【0001】
【発明の属する技術分野】
本発明は回転センサ付き軸受に関し、特に軸受外輪の回転防止構造に関する。
【0002】
【従来の技術】
軸受の回転速度(回転数)を検出する場合、従来、軸受に接近して回転センサを設置して行っていた。しかしながら、最近では、設置の容易性およびスペースの有効活用のために、回転センサを軸受に固定した、回転センサ付き軸受が提案されている(実公昭52−8896号公報)。
【0003】
このような回転センサ付き軸受の従来例を、図6により説明する。図6(A)は回転センサ付き軸受の要部である回転センサ部分の正面を示し、図6(B)はその断面を示す。
【0004】
図6において、軸受21は、軸受内輪22と、軸受外輪23と、軸受内輪22と軸受外輪23との間に転動自在に配置された複数の転動体24と、これらの転動体24を所定ピッチで転動自在に収容する保持器25とを有する。軸受外輪23の外周面は軸受ハウジング26の孔の内周面と嵌合している。
符合27は回転センサを指し、内輪22に固定された磁気エンコーダ等のエンコーダ28と、外輪23に装着された芯金29と、この芯金29に固定されたセンサハウジング30と、センサハウジング30内に固定されたセンサ31と、センサ31により得られる電気信号を処理する回路を組み込んだ回路基板32と、この回路基板32から検出した回転速度(回転数)を取り出す電線33とを有し、センサハウジング30内のセンサ31、回路基板32、電線33の接続端部等は樹脂でモールドされている(図示省略)。また、押さえ蓋34は円周方向の複数箇所でビス等の固定部材35によって軸受ハウジング26に取り付けられている。電線33は、押さえ蓋34に形成された切欠溝34aを通って外部に取り出される。
【0005】
そして、内輪22が回転すると、この内輪22に装着されているエンコーダ28が内輪22とともに回転することに伴い、センサ31との相対位置が周期的に変化することによって、センサ31が内輪22の回転速度(回転数)を検出し、その検出した回転速度(回転数)が電線33によって電気信号として外部に取り出される。
【0006】
【発明が解決しようとする課題】
上記従来の回転センサ付き軸受においては、軸受外輪23が軸受ハウジング26にはめあいによって装着されている。ここで、軸中心と回転中心が偏心した場合、回転軸および軸受内輪22にアンバランスが発生し、軸受内輪22に回転荷重が発生する。同時に、アンバランスの発生方向にラジアル荷重が発生することにより、軸受外輪23に軸受内輪22とは反対方向に回転荷重が発生する。
軸受外輪23と軸受ハウジング26との間にすきまが発生した場合、軸受外輪23に発生した回転荷重により、軸受外輪23と軸受ハウジング26との間で滑り現象が発生する(クリープ現象)。あるいは、軸受の発熱や環境温度によって、軸受外輪23や軸受ハウジング26が膨張する。軸受ハウジング26が軽合金製などの場合、線膨張係数の差により軸受外輪23と軸受ハウジング26との間ですきまが許容値を越えることがあり、この場合、軸受内輪22の回転に伴って、軸受外輪23が軸受内輪22の回転方向と同一方向に回転することがある(スピン現象)。万一、軸受外輪23が回転すると、軸受外輪23に装着されているセンサハウジング30も同時に回転することになり、このセンサハウジング30から取り出されている電線33は、軸受ハウジング26に固定されている押さえ蓋34に形成された切欠き溝34aを通って外部に取り出されている関係で、せん断力を受ける。したがって、最悪の場合、電線33が断線に至ることがある。
【0007】
本発明の目的は、上述のような回転センサ付き軸受において、軸受外輪の回転を阻止してクリープやスピンを防止することにある。
【0008】
【課題を解決するための手段】
本発明は、軸受内輪と、軸受外輪と、軸受内輪と軸受外輪との間に収容される複数の転動体と、軸受内輪に装着されたエンコーダと軸受外輪に装着されたセンサとで構成される回転センサと、静止部材に固定され前記センサから引き出した電線を通すための切欠き溝を備えた押さえ蓋とを有する回転センサ付き軸受において、軸受外輪を装着するための軸受ハウジングと軸受外輪との間、または、軸受内輪を固定するための軸と軸受内輪との間に、円周方向ずれを防止するための手段を設けることによって課題を解決したものである。
【0009】
請求項2の発明は、請求項1の回転センサ付き軸受において、軸受外輪の外周面または軸受内輪の内周面に少なくとも2筋の周溝を設け、各周溝にリング状環を装着し、リング状環の間に画成された空間に粘性潤滑剤を充満させることによって前記円周方向ずれを防止するための手段を構成したことを特徴とするものである。このような構成を採用することによって、使用時に、軸受外輪に荷重が加わり、軸受外輪が軸受ハウジングに対して荷重の方向に偏心されるに際し、軸受ハウジングと軸受外輪外周面との間に高圧流体薄膜を形成させ、この流体薄膜を介して軸受ハウジングが軸受外輪を支えるように作用し、軸受のクリープを防止する。また、軸受のクリープが防止される結果、電線にせん断力が加わらないため、電線の断線を防止することができる。
請求項3の発明は、請求項1の回転センサ付き軸受において、前記リング状環がゴム製のOリングであることを特徴とするものである。
【0010】
請求項4の発明は、請求項1の回転センサ付き軸受において、軸受ハウジングと軸受外輪、または、軸と軸受内輪との熱膨張率が異なるとき、軸受外輪の外周面または軸受内輪の内周面に少なくとも2筋の周溝を設け、各周溝にリング状環を固着することによって前記円周方向ずれを防止するための手段を構成したことを特徴とするものである。
請求項5の発明は、請求項4の回転センサ付き軸受において、前記リング状環が、熱膨張率が軸受ハウジングとほぼ同等の高分子材料を一体成形にて固着させたものであることを特徴とするものである。
請求項6の発明は、請求項1の回転センサ付き軸受において、前記円周方向ずれを防止するための手段が、軸受外輪を装着するための軸受ハウジングと軸受外輪との間、または、軸受内輪を固定するための軸と軸受内輪との間に介在するピンであることを特徴とするものである。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
まず、クリープ現象について説明する。軸受のクリープとは、内輪(外輪)回転荷重の場合、軸受の内径(外径)面と軸(ハウジング)の軸受座とのはめあい面にすきまを生じたとき、はめあい面の内側の面が外側の面に対して相対的に、内輪(外輪)回転荷重の回転方向と逆方向にずれる現象をいう。回転荷重を受ける軌道輪には、軸受の回転方向とは逆向きにはめあい面上を転がろうとする力が生じる。この転がろうとする力に比べて、しめしろが小さいと、はめあい面にすきまが生じ、軌道輪は軸上又はハウジング内で転がる。この現象をクリープという。はめあい面に摩耗を発生することが多く、軸受の故障の原因となる。広義には、回転方向に関係なく、はめあい面において駆動側が相手側に対して回転方向に滑るものを含めていうこともある(日本規格協会刊『転がり軸受用語』)。
図5に従って説明すると、図示するように軸中心と回転中心とが偏心することにより、回転軸および軸受内輪にアンバランスが発生する。このアンバランスにより、軸受内輪に回転荷重が発生する。同時に、アンバランスの発生方向にラジアル荷重が発生することにより、軸受外輪に軸受内輪とは反対方向に回転荷重が発生する。ここで、軸受外輪と軸受ハウジングとの間にすきまが発生した場合、上記軸受外輪に発生した回転荷重により、軸受外輪と軸受ハウジングとの間で滑り現象が発生する。
次に、図面に従って本発明の実施の形態を説明する。
図2は回転センサ付き軸受の回転センサ部分の要部正面を示し、図1はその断面を示したものである。これらの図において、軸受は、軸受内輪2と、軸受外輪3と、軸受内輪2と軸受外輪3との間に転動自在に配置された複数個の転動体(ここでは玉)4と、これらの転動体4を所定ピッチで転動自在に収容する保持器5とを主要な構成要素としている。
符合7で概括的に指してあるのは回転センサであって、軸受内輪2に装着された磁気エンコーダ等のエンコーダ8と、軸受外輪3に装着された芯金9と、芯金9に圧入によって固定されたセンサハウジング10と、センサハウジング10の内部に組み込まれたセンサ11と、センサ11で検出した電気信号を処理する回路を組み込んだ回路基板12と、回路基板12から回転速度(回転数)を外部に取り出す電線13とで構成され、センサハウジング10の内部はポリウレタン、エポキシ等の熱硬化性樹脂(図示省略)でモールドされている。押さえ蓋14を円周方向の複数箇所においてビス等の固定部材15によって軸受ハウジング6に固定してある。この押さえ蓋14に形成された切欠溝14aを通って電線13が外部に取り出される。
【0012】
そして、軸受内輪2が回転すると、軸受内輪2に装着されているエンコーダ8が軸受内輪2とともに回転し、センサ11との相対位置が周期的に変化することによって、センサ11が内輪2の回転速度(回転数)を検出し、その検出した回転速度(回転数)が電線13を通じて電気信号として外部に取り出される。
【0013】
なお、センサハウジング10を固定するための芯金9を、軸受外輪3の内周面に装着する場合を図示してあるが、軸受外輪3の外周面や側面に装着するようにしてもよい。
【0014】
また、上記の実施の形態においては、エンコーダ8とセンサ11とによって構成される回転センサによる回転速度(回転数)の検出方向を軸受1の半径方向に設定しているが、軸受1の軸方向に設定してもよい。
【0015】
図1に示されているように、軸受外輪3の外周面に所定の間隔をあけて2本の周溝31を設け、各周溝31にリング状環32を装着してある。ここではリング状環32はゴム製のOリングである。2本のOリング32間に粘性潤滑剤33を封入し、外部に漏れないようにする。軸受外輪3に回転荷重が加わったとき、封入された粘性潤滑剤33が高圧流体薄膜を形成し、その潤滑膜によって回転荷重を受け、軸受外輪3が軸受ハウジング6に直接接触することを防止する。すなわち、軸受外輪3と軸受ハウジング6との間の摩擦係数を低下させ、クリープによる摩擦力を小さくする。一方、Oリング32は軸受外輪3と軸受ハウジング6との間に摩擦力を与える。回転荷重が加わることによって、発生しようとするクリープ力は粘性潤滑剤33の効果によって摩擦力が小さくなっているので、Oリング32の摩擦力だけで容易に押さえることができ、同時にスピンによる回転力もOリング32の摩擦力によって押さえることができる。
次に、図3に本発明の第二の実施の形態を示す。この実施の形態では、軸受をEC軸受(エヌティエヌ株式会社製の膨張補正軸受すなわちクリープ防止軸受の商品名)とし、軸受以外の構成は上述の第一の実施の形態と同じである。したがって、以下にクリープ防止に関してのみ記述する。
軸受外輪3の外周面に所定の間隔をあけて2本の周溝34を設け、各周溝34にリング状環35を設ける。ここでは、リング状環35は高分子材料を一体成形にて固着させたものである。高分子材料製リング状環35の外径と軽合金製軸受ハウジング6の内径との熱膨張差がほぼ一致するように設計されている。そのような高分子材料としては、たとえばガラス繊維強化ポリアミド(PA)が挙げられる。したがって、この実施の形態の軸受を軽合金製の軸受ハウジング6に装着すると、広い温度範囲にわたって安定した締め代が得られ、軸受外輪3のクリープやスピンが発生しにくくなる。このように、軸受外輪3の回転を防止することによって、センサハウジング10から取り出されている電線13の断線を防止することができる。
【0016】
図4に示す第三の実施の形態では、軸受外輪3の円周方向ずれを防止する手段として、軸受外輪3に植設したピン36を、軸受ハウジング6に形成した凹部に係合させてある。これにより、軸受外輪3のクリープないしはスピンが防止されるばかりでなく、センサハウジング10から取り出されている電線13の断線を防止することができる。
【0017】
【発明の効果】
本発明によれば、軸受のクリープを防止できるので、電線の断線を防止することができ、センサ部の信頼性や寿命が向上する。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す回転センサ付き軸受の断面図である。
【図2】図1の回転センサ付き軸受の要部正面図である。
【図3】本発明の別の実施の形態を示す図2と類似の回転センサ付き軸受の断面図である。
【図4】本発明のさらに別の実施の形態を示す図2と類似の回転センサ付き軸受の断面図である。
【図5】クリープ現象を説明するための図である。
【図6】Aは従来の回転センサ付き軸受の要部正面図、
Bはその断面図である。
【符号の説明】
2 軸受内輪
3 軸受外輪
31 周溝
32 リング状環(Oリング)
33 粘性潤滑剤
34 周溝
35 リング状環(高分子材料)
36 ピン
4 転動体
5 保持器
6 軸受ハウジング
7 回転センサ
8 エンコーダ
9 芯金
10 センサハウジング
11 センサ
12 回路基板
13 電線
14 押さえ蓋
14a 切欠き溝[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bearing with a rotation sensor, and more particularly to a structure for preventing rotation of a bearing outer ring.
[0002]
[Prior art]
Conventionally, when detecting the rotation speed (number of rotations) of a bearing, a rotation sensor is installed close to the bearing. However, recently, a bearing with a rotation sensor has been proposed in which a rotation sensor is fixed to the bearing for ease of installation and effective use of space (Japanese Utility Model Publication No. 52-8896).
[0003]
A conventional example of such a bearing with a rotation sensor will be described with reference to FIG. FIG. 6A shows a front view of a rotation sensor portion which is a main part of a bearing with a rotation sensor, and FIG. 6B shows a cross section thereof.
[0004]
In FIG. 6, a bearing 21 includes a bearing inner ring 22, a bearing outer ring 23, a plurality of rolling elements 24 rotatably arranged between the bearing inner ring 22 and the bearing outer ring 23, and a predetermined number of these rolling elements 24. And a retainer 25 that is accommodated so as to freely roll at a pitch. The outer peripheral surface of the bearing outer ring 23 is fitted with the inner peripheral surface of the hole of the bearing housing 26.
Reference numeral 27 indicates a rotation sensor, an encoder 28 such as a magnetic encoder fixed to the inner ring 22, a core 29 mounted on the outer ring 23, a sensor housing 30 fixed to the core 29, and a sensor housing 30. , A circuit board 32 in which a circuit for processing an electric signal obtained by the sensor 31 is incorporated, and an electric wire 33 for extracting a rotation speed (rotation speed) detected from the circuit board 32. The connection ends of the sensor 31, the circuit board 32, and the electric wires 33 in the housing 30 are molded with resin (not shown). The holding lid 34 is attached to the bearing housing 26 at a plurality of positions in the circumferential direction by fixing members 35 such as screws. The electric wire 33 is taken out through a cutout groove 34 a formed in the holding lid 34.
[0005]
When the inner race 22 rotates, the encoder 28 attached to the inner race 22 rotates together with the inner race 22, and the relative position with respect to the sensor 31 periodically changes. The speed (rotation speed) is detected, and the detected rotation speed (rotation speed) is taken out as an electric signal by the electric wire 33 to the outside.
[0006]
[Problems to be solved by the invention]
In the conventional bearing with a rotation sensor, the bearing outer ring 23 is mounted on the bearing housing 26 by fitting. Here, when the shaft center and the rotation center are eccentric, imbalance occurs in the rotation shaft and the bearing inner ring 22, and a rotation load is generated in the bearing inner ring 22. At the same time, a radial load is generated in the direction in which the unbalance occurs, so that a rotational load is generated on the bearing outer ring 23 in a direction opposite to the bearing inner ring 22.
When a clearance occurs between the bearing outer ring 23 and the bearing housing 26, a slipping phenomenon occurs between the bearing outer ring 23 and the bearing housing 26 due to a rotational load generated on the bearing outer ring 23 (creep phenomenon). Alternatively, the bearing outer ring 23 and the bearing housing 26 expand due to the heat generated from the bearing and the environmental temperature. When the bearing housing 26 is made of a light alloy or the like, the clearance between the bearing outer ring 23 and the bearing housing 26 may exceed an allowable value due to a difference in linear expansion coefficient. In this case, with the rotation of the bearing inner ring 22, The bearing outer ring 23 may rotate in the same direction as the rotation direction of the bearing inner ring 22 (spin phenomenon). If the bearing outer ring 23 rotates, the sensor housing 30 mounted on the bearing outer ring 23 also rotates at the same time, and the electric wire 33 taken out from the sensor housing 30 is fixed to the bearing housing 26. It receives a shearing force because it is taken out through the notch groove 34a formed in the holding lid 34 to the outside. Therefore, in the worst case, the electric wire 33 may be disconnected.
[0007]
An object of the present invention is to prevent rotation of a bearing outer ring in a bearing with a rotation sensor as described above to prevent creep and spin.
[0008]
[Means for Solving the Problems]
The present invention includes a bearing inner ring, a bearing outer ring, a plurality of rolling elements housed between the bearing inner ring and the bearing outer ring, an encoder mounted on the bearing inner ring, and a sensor mounted on the bearing outer ring. In a bearing with a rotation sensor having a rotation sensor and a holding lid fixed to a stationary member and having a cutout groove for passing an electric wire drawn from the sensor, a bearing housing and a bearing outer ring for mounting a bearing outer ring are provided. The problem has been solved by providing means for preventing circumferential displacement between the shafts or between the shaft for fixing the bearing inner ring and the bearing inner ring.
[0009]
According to a second aspect of the present invention, in the bearing with the rotation sensor according to the first aspect, at least two circumferential grooves are provided on the outer peripheral surface of the bearing outer ring or the inner peripheral surface of the bearing inner ring, and a ring-shaped ring is attached to each peripheral groove. A means for preventing the circumferential displacement by filling a space defined between the ring-shaped rings with a viscous lubricant is provided. By employing such a configuration, a load is applied to the bearing outer ring during use, and when the bearing outer ring is eccentric in the direction of the load with respect to the bearing housing, a high-pressure fluid is applied between the bearing housing and the outer peripheral surface of the bearing outer ring. A thin film is formed, and the bearing housing acts to support the bearing outer ring via the fluid thin film, thereby preventing creep of the bearing. Also, as a result of preventing the bearing from creeping, no shearing force is applied to the electric wire, so that the electric wire can be prevented from breaking.
According to a third aspect of the present invention, in the bearing with the rotation sensor according to the first aspect, the ring-shaped ring is an O-ring made of rubber.
[0010]
According to a fourth aspect of the present invention, in the bearing with the rotation sensor according to the first aspect, when the thermal expansion coefficients of the bearing housing and the bearing outer ring or the shaft and the bearing inner ring are different, the outer peripheral surface of the bearing outer ring or the inner peripheral surface of the bearing inner ring. And at least two circumferential grooves are provided, and a ring-shaped ring is fixed to each circumferential groove to constitute means for preventing the circumferential deviation.
According to a fifth aspect of the present invention, in the bearing with the rotation sensor according to the fourth aspect, the ring-shaped ring is formed by integrally fixing a polymer material having a thermal expansion coefficient substantially equal to that of the bearing housing. It is assumed that.
According to a sixth aspect of the present invention, in the bearing with the rotation sensor according to the first aspect, the means for preventing the circumferential displacement is provided between a bearing housing for mounting a bearing outer ring and the bearing outer ring, or a bearing inner ring. And a pin interposed between the shaft for fixing the shaft and the bearing inner ring.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the creep phenomenon will be described. The creep of a bearing means that when the inner ring (outer ring) rotational load causes a clearance between the inner surface (outer diameter) of the bearing and the bearing surface of the shaft (housing), the inner surface of the fitting surface becomes the outer surface. Relative to the plane of the inner ring (outer ring). In the bearing ring that receives the rotational load, a force is generated that tries to roll on the fitting surface in a direction opposite to the rotational direction of the bearing. If the interference is small compared to this rolling force, a clearance is created in the fitting surface, and the bearing ring rolls on the shaft or in the housing. This phenomenon is called creep. Often wear occurs on the mating surfaces, causing bearing failure. In a broad sense, the term "rolling bearing term" published by the Japan Standards Association may include the fact that the drive side slides in the rotational direction with respect to the mating side regardless of the rotational direction.
Referring to FIG. 5, the shaft center and the rotation center are eccentric as shown in the figure, so that an imbalance occurs in the rotation shaft and the bearing inner ring. Due to this imbalance, a rotational load is generated on the bearing inner ring. At the same time, a radial load is generated in the direction in which the unbalance occurs, so that a rotational load is generated in the bearing outer ring in a direction opposite to the bearing inner ring. Here, when a clearance occurs between the bearing outer ring and the bearing housing, a sliding phenomenon occurs between the bearing outer ring and the bearing housing due to the rotational load generated on the bearing outer ring.
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 2 shows a front view of a main part of a rotation sensor part of a bearing with a rotation sensor, and FIG. 1 shows a cross section thereof. In these figures, the bearing includes a bearing inner ring 2, a bearing outer ring 3, a plurality of rolling elements (here, balls) 4 that are rotatably arranged between the bearing inner ring 2 and the bearing outer ring 3, And a retainer 5 for accommodating the rolling elements 4 at a predetermined pitch so as to be freely rotatable.
Reference numeral 7 generally indicates a rotation sensor, which is an encoder 8 such as a magnetic encoder mounted on the bearing inner ring 2, a core 9 mounted on the bearing outer ring 3, and press-fitted into the core 9. A fixed sensor housing 10, a sensor 11 incorporated in the sensor housing 10, a circuit board 12 in which a circuit for processing an electric signal detected by the sensor 11 is incorporated, and a rotation speed (rotation speed) from the circuit board 12. And the inside of the sensor housing 10 is molded with a thermosetting resin (not shown) such as polyurethane or epoxy. The holding lid 14 is fixed to the bearing housing 6 at a plurality of locations in the circumferential direction by fixing members 15 such as screws. The electric wire 13 is taken out to the outside through the notch groove 14a formed in the holding lid 14.
[0012]
When the bearing inner ring 2 rotates, the encoder 8 mounted on the bearing inner ring 2 rotates together with the bearing inner ring 2, and the relative position with respect to the sensor 11 periodically changes, so that the rotation speed of the inner ring 2 is reduced. (Rotational speed) is detected, and the detected rotational speed (rotational speed) is taken out as an electric signal through the electric wire 13 to the outside.
[0013]
Although the case where the core metal 9 for fixing the sensor housing 10 is mounted on the inner peripheral surface of the bearing outer ring 3 is illustrated, the core metal 9 may be mounted on the outer peripheral surface or side surface of the bearing outer ring 3.
[0014]
Further, in the above embodiment, the detection direction of the rotation speed (the number of rotations) by the rotation sensor constituted by the encoder 8 and the sensor 11 is set in the radial direction of the bearing 1, but in the axial direction of the bearing 1. May be set.
[0015]
As shown in FIG. 1, two peripheral grooves 31 are provided at a predetermined interval on the outer peripheral surface of the bearing outer ring 3, and a ring-shaped ring 32 is attached to each peripheral groove 31. Here, the ring-shaped ring 32 is an O-ring made of rubber. A viscous lubricant 33 is sealed between the two O-rings 32 so as not to leak outside. When a rotational load is applied to the bearing outer ring 3, the enclosed viscous lubricant 33 forms a high-pressure fluid thin film, which receives the rotational load and prevents the bearing outer ring 3 from directly contacting the bearing housing 6. . That is, the friction coefficient between the bearing outer ring 3 and the bearing housing 6 is reduced, and the frictional force due to creep is reduced. On the other hand, the O-ring 32 gives a frictional force between the bearing outer ring 3 and the bearing housing 6. When a rotational load is applied, the creep force to be generated is reduced due to the effect of the viscous lubricant 33, so that the frictional force of the O-ring 32 alone can easily suppress the creep force. It can be held down by the frictional force of the O-ring 32.
Next, FIG. 3 shows a second embodiment of the present invention. In this embodiment, the bearing is an EC bearing (trade name of an expansion correction bearing, that is, a creep prevention bearing manufactured by NTN Corporation), and the configuration other than the bearing is the same as that of the above-described first embodiment. Therefore, only the creep prevention is described below.
Two peripheral grooves 34 are provided on the outer peripheral surface of the bearing outer ring 3 at predetermined intervals, and a ring-shaped ring 35 is provided in each peripheral groove 34. Here, the ring-shaped ring 35 is formed by fixing a polymer material by integral molding. The thermal expansion difference between the outer diameter of the polymer material ring-shaped ring 35 and the inner diameter of the light alloy bearing housing 6 is designed to substantially match. Such a polymer material includes, for example, glass fiber reinforced polyamide (PA). Therefore, when the bearing of this embodiment is mounted on the bearing housing 6 made of a light alloy, a stable interference is obtained over a wide temperature range, and creep and spin of the bearing outer ring 3 are hardly generated. As described above, by preventing the rotation of the bearing outer ring 3, disconnection of the electric wire 13 taken out of the sensor housing 10 can be prevented.
[0016]
In the third embodiment shown in FIG. 4, as a means for preventing the bearing outer ring 3 from shifting in the circumferential direction, a pin 36 implanted in the bearing outer ring 3 is engaged with a recess formed in the bearing housing 6. . Thereby, not only the creep or spin of the bearing outer ring 3 can be prevented, but also the disconnection of the electric wire 13 taken out of the sensor housing 10 can be prevented.
[0017]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, since creep of a bearing can be prevented, disconnection of an electric wire can be prevented and the reliability and life of a sensor part improve.
[Brief description of the drawings]
FIG. 1 is a sectional view of a bearing with a rotation sensor showing an embodiment of the present invention.
FIG. 2 is a front view of a main part of the bearing with a rotation sensor of FIG. 1;
FIG. 3 is a sectional view of a bearing with a rotation sensor similar to FIG. 2, showing another embodiment of the present invention.
FIG. 4 is a cross-sectional view of a bearing with a rotation sensor similar to FIG. 2, showing still another embodiment of the present invention.
FIG. 5 is a diagram for explaining a creep phenomenon.
FIG. 6A is a front view of a main part of a conventional bearing with a rotation sensor,
B is a sectional view thereof.
[Explanation of symbols]
2 Bearing inner ring 3 Bearing outer ring 31 Peripheral groove 32 Ring-shaped ring (O-ring)
33 viscous lubricant 34 circumferential groove 35 ring-shaped ring (polymer material)
36 pin 4 rolling element 5 cage 6 bearing housing 7 rotation sensor 8 encoder 9 core metal 10 sensor housing 11 sensor 12 circuit board 13 electric wire 14 holding lid 14a notch groove