JP2004011434A - Fluid equipment - Google Patents

Fluid equipment Download PDF

Info

Publication number
JP2004011434A
JP2004011434A JP2002162023A JP2002162023A JP2004011434A JP 2004011434 A JP2004011434 A JP 2004011434A JP 2002162023 A JP2002162023 A JP 2002162023A JP 2002162023 A JP2002162023 A JP 2002162023A JP 2004011434 A JP2004011434 A JP 2004011434A
Authority
JP
Japan
Prior art keywords
friction
rotating shaft
fluid
friction member
shroud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002162023A
Other languages
Japanese (ja)
Other versions
JP4095834B2 (en
Inventor
Ryutaro Umagoe
馬越 龍太郎
Hide Nishikatsu
西勝 秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002162023A priority Critical patent/JP4095834B2/en
Publication of JP2004011434A publication Critical patent/JP2004011434A/en
Application granted granted Critical
Publication of JP4095834B2 publication Critical patent/JP4095834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/25Three-dimensional helical

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attenuate a relative minute vibration to a shroud of a variable stator blade body. <P>SOLUTION: In the fluid equipment such as a gas turbine, a compressor, and the like, the stator blade body 100 for regulating a flow passage of a fluid is supported, at a rotation shaft 101, to be rotatable by the shroud 110. A hole 1 is formed to an end 102 of the rotation shaft 101, a friction member 10 is inserted into the hole 1 to make contact to an inner wall of the hole 1 at vibration of the stator blade body 100, thereby generating friction. Further, the friction member 10 is held by a holding member 3, and the holding member 3 is arranged to the shroud 110 side. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、流体機器に関し、更に詳しくは、可変静翼とこれを支持するシュラウドとの相対的な振動を減衰させる構造を有する流体機器に関する。
【0002】
【従来の技術】
可変静翼を有する流体機器において、可変静翼とこれを支持するシュラウドとの間には、運転時にて相対的な微少振動が生ずる。図12は、従来の流体機器の要部を示す斜視図である。流体機器は、流体の流路を規制する静翼体100と、静翼体100をその両端にて回転可能に支持するシュラウド110とを含み構成される。通常、回転軸101と軸受け111との間には僅かな隙間を設けるが、この隙間は、流体機器の運転時にて回転軸101の微少振動の原因となる。そして、回転軸101は、その固有振動数にて共振し、周辺部品を壊損する等の種々の不都合を生じる。しかし、回転軸101の加工誤差を修正して振動の発生事態を抑止することは一般に困難であるため、流体機器では、発生した振動を事後的に抑制する構造が一般に採られる。
【0003】
このような技術としては、特開2000−199403号公報に記載される技術が知られている。図13は、図12に記載した静翼体100とシュラウド110との接合部を示す側面断面図である。静翼体100は、その回転軸101をシュラウド110a、110bの軸受け111に貫通して回転可能に保持される。また、静翼体100は、回転軸101にコイルバネ120を装着し、回転軸端部102を軸受け111の縁部112に係合させている。これにより、静翼体100は、コイルバネ120をシュラウド110との間に弾性圧縮状態にて挟み込み、軸方向に弾性力を作用させている。なお、静翼体100の回転変位は、可変翼機構(図示省略)により制御される。また、静翼体100をシュラウド110に設置するときは、シュラウド110の前縁側110aと後縁側110bとを分割して分離し、そこに静翼体100の回転軸101を挟み込み嵌め合わせてボルト結合(図示省略)する。
【0004】
この従来の流体機器において、コイルバネ120は、静翼体100とシュラウド110との間で軸方向に弾性力を及ぼし、これらの相対的変位を拘束して振動時の軸方向への振れ幅を減少させる。また、静翼体100は、回転軸端部102と軸受け縁部112との摩擦抵抗、および回転軸側面103と軸受け内周面113との摩擦抵抗により、振動を減衰させる。これにより従来の流体機器は、静翼体100とシュラウド110との相対的な微少振動を抑制していた。
【0005】
【発明が解決しようとする課題】
ここで、静翼体100の回転軸101の振動は一様ではなく、軸方向、軸直方向、曲げ方向および回転方向の振動が混在する複雑な振動モードを有する。しかしながら、上記従来の流体機器では、特に曲げ方向への振動減衰作用が小さかったため、かかる多様な振動モードに対応できず、振動による不都合が生じていた。また、コイルバネ120に替えてゴム部材を回転軸に装着し、ゴム部材の減衰抵抗によって振動を抑制する手法もある。しかしながら、かかるゴム部材は、高温化では使用できないという問題点がある。
【0006】
そこで、この発明は、上記に鑑みてなされたものであって、多様な振動モードを有する静翼体のシュラウドに対する相対的な微少振動を減衰できる流体機器を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、この発明にかかる流体機器は、ガスタービン、圧縮機その他の流体機器において、流体の流路を規制する静翼体と、前記静翼体の回転軸を回転可能に支持するシュラウドと、前記回転軸と前記シュラウドとの間に介在すると共に、摩擦力により前記回転軸の軸方向、軸直方向、曲げ方向もしくは回転方向の振動を減衰させる摩擦減衰手段とを含む。
【0008】
この発明では、静翼体の回転軸とシュラウドとの間に摩擦減衰部材を介在させて設置し、その摩擦力により、回転軸を拘束して回転軸の多様な振動モードを減衰させる構成とした。これにより、回転軸の振動を効果的に抑制できる利点がある。
【0009】
また、この発明にかかる流体機器は、ガスタービン、圧縮機その他の流体機器において、流体の流路を規制する静翼体と、前記静翼体の回転軸を回転可能に支持するシュラウドと、前記回転軸の端部に形成した穴に挿入されると共に前記静翼体の振動時にて前記穴の内壁と接触して摩擦を生ずる摩擦部材と、前記シュラウド側に設置されると共に前記摩擦部材を保持する保持部材とを含む。
【0010】
この発明において、摩擦部材は、シュラウド側に設置された保持部材により保持されて静翼体の振動時にて穴の内壁と接触して摩擦を生じるので、シュラウドに対する回転軸端部の微少振動を摩擦減衰させる。また、穴は、回転軸の端部に形成されるので、軸方向、曲げ方向および回転方向の振幅に対してその内壁にて摩擦部材と接触し、摩擦を生じる。これにより多様な振動モードに対応した摩擦減衰が可能となる。なお、この発明において、「回転軸端部に形成する穴」は、回転軸端部に中間部材を設置し、この中間部材に穴を形成する場合を含むものとする。また、「シュラウド側に設置」とは、シュラウドと保持部材とを一体形成する場合を含むものとする。また、「保持」とは、固定して保持する場合の他、摺動可能に保持する場合を含むものとする。
【0011】
また、この発明にかかる流体機器は、ガスタービン、圧縮機その他の流体機器において、流体の流路を規制する静翼体と、前記静翼体の回転軸を回転可能に支持するシュラウドと、前記シュラウド側に設置される保持部材と、前記回転軸端部に設置されると共に前記静翼体の振動時にて前記保持部材と接触して摩擦を生ずる摩擦部材とを含む。
【0012】
この発明において、摩擦部材は、静翼体の振動時にてシュラウド側の保持部材と接触して摩擦を生じ、シュラウドに対する回転軸端部の微少振幅を摩擦減衰させる。また、摩擦部材は、回転軸端部に設置されると共に保持部材により保持されるので、軸方向、曲げ方向および回転方向の振幅に対して保持部材と接触し、摩擦を生じる。これにより多様な振動モードに対応した摩擦減衰が可能となる。なお、この発明において、「回転軸端部にて保持」は、回転軸端部に中間部材を設置し、この中間部材を介して間接的に保持する場合を含むものとする。また、「保持」とは、固定して保持する場合の他、摺動可能に保持する場合を含むものとする。また、「シュラウド側に設置」とは、シュラウドと保持部材とを一体形成する場合を含むものとする。
【0013】
また、この発明にかかる流体機器は、上記流体機器において、さらに、前記摩擦部材は、弾性構造を有すると共にその弾性力により前記穴の内壁面に対して接触する弾性接触部を有することを特徴とする。この発明において、摩擦部材の弾性接触部は、弾性力によって穴の内壁面に接触するので振動により発生する摩擦も大きく、単に付勢する場合と比較してより大きな摩擦減衰作用を奏する。
【0014】
また、この発明にかかる流体機器は、上記流体機器において、前記弾性接触部は、筒状に配列される複数の梁部を含む。この発明において、梁部は、複数かつ筒状に配列されるので、穴の内壁に対して複数方向にて弾性的に接触できる。これにより、多様な振動モードに対応して接触を維持し、摩擦減衰作用を奏する。また、軸直方向の振動も、弾性接触部の弾性力により減衰する。
【0015】
また、この発明にかかる流体機器は、上記流体機器において、さらに、前記回転軸端部と前記摩擦部材との接触面は、前記回転軸端部の振動の中心と略同心の球面形状を有する摺動面を形成することを特徴とする。この発明において、回転軸端部と摩擦部材との接触面は、回転軸端部の振動中心を中心とする球面形状の摺動面を形成するので、摩擦部材は、特に曲げ方向および回転方向の振動変位に対して回転軸端部と効率的に接触して摩擦を生じる。
【0016】
また、この発明にかかる流体機器は、上記流体機器において、さらに、前記摩擦部材を前記回転軸端部に弾性力により付勢するバネ部材、ゴム部材その他の弾性付勢手段を有することを特徴とする。この発明において、摩擦部材は、回転軸端部に弾性的に付勢するので、振動変位する回転軸端部にしっかりと接触して摩擦を生じる。
【0017】
また、この発明にかかる流体機器は、ガスタービン、圧縮機その他の流体機器において、流体の流路を規制する静翼体と、前記静翼体の回転軸を回転可能に支持するシュラウドと、前記回転軸の端部に形成したすり鉢状の穴に挿入されると共に、前記静翼体の振動時にて前記穴の内壁と接触して摩擦を生ずる摩擦部材と、前記シュラウド側に設置されると共に前記摩擦部材を前記回転軸端部に弾性力により付勢するバネ部材、ゴム部材その他の弾性付勢手段とを含む。
【0018】
この発明において、摩擦部材は、すり鉢状の穴の内壁に弾性力によって付勢するので、回転軸の軸方向、曲げ方向および回転方向の振動変位に対して接触を維持できる。これにより摩擦接触による振動減衰作用を奏する。なお、「すり鉢状の穴」とは、穴の内壁の一部をすり鉢状に形成する場合を含むものとする。
【0019】
また、この発明にかかる流体機器は、ガスタービン、圧縮機その他の流体機器において、流体の流路を規制する静翼体と、前記静翼体の回転軸を回転可能に支持するシュラウドと、前記回転軸の略同軸上であって前記回転軸端部に設ける心棒部材と、前記心棒部材の外周に設ける摩擦部材と、前記摩擦部材を摺動保持しつつ当該摩擦部材に接触して摩擦を生ずる摩擦保持部材とを含む。
【0020】
この発明において、回転軸の振動は、心棒部材を介して摩擦部材に伝達する。摩擦保持部材は、この摩擦部材を摺動保持しつつ接触して摩擦を生じるので、これにより、回転軸の振動も摩擦減衰される。
【0021】
また、この発明にかかる流体機器は、ガスタービン、圧縮機その他の流体機器において、流体の流路を規制する静翼体と、前記静翼体の回転軸を回転可能に支持するシュラウドと、前記回転軸の略同軸上であって前記回転軸端部に設ける心棒部材と、前記心棒部材を心棒とする円盤状の摩擦板と、前記摩擦板を弾性部材により摺動可能に挟み込み保持する摩擦保持部材とを含む。
【0022】
この発明において、回転軸の振動は、心棒部材を介して摩擦板に伝達する。摩擦保持部材は、この摩擦板を弾性部材により摺動可能に挟み込み保持するので、振動により摩擦板との間に摩擦を生じるので、これにより、回転軸の振動も摩擦減衰される。
【0023】
また、この発明にかかる流体機器は、上記流体機器において、さらに、前記摩擦部材が接触する接触面にクロムナイトライドその他の耐摩耗層を有する。これにより、摩擦部材と接触する面の摩耗を抑制することができる。
【0024】
また、この発明にかかる流体機器は、上記流体機器において、前記摩擦部材もしくは前記摩擦板は、前記回転軸の軸方向、軸直方向、曲げ方向もしくは回転方向の振動を減衰させる方向に、摩擦力を生ずる。これにより、回転軸の振動を効果的に摩擦減衰できる。
【0025】
【発明の実施の形態】
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、以下に示す実施の形態の構成要素には、当業者が通常設計変更できるものが含まれるものとする。
【0026】
(実施の形態1)
図1は、この発明にかかる第1の実施の形態である流体機器の要部を示す側面断面図である。同図において、上記従来の流体機器と同一の構成要素には同一の符号を付し、その説明を省略する。この流体機器の静翼体100は、回転軸101を軸受け111に挟み込み、回転軸端部102を軸受けの縁に係合させて、シュラウド110に対し回転可能に保持される。また、静翼体100は、回転軸端部102の中心に穴1を有する。穴1には、円筒形状を有する鋼製の摩擦部材10が、軸方向に奥行きを残して挿入される。この摩擦部材10は、先端11からスリット12を切り形成した梁部13を複数備え、この梁部13は、半径方向に弾性力を作用する板バネ構造を有する(図2および図3参照)。梁部13は、弾性変形により縮径して穴1に挿入され、内部にて拡径して穴1の内壁に弾性力によって接触する。摩擦部材10は、シュラウド110の前縁側110aと後縁側110bとに渡して設置した保持部材3に溝4を切り、この溝4に台座部14を差し込み固定設置される。
【0027】
この実施の形態1において、静翼体100の回転軸101は、流体機器の運転時にて軸方向、軸直方向、曲げ方向および回転方向への振動が複合した複雑な微少振動を行う。このとき摩擦部材10は、軸方向および回転方向の振動に対しては、梁部13を穴1の内壁に弾性力によって付勢し、回転軸101との接触面にて摩擦を生じて振動を減衰させると共に、軸直方向の振動を弾性力により減衰させる。また、摩擦部材10は、曲げ方向の変位に対しては、梁部13を弾性変形により傾斜させつつ梁部13の外面にて穴1の内壁に付勢し、摩擦を発生する。ここで、摩擦部材10を保持する保持部材3は、シュラウド110に固定設置されるので、この摩擦により回転軸101の微少振動は、シュラウド110に対して相対的に減衰される。
【0028】
この実施の形態1によれば、流体機器は、上記多様な振動モードに対応して摩擦を発生できるので、従来の流体機器と比較して効果的に振動を減衰させることができる。また、摩擦部材10は、振幅の大きい回転軸端部102に設置されるので生じる摩擦減衰作用も大きい。したがって、特に曲げ方向の振動を効果的に減衰できる。また、摩擦部材10の梁部13は、板バネ構造を有するので、回転軸101の曲げ方向の振動に対しても追従変位して摩擦を発生できる。また、摩擦部材10は、シュラウド110内側から回転軸101の穴1に挿入する構成なので、シュラウド110を分割することなく摩耗等による交換作業を行うことができる。なお、摩擦部材10の交換は、底板15を取り外して行う。
【0029】
なお、この実施の形態1において、摩擦部材10の梁部13は、先端11からスリット12を真っ直ぐに切って形成されるが(図2および図3参照)、螺旋状に形成してもよいし(図4参照)、両端に交互に形成してもよい(図5参照)。また、梁部13の形状も穴1の内壁に付勢して摩擦を発生できればよく、特に限定はない。また、梁部13の数も特に限定はなく、複数であればよい。また、摩擦部材10は円筒形状を有するが、これに限定されず角筒形状であってもよい。また、摩擦部材10は、板巻きバネ(図6参照)であってもよいし、耐熱性ゴムを用いてもよい。なお、耐熱性ゴムとしては、300度の高温に耐えうる製品が知られている。
【0030】
また、この実施の形態1において、摩擦部材10と接触する穴1の内壁には、クロムナイトライドや窒化処理等の耐摩耗層を設けてもよい。これにより、流体機器の寿命を延ばすことができる。
【0031】
(実施の形態2)
図7は、この発明にかかる第2の実施の形態である流体機器の要部を示す側面断面図である。同図において、上記実施の形態1の流体機器と同一の構成要素には同一の符号を付し、その説明を省略する。この流体機器において、摩擦部材10は、回転軸端部102の中央に形成した溝4に台座部14を差し込み固定設置される。また、摩擦部材10の梁部13は、保持部材3に設けた略同一内径の穴1に弾性変形により縮径して挿入され、内部にて拡径して穴1の内壁に接触する。すなわち、実施の形態1において、摩擦部材10は、シュラウド110側の保持部材3に固定設置して回転軸端部102に設けた穴1に挿入したが、実施の形態2において、摩擦部材10は、回転軸101側に固定設置して保持部材3に設けた穴1に挿入する点で相異する。
【0032】
この実施の形態2において、摩擦部材10は、回転軸101の振動と共に変位して穴1の内壁と摩擦を生じ、振動を減衰させる。この実施の形態2によれば、穴1は、保持部材3に設けられるので、摩擦部材10との摩擦により摩耗した場合にも、静翼体100全体を交換する場合と比較して、容易かつ安価に交換できる。また、実施の形態1同様に、多様な振動モードに対応した摩擦減衰が可能であり、特に曲げ方向の振動に対しても効果的な減衰作用を奏する。
【0033】
(実施の形態3)
図8は、この発明にかかる第3の実施の形態である流体機器の要部を示す側面断面図である。同図において、上記流体機器と同一の構成要素には同一の符号を付し、その説明を省略する。この流体機器において、摩擦部材20は、テーパ形状の先端21を有する金属製の円筒部材であり、その台座部14に裾部22を有する。摩擦部材20は、中空部に挿入された付勢バネ23のバネ力により軸方向に押圧され、その先端21を回転軸端部102に形成したすり鉢状の穴1に挿入して付勢している。また、摩擦部材20は、保持部材26に裾部22を嵌め込み保持される。裾部22は、ピン24によって保持部材26に係留され、これにより、摩擦部材20は回転方向の変位を拘束される。
【0034】
この実施の形態3において、摩擦部材20は、運転時の微少振動時において、先端21と穴1の内壁との接触面にて摩擦を生じ、回転軸101のシュラウド110に対する相対的振動を減衰する。また、摩擦部材20は、付勢バネ23により穴1の内壁に付勢されるので、回転軸101の軸方向への振動変位に対しても追従して穴1の内壁に接触し、振動を摩擦減衰する。また、摩擦部材20は、ピン24により回転方向の変位が規制されるので、回転軸101の回転方向への振動変位に対して摩擦を生じ、振動を減衰させる。また、摩擦部材20の先端21はテーパ形状を有するので、回転軸101の曲げ方向への振動変位により押されて変位し、円筒部25を保持部材26の口部27に擦り、摩擦を生じて振動を減衰させる。
【0035】
(実施の形態4)
図9は、この発明にかかる第4の実施の形態である流体機器の要部を示す側面断面図である。同図において、上記流体機器と同一の構成要素には同一の符号を付し、その説明を省略する。この流体機器において摩擦部材30は、回転軸101の端面と摺り合う円盤形状の摺動面31を有し、背面側を保持部材3により保持され設置される。保持部材3は、シュラウド110の前縁側110aと後縁側110bとに渡して固定設置される。摩擦部材30と保持部材3との間には、皿バネ32が挟み込まれ、保持部材3は、摺動面31を皿バネ32のバネ力によって回転軸端部102に付勢する。また、摩擦部材30は、ピン24により保持部材3に係留されて回転方向への変位を拘束される。
【0036】
この実施の形態4において、摩擦部材30は、回転軸101の軸方向の振動に対しては、皿バネ32の伸縮により追従して変位し、バネ力によって回転軸の振幅を抑制しつつ軸受け111での摩擦により振動を減衰させる。また、摩擦部材30は、曲げ方向および回転方向の振動に対しては、保持部材3によりその変位が拘束されるので、摺動面31での摩擦により振動を減衰させる。これにより、多様な振動モードに対応した摩擦減衰が可能となる。
【0037】
なお、この実施の形態4において、回転軸端部102の形状は、曲げ方向の振動中心とほぼ同位置に中心を有する球面形状とし、摩擦部材30の摺動面31の形状はこの球面形状と摺り合わさる凹形球面形状としてもよい(図10参照)。この構成において、摺動面31は、皿バネ32のバネ力によって軸方向から回転軸端部102に付勢し、回転軸101の曲げ方向の振動変位によって回転軸端部102と摩擦を生じて振動を減衰させる。この構成によれば、回転軸端部102と摩擦部材30との接触面は、回転軸端部102の振動に合致して形成されるので、上記の構成と比較してより確実に回転軸端部102と摩擦部材30との接触を維持できる。
【0038】
図11は、この発明にかかる第5の実施の形態である流体機器の要部を示す側面断面図である。同図において、上記流体機器と同一の構成要素には同一の符号を付し、その説明を省略する。この流体機器において、金属製の心棒40は、その足を回転軸端部102に螺込み若しくは回転しないように差し込まれて、回転軸101と略同軸上に固定設置される。心棒40には、円盤形状の摩擦板41が垂直に嵌め込まれ固定される。摩擦板41は、環状の薄型構造を有する一対の金属製ディスクパット42、42により、上下方向(軸方向)から摺動可能に挟み込まれる。ディスクパット42は、皿バネ43のバネ力によって摩擦板41に付勢しており、この皿バネ43は、保持部材3に保持されて、ディスクパット42と共に保持部材3内に収納される。保持部材3は、シュラウド110の前縁側110aと後縁側110bとに渡して固定設置される。
【0039】
この実施の形態5において、回転軸101の振動は、心棒40を介して摩擦板41に伝達する。ディスクパット42は、摩擦板41を挟み込み摩擦板41の振動変位により摩擦を生じて振動を減衰する。ここで、ディスクパット42は、軸方向の振動に対しては、皿バネ43の弾性変形により軸方向に追従して変位し、摩擦板41に付勢して摩擦を生じ、振動を減衰させる。また、曲げ方向および回転方向の振動に対しても、摩擦板41に上下方向から付勢して摩擦を生じ、振動を減衰させる。この実施の形態5によれば、ディスクパット42は、摩擦板41に上下方向から付勢するので、特に曲げ方向および回転方向の振動に対して効果的に摩擦を発生し、振動を減衰する。
【0040】
【発明の効果】
以上説明したように、この発明にかかる流体機器によれば、静翼体の回転軸とシュラウドとの間に摩擦減衰部材を介在させて設置し、その摩擦力により、回転軸を拘束して回転軸の多様な振動モードを減衰させる構成としたので、これにより、回転軸の振動を効果的に抑制できる利点がある。
【0041】
また、この発明にかかる流体機器によれば、摩擦部材は、シュラウド側に設置された保持部材により保持されて静翼体の振動時にて穴の内壁と接触して摩擦を生じるので、シュラウドに対する回転軸端部の微少振動を摩擦減衰させる。また、穴は、回転軸の端部に形成されるので、軸方向、曲げ方向および回転方向の振幅に対してその内壁にて摩擦部材と接触し、摩擦を生じる。これにより多様な振動モードに対応した摩擦減衰が可能となる。
【0042】
また、この発明にかかる流体機器によれば、摩擦部材は、静翼体の振動時にてシュラウド側の保持部材と接触して摩擦を生じ、シュラウドに対する回転軸端部の微少振幅を摩擦減衰させる。また、摩擦部材は、回転軸端部に設置されると共に保持部材により保持されるので、軸方向、曲げ方向および回転方向の振幅に対して保持部材と接触し、摩擦を生じる。これにより多様な振動モードに対応した摩擦減衰が可能となる。
【0043】
また、この発明にかかる流体機器によれば、摩擦部材の弾性接触部は、弾性力によって穴の内壁面に接触するので、振動により発生する摩擦も大きく、単に付勢する場合と比較してより大きな摩擦減衰が可能である。
【0044】
また、この発明にかかる流体機器によれば、梁部は、複数かつ筒状に配列されるので、穴の内壁に対して複数方向にて弾性的に接触できる。これにより、多様な振動モードに対応して接触を維持し、振動を減衰させることができる。
【0045】
また、この発明にかかる流体機器によれば、回転軸端部と摩擦部材との接触面は、回転軸端部の振動中心を中心とする球面形状の摺動面を形成するので、摩擦部材は、特に曲げ方向および回転方向の振動変位に対して回転軸端部と効率的に接触して摩擦を生じ、振動を減衰できる。
【0046】
また、この発明にかかる流体機器によれば、摩擦部材は、回転軸端部に弾性的に付勢するので、振動変位する回転軸端部にしっかりと接触して摩擦を生じ、振動を減衰できる。
【0047】
また、この発明にかかる流体機器によれば、摩擦部材は、すり鉢状の穴の内壁に弾性力によって付勢するので、回転軸の軸方向、曲げ方向および回転方向の振動変位に対して接触を維持して振動を摩擦減衰できる。
【0048】
また、この発明にかかる流体機器によれば、心棒部材は回転軸端部に設置され、且つ、摩擦部材は心棒部材に設置されるので、摩擦部材を摺動保持することにより、心棒部材を介して回転軸の振動を摩擦減衰できる。
【0049】
また、この発明にかかる流体機器によれば、心棒部材は回転軸端部に設置され、且つ、摩擦板は心棒部材に設置されるので、摩擦部材を弾性部材により摺動可能に挟み込み保持することにより、心棒部材を介して回転軸の振動を摩擦減衰できる。
【0050】
また、この発明にかかる流体機器によれば、摩擦部材が接触する接触面に耐摩耗層を設けたので、摩擦部材と接触する面の摩耗を抑制できる。
【0051】
また、この発明にかかる流体機器によれば、摩擦部材もしくは摩擦板は、静翼体の回転軸の軸方向、軸直方向、曲げ方向もしくは回転方向の振動を減衰させる方向に、摩擦力を生ずるので、回転軸の振動を効果的に摩擦減衰できる。
【図面の簡単な説明】
【図1】この発明の実施の形態1にかかる流体機器の要部を示す側面断面図である。
【図2】図1に記載した摩擦部材を示す斜視図である。
【図3】図2に示した摩擦部材を示す側面断面図(a)および平面図(b)である。
【図4】図1に記載した摩擦部材の変形例を示す斜視図である。
【図5】図1に記載した摩擦部材の変形例を示す斜視図である。
【図6】図1に記載した摩擦部材の変形例を示す斜視図である。
【図7】この発明の実施の形態2にかかる流体機器の要部を示す側面断面図である。
【図8】この発明の実施の形態3にかかる流体機器の要部を示す側面断面図である。
【図9】この発明の実施の形態4にかかる流体機器の要部を示す側面断面図である。
【図10】図1に示した流体機器の変形例の要部を示す側面断面図である。
【図11】この発明の実施の形態5にかかる流体機器の要部を示す側面断面図である。
【図12】従来の流体機器の要部を示す斜視図である。
【図13】従来の流体機器の要部を示す側面断面図である。
【符号の説明】
1 穴
3 保持部材
10 摩擦部材
12 スリット
13 梁部
14 台座部
15 底板
20 摩擦部材
30 摩擦部材
31 摺動面
40 心棒
41 摩擦板
42 ディスクパット
100 静翼体
110 シュラウド
111 軸受け
120 コイルバネ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluid device, and more particularly, to a fluid device having a structure for attenuating relative vibration between a variable stator blade and a shroud supporting the same.
[0002]
[Prior art]
In a fluid device having a variable stationary blade, relative minute vibration occurs between the variable stationary blade and a shroud supporting the variable stationary blade during operation. FIG. 12 is a perspective view showing a main part of a conventional fluid device. The fluid device includes a stationary blade body 100 that regulates a fluid flow path, and a shroud 110 that rotatably supports the stationary blade body 100 at both ends thereof. Normally, a small gap is provided between the rotating shaft 101 and the bearing 111, but this gap causes a minute vibration of the rotating shaft 101 during operation of the fluid device. The rotating shaft 101 resonates at its natural frequency, causing various inconveniences such as damage to peripheral components. However, since it is generally difficult to correct the processing error of the rotating shaft 101 to suppress the occurrence of vibration, the fluid device generally employs a structure that suppresses the generated vibration ex post.
[0003]
As such a technique, a technique described in JP-A-2000-199403 is known. FIG. 13 is a side cross-sectional view showing a joint between the stationary blade body 100 and the shroud 110 shown in FIG. The stationary blade body 100 is rotatably held by penetrating the rotating shaft 101 through the bearings 111 of the shrouds 110a and 110b. In the stationary blade body 100, a coil spring 120 is mounted on the rotating shaft 101, and the rotating shaft end 102 is engaged with the edge 112 of the bearing 111. As a result, the stator blade body 100 sandwiches the coil spring 120 between the shroud 110 and the shroud 110 in an elastically compressed state, and applies an elastic force in the axial direction. The rotational displacement of the stationary blade body 100 is controlled by a variable blade mechanism (not shown). Further, when the stationary blade body 100 is installed on the shroud 110, the leading edge side 110a and the trailing edge side 110b of the shroud 110 are divided and separated, and the rotary shaft 101 of the stationary blade body 100 is sandwiched and fitted therewith to be bolted. (Not shown).
[0004]
In this conventional fluid device, the coil spring 120 exerts an elastic force in the axial direction between the stationary blade body 100 and the shroud 110, restricts their relative displacement, and reduces the axial swing width during vibration. Let it. Further, the stator vane body 100 attenuates vibration by frictional resistance between the rotating shaft end 102 and the bearing edge 112 and frictional resistance between the rotating shaft side surface 103 and the bearing inner peripheral surface 113. Thus, in the conventional fluid device, relative minute vibration between the stationary blade body 100 and the shroud 110 has been suppressed.
[0005]
[Problems to be solved by the invention]
Here, the vibration of the rotating shaft 101 of the stationary blade body 100 is not uniform, and has a complicated vibration mode in which vibrations in the axial direction, the perpendicular direction, the bending direction, and the rotational direction are mixed. However, the conventional fluid device described above has a small vibration damping effect particularly in the bending direction, and thus cannot cope with such various vibration modes, causing a problem due to vibration. Also, there is a method in which a rubber member is mounted on the rotating shaft instead of the coil spring 120, and vibration is suppressed by damping resistance of the rubber member. However, there is a problem that such a rubber member cannot be used at a high temperature.
[0006]
Then, this invention was made in view of the above, and an object of this invention is to provide the fluid apparatus which can attenuate the relative small vibration with respect to the shroud of the stationary blade body which has various vibration modes.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a fluid device according to the present invention is a gas turbine, a compressor and other fluid devices, in which a stationary blade body that regulates a fluid flow path and a rotation axis of the stationary blade body can be rotated. And a friction damping means interposed between the rotating shaft and the shroud and configured to attenuate vibration of the rotating shaft in an axial direction, an axial direction, a bending direction, or a rotating direction by frictional force. .
[0008]
In this invention, a friction damping member is interposed between the rotating shaft of the stationary blade body and the shroud, and the frictional force restrains the rotating shaft to attenuate various vibration modes of the rotating shaft. . Thereby, there is an advantage that vibration of the rotating shaft can be effectively suppressed.
[0009]
Further, in the fluid device according to the present invention, in a gas turbine, a compressor or other fluid device, a stationary blade body that regulates a fluid flow path, a shroud that rotatably supports a rotation axis of the stationary blade body, A friction member that is inserted into a hole formed at the end of the rotating shaft and that contacts the inner wall of the hole to generate friction when the stationary blade body vibrates; and a friction member that is installed on the shroud side and holds the friction member. Holding member.
[0010]
In the present invention, the friction member is held by the holding member installed on the shroud side and comes into contact with the inner wall of the hole when the stationary blade body vibrates, so that friction occurs. Attenuate. Further, since the hole is formed at the end of the rotation shaft, the hole contacts the friction member on the inner wall with respect to the amplitude in the axial direction, the bending direction, and the rotation direction, and generates friction. This enables friction damping corresponding to various vibration modes. In addition, in this invention, "the hole formed in a rotating shaft end part" shall include the case where an intermediate member is installed in the rotating shaft end part and a hole is formed in this intermediate member. Further, “installed on the shroud side” includes a case where the shroud and the holding member are integrally formed. In addition, the term “holding” includes a case where the holding is performed slidably in addition to a case where the holding is performed fixedly.
[0011]
Further, in the fluid device according to the present invention, in a gas turbine, a compressor or other fluid device, a stationary blade body that regulates a fluid flow path, a shroud that rotatably supports a rotation axis of the stationary blade body, A holding member provided on the shroud side; and a friction member provided on the end of the rotating shaft and contacting the holding member to generate friction when the stationary blade body vibrates.
[0012]
In the present invention, the friction member comes into contact with the holding member on the shroud side when the stationary blade body vibrates to generate friction, and frictionally attenuates the minute amplitude of the end of the rotating shaft with respect to the shroud. Further, since the friction member is provided at the end of the rotating shaft and held by the holding member, the friction member comes into contact with the holding member with respect to the amplitude in the axial direction, the bending direction, and the rotation direction, and generates friction. This enables friction damping corresponding to various vibration modes. In the present invention, "holding at the end of the rotating shaft" includes a case where an intermediate member is installed at the end of the rotating shaft and indirectly held via the intermediate member. In addition, the term “holding” includes a case where the holding is performed slidably in addition to a case where the holding is performed fixedly. Further, “installed on the shroud side” includes a case where the shroud and the holding member are integrally formed.
[0013]
Further, the fluid device according to the present invention is characterized in that, in the fluid device described above, the friction member has an elastic structure and an elastic contact portion that contacts an inner wall surface of the hole by its elastic force. I do. In the present invention, since the elastic contact portion of the friction member comes into contact with the inner wall surface of the hole by the elastic force, the friction generated by the vibration is large, and a larger friction damping effect is provided as compared with the case where the friction member is simply biased.
[0014]
Further, in the fluid device according to the present invention, in the fluid device, the elastic contact portion includes a plurality of beam portions arranged in a cylindrical shape. In the present invention, since the plurality of beams are arranged in a cylindrical shape, the beams can elastically contact the inner wall of the hole in a plurality of directions. Thereby, contact is maintained corresponding to various vibration modes, and a friction damping effect is achieved. Further, the vibration in the direction perpendicular to the axis is also attenuated by the elastic force of the elastic contact portion.
[0015]
Further, in the fluid device according to the present invention, in the fluid device, the contact surface between the rotating shaft end and the friction member has a spherical shape substantially concentric with the center of vibration of the rotating shaft end. It is characterized by forming a moving surface. In the present invention, the contact surface between the end of the rotating shaft and the friction member forms a spherical sliding surface centered on the center of vibration of the end of the rotating shaft. Efficient contact with the end of the rotating shaft against vibration displacement causes friction.
[0016]
Further, the fluid device according to the present invention is characterized in that, in the fluid device described above, the fluid device further includes a spring member, a rubber member, and other elastic urging means for urging the friction member to the end of the rotating shaft by an elastic force. I do. In the present invention, since the friction member elastically urges the end of the rotating shaft, the friction member is brought into firm contact with the end of the rotating shaft that is vibrated to generate friction.
[0017]
Further, in the fluid device according to the present invention, in a gas turbine, a compressor or other fluid device, a stationary blade body that regulates a fluid flow path, a shroud that rotatably supports a rotation axis of the stationary blade body, A friction member that is inserted into a mortar-shaped hole formed at the end of the rotating shaft and that contacts the inner wall of the hole to generate friction when the stator blade body vibrates, and that the friction member is installed on the shroud side and A spring member, a rubber member, and other elastic urging means for urging the friction member toward the end of the rotating shaft by an elastic force are included.
[0018]
In the present invention, since the friction member urges the inner wall of the mortar-shaped hole by an elastic force, the friction member can maintain contact with respect to vibration displacement in the axial direction, the bending direction, and the rotational direction of the rotating shaft. Thereby, a vibration damping action due to frictional contact is exerted. The term “mortar-shaped hole” includes a case where a part of the inner wall of the hole is formed in a mortar shape.
[0019]
Further, in the fluid device according to the present invention, in a gas turbine, a compressor or other fluid device, a stationary blade body that regulates a fluid flow path, a shroud that rotatably supports a rotation axis of the stationary blade body, A mandrel member provided substantially at the same axis of the rotating shaft and provided at the end of the rotating shaft, a friction member provided on an outer periphery of the mandrel member, and friction is generated by contacting the friction member while slidingly holding the friction member. A friction holding member.
[0020]
In the present invention, the vibration of the rotating shaft is transmitted to the friction member via the mandrel member. Since the friction holding member slides and holds the friction member and comes into contact with each other to generate friction, the vibration of the rotating shaft is also frictionally attenuated.
[0021]
Further, in the fluid device according to the present invention, in a gas turbine, a compressor or other fluid device, a stationary blade body that regulates a fluid flow path, a shroud that rotatably supports a rotation axis of the stationary blade body, A shaft member substantially coaxial with the rotating shaft and provided at the end of the rotating shaft; a disc-shaped friction plate having the mandrel as the mandrel; and a friction holding member that slidably sandwiches and holds the friction plate with an elastic member. And a member.
[0022]
In the present invention, the vibration of the rotating shaft is transmitted to the friction plate via the mandrel member. The friction holding member slidably sandwiches and holds the friction plate with the elastic member, so that the vibration causes friction between the friction plate and the friction plate. Accordingly, the vibration of the rotating shaft is also attenuated.
[0023]
Further, the fluid device according to the present invention, in the fluid device described above, further includes a chromium nitride or other wear-resistant layer on a contact surface with which the friction member contacts. Thereby, abrasion of the surface in contact with the friction member can be suppressed.
[0024]
Further, in the fluid device according to the present invention, in the fluid device, the friction member or the friction plate has a frictional force in a direction of attenuating vibration in an axial direction, a perpendicular direction, a bending direction, or a rotational direction of the rotating shaft. Is generated. Thereby, the vibration of the rotating shaft can be effectively damped by friction.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited by the embodiment. The components of the embodiments described below include those that can be changed in design by those skilled in the art.
[0026]
(Embodiment 1)
FIG. 1 is a side sectional view showing a main part of a fluid device according to a first embodiment of the present invention. In the figure, the same components as those of the above-described conventional fluid device are denoted by the same reference numerals, and description thereof will be omitted. The stationary blade body 100 of the fluid device is held rotatably with respect to the shroud 110 by sandwiching the rotating shaft 101 between the bearings 111 and engaging the rotating shaft end portions 102 with the edges of the bearings. Further, the stationary blade body 100 has a hole 1 at the center of the rotation shaft end 102. A steel friction member 10 having a cylindrical shape is inserted into the hole 1 while leaving a depth in the axial direction. The friction member 10 includes a plurality of beam portions 13 formed by cutting the slits 12 from the front end 11, and the beam portions 13 have a leaf spring structure that applies an elastic force in a radial direction (see FIGS. 2 and 3). The beam portion 13 is reduced in diameter by elastic deformation and inserted into the hole 1, expanded inside, and comes into contact with the inner wall of the hole 1 by elastic force. The friction member 10 is fixedly installed by cutting a groove 4 in the holding member 3 installed across the front edge 110a and the rear edge 110b of the shroud 110, and inserting the pedestal portion 14 into the groove 4.
[0027]
In the first embodiment, the rotating shaft 101 of the stationary blade body 100 performs complex minute vibrations in which vibrations in the axial direction, the perpendicular direction, the bending direction, and the rotating direction are combined during operation of the fluid device. At this time, the friction member 10 urges the beam portion 13 against the inner wall of the hole 1 by elastic force against the vibration in the axial direction and the rotation direction, and generates the friction on the contact surface with the rotation shaft 101 to generate the vibration. At the same time, the vibration in the direction perpendicular to the axis is attenuated by the elastic force. In addition, the friction member 10 urges the inner wall of the hole 1 on the outer surface of the beam portion 13 while inclining the beam portion 13 by elastic deformation against the displacement in the bending direction, thereby generating friction. Here, since the holding member 3 holding the friction member 10 is fixedly installed on the shroud 110, the minute vibration of the rotating shaft 101 is relatively attenuated with respect to the shroud 110 by this friction.
[0028]
According to the first embodiment, the fluid device can generate friction corresponding to the various vibration modes described above, so that the vibration can be attenuated more effectively than the conventional fluid device. Further, since the friction member 10 is installed on the rotating shaft end portion 102 having a large amplitude, a friction damping effect generated is large. Therefore, the vibration particularly in the bending direction can be effectively attenuated. Further, since the beam portion 13 of the friction member 10 has a leaf spring structure, the beam portion 13 can follow the displacement of the rotating shaft 101 in the bending direction and generate friction. Further, since the friction member 10 is configured to be inserted into the hole 1 of the rotating shaft 101 from the inside of the shroud 110, replacement work due to wear or the like can be performed without dividing the shroud 110. The replacement of the friction member 10 is performed by removing the bottom plate 15.
[0029]
In the first embodiment, the beam portion 13 of the friction member 10 is formed by cutting the slit 12 straight from the tip 11 (see FIGS. 2 and 3), but may be formed in a spiral shape. (See FIG. 4), and may be formed alternately at both ends (see FIG. 5). Also, the shape of the beam portion 13 is not particularly limited as long as it can urge the inner wall of the hole 1 to generate friction. Further, the number of the beam portions 13 is not particularly limited as long as it is plural. Further, the friction member 10 has a cylindrical shape, but is not limited thereto, and may have a rectangular tube shape. Further, the friction member 10 may be a leaf-wound spring (see FIG. 6) or may use heat-resistant rubber. In addition, as the heat-resistant rubber, a product that can withstand a high temperature of 300 degrees is known.
[0030]
In the first embodiment, a wear-resistant layer such as a chromium nitride or a nitriding treatment may be provided on the inner wall of the hole 1 that comes into contact with the friction member 10. Thereby, the life of the fluid device can be extended.
[0031]
(Embodiment 2)
FIG. 7 is a side sectional view showing a main part of a fluid device according to a second embodiment of the present invention. In the figure, the same components as those of the fluid device according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In this fluid device, the friction member 10 is fixedly installed by inserting the pedestal portion 14 into the groove 4 formed at the center of the rotating shaft end portion 102. Further, the beam portion 13 of the friction member 10 is inserted into the hole 1 having substantially the same inner diameter provided in the holding member 3 with a reduced diameter by elastic deformation, and the inner diameter is increased inside to contact the inner wall of the hole 1. That is, in the first embodiment, the friction member 10 is fixedly installed on the holding member 3 on the shroud 110 side and inserted into the hole 1 provided in the rotary shaft end portion 102. In the second embodiment, the friction member 10 3 in that it is fixedly installed on the rotating shaft 101 side and inserted into a hole 1 provided in the holding member 3.
[0032]
In the second embodiment, the friction member 10 is displaced together with the vibration of the rotating shaft 101 to generate friction with the inner wall of the hole 1 to attenuate the vibration. According to the second embodiment, since the hole 1 is provided in the holding member 3, even when the hole 1 is worn by friction with the friction member 10, the hole 1 is easier and easier than when the entire stator blade body 100 is replaced. Inexpensive to replace. Further, similarly to the first embodiment, friction damping corresponding to various vibration modes is possible, and particularly, an effective damping action is exerted even for vibration in a bending direction.
[0033]
(Embodiment 3)
FIG. 8 is a side sectional view showing a main part of a fluid device according to a third embodiment of the present invention. In the figure, the same components as those of the fluid device are denoted by the same reference numerals, and description thereof will be omitted. In this fluid device, the friction member 20 is a metal cylindrical member having a tapered tip 21, and has a skirt portion 22 on the pedestal portion 14. The friction member 20 is pressed in the axial direction by the spring force of the biasing spring 23 inserted into the hollow portion, and the tip 21 is inserted into the mortar-shaped hole 1 formed in the rotating shaft end portion 102 to urge the friction member 20. I have. Further, the friction member 20 is held by fitting the skirt 22 to the holding member 26. The skirt portion 22 is moored to the holding member 26 by the pin 24, whereby the displacement of the friction member 20 in the rotation direction is restrained.
[0034]
In the third embodiment, the friction member 20 generates friction at the contact surface between the tip 21 and the inner wall of the hole 1 at the time of minute vibration during operation, and attenuates relative vibration of the rotating shaft 101 with respect to the shroud 110. . Further, since the friction member 20 is urged against the inner wall of the hole 1 by the urging spring 23, the friction member 20 follows the vibration displacement in the axial direction of the rotating shaft 101 and contacts the inner wall of the hole 1 to reduce the vibration. Decreases friction. Also, since the displacement of the friction member 20 in the rotation direction is regulated by the pin 24, friction is generated with respect to the vibration displacement of the rotation shaft 101 in the rotation direction, and the vibration is attenuated. In addition, since the tip 21 of the friction member 20 has a tapered shape, the tip 21 is pushed and displaced by the vibration displacement of the rotating shaft 101 in the bending direction, and rubs the cylindrical portion 25 against the opening 27 of the holding member 26 to generate friction. Damping vibration.
[0035]
(Embodiment 4)
FIG. 9 is a side sectional view showing a main part of a fluid device according to a fourth embodiment of the present invention. In the figure, the same components as those of the fluid device are denoted by the same reference numerals, and description thereof will be omitted. In this fluid device, the friction member 30 has a disk-shaped sliding surface 31 that slides on the end surface of the rotating shaft 101, and the rear side is held and installed by the holding member 3. The holding member 3 is fixedly installed over the front edge side 110a and the rear edge side 110b of the shroud 110. A disc spring 32 is sandwiched between the friction member 30 and the holding member 3, and the holding member 3 urges the sliding surface 31 toward the rotating shaft end 102 by the spring force of the disc spring 32. Further, the friction member 30 is moored to the holding member 3 by the pin 24, and the displacement in the rotation direction is restricted.
[0036]
In the fourth embodiment, the friction member 30 is displaced by following the axial vibration of the rotating shaft 101 due to the expansion and contraction of the disc spring 32, and the bearing 111 is suppressed while suppressing the amplitude of the rotating shaft by the spring force. Vibration is attenuated by friction at Further, the displacement of the friction member 30 with respect to the vibration in the bending direction and the rotation direction is restrained by the holding member 3, so that the vibration on the sliding surface 31 is attenuated. Thereby, friction damping corresponding to various vibration modes becomes possible.
[0037]
In the fourth embodiment, the shape of the rotating shaft end 102 is a spherical shape having a center substantially at the same position as the vibration center in the bending direction, and the shape of the sliding surface 31 of the friction member 30 is the same as the spherical shape. It may be a concave spherical shape that slides together (see FIG. 10). In this configuration, the sliding surface 31 urges the rotating shaft end 102 from the axial direction by the spring force of the disc spring 32, and generates friction with the rotating shaft end 102 due to the vibration displacement of the rotating shaft 101 in the bending direction. Damping vibration. According to this configuration, the contact surface between the rotating shaft end portion 102 and the friction member 30 is formed in conformity with the vibration of the rotating shaft end portion 102, so that the rotating shaft end portion is more reliably compared to the above configuration. The contact between the portion 102 and the friction member 30 can be maintained.
[0038]
FIG. 11 is a side sectional view showing a main part of a fluid device according to a fifth embodiment of the present invention. In the figure, the same components as those of the fluid device are denoted by the same reference numerals, and description thereof will be omitted. In this fluid device, the metal mandrel 40 is fixedly installed substantially coaxially with the rotating shaft 101 by inserting its foot into the rotating shaft end 102 so as not to rotate or rotate. A disc-shaped friction plate 41 is vertically fitted into and fixed to the mandrel 40. The friction plate 41 is slidably sandwiched between a pair of metal disk pads 42 having an annular thin structure in a vertical direction (axial direction). The disc pad 42 is urged against the friction plate 41 by the spring force of the disc spring 43, and the disc spring 43 is held by the holding member 3 and housed in the holding member 3 together with the disc pad 42. The holding member 3 is fixedly installed over the front edge side 110a and the rear edge side 110b of the shroud 110.
[0039]
In the fifth embodiment, the vibration of the rotating shaft 101 is transmitted to the friction plate 41 via the mandrel 40. The disc pad 42 sandwiches the friction plate 41 and generates friction due to the vibration displacement of the friction plate 41 to attenuate the vibration. Here, the disk pad 42 is displaced by following the axial direction due to the elastic deformation of the disc spring 43 with respect to the vibration in the axial direction, urges the friction plate 41 to generate friction, and attenuates the vibration. Further, even in the bending direction and the rotation direction, the friction plate 41 is urged from above and below to generate friction and attenuate the vibration. According to the fifth embodiment, since the disk pad 42 urges the friction plate 41 from above and below, friction is effectively generated, particularly in the bending direction and the rotation direction, and the vibration is attenuated.
[0040]
【The invention's effect】
As described above, according to the fluid device of the present invention, the friction attenuating member is interposed between the rotating shaft of the stationary blade body and the shroud, and the rotating shaft is restrained by the frictional force to rotate. Since various vibration modes of the shaft are attenuated, there is an advantage that vibration of the rotating shaft can be effectively suppressed.
[0041]
Further, according to the fluid device of the present invention, the friction member is held by the holding member provided on the shroud side and comes into contact with the inner wall of the hole when the stationary blade body vibrates, so that the friction member rotates with respect to the shroud. Friction damping of minute vibration at the shaft end. Further, since the hole is formed at the end of the rotation shaft, the hole contacts the friction member on the inner wall with respect to the amplitude in the axial direction, the bending direction, and the rotation direction, and generates friction. This enables friction damping corresponding to various vibration modes.
[0042]
Further, according to the fluid device of the present invention, the friction member comes into contact with the holding member on the shroud side during the vibration of the stationary blade body to generate friction, and frictionally attenuates the minute amplitude of the end of the rotating shaft with respect to the shroud. Further, since the friction member is provided at the end of the rotating shaft and held by the holding member, the friction member comes into contact with the holding member with respect to the amplitude in the axial direction, the bending direction, and the rotation direction, and generates friction. This enables friction damping corresponding to various vibration modes.
[0043]
Further, according to the fluid device of the present invention, since the elastic contact portion of the friction member comes into contact with the inner wall surface of the hole by the elastic force, the friction generated by the vibration is large, which is more than that in the case of simply urging. Large friction damping is possible.
[0044]
Further, according to the fluid device of the present invention, since the plurality of beams are arranged in a cylindrical shape, the beams can elastically contact the inner wall of the hole in a plurality of directions. Thereby, contact can be maintained and vibration can be attenuated corresponding to various vibration modes.
[0045]
Further, according to the fluid device of the present invention, the contact surface between the rotating shaft end and the friction member forms a spherical sliding surface centered on the center of vibration of the rotating shaft end. In particular, friction can be generated by efficiently contacting the end of the rotating shaft against vibration displacement in the bending direction and the rotation direction, and the vibration can be damped.
[0046]
Further, according to the fluid device of the present invention, since the friction member elastically urges the rotating shaft end, the friction member is firmly brought into contact with the rotating shaft end that vibrates and displaces to generate friction, thereby damping vibration. .
[0047]
Further, according to the fluid device of the present invention, since the friction member urges the inner wall of the mortar-shaped hole by the elastic force, the friction member makes contact with the axial displacement of the rotating shaft, the bending direction, and the vibration displacement in the rotating direction. The vibration can be maintained and friction damped.
[0048]
Further, according to the fluid device of the present invention, the mandrel member is provided at the end of the rotating shaft, and the friction member is provided at the mandrel member. The vibration of the rotating shaft can be damped by friction.
[0049]
Further, according to the fluid device of the present invention, since the mandrel member is installed at the end of the rotating shaft and the friction plate is installed on the mandrel member, the friction member is slidably sandwiched and held by the elastic member. Thereby, the vibration of the rotating shaft can be frictionally attenuated through the mandrel member.
[0050]
Further, according to the fluid device of the present invention, since the wear-resistant layer is provided on the contact surface with which the friction member contacts, wear of the surface with which the friction member contacts can be suppressed.
[0051]
Further, according to the fluid device of the present invention, the friction member or the friction plate generates a frictional force in the axial direction of the rotating shaft of the stationary blade body, in the direction perpendicular to the axis, in the bending direction, or in the direction of damping vibration in the rotating direction. Therefore, the vibration of the rotating shaft can be effectively damped by friction.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a main part of a fluid device according to a first embodiment of the present invention.
FIG. 2 is a perspective view showing the friction member shown in FIG.
FIG. 3 is a side sectional view (a) and a plan view (b) showing the friction member shown in FIG. 2;
FIG. 4 is a perspective view showing a modification of the friction member shown in FIG.
FIG. 5 is a perspective view showing a modification of the friction member shown in FIG.
FIG. 6 is a perspective view showing a modified example of the friction member shown in FIG.
FIG. 7 is a side sectional view showing a main part of a fluid device according to a second embodiment of the present invention.
FIG. 8 is a side sectional view showing a main part of a fluid device according to a third embodiment of the present invention.
FIG. 9 is a side sectional view showing a main part of a fluid device according to a fourth embodiment of the present invention.
FIG. 10 is a side sectional view showing a main part of a modification of the fluid device shown in FIG. 1;
FIG. 11 is a side sectional view showing a main part of a fluid device according to a fifth embodiment of the present invention.
FIG. 12 is a perspective view showing a main part of a conventional fluid device.
FIG. 13 is a side sectional view showing a main part of a conventional fluid device.
[Explanation of symbols]
1 hole
3 Holding member
10 Friction members
12 slits
13 Beam
14 pedestal
15 Bottom plate
20 Friction members
30 Friction member
31 Sliding surface
40 mandrel
41 Friction plate
42 disc pat
100 stationary blade body
110 Shroud
111 bearing
120 coil spring

Claims (12)

ガスタービン、圧縮機その他の流体機器において、
流体の流路を規制する静翼体と、
前記静翼体の回転軸を回転可能に支持するシュラウドと、
前記回転軸と前記シュラウドとの間に介在すると共に、摩擦力により前記回転軸の軸方向、軸直方向、曲げ方向もしくは回転方向の振動を減衰させる摩擦減衰手段と、
を含む流体機器。
In gas turbines, compressors and other fluid equipment,
A vane body that regulates a fluid flow path;
A shroud rotatably supporting a rotation axis of the stator blade body,
A friction damping unit that is interposed between the rotating shaft and the shroud and attenuates vibration in the axial direction, the axial direction, the bending direction, or the rotating direction of the rotating shaft by a frictional force,
Fluid equipment including.
ガスタービン、圧縮機その他の流体機器において、
流体の流路を規制する静翼体と、
前記静翼体の回転軸を回転可能に支持するシュラウドと、
前記回転軸の端部に形成した穴に挿入されると共に、前記静翼体の振動時にて前記穴の内壁と接触して摩擦を生ずる摩擦部材と、
前記シュラウド側に設置されると共に、前記摩擦部材を保持する保持部材と、を含む流体機器。
In gas turbines, compressors and other fluid equipment,
A vane body that regulates a fluid flow path;
A shroud rotatably supporting a rotation axis of the stator blade body,
A friction member that is inserted into a hole formed at the end of the rotating shaft and that contacts the inner wall of the hole to generate friction when the stator blade body vibrates;
And a holding member that is installed on the shroud side and holds the friction member.
ガスタービン、圧縮機その他の流体機器において、
流体の流路を規制する静翼体と、
前記静翼体の回転軸を回転可能に支持するシュラウドと、
前記シュラウド側に設置される保持部材と、
前記回転軸端部に設置されると共に、前記静翼体の振動時にて前記保持部材と接触して摩擦を生ずる摩擦部材と、
を含む流体機器。
In gas turbines, compressors and other fluid equipment,
A vane body that regulates a fluid flow path;
A shroud rotatably supporting a rotation axis of the stator blade body,
A holding member installed on the shroud side,
A friction member that is installed at the end of the rotating shaft and that generates friction by contacting the holding member when the stationary blade body vibrates;
Fluid equipment including.
さらに、前記摩擦部材は、
弾性構造を有すると共にその弾性力により前記穴の内壁面に対して接触する弾性接触部を有することを特徴とする請求項1〜3のいずれか一つに記載の流体機器。
Further, the friction member includes:
The fluid device according to any one of claims 1 to 3, wherein the fluid device has an elastic structure and an elastic contact portion that contacts an inner wall surface of the hole by the elastic force.
前記弾性接触部は、筒状に配列される複数の梁部を含む請求項4に記載の流体機器。The fluid device according to claim 4, wherein the elastic contact portion includes a plurality of beam portions arranged in a cylindrical shape. さらに、前記回転軸端部と前記摩擦部材との接触面は、
前記回転軸端部の振動の中心と略同心の球面形状を有する摺動面を形成することを特徴とする請求項1〜5のいずれか一つに記載の流体機器。
Further, a contact surface between the end portion of the rotating shaft and the friction member,
The fluid device according to any one of claims 1 to 5, wherein a sliding surface having a spherical shape substantially concentric with the center of vibration of the end of the rotating shaft is formed.
さらに、前記摩擦部材を前記回転軸端部に弾性力により付勢するバネ部材、ゴム部材その他の弾性付勢手段を有することを特徴とする請求項1〜6のいずれか一つに記載の流体機器。The fluid according to any one of claims 1 to 6, further comprising a spring member, a rubber member, and other elastic urging means for urging the friction member toward the end of the rotating shaft by an elastic force. machine. ガスタービン、圧縮機その他の流体機器において、
流体の流路を規制する静翼体と、
前記静翼体の回転軸を回転可能に支持するシュラウドと、
前記回転軸の端部に形成したすり鉢状の穴に挿入されると共に、前記静翼体の振動時にて前記穴の内壁と接触して摩擦を生ずる摩擦部材と、
前記シュラウド側に設置されると共に、前記摩擦部材を前記回転軸端部に弾性力により付勢するバネ部材、ゴム部材その他の弾性付勢手段と、
を含む流体機器。
In gas turbines, compressors and other fluid equipment,
A vane body that regulates a fluid flow path;
A shroud rotatably supporting a rotation axis of the stator blade body,
A friction member that is inserted into a mortar-shaped hole formed at the end of the rotating shaft and that comes into contact with the inner wall of the hole when the stationary blade body vibrates to generate friction;
A spring member that is installed on the shroud side and urges the friction member toward the rotating shaft end by an elastic force, a rubber member and other elastic urging means,
Fluid equipment including.
ガスタービン、圧縮機その他の流体機器において、
流体の流路を規制する静翼体と、
前記静翼体の回転軸を回転可能に支持するシュラウドと、
前記回転軸の略同軸上であって前記回転軸端部に設ける心棒部材と、
前記心棒部材の外周に設ける摩擦部材と、
前記摩擦部材を摺動保持しつつ当該摩擦部材に接触して摩擦を生ずる摩擦保持部材と、
を含む流体機器。
In gas turbines, compressors and other fluid equipment,
A vane body that regulates a fluid flow path;
A shroud rotatably supporting a rotation axis of the stator blade body,
A mandrel member substantially coaxial with the rotating shaft and provided at an end of the rotating shaft,
A friction member provided on the outer periphery of the mandrel member;
A friction holding member that generates friction by contacting the friction member while slidingly holding the friction member,
Fluid equipment including.
ガスタービン、圧縮機その他の流体機器において、
流体の流路を規制する静翼体と、
前記静翼体の回転軸を回転可能に支持するシュラウドと、
前記回転軸の略同軸上であって前記回転軸端部に設ける心棒部材と、
前記心棒部材を心棒とする円盤状の摩擦板と、
前記摩擦板を弾性部材により摺動可能に挟み込み保持する摩擦保持部材と、
を含む流体機器。
In gas turbines, compressors and other fluid equipment,
A vane body that regulates a fluid flow path;
A shroud rotatably supporting a rotation axis of the stator blade body,
A mandrel member substantially coaxial with the rotating shaft and provided at an end of the rotating shaft,
A disk-shaped friction plate having the mandrel member as a mandrel,
A friction holding member that sandwiches and holds the friction plate slidably by an elastic member,
Fluid equipment including.
さらに、前記摩擦部材が接触する接触面にクロムナイトライドその他の耐摩耗層を有する請求項1〜10のいずれか一つに記載の流体機器。The fluid device according to any one of claims 1 to 10, further comprising a chrome nitride or other wear-resistant layer on a contact surface where the friction member contacts. 前記摩擦部材もしくは前記摩擦板は、前記回転軸の軸方向、軸直方向、曲げ方向もしくは回転方向の振動を減衰させる方向に、摩擦力を生ずる請求項2〜11のいずれか一つに記載の流体機器。The friction member or the friction plate according to any one of claims 2 to 11, wherein the friction member generates a frictional force in an axial direction of the rotating shaft, a direction perpendicular to the axis, a direction in which bending or vibration in the rotating direction is attenuated. Fluid equipment.
JP2002162023A 2002-06-03 2002-06-03 Fluid equipment Expired - Fee Related JP4095834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162023A JP4095834B2 (en) 2002-06-03 2002-06-03 Fluid equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162023A JP4095834B2 (en) 2002-06-03 2002-06-03 Fluid equipment

Publications (2)

Publication Number Publication Date
JP2004011434A true JP2004011434A (en) 2004-01-15
JP4095834B2 JP4095834B2 (en) 2008-06-04

Family

ID=30430918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162023A Expired - Fee Related JP4095834B2 (en) 2002-06-03 2002-06-03 Fluid equipment

Country Status (1)

Country Link
JP (1) JP4095834B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115839A (en) * 2006-11-08 2008-05-22 Ihi Corp Compressor stator blade and compressor rotor blade
KR100933971B1 (en) * 2008-02-26 2009-12-28 주식회사 무진기연 Dampers for buffering turbine casings in power plants
WO2010073783A1 (en) * 2008-12-25 2010-07-01 三菱重工業株式会社 Turbine blade and gas turbine
JP2010151045A (en) * 2008-12-25 2010-07-08 Mitsubishi Heavy Ind Ltd Turbine blade and gas turbine
WO2012057012A1 (en) * 2010-10-28 2012-05-03 三菱重工業株式会社 Bearing method for rotating shaft and device
JP2013253522A (en) * 2012-06-06 2013-12-19 Ihi Corp Blisk
JP2016211550A (en) * 2015-05-05 2016-12-15 ゼネラル・エレクトリック・カンパニイ Turbine component connection device with thermally stress-free fastener
FR3105290A1 (en) * 2019-12-18 2021-06-25 Safran Aircraft Engines Turbomachine assembly
EP4053381A1 (en) * 2021-03-01 2022-09-07 ANSALDO ENERGIA S.p.A. Ring segment device for turbine vanes of a power plant and corresponding gas turbine assembly for power plant
WO2024076859A1 (en) * 2022-10-04 2024-04-11 Ge Infrastructure Technology Llc Vibration damping system for turbomachine nozzle or blade using volute spring vibration damping element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10047765B2 (en) * 2014-12-03 2018-08-14 General Electric Company Bushing for a variable stator vane and method of making same
US11105342B2 (en) 2018-05-15 2021-08-31 General Electric Company Tool and method for removal of variable stator vane bushing

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115839A (en) * 2006-11-08 2008-05-22 Ihi Corp Compressor stator blade and compressor rotor blade
KR100933971B1 (en) * 2008-02-26 2009-12-28 주식회사 무진기연 Dampers for buffering turbine casings in power plants
EP3054169A1 (en) * 2008-12-25 2016-08-10 Mitsubishi Hitachi Power Systems, Ltd. Stator blade assembly and gas turbine
JP2010151045A (en) * 2008-12-25 2010-07-08 Mitsubishi Heavy Ind Ltd Turbine blade and gas turbine
US8708641B2 (en) 2008-12-25 2014-04-29 Mitsubishi Heavy Industries, Ltd. Turbine blade and gas turbine
EP2905475A3 (en) * 2008-12-25 2015-12-16 Mitsubishi Hitachi Power Systems, Ltd. Stator blade assembly and gas turbine
WO2010073783A1 (en) * 2008-12-25 2010-07-01 三菱重工業株式会社 Turbine blade and gas turbine
WO2012057012A1 (en) * 2010-10-28 2012-05-03 三菱重工業株式会社 Bearing method for rotating shaft and device
JP2012092811A (en) * 2010-10-28 2012-05-17 Mitsubishi Heavy Ind Ltd Bearing method for rotating shaft and device
JP2013253522A (en) * 2012-06-06 2013-12-19 Ihi Corp Blisk
JP2016211550A (en) * 2015-05-05 2016-12-15 ゼネラル・エレクトリック・カンパニイ Turbine component connection device with thermally stress-free fastener
US9845692B2 (en) 2015-05-05 2017-12-19 General Electric Company Turbine component connection with thermally stress-free fastener
FR3105290A1 (en) * 2019-12-18 2021-06-25 Safran Aircraft Engines Turbomachine assembly
EP4053381A1 (en) * 2021-03-01 2022-09-07 ANSALDO ENERGIA S.p.A. Ring segment device for turbine vanes of a power plant and corresponding gas turbine assembly for power plant
WO2024076859A1 (en) * 2022-10-04 2024-04-11 Ge Infrastructure Technology Llc Vibration damping system for turbomachine nozzle or blade using volute spring vibration damping element

Also Published As

Publication number Publication date
JP4095834B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP2004011434A (en) Fluid equipment
JP4296292B2 (en) Fluid bearing
CN101932839B (en) Bearing device and rotary machine
JP5370215B2 (en) Tilting pad journal bearing
JP4929223B2 (en) Bearing device and rotating machine
JP7039355B2 (en) Rotating machine
JP2002349548A (en) Hydrodynamic fluid bearing device
JP2006125372A (en) Vibration control structure of rotary machine blade and rotary machine
JPH0772556B2 (en) Turbo molecular pump
JP2016142313A (en) Tilting pad bearing and rotary machine
JP2018091453A (en) Tilting pad, gas bearing device, and compressor
JP2005354895A (en) Spindle motor
JP6678086B2 (en) Rolling bearing and detent mechanism for turbocharger
JP2006144575A (en) Axial flow type rotary fluid machine
JPH0295702A (en) Moving blade damper device
JP2015163766A (en) Blade and rotary machine
JP5922808B1 (en) Bearing device and method for installing bearing device
JP5812973B2 (en) Journal bearing and steam turbine
JP2008045747A6 (en) Fluid machine rotor
JP3294064B2 (en) Thrust bearing device
WO2020066235A1 (en) Rotor assembly and rotating machine
JP2017145935A (en) Bearing device and rotary machine
JPH06307434A (en) Dynamic pressure gas bearing
JP2013057335A (en) Journal bearing
JP7511432B2 (en) Bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4095834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees