optical path from the LD 28 to the polarization beam splitter 18, and a signal generator 32 is connected to the optical modulator 30. As the light modulator 30, for example, an acousto-optic modulator, an electro-optic modulator, a magneto-optic modulator, or the like is used. Also, modulation can be performed using an LD driver having a modulation function. The signal generator 32 inputs a signal oscillated at a predetermined frequency f to the optical modulator 30, whereby the laser light 34 emitted from the LD is emitted from the optical modulator 34 as intensity-modulated light at the frequency f. . The laser light 34 and the laser light 24 have different wavelengths from each other. The laser beam 34 emitted from the optical modulator 30 travels downward, and only the S-polarized component is reflected by the polarization beam splitter 18 to the left. The S-polarized component reflected by the polarization beam splitter 18 travels to the left inside the S-polarized component of the ring-shaped laser light 24 with its optical axis being equal to the optical axis of the laser light 24. The S-polarized component is further reflected downward by the polarization beam splitter 20 and enters the condenser lens 16.
[0022]
Referring to FIG. 3, fine particles 12 trapped by laser light 24 are irradiated with laser light 34 whose intensity is further modulated. As a result, the trap force Ft changes periodically, and forced vibration of the fine particles 12 can be caused. Further, by adjusting the frequency f of the signal oscillated by the signal generator 32, the frequency of the vibration of the fine particles 12 can be changed, and the amplitude can be changed according to the magnitude of the modulation intensity.
[0023]
As shown in FIG. 1, a stage (a flat plate) 38 made of, for example, glass on which an object to be measured 36 is placed is arranged to face the fine particles 12 trapped by the laser beam 24. The height of the stage 38 (the position in the vertical direction (Z direction)) and the position on the XY plane perpendicular to the paper surface can be adjusted by the piezoelectric actuator 40.
[0024]
When the piezoelectric actuator 40 is driven to bring the measured object 36 close to the fine particles 12, if the fine particles 12 and the measured object 36 are sufficiently separated from each other, as shown in FIG. Vibrates with. However, when the fine particles 12 approach or come into contact with the measured object 36, the vibration of the fine particles 12 is greatly attenuated by the interference with the measured object 36 (amplitude A '<< A) or as shown in FIG. Disappear. As described above, by bringing the fine particles 12 close to the measured object 36 and detecting a change in vibration of the fine particles 12, the three-dimensional position of the portion of the measured object 36 can be measured.
[0025]
In this embodiment, the backscattered light of the trapping laser light 24 from the fine particles 12 is used to detect the vibration state of the fine particles 12. Specifically, referring to FIG. 1, a filter 42 that transmits only light emitted from the YAG laser 14 and reflected by the fine particles is disposed on the opposite side of the condenser lens 16 with the polarization beam splitter 20 interposed therebetween. The light 44 irradiated by the laser beams 24 and 34 and reflected by the fine particles 12 is transmitted through the polarization beam splitter 20 with its P-polarized component, and then the filter 42 removes the light corresponding to the laser beam 34 for forced vibration, The light 46 corresponding to the trapping laser 24 passes through as it is. The light 46 is reflected by a mirror 48, enters a condenser lens 50, and is focused on a photodetector (PD) 52. The detection signal output from the PD 52 is transmitted to an FFT (fast Fourier transform) analyzer 54. The power spectrum density distribution obtained by the FFT analyzer 54 is sent to a personal computer (PC) 56, where it is subjected to various processes and displayed on a display 58. As shown in the experimental results described later, the fine particles 12 oscillate at a frequency corresponding to the peak of the power spectrum density distribution, and when the fine particles 12 are sufficiently brought close to the DUT 36 in the Z direction, this peak is reduced. Disappears. By using this time as the position detection reference, the position of the part of the DUT 36 can be detected.
[0026]
(Experiment 1)
The present inventors detected the vibration state (power spectrum) of the fine particles 12 using the measuring device 10 shown in FIG. 1 under the following conditions. The capture of the fine particles was performed by irradiating a large number of fine particles dispersed on the glass substrate 38 with laser light.
[0027]
Fine particles 12: silica having a diameter of 8 μm and a mass of 5 × 10 −13 kg (product name Shinito Ball SW 8.0 μ; manufactured by Catalyst Chemical Industry Co., Ltd.)
YAG laser 14: wavelength 1064 nm, TEM 00 mode, beam diameter 3.6 mm, incident power on objective lens 16 800 mW (product name 818STQ-SW; manufactured by Lee Laser)
Objective lens 16: Aperture 0.95, working distance (Work Distance) 0.30 mm (product name: NikonCFICEPIPlan; manufactured by Nikon Corporation)
Light shielding mask 17: 1.6 mm in diameter of laser light shielding part
LD28: wavelength 687 nm, beam diameter 1.0 mm, incident power on the objective lens 30 30 mW, modulation frequency 23 Hz
-Filter 42: infrared transmission filter (product name: ITF-50S-90RM-85IR; manufactured by Sigma Koki Co., Ltd.)
[0028]
FIG. 5 shows a temporal change of the detection signal output from the PD 52. As shown in the figure, the intensity of the light reflected from the fine particles 12 changes periodically, indicating that the fine particles 12 are vibrating. FIG. 6 shows a power spectrum density distribution obtained by the FTT analyzer 54 from the output signal from the PD 52. As shown in the figure, it can be seen that the fine particles 12 can be forcibly vibrated at a frequency substantially equal to the modulation frequency of 23 Hz. For comparison, a power spectrum density distribution without modulation was obtained, but no peak was present as shown in the figure.
[0029]
(Experiment 2)
Under the same conditions as in Experiment 1 except that the modulation frequency was set to 500 Hz, an experiment of approaching fine particles to a micro glass sphere (diameter: 168 ± 8.4 μm) as an object to be measured was performed. The fine particles were placed at an initial position 40 μm horizontally away from the central axis of the glass sphere, and the glass sphere was moved upward. 7A shows the positional relationship between the fine particles and the glass sphere at the initial position, and FIG. 7B shows the positional relationship between the fine particles and the glass sphere when the glass sphere is moved upward by 4000 nm. Things.
[0030]
As shown in FIGS. 8A and 8B, even when the glass sphere is moved upward from the initial position by 4900 nm, the peak of the power spectrum density distribution is 500 Hz which is the same as the modulation frequency. 8C, the peak disappeared when the wavelength reached 4925 nm as shown in FIG. 8C. When the glass sphere was moved downward, the peak appeared again. FIG. 8D shows a power spectrum density distribution when the wavelength is returned from the initial position to 4900 nm. This means that it is possible to obtain a resolution of about several tens of nanometers by bringing the probe that forcibly vibrates the fine particles close to the measurement target and using the point where the peak of the power spectrum density distribution disappears as the position detection reference. Is shown.
[0031]
(Experiment 3)
When the external force F is applied to the fine particles in the Z direction, the movement of the fine particles in the Z direction is as follows.
Figure 2004012244
Can be modeled as a one-degree-of-freedom forced vibration system. Here, m is the mass of the fine particles, D is the viscous damping coefficient due to air, and k is the spring constant. Therefore, by examining the frequency response when a harmonic force is applied as the external force F (that is, the frequency f is changed while the modulation amplitude of the LD 30 by the optical modulator 32 is kept constant), the spring constant of the vibration system is determined. I asked.
[0032]
The frequency response function H (f) is
H (f) = 1 / [ {1- (f / f n) 2} + j (2ζf / f n)]
Is represented by Here, f n is a natural frequency, ζ = D / 4πmf n , and j is an imaginary number.
[0033]
FIG. 9 plots 41 points for the frequency f and the absolute value | H (f) | of the frequency response function. Further, a regression curve by the least squares method was obtained from the data of 41 points. In this curve, since the frequency corresponding to the maximum value of | H (f) | corresponds to the natural frequency, the natural frequency f n = 759 Hz is obtained,
Figure 2004012244
Thus, a spring constant k = 1 × 10 −5 N / m was obtained. This indicates that the measuring device according to the present invention can realize a contact force on the order of 10 −5 N required as a specification of the nano CMM.
[0034]
The above description relates to one embodiment of the present invention, and the present invention is not limited to this, and can be variously modified. For example, in the above embodiment, the YAG laser 14 and the LD 28 are used as light sources for the trapping and forced vibration laser beams 24 and 34, respectively, but the present invention is not limited to this.
[0035]
In the above embodiment, the fine particles are vibrated along the vertical direction (gravity direction), but may be vibrated along the horizontal direction or other directions. In order to realize this, the irradiation direction of the laser light for trapping and the laser light for forced oscillation to the fine particles is appropriately selected. By using the fine particle probe having a vibration direction other than the vertical direction, it is possible to measure various shapes such as an overhang.
[0036]
Further, in the above-described embodiment, in order to increase the trapping efficiency, the trapping laser light 24 is formed into a ring shape, and the forced vibration laser light 34 is passed through the inside thereof. The present invention is not limited to the present invention. The two laser lights may be shaped in any way as long as the fine particles can be vibrated, and the irradiation directions of the two laser lights need not be the same.
[0037]
In addition, the laser beam is not divided into two beams, one for trapping and the other for forced vibration, and the intensity of the laser beam is modulated while irradiating the laser beam for trapping with capturing the fine particles. Can be made to vibrate. However, in this case, it is not possible to monitor the vibration state of the fine particles using the light reflected by the fine particles of the trapping laser light as in the above-described embodiment, so that another monitoring means is required. For example, there are a method of applying light irrelevant to trapping and forced vibration to fine particles and monitoring the reflected light, and a method of using a white light interferometer.
[0038]
Furthermore, by switching the laser light emitted from the laser light source to a plurality of optical paths and irradiating the laser light in various directions via condensing lenses arranged on each optical path, one measuring device can May be able to vibrate a plurality of fine particles along the direction of.
[0039]
【The invention's effect】
According to the present invention, the shape and the like of an object can be measured with high accuracy on the order of nanometers.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing one embodiment of a measuring device according to the present invention.
FIG. 2 is a diagram showing a trapping state of fine particles by light radiation pressure.
FIG. 3 is a diagram showing a state of fine particles irradiated with a laser beam for forced oscillation together with a laser beam for trapping.
FIG. 4 is a diagram showing a state in which the state of vibration of fine particles changes according to the positional relationship between the fine particles and an object.
5 is a graph showing a temporal change of a detection signal output from the PD of FIG. 1 in Experiment 1, and shows a state where fine particles are vibrating.
6 is a graph showing a power spectrum density distribution obtained by the FTT analyzer of FIG. 1 in Experiment 1. FIG.
FIG. 7 is a diagram showing a positional relationship between a micro glass sphere as an object to be measured and fine particles in Experiment 2.
FIG. 8 is a graph showing a power spectrum density distribution when a micro glass sphere and fine particles are in a predetermined positional relationship in Experiment 2.
FIG. 9 is a graph showing the relationship between the frequency and the absolute value of the frequency response function obtained in Experiment 3.
[Explanation of symbols]
10: Measuring device, 12: Particle probe, 14: Trapping laser light source, 16: Condensing lens, 28: Forced vibration laser light source, 30: Optical modulator, 36: Object to be measured, 52: Photodetector.

Claims (13)

レーザ光を照射するレーザ照射部と、
レーザ照射部より照射されたレーザ光の放射圧によりトラップされた微粒子と、
微粒子に照射するレーザ光の強度を変調させる制御部と、
微粒子を被測定物に相対的に移動する移動機構と、
微粒子からの反射光を受光する受光系と、
移動機構により微粒子を被測定物に接近させ、このとき受光系が受光した反射光の強度に基づいて、被測定物の位置を演算する演算部とを備えた測定装置。
A laser irradiation unit that irradiates a laser beam;
Fine particles trapped by the radiation pressure of laser light emitted from the laser irradiation unit,
A control unit for modulating the intensity of the laser light applied to the fine particles,
A moving mechanism for moving the fine particles relatively to the object to be measured,
A light receiving system for receiving light reflected from the fine particles,
A measuring unit comprising: a moving mechanism that moves the fine particles closer to the object to be measured, and calculates a position of the object to be measured based on the intensity of the reflected light received by the light receiving system at this time.
上記レーザ照射部は、第1のレーザ光を微粒子に照射する第1のレーザ照射ユニットと、第1のレーザ光と波長の異なる第2のレーザ光を微粒子に照射する第2のレーザ照射ユニットを有し、
上記制御部は、第1のレーザ照射部より照射された第1のレーザ光の放射圧により微粒子をトラップした状態で、第2のレーザ光の強度を時間的に変化させることを特徴とする請求項1の測定装置。
The laser irradiation unit includes a first laser irradiation unit that irradiates the first laser light to the fine particles, and a second laser irradiation unit that irradiates the second laser light having a different wavelength from the first laser light to the fine particles. Have
The said control part changes the intensity | strength of 2nd laser light temporally in the state which trapped the microparticles | fine-particles by the radiation pressure of the 1st laser light irradiated from 1st laser irradiation part. Item 1. The measuring device according to Item 1.
上記第1のレーザ光としてリング状のビームが微粒子に照射され、上記第2のレーザ光は、リング状の第1のレーザ光の内側を通って微粒子に照射されることを特徴とする請求項2の測定装置。2. The method according to claim 1, wherein a ring-shaped beam is applied to the fine particles as the first laser light, and the fine particles are irradiated with the second laser light through the inside of the ring-shaped first laser light. 2. Measurement device. 上記微粒子で反射した反射光は、第2のレーザ光のみを通過させるフィルタを介して受光系に受光させることを特徴とする請求項2又は3の測定装置。The measuring device according to claim 2, wherein the light reflected by the fine particles is received by a light receiving system via a filter that allows only the second laser light to pass. 上記微粒子は上記レーザ照射部から照射されるレーザ光に対し透過であることを特徴とする請求項1〜4のいずれかに記載の測定装置。The measuring device according to any one of claims 1 to 4, wherein the fine particles are transmitted with respect to a laser beam irradiated from the laser irradiation unit. 上記微粒子は球体であることを特徴とする請求項1〜5のいずれかに記載の測定装置。The measuring device according to claim 1, wherein the fine particles are spherical. 上記微粒子はシリカであることを特徴とする請求項1〜6のいずれかに記載の測定装置。The measuring device according to any one of claims 1 to 6, wherein the fine particles are silica. レーザ光を照射してレーザ光の放射圧により微粒子をトラップし、微粒子に照射するレーザ光の強度を変調させながら、微粒子を被測定物に接近させ、このときの微粒子の振動状態をモニタし、このモニタ情報に基づいて被測定物の位置を演算することを特徴とする測定方法。By irradiating the laser light and trapping the fine particles by the radiation pressure of the laser light, while modulating the intensity of the laser light irradiating the fine particles, the fine particles are brought close to the object to be measured, and the vibration state of the fine particles at this time is monitored, A measurement method comprising calculating a position of an object to be measured based on the monitor information. 上記微粒子の振動状態は、微粒子からの反射光の強度を検出することによりモニタすることを特徴とする請求項8の測定方法。9. The method according to claim 8, wherein the vibration state of the fine particles is monitored by detecting the intensity of light reflected from the fine particles. 上記レーザ光は、互いに波長の異なる第1のレーザ光と第2のレーザ光からなり、
第1のレーザ光の放射圧により微粒子をトラップした状態で、第2のレーザ光の強度を変調させることを特徴とする請求項8の測定方法。
The laser light includes a first laser light and a second laser light having different wavelengths from each other,
9. The measuring method according to claim 8, wherein the intensity of the second laser light is modulated while the fine particles are trapped by the radiation pressure of the first laser light.
上記第1のレーザ光としてリング状のビームが微粒子に照射され、上記第2のレーザ光は、リング状の第1のレーザ光の内側を通って微粒子に照射されることを特徴とする請求項10の測定方法。2. The method according to claim 1, wherein a ring-shaped beam is applied to the fine particles as the first laser light, and the fine particles are irradiated with the second laser light through the inside of the ring-shaped first laser light. 10. Measurement method. 上記微粒子の振動状態は、微粒子からの反射光の強度を検出することによりモニタすることを特徴とする請求項10又は11に記載の測定方法。The method according to claim 10, wherein the vibration state of the fine particles is monitored by detecting the intensity of light reflected from the fine particles. 上記微粒子で反射した反射光は、第2のレーザ光のみを通過させるフィルタを介して、光の強度を検出する光検出器に受光させることを特徴とする請求項12の測定方法。13. The measuring method according to claim 12, wherein the light reflected by the fine particles is received by a photodetector that detects the intensity of the light via a filter that passes only the second laser light.
JP2002164738A 2002-06-05 2002-06-05 Measuring apparatus and method using fine particle probe trapped by light radiation pressure Expired - Fee Related JP4117600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164738A JP4117600B2 (en) 2002-06-05 2002-06-05 Measuring apparatus and method using fine particle probe trapped by light radiation pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164738A JP4117600B2 (en) 2002-06-05 2002-06-05 Measuring apparatus and method using fine particle probe trapped by light radiation pressure

Publications (3)

Publication Number Publication Date
JP2004012244A true JP2004012244A (en) 2004-01-15
JP2004012244A5 JP2004012244A5 (en) 2005-10-13
JP4117600B2 JP4117600B2 (en) 2008-07-16

Family

ID=30432807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164738A Expired - Fee Related JP4117600B2 (en) 2002-06-05 2002-06-05 Measuring apparatus and method using fine particle probe trapped by light radiation pressure

Country Status (1)

Country Link
JP (1) JP4117600B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209858B1 (en) 2005-09-30 2007-04-24 Matsushita Electric Industrial Co., Ltd Precision position determining method
WO2010125844A1 (en) * 2009-04-30 2010-11-04 国立大学法人大阪大学 Displacement measuring device and displacement measuring method
EP2385339A1 (en) * 2010-05-05 2011-11-09 Leica Geosystems AG Surface sensing device with optical monitoring system
US8477319B2 (en) 2009-09-08 2013-07-02 Canon Kabushiki Kaisha Measuring apparatus
CN107886823A (en) * 2017-11-15 2018-04-06 中国工程物理研究院电子工程研究所 One kind optimization integrated form monochromatic light road laser ionization effect analog system
CN107886823B (en) * 2017-11-15 2024-05-10 中国工程物理研究院电子工程研究所 Optimization integrated single-light-path laser ionization effect simulation system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209858B1 (en) 2005-09-30 2007-04-24 Matsushita Electric Industrial Co., Ltd Precision position determining method
WO2010125844A1 (en) * 2009-04-30 2010-11-04 国立大学法人大阪大学 Displacement measuring device and displacement measuring method
JP5172011B2 (en) * 2009-04-30 2013-03-27 国立大学法人大阪大学 Displacement measuring device and displacement measuring method
US8804130B2 (en) 2009-04-30 2014-08-12 Osaka University Displacement measuring device and displacement measuring method
US8477319B2 (en) 2009-09-08 2013-07-02 Canon Kabushiki Kaisha Measuring apparatus
EP2385339A1 (en) * 2010-05-05 2011-11-09 Leica Geosystems AG Surface sensing device with optical monitoring system
WO2011138206A1 (en) * 2010-05-05 2011-11-10 Leica Geosystems Ag Surface sensing device with optical monitoring system
CN102869949A (en) * 2010-05-05 2013-01-09 莱卡地球系统公开股份有限公司 Surface sensing device with optical monitoring system
US9316473B2 (en) 2010-05-05 2016-04-19 Leica Geosystems Ag Surface sensing device with optical monitoring system
CN107886823A (en) * 2017-11-15 2018-04-06 中国工程物理研究院电子工程研究所 One kind optimization integrated form monochromatic light road laser ionization effect analog system
CN107886823B (en) * 2017-11-15 2024-05-10 中国工程物理研究院电子工程研究所 Optimization integrated single-light-path laser ionization effect simulation system

Also Published As

Publication number Publication date
JP4117600B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US5304924A (en) Edge detector
JP5828359B2 (en) Mechanical detection of Raman resonance
JPH07260808A (en) Scanning near field interatomic force microscope
CN1854793A (en) Scan probe microscope, sample observation method using same and method for manufacturing the device
JP2006329973A (en) Scanning probe microscope, sample observing method using the same, and device manufacturing method
JPH03504647A (en) single beam ac interferometer
US20110252891A1 (en) Method and Apparatus for Determining Topography of an Object
KR20210104651A (en) Laser emission absorption measurement system by sample
US20110231966A1 (en) Scanning probe microscopy with spectroscopic molecular recognition
JP2009128139A (en) Scan probe microscope, and probe unit for the scan probe microscope
JP4117600B2 (en) Measuring apparatus and method using fine particle probe trapped by light radiation pressure
JP5172011B2 (en) Displacement measuring device and displacement measuring method
CN104792734A (en) Magnetorheological effect digital holographic observation device and method thereof
JP2007051916A (en) Mass measuring instrument and mass measuring method
JP2005274495A (en) High frequency minute vibration measuring apparatus
JP2011080978A (en) Measuring device
KR102267767B1 (en) Raman analysis system
US20130329227A1 (en) Optical inspection method and optical inspection apparatus
JP4932708B2 (en) Method and system for optical detection of nano objects present in refractive media
JP5500653B2 (en) Position measuring device
KR101101988B1 (en) Near scanning photoacoustic apparatus
US10852641B2 (en) Thermal nanolithography method and system
KR102571018B1 (en) System and Method for measuring pad surface roughness measurement on CMP
JP2004279087A (en) Laser light irradiation device
Hariyama et al. New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4117600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees