JP2004010382A - Surface-coated silicon nitride sintered compact - Google Patents

Surface-coated silicon nitride sintered compact Download PDF

Info

Publication number
JP2004010382A
JP2004010382A JP2002163143A JP2002163143A JP2004010382A JP 2004010382 A JP2004010382 A JP 2004010382A JP 2002163143 A JP2002163143 A JP 2002163143A JP 2002163143 A JP2002163143 A JP 2002163143A JP 2004010382 A JP2004010382 A JP 2004010382A
Authority
JP
Japan
Prior art keywords
silicon nitride
coating layer
rare earth
sintered body
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002163143A
Other languages
Japanese (ja)
Inventor
Takeo Fukutome
福留 武郎
Yutaka Kubo
久保 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002163143A priority Critical patent/JP2004010382A/en
Publication of JP2004010382A publication Critical patent/JP2004010382A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated silicon nitride sintered compact having a coating layer with high adhesive strength and excellent in corrosion resistance. <P>SOLUTION: The surface coated silicon nitride sintered compact is composed of a substrate of a silicon nitride-based sintered compact including RE<SB>2</SB>Si<SB>2</SB>O<SB>7</SB>and/or RE<SB>2</SB>SiO<SB>5</SB>(wherein RE is a rare earth element) as a grain boundary crystalline phase and a coating layer formed on the surface of the substrate. The coating layer is comprised of a crystalline phase of RE<SB>2</SB>Si<SB>2</SB>O<SB>7</SB>and/or RE<SB>2</SB>SiO<SB>5</SB>(wherein RE is a rare earth element). The coating layer contains at least two rare earth elements, one of which is the same as the rare earth element composing the grain boundary crystalline phase of the substrate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、室温から高温までの強度特性に優れると共に破壊靱性、耐酸化性に優れた表面被覆窒化珪素質焼結体に関するものであり、特に、タービンロータ、タービンブレード、ノズル、コンバスタ、スクロール、ノズルサポート、シールリング、スプリングリング、ディフューザ、ダクト、シュラウドなどのガスタービンエンジン用部品に好適に使用される表面被覆窒化珪素質焼結体に関する。
【0002】
【従来技術】
窒化珪素質焼結体は、従来から、強度、硬度、熱的化学的安定性に優れることからエンジニアリングセラミックスとして、特に熱機関構造用材料としてその応用が進められている。このような窒化珪素質焼結体は、一般には窒化珪素粉末に対してY、AlあるいはMgOなどの焼結助剤を添加して焼成することにより製造されており、このような焼結助剤の使用により、高密度で高強度の特性が得られている。このような窒化珪素質焼結体は、例えばエンジン用部品として使用されているが、エンジン用部品の使用条件が高温化するにしたがい、窒化珪素焼結体の高温における強度及び耐酸化特性のさらなる改善が求められている。
【0003】
かかる要求に対して、これまで焼結助剤、粒界相及び焼成条件等の改良や、焼結体表面での酸化保護膜の形成を中心として、その改善が進められてきた。
【0004】
例えば、特開平9−183676号公報では、窒化珪素またはサイアロンを主成分とする焼結体表面を、SiOを主体とするガラス層により被覆することにより、高温における機械的強度と耐酸化性を改善することが提案されている。
【0005】
しかし、特開平9−183676号公報のように、表面にガラス層を形成する方法では、静的な条件下での特性向上の効果はあるが、実際のエンジン中で高温高圧高速ガスに曝されるとSiOの蒸発によりガラス層が急速に消耗してしまい、ガラス層の寿命が短く、該ガラス層が保護膜の用をなさない問題があった。
【0006】
そこで、本出願人は先に窒化珪素質焼結体の表面に、耐酸化特性の優れたダイシリケートやモノシリケートなどの結晶相を有する被覆層を形成することによって被覆層の剥離や亀裂の発生を防止できることを提案した。
【0007】
【発明が解決しようとする課題】
しかしながら、最近のエンジンの多様化及び高性能化によって、ガスの燃焼温度は年々高くなってきており、起動停止時の温度分布による熱応力の発生や、燃焼ガス雰囲気中の微少混入物の衝突によるクラックの発生等による被覆層の剥離が問題となっている。かかる問題を解決するために付着力の強い被覆層が求められている。
【0008】
したがって、本発明は、被覆層の付着力が高く、耐食性に優れた被覆層を有する表面被覆窒化珪素質焼結体を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、被覆層に2種の希土類元素をダイシリケートやモノシリケートの結晶相として存在させるとともに、一方の希土類元素を基材の窒化珪素質焼結体の粒界結晶相であるダイシリケートやモノシリケートに含有させることによって、基材に対する被覆層の付着力を高めることができるという新規知見に基づくものであり、特に、2種の希土類元素からなるダイシリケートやモノシリケートを被覆層に混在させ、一方の希土類元素の結晶相を基材の窒化珪素質焼結体の粒界から被覆層の表面まで略連続的に存在させ、中でも被覆層のみに特定の希土類元素の結晶相を含ませることで高い付着力とともに微小粒子による消耗をも抑制したものである。
【0010】
即ち、本発明の表面被覆窒化珪素質焼結体は、RESi及び/又はRESiO(REは希土類元素)を粒界結晶相として含む窒化珪素質焼結体からなる基材と、該基材表面に形成された被覆層とから構成された表面被覆窒化珪素質焼結体において、該被覆層がRESi及び/又はRESiO(REは希土類元素)の結晶相からなり、且つ該被覆層に少なくとも2種の希土類元素を含むとともに、該2種の希土類元素のうち一方が、前記基材の粒界結晶相を構成する希土類元素と同一であることを特徴とし、特に、前記被覆層が、ASi及び/又はASiOとBSi及び/又はBSiO(A、Bは希土類元素、但しA≠B)とを含むことが好ましい。
【0011】
特に、前記被覆層に含まれる希土類元素のうちの少なくとも1種は前記基材の粒界結晶相に含まれる希土類元素と異なることが好ましい。これにより、微小粒子による消耗を効果的に抑制することができる。
【0012】
また、前記被覆層のREがLu、Yb、Erのうち少なくとも1種であることが好ましい。これによって、高温での被覆層の化学的結合力が十分に高くでき、ガス中の微少飛来物によるクラックの発生や熱応力によるクラックの発生を抑制することができる。
【0013】
さらに、被覆層に含まれる過剰SiO量が5モル%以下であることが好ましい。これにより、被覆層の耐食性をより高めることができる。
【0014】
さらにまた、前記窒化珪素質焼結体の粒界相中のREがLu、Yb、Erのうち少なくとも1種であることが好ましい。これによって、高温での粒界相の融点や軟化点を高くすることができ、基材の高温強度を高くすることができると共に、基材の熱膨張率を小さくできるために被覆層との付着力を高くすることができる。
【0015】
また、前記基材が、窒化珪素を70〜99モル%、希土類元素(RE)を酸化物換算で0.5〜10モル%、及び過剰酸素を、下記式:
SiO/RE
式中、SiOは換算での過剰酸素量を示し、
REは、酸化物換算での希土類元素含有量を示す、
で表されるモル比が2以上であることが好ましい。
【0016】
【発明の実施の形態】
本発明の表面被覆窒化珪素質焼結体は、窒化珪素質焼結体からなる基材の表面に、希土類元素(RE)の結晶相、即ち、下記式
RESi(ダイシリケート)
又は
RESiO(モノシリケート)
で表される化合物の結晶相が形成されていることが重要である。
【0017】
このRESi(ダイシリケート)やRESiO(モノシリケート)から形成されている被覆層は、従来のSiO、ZrO、Al、ムライト、コージェライト、YAGなどの保護膜に比べて、高温酸化性雰囲気でも非常に安定であることから、優れた耐食性が発揮される。また、融点も1600〜1800℃と高いために耐熱性に優れ、高温での寿命が長い。特に高温安定性、耐食性に優れる点で、ダイシリケートを用いることが好ましい。
【0018】
また、本発明では、基材の窒化珪素焼結体にRESi及び/又はRESiO(REは希土類元素)を粒界結晶相として含むとともに、被覆層に含まれる希土類元素が少なくとも2種であって、その一方が基材の粒界結晶相として含まれることが重要である。これにより、同じ希土類元素の基材の結晶粒界相と被覆層は非常に整合性良く連続的に存在するために基材と被覆層の付着力を高めることができる。
【0019】
被覆層の結晶相は、2種類の希土類元素を含む複合酸化物が含まれていても良いが、複合酸化物は1種類と見なし、2種類の希土類元素がそれぞれダイシリケートやモノシリケートからなり、混在していることが必要である。即ち、A、Bを希土類元素とし、A、Bはお互いに異なる元素である場合、ABSi及び/又はABSiO等の複合酸化物ではなく、ASi及び/又はASiOとBSi及び/又はBSiOとが混在していることが好ましい。
【0020】
または、ABSi及びASi、或いはABSi及びBSiOが被覆層にそれぞれ結晶相として存在していれば良く、更に、ABSi及び/又はABSiO等の複合酸化物等の複合酸化物が、被覆層にASi及びBSiOとともに混在していても良い。
【0021】
また、2種以上の結晶のうち、少なくとも1種が基材の粒界結晶相と異なるものにすることによって、膜表面に残留応力を発現せしめ、飛来する微小粒子の衝撃に対するクラックの発生を抑制し、消耗を抑制して寿命を長くする効果を高めることができる。
【0022】
さらに、本発明では、前記被覆層中に含まれる過剰SiO量が5モル%以下、特に好適には3モル%以下、更には1モル%以下、最も好ましくは0.5モル%以下であることが重要である。
【0023】
つまり、本発明によれば、RESi(ダイシリケート)或いはRESiO(モノシリケート)の結晶相自体が非常に優れた耐食性を有することから、被覆層は、優れた耐食性を有する。しかしながら、かかる結晶相の耐食性が良好であっても、この被覆層は多結晶体からなるものであって、その結晶粒界が存在し、この結晶粒界に、このような結晶相に寄与しない不純物的な酸素(過剰酸素)がSiOとして存在する場合、このSiO(即ち、過剰SiO)が水蒸気等と反応して気化し、燃焼ガスで流され、その結果粒界相が抜け落ち、被覆層が破壊されやすくなり、また、空隙となった粒界相を介して窒化珪素質焼結体が腐食されやすくなる。
【0024】
そこで、本発明によれば、この過剰酸素による粒界相の過剰SiO量を前記範囲に低減することにより、かかる粒界相の生成を抑制できる結果、被覆層中の結晶の粒界を経由した酸素あるいは水蒸気の拡散を防止することができる。
【0025】
なお、過剰SiO量の下限値は0であることが最も望ましいが、被覆層全体におけるSiO量がダイシリケートやモノシリケートの化学量論組成よりも少ないと、ダイシリケートやモノシリケート以外にYAMやアパタイトなどの窒素含有系結晶相が析出する場合がある。したがって、より望ましくは、被覆層がダイシリケートのみからなる場合には、被覆層中のSiO/RE比(モル比)が1.9〜2.3にあることが好ましく、被覆層がモノシリケートのみからなる場合には0.9〜1.2であることが望ましく、更に被覆層がダイシリケートとモノシリケートとの混合結晶である場合には、SiO/RE比(モル比)が0.9〜2.3の範囲にあることが好適である。
【0026】
本発明において、上記結晶相の構成成分である希土類元素は、周期律表第3a族元素であり、具体的にはY、Lu、Yb、Er、Dy、Ho、Sm、Tb、Sc、Gd及びTmなどが挙げられる。これらの中でも、Lu、Yb、Erが好適である。
【0027】
これは、Lu、Yb、Erのイオン半径は小さくイオン間の結合力が大きいためダイシリケート相及びモノシリケート相は、いずれも融点が高い。この様な特性を有しているため、Lu、Yb、Erのダイシリケート相及びモノシリケート相は、優れた高温強度、高硬度及び高靭性を提供できるとともに、高温での高い化学的安定性を実現できる。
【0028】
本発明において、前記被覆層を表面に有する基材が、主相である窒化珪素結晶粒子の粒界に、結晶相を有する窒化珪素質焼結体であることが好ましい。
【0029】
即ち、基材である窒化珪素質焼結体の表面に被覆層を設けたとしても、長い期間にわたって被覆層中を酸素が拡散し、窒化珪素質焼結体に到達し、該焼結体が酸化されると、その機械的特性が劣化してしまうことがある。例えば、窒化珪素結晶は二酸化珪素に変化し、機械的特性劣化の原因となる。しかるに、窒化珪素質焼結体における窒化珪素結晶の粒界に結晶相を存在させることにより、窒化珪素結晶を酸化や腐食から保護することができ、例えば、窒化珪素質焼結体の酸化速度を遅くし、上記酸素の焼結体内部への拡散による酸化に起因する機械的特性の低下を効果的に制御し、窒化珪素質焼結体の特性を最大限に引き出すとともに、その寿命を飛躍的に延ばすことができる。
【0030】
また、窒化珪素結晶の粒界に存在する上記結晶相は、例えば希土類元素(RE)、Si(珪素)及びO(酸素)からなる結晶であることが好ましく、さらに好適には、前記被覆層と同様、化学式:RESi或いはRESiOで表されるダイシリケート相もしくはモノシリケート相であることが望ましい。即ち、このような結晶相を窒化珪素結晶粒子の粒界に存在させることにより、窒化珪素質焼結体からなる基材に対する前記被覆層の濡れ性が良好となり、粒界結晶相が基材から被覆層に連続しているので、両者の付着力が強固となり、また、基材と被覆層間の熱膨張差を低減でき、被覆層の剥離を一層効果的に防止できる。
【0031】
本発明において、基材として用いる窒化珪素質焼結体は、主成分である窒化珪素以外に、希土類元素及び過剰酸素を含有することが好適である。
【0032】
具体的に、窒化珪素の含有量は、高温強度を十分に発現させるために、70〜99モル%、特に85〜99モル%の範囲にあることが望ましい。また、この窒化珪素中には、AlやOが固溶して、サイアロン(SIALON)を形成していても良い。
【0033】
希土類元素成分は、焼結助剤に由来するものであり、また上述した粒界結晶相の構成成分である。かかる希土類元素としては、Lu、Yb、Erのうち少なくとも1種であることが高温での高い化学的安定性を得るのために好ましく、また、Yb、Lu及びErは、易焼結性、高強度の点でも有利である。
【0034】
焼結体基材中の希土類元素含有量は、緻密で高温強度と高温クリープに優れた窒化珪素質焼結体を得るために、酸化物換算で0.5〜10モル%が適する。特に1〜7モル%が望ましい。例えば、希土類元素含有量が、上記範囲よりも少ないと、焼結性が低下し、緻密な窒化珪素質焼結体からなる基材をえることが困難となり、また、上記範囲よりも多量に希土類元素を含有する場合には、高温強度及び高温クリープの特性が劣化する傾向がある。
【0035】
また、過剰酸素とは、主としてSiOとして存在するものであり、窒化珪素質焼結体中の全酸素量より、希土類元素の酸化物に使用する酸素量を差し引いた酸素量を意味する。本発明において、この過剰酸素量は、下記式:
SiO/RE
式中SiOは、SiO換算での過剰酸素量(モル)を示し、
REは、酸化物換算での前記希土類元素含有量(モル)を示す、
で表されるモル比が2以上、特に2〜3.5、更には2.1〜2.7の範囲にあることが望ましい。即ち、このような量で過剰酸素を含むことにより、酸化及び腐食に対する耐性の高いダイシリケート相やモノシリケート相を粒界に形成することができる。例えば、過剰酸素量が上記範囲よりも少ないと、このような結晶相を粒界に析出することが難しい。
【0036】
また、本発明において、焼結体基材中には、Mg、Ca、Fe等の金属成分を含むことがあるが、これらの金属は、低融点の酸化物を形成して粒界の結晶化を阻害するとともに高温強度を劣化させるため、酸化物換算量で1モル%以下、特に0.5モル%以下、さらに望ましくは0.1モル%以下に制御することがよい。
【0037】
次に、本発明の表面被覆窒化珪素質焼結体の製造方法について説明する。本発明によれば、基材を製造し、次いで該基材表面に上述した被覆層を形成することにより表面被覆窒化珪素質焼結体が製造される。
【0038】
【実施例】
基材の原料粉末として、下記の窒化珪素粉末、希土類元素酸化物粉末及び酸化珪素粉末を用いた。
窒化珪素粉末:
BET比表面積;9m/g
窒化珪素のα率;99%
酸素量;1.1質量%
Al、Mg、Ca、Feなどの陽イオン金属不純物量;30ppm以下
希土類元素酸化物(RE)粉末:
RE;Lu、Yb、Er、Y
純度;96%
平均粒径;1.5μm
酸化珪素粉末:
純度;99.9%
平均粒径;2μm
上記の窒化珪素粉末89.5モル%と、RE粉末3モル%と、酸化珪素粉末7.5モル%とからなる混合粉末を調合し、バインダー及び溶媒のメタノールを添加し、窒化珪素ボールを用いて50時間回転ミルで混合粉砕し、スラリーを調製した。
【0039】
得られたスラリーを、乾燥後、298MPaの圧力でラバープレス成形し、直径60mm、厚み20mmの形状の成形体を作製した。
【0040】
この成形体を、ガス圧焼成(GPS)により、焼成温度1900℃、焼成時間10時間で焼成し、基材を得た。いずれの基材にも、粒界にRESi(ダイシリケート)の結晶相が析出していた。
【0041】
なお、表1中の基材中のSiO量は、基材を粉砕し、化学分析によって全酸素量を求め、添加した希土類酸化物中の酸素量を除いた酸素量をSiO換算して算出した値である。
【0042】
次に、表1に示す条件で、RE粉末とSiO粉末との混合粉末を、それぞれPVAを溶解した蒸留水に分散させてスラリーを作製し、スプレーによって前記で得られた基材表面に、均一になるように塗布した。また、表2に示すように、複数のRESi粉末及び/又はRESiO粉末を、PVAを溶解した蒸留水に分散させてスラリーを作製し、スプレーによって前記で得られた基材表面に、均一になるように塗布した。
【0043】
なお、試料No.14〜16は、上記混合粉末の代わりに、SiO粉末、ZrO粉末又はAl粉末を使用し、上記と同様にして表面被覆窒化珪素質焼結体を得た。
【0044】
次いで乾燥した後、窒素雰囲気中で、表1、表2に示す条件で熱処理し、表面被覆窒化珪素質焼結体を得た。
【0045】
得られた焼結体について、以下の方法で各種特性等を測定し、その結果を表1、表2に示した。
【0046】
減肉量:
試料の表面被覆焼結体を1200℃、圧力0.4MPa、ガス流速50m/sのガス気流中に100時間曝し、その減肉量を測定した。
【0047】
結晶の同定:
基材の粒界相の結晶及び被覆層の結晶を、X線回折測定により同定した。表1において、モノシリケート相をRS、ダイシリケート相をR2Sで示した。また、併せてSEM観察およびEPMA分析を行い、希土類元素の違いを解析した。
【0048】
耐エロージョン性:
表面被覆窒化珪素質焼結体に平均粒径100μmのガラス粉末を圧力2kg/cmの空気で吹き付け、試験前後の重量変化量から耐エロージョン性を評価した。
【0049】
熱サイクル試験:
1300℃と300℃の熱サイクルをかけ、顕微鏡観察によりクラックが確認される回数により被覆層の密着性を評価した。試験は試験片3本の平均回数で評価した。
【0050】
【表1】

Figure 2004010382
【0051】
【表2】
Figure 2004010382
【0052】
本発明の試料No.1〜12及び17〜29は、耐エロージョン性が10%以下で、熱サイクル試験で100回以上クラックの発生が無く、曝露試験での減肉量が10μm以下であった。
【0053】
一方、被覆層がRESi及び/又はRESiO以外である本発明の範囲外の試料No.13〜16は曝露試験による減肉量が200μm以上であった。
【0054】
また、窒化珪素質焼結体基板の粒界相に含んでいる希土類元素を被覆層に含まない本発明の範囲外の試料No.30〜33は耐エロージョン性が15%以上で熱サイクル試験90回以下でクラックが発生した。
【0055】
【発明の効果】
本発明の表面被覆窒化珪素質焼結体は、RESi及び/又はRESiO(REは希土類元素)を粒界結晶相として含む窒化珪素質焼結体からなる基材と、該基材表面に形成された被覆層とから構成された表面被覆窒化珪素質焼結体において、該被覆層がRESi及び/又はRESiO(REは希土類元素)の結晶相からなり、且つ該被覆層に少なくとも2種類の希土類元素を含むとともに、該2種類の希土類元素のうち一方が、前記基材の粒界結晶相を構成する希土類元素と同一することにより、耐食性が高く、耐エロージョン性も高く長期信頼性の高い表面被覆窒化珪素質焼結体を実現できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface-coated silicon nitride sintered body having excellent strength properties from room temperature to high temperature and excellent fracture toughness and oxidation resistance, and particularly relates to a turbine rotor, a turbine blade, a nozzle, a combustor, a scroll, The present invention relates to a surface-coated silicon nitride sintered body suitably used for a gas turbine engine component such as a nozzle support, a seal ring, a spring ring, a diffuser, a duct, and a shroud.
[0002]
[Prior art]
Conventionally, silicon nitride based sintered bodies have been applied to engineering ceramics, particularly as heat engine structural materials, because of their excellent strength, hardness and thermal chemical stability. Such a silicon nitride-based sintered body is generally manufactured by adding a sintering aid such as Y 2 O 3 , Al 2 O 3, or MgO to silicon nitride powder and firing it. By using such a sintering aid, high density and high strength characteristics are obtained. Such a silicon nitride sintered body is used, for example, as an engine component. However, as the operating conditions of the engine component increase, the silicon nitride sintered body further increases in strength and oxidation resistance at high temperatures. Improvement is required.
[0003]
In response to such demands, improvements have been made with a focus on improvement of sintering aids, grain boundary phases, firing conditions, and the like, and formation of an oxide protective film on the surface of a sintered body.
[0004]
For example, in Japanese Patent Application Laid-Open No. 9-183676, the mechanical strength and oxidation resistance at high temperatures are improved by coating the surface of a sintered body mainly composed of silicon nitride or sialon with a glass layer mainly composed of SiO 2. It is proposed to improve.
[0005]
However, the method of forming a glass layer on the surface as described in JP-A-9-183676 has an effect of improving characteristics under static conditions, but is exposed to a high-temperature, high-pressure, high-speed gas in an actual engine. Then, the glass layer is rapidly consumed due to evaporation of SiO 2 , the life of the glass layer is short, and there is a problem that the glass layer does not use a protective film.
[0006]
Therefore, the present applicant first forms a coating layer having a crystalline phase such as disilicate or monosilicate having excellent oxidation resistance on the surface of the silicon nitride sintered body, thereby causing peeling or cracking of the coating layer. It is suggested that can be prevented.
[0007]
[Problems to be solved by the invention]
However, due to recent diversification and high performance of engines, the combustion temperature of gas has been increasing year by year, and thermal stress is generated due to the temperature distribution at the time of starting and stopping, and collision of minute contaminants in the combustion gas atmosphere. The peeling of the coating layer due to cracks or the like is a problem. In order to solve such a problem, a coating layer having a strong adhesive force is required.
[0008]
Accordingly, an object of the present invention is to provide a surface-coated silicon nitride-based sintered body having a coating layer having high adhesion and excellent corrosion resistance.
[0009]
[Means for Solving the Problems]
In the present invention, two kinds of rare earth elements are present in the coating layer as a crystal phase of disilicate or monosilicate, and one of the rare earth elements is a disilicate or a grain boundary crystal phase of a silicon nitride sintered body as a base material. It is based on a novel finding that the inclusion of a coating layer on a substrate can be enhanced by including it in a monosilicate, and in particular, a disilicate or monosilicate composed of two rare earth elements is mixed in the coating layer. In addition, the crystal phase of one rare earth element should be present almost continuously from the grain boundary of the silicon nitride based sintered body of the base material to the surface of the coating layer, and in particular, only the coating layer should contain the crystal phase of the specific rare earth element. In addition to the high adhesive force, wear due to fine particles is suppressed.
[0010]
That is, the surface-coated silicon nitride-based sintered body of the present invention is composed of a silicon nitride-based sintered body containing RE 2 Si 2 O 7 and / or RE 2 SiO 5 (RE is a rare earth element) as a grain boundary crystal phase. In a surface-coated silicon nitride sintered body composed of a material and a coating layer formed on the surface of the base material, the coating layer is made of RE 2 Si 2 O 7 and / or RE 2 SiO 5 (RE is a rare earth element). ) And the coating layer contains at least two rare earth elements, and one of the two rare earth elements is the same as the rare earth element constituting the grain boundary crystal phase of the base material. In particular, the coating layer is preferably made of A 2 Si 2 O 7 and / or A 2 SiO 5 and B 2 Si 2 O 7 and / or B 2 SiO 5 (A and B are rare earth elements; B).
[0011]
In particular, it is preferable that at least one of the rare earth elements contained in the coating layer is different from the rare earth element contained in the grain boundary crystal phase of the base material. Thereby, the consumption by the fine particles can be effectively suppressed.
[0012]
Preferably, the RE of the coating layer is at least one of Lu, Yb, and Er. Thereby, the chemical bonding force of the coating layer at a high temperature can be sufficiently increased, and the generation of cracks due to minute flying objects in the gas and the generation of cracks due to thermal stress can be suppressed.
[0013]
Further, the amount of excess SiO 2 contained in the coating layer is preferably 5 mol% or less. Thereby, the corrosion resistance of the coating layer can be further improved.
[0014]
Further, it is preferable that RE in the grain boundary phase of the silicon nitride based sintered body is at least one of Lu, Yb, and Er. As a result, the melting point and softening point of the grain boundary phase at a high temperature can be increased, the high-temperature strength of the substrate can be increased, and the coefficient of thermal expansion of the substrate can be reduced. Strength can be increased.
[0015]
Further, the base material contains 70 to 99 mol% of silicon nitride, 0.5 to 10 mol% of a rare earth element (RE) in terms of oxide, and excess oxygen by the following formula:
SiO 2 / RE 2 O 3
In the formula, SiO 2 indicates an excess oxygen amount in conversion,
RE 2 O 3 indicates a rare earth element content in terms of oxide.
Is preferably 2 or more.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The surface-coated silicon nitride-based sintered body of the present invention has a crystal phase of a rare earth element (RE), that is, RE 2 Si 2 O 7 (disilicate), on a surface of a substrate made of the silicon nitride-based sintered body.
Or RE 2 SiO 5 (monosilicate)
It is important that a crystal phase of the compound represented by the following formula is formed.
[0017]
The coating layer formed of RE 2 Si 2 O 7 (disilicate) or RE 2 SiO 5 (monosilicate) is made of conventional SiO 2 , ZrO 2 , Al 2 O 3 , mullite, cordierite, YAG or the like. Compared with the protective film, it is very stable even in a high-temperature oxidizing atmosphere, so that excellent corrosion resistance is exhibited. Further, since the melting point is as high as 1600 to 1800 ° C., the heat resistance is excellent, and the life at a high temperature is long. In particular, it is preferable to use disilicate in terms of excellent high-temperature stability and corrosion resistance.
[0018]
Further, in the present invention, the silicon nitride sintered body of the base material contains RE 2 Si 2 O 7 and / or RE 2 SiO 5 (RE is a rare earth element) as a grain boundary crystal phase and the rare earth element contained in the coating layer. It is important that at least two of these are included, and one of them is included as a grain boundary crystal phase of the base material. Thereby, since the crystal grain boundary phase and the coating layer of the base material of the same rare earth element exist continuously with very high consistency, the adhesion between the base material and the coating layer can be increased.
[0019]
The crystal phase of the coating layer may contain a composite oxide containing two kinds of rare earth elements, but the composite oxide is regarded as one kind, and the two kinds of rare earth elements are each made of disilicate or monosilicate, It must be mixed. That, A, and B and rare earth elements, A, when B is different elements from each other, rather than ABSi 2 O 7 and / or ABSiO composite oxide such as 5, A 2 Si 2 O 7 and / or A 2 It is preferable that SiO 5 and B 2 Si 2 O 7 and / or B 2 SiO 5 are mixed.
[0020]
Alternatively, it is sufficient that ABSi 2 O 7 and A 2 Si 2 O 7 , or ABSi 2 O 7 and B 2 SiO 7 are each present as a crystal phase in the coating layer, and further, AB 2 Si 2 O 7 and / or A composite oxide such as a composite oxide such as AB 2 SiO 5 may be present in the coating layer together with A 2 Si 2 O 7 and B 2 SiO 5 .
[0021]
Further, by making at least one of the two or more crystals different from the grain boundary crystal phase of the base material, a residual stress is developed on the film surface, and the generation of cracks due to the impact of flying fine particles is suppressed. However, the effect of suppressing wear and extending the life can be enhanced.
[0022]
Further, in the present invention, the amount of excess SiO 2 contained in the coating layer is 5 mol% or less, particularly preferably 3 mol% or less, further preferably 1 mol% or less, most preferably 0.5 mol% or less. This is very important.
[0023]
That is, according to the present invention, since the crystal phase of RE 2 Si 2 O 7 (disilicate) or RE 2 SiO 5 (monosilicate) itself has very excellent corrosion resistance, the coating layer has excellent corrosion resistance. Have. However, even if the corrosion resistance of such a crystal phase is good, this coating layer is made of a polycrystalline material, and its crystal grain boundary exists, and does not contribute to the crystal phase at this crystal grain boundary. When impurity oxygen (excess oxygen) exists as SiO 2 , the SiO 2 (that is, excess SiO 2 ) reacts with water vapor or the like to vaporize, and is flown by the combustion gas, and as a result, the grain boundary phase falls off, The coating layer is easily broken, and the silicon nitride-based sintered body is easily corroded via the grain boundary phase that has become a void.
[0024]
Therefore, according to the present invention, by reducing the amount of excess SiO 2 in the grain boundary phase due to the excess oxygen to the above range, the generation of such a grain boundary phase can be suppressed, and as a result, the excess amount of the crystal in the coating layer passes through the grain boundaries. Diffusion of oxygen or water vapor can be prevented.
[0025]
The lower limit of the excess SiO 2 amount is most desirably 0. However, if the SiO 2 amount in the entire coating layer is smaller than the stoichiometric composition of disilicate or monosilicate, YAM other than disilicate or monosilicate may be used. In some cases, a nitrogen-containing crystal phase such as iron or apatite is precipitated. Therefore, more preferably, when the coating layer is composed of only disilicate, the SiO 2 / RE 2 O 3 ratio (molar ratio) in the coating layer is preferably 1.9 to 2.3. Is preferably 0.9 to 1.2 when is composed of only monosilicate, and when the coating layer is a mixed crystal of disilicate and monosilicate, the SiO 2 / RE 2 O 3 ratio ( (Molar ratio) is preferably in the range of 0.9 to 2.3.
[0026]
In the present invention, the rare earth element which is a component of the crystal phase is a Group 3a element of the periodic table, and specifically, Y, Lu, Yb, Er, Dy, Ho, Sm, Tb, Sc, Gd and Tm and the like. Among these, Lu, Yb, and Er are preferred.
[0027]
This is because the ionic radius of Lu, Yb, and Er is small and the bonding force between the ions is large, so that the disilicate phase and the monosilicate phase have high melting points. Because of these properties, the disilicate and monosilicate phases of Lu, Yb, and Er can provide excellent high-temperature strength, high hardness and high toughness, and have high chemical stability at high temperatures. realizable.
[0028]
In the present invention, it is preferable that the substrate having the coating layer on the surface is a silicon nitride sintered body having a crystal phase at a grain boundary of silicon nitride crystal grains as a main phase.
[0029]
That is, even if the coating layer is provided on the surface of the silicon nitride sintered body as the base material, oxygen diffuses in the coating layer for a long period of time, reaches the silicon nitride sintered body, and the sintered body is If oxidized, its mechanical properties may deteriorate. For example, a silicon nitride crystal changes to silicon dioxide, which causes mechanical property deterioration. However, the presence of a crystal phase at the grain boundary of the silicon nitride crystal in the silicon nitride sintered body can protect the silicon nitride crystal from oxidation and corrosion. For example, the oxidation rate of the silicon nitride sintered body can be reduced. It slows down and effectively controls the decrease in mechanical properties due to oxidation due to the diffusion of oxygen into the sintered body, thereby maximizing the properties of the silicon nitride sintered body and dramatically increasing its life. Can be extended.
[0030]
Further, the crystal phase present at the grain boundary of the silicon nitride crystal is preferably a crystal composed of, for example, a rare earth element (RE), Si (silicon), and O (oxygen). Similarly, it is desirable to be a disilicate phase or a monosilicate phase represented by the chemical formula: RE 2 Si 2 O 7 or RE 2 SiO 5 . That is, by providing such a crystal phase at the grain boundaries of silicon nitride crystal grains, the wettability of the coating layer with respect to the substrate made of the silicon nitride-based sintered body is improved, and the grain boundary crystal phase is removed from the substrate. Since it is continuous with the coating layer, the adhesion between the two is strengthened, the difference in thermal expansion between the substrate and the coating layer can be reduced, and peeling of the coating layer can be more effectively prevented.
[0031]
In the present invention, the silicon nitride sintered body used as the base material preferably contains a rare earth element and excess oxygen in addition to silicon nitride as a main component.
[0032]
Specifically, the content of silicon nitride is desirably in the range of 70 to 99 mol%, particularly 85 to 99 mol%, in order to sufficiently exhibit high-temperature strength. Also, Al or O may be dissolved in the silicon nitride to form SIALON.
[0033]
The rare earth element component is derived from the sintering aid and is a component of the above-described grain boundary crystal phase. Such rare earth elements are preferably at least one of Lu, Yb, and Er in order to obtain high chemical stability at a high temperature, and Yb, Lu, and Er are easily sinterable and have a high sintering property. It is also advantageous in terms of strength.
[0034]
The content of the rare earth element in the sintered body base material is preferably 0.5 to 10 mol% in terms of oxide in order to obtain a dense silicon nitride sintered body excellent in high-temperature strength and high-temperature creep. Particularly, 1 to 7 mol% is desirable. For example, if the content of the rare earth element is less than the above range, the sinterability is reduced, and it is difficult to obtain a substrate made of a dense silicon nitride-based sintered body. When the element is contained, the properties of high-temperature strength and high-temperature creep tend to deteriorate.
[0035]
The excess oxygen is mainly present as SiO 2 and means the amount of oxygen obtained by subtracting the amount of oxygen used for the oxide of the rare earth element from the total amount of oxygen in the silicon nitride sintered body. In the present invention, this excess oxygen amount is represented by the following formula:
SiO 2 / RE 2 O 3
In the formula, SiO 2 indicates an excess oxygen amount (mol) in terms of SiO 2 ,
RE 2 O 3 represents the rare earth element content (mol) in terms of oxide.
Is preferably in the range of 2 or more, particularly 2 to 3.5, more preferably 2.1 to 2.7. That is, by including excess oxygen in such an amount, a disilicate phase or a monosilicate phase having high resistance to oxidation and corrosion can be formed at the grain boundaries. For example, if the amount of excess oxygen is less than the above range, it is difficult to precipitate such a crystal phase at the grain boundary.
[0036]
In the present invention, the sintered body substrate may contain metal components such as Mg, Ca, and Fe. However, these metals form oxides having a low melting point and crystallize grain boundaries. Therefore, it is preferable to control the amount to 1 mol% or less, particularly 0.5 mol% or less, more preferably 0.1 mol% or less in terms of oxide in order to inhibit the high temperature strength.
[0037]
Next, a method for producing the surface-coated silicon nitride sintered body of the present invention will be described. According to the present invention, a surface-coated silicon nitride sintered body is manufactured by manufacturing a base material and then forming the above-described coating layer on the surface of the base material.
[0038]
【Example】
The following silicon nitride powder, rare earth element oxide powder and silicon oxide powder were used as raw material powders for the base material.
Silicon nitride powder:
BET specific surface area: 9 m 2 / g
Α rate of silicon nitride; 99%
Oxygen content: 1.1% by mass
Amount of cationic metal impurities such as Al, Mg, Ca, Fe; 30 ppm or less Rare earth element oxide (RE 2 O 3 ) powder:
RE; Lu, Yb, Er, Y
Purity: 96%
Average particle size: 1.5 μm
Silicon oxide powder:
Purity: 99.9%
Average particle size: 2 μm
A mixed powder composed of the above silicon nitride powder (89.5 mol%), RE 2 O 3 powder (3 mol%) and silicon oxide powder (7.5 mol%) was prepared, and a binder and a solvent, methanol, were added. The mixture was pulverized for 50 hours with a rotary mill using a ball to prepare a slurry.
[0039]
After drying the obtained slurry, it was subjected to rubber press molding under a pressure of 298 MPa to produce a molded body having a diameter of 60 mm and a thickness of 20 mm.
[0040]
The compact was fired by gas pressure firing (GPS) at a firing temperature of 1900 ° C. for a firing time of 10 hours to obtain a substrate. A crystal phase of RE 2 Si 2 O 7 (disilicate) was precipitated at the grain boundaries on all the substrates.
[0041]
The amount of SiO 2 in the base material in Table 1 was obtained by pulverizing the base material, obtaining the total oxygen amount by chemical analysis, and converting the oxygen amount excluding the oxygen amount in the added rare earth oxide into SiO 2. This is a calculated value.
[0042]
Next, under the conditions shown in Table 1, a mixed powder of RE 2 O 3 powder and SiO 2 powder was dispersed in distilled water in which PVA was dissolved to prepare a slurry, and the slurry was sprayed to obtain the base material obtained above. It was applied uniformly on the surface. Further, as shown in Table 2, a plurality of RE 2 Si 2 O 7 powders and / or RE 2 SiO 5 powders were dispersed in distilled water in which PVA was dissolved to prepare a slurry, and the slurry was obtained by spraying. It was applied uniformly on the surface of the substrate.
[0043]
The sample No. 14-16, instead of the above mixed powder, SiO 2 powder, using a ZrO 2 powder or Al 2 O 3 powder to obtain the same manner as described above to surface-coated silicon nitride sintered body.
[0044]
Then, after drying, heat treatment was performed in a nitrogen atmosphere under the conditions shown in Tables 1 and 2 to obtain a surface-coated silicon nitride sintered body.
[0045]
Various characteristics and the like were measured for the obtained sintered body by the following methods, and the results are shown in Tables 1 and 2.
[0046]
Thinning amount:
The surface-coated sintered body of the sample was exposed to a gas stream at 1200 ° C., a pressure of 0.4 MPa, and a gas flow rate of 50 m / s for 100 hours, and the amount of reduced wall thickness was measured.
[0047]
Crystal identification:
The crystal of the grain boundary phase of the substrate and the crystal of the coating layer were identified by X-ray diffraction measurement. In Table 1, the monosilicate phase is indicated by RS, and the disilicate phase is indicated by R2S. In addition, SEM observation and EPMA analysis were also performed to analyze differences in rare earth elements.
[0048]
Erosion resistance:
Glass powder having an average particle diameter of 100 μm was sprayed on the surface-coated silicon nitride sintered body with air at a pressure of 2 kg / cm 2 , and the erosion resistance was evaluated from the weight change before and after the test.
[0049]
Heat cycle test:
A thermal cycle of 1300 ° C. and 300 ° C. was applied, and the adhesion of the coating layer was evaluated by the number of times a crack was confirmed by microscopic observation. The test was evaluated by the average number of three test pieces.
[0050]
[Table 1]
Figure 2004010382
[0051]
[Table 2]
Figure 2004010382
[0052]
Sample No. of the present invention In Nos. 1 to 12 and 17 to 29, the erosion resistance was 10% or less, no cracks occurred 100 times or more in the heat cycle test, and the thickness loss in the exposure test was 10 µm or less.
[0053]
On the other hand, Sample No. having a coating layer other than RE 2 Si 2 O 7 and / or RE 2 SiO 5 , which is outside the scope of the present invention. In Nos. 13 to 16, the thinning amount by the exposure test was 200 µm or more.
[0054]
In addition, the sample No. which does not include the rare earth element contained in the grain boundary phase of the silicon nitride based sintered body substrate in the coating layer and is outside the scope of the present invention. In Nos. 30 to 33, erosion resistance was 15% or more, and cracks occurred in 90 or less heat cycle tests.
[0055]
【The invention's effect】
The surface-coated silicon nitride-based sintered body of the present invention includes a base material made of a silicon nitride-based sintered body containing RE 2 Si 2 O 7 and / or RE 2 SiO 5 (RE is a rare earth element) as a grain boundary crystal phase. And a surface-coated silicon nitride sintered body composed of a coating layer formed on the surface of the base material, wherein the coating layer is made of RE 2 Si 2 O 7 and / or RE 2 SiO 5 (RE is a rare earth element). By comprising at least two types of rare earth elements in the coating layer, and one of the two types of rare earth elements is the same as the rare earth element constituting the grain boundary crystal phase of the base material, A surface-coated silicon nitride sintered body having high corrosion resistance, high erosion resistance and high long-term reliability can be realized.

Claims (7)

RESi及び/又はRESiO(REは希土類元素)を粒界結晶相として含む窒化珪素質焼結体からなる基材と、該基材表面に形成された被覆層とから構成された表面被覆窒化珪素質焼結体において、該被覆層がRESi及び/又はRESiO(REは希土類元素)の結晶相からなり、且つ該被覆層に少なくとも2種の希土類元素を含むとともに、該2種の希土類元素のうち一方が、前記基材の粒界結晶相を構成する希土類元素と同一であることを特徴とする表面被覆窒化珪素質焼結体。A base material made of a silicon nitride sintered body containing RE 2 Si 2 O 7 and / or RE 2 SiO 5 (RE is a rare earth element) as a grain boundary crystal phase, and a coating layer formed on the base material surface In the constituted surface-coated silicon nitride sintered body, the coating layer is composed of a crystal phase of RE 2 Si 2 O 7 and / or RE 2 SiO 5 (RE is a rare earth element), and the coating layer has at least two types. A surface-coated silicon nitride-based sintered body, characterized in that: 前記被覆層に含まれる希土類元素のうちの少なくとも1種は前記基材の粒界結晶相に含まれる希土類元素と異なることを特徴とする請求項1記載の表面被覆窒化珪素質焼結体。The surface-coated silicon nitride based sintered body according to claim 1, wherein at least one of the rare earth elements contained in the coating layer is different from the rare earth element contained in the grain boundary crystal phase of the base material. 前記被覆層が、ASi及び/又はASiOとBSi及び/又はBSiO(A、Bは希土類元素、但しA≠B)とを含むことを特徴とする請求項1又は2記載の表面被覆窒化珪素質焼結体。The coating layer contains A 2 Si 2 O 7 and / or A 2 SiO 5 and B 2 Si 2 O 7 and / or B 2 SiO 5 (A and B are rare earth elements, but A ≠ B). The surface-coated silicon nitride-based sintered body according to claim 1 or 2, wherein: 前記被覆層のREがLu、Yb、Erのうち少なくとも1種であることを特徴とする請求項1乃至3のいずれかに表面被覆窒化珪素質焼結体。4. The surface-coated silicon nitride sintered body according to claim 1, wherein RE of the coating layer is at least one of Lu, Yb, and Er. 被覆層に含まれる過剰SiO量が5モル%以下であることを特徴とする請求項1乃至4のいずれかに記載の表面被覆窒化珪素質焼結体。Surface-coated silicon nitride sintered body according to any one of claims 1 to 4, wherein the excess amount of SiO 2 contained in the coating layer is not more than 5 mol%. 前記窒化珪素質焼結体の粒界相中のREがLu、Yb、Erのうち少なくとも1種であることを特徴とする請求項1乃至5のいずれかに記載の表面被覆窒化珪素質焼結体。The surface-coated silicon nitride-based sinter according to any one of claims 1 to 5, wherein RE in the grain boundary phase of the silicon nitride-based sintered body is at least one of Lu, Yb, and Er. body. 前記基材が、窒化珪素を70〜99モル%、希土類元素(RE)を酸化物換算で0.5〜10モル%、及び過剰酸素を、下記式:
SiO/RE
式中、SiOは換算での過剰酸素量を示し、
REは、酸化物換算での希土類元素含有量を示す、
で表されるモル比が2以上であることを特徴とする請求項1乃至6のいずれかに記載の表面被覆窒化珪素質焼結体。
The above-mentioned base material contains 70 to 99 mol% of silicon nitride, 0.5 to 10 mol% of a rare earth element (RE) in terms of oxide, and excess oxygen by the following formula:
SiO 2 / RE 2 O 3
In the formula, SiO 2 indicates an excess oxygen amount in conversion,
RE 2 O 3 represents a rare earth element content in terms of oxide.
7. The surface-coated silicon nitride sintered body according to claim 1, wherein the molar ratio represented by is 2 or more.
JP2002163143A 2002-06-04 2002-06-04 Surface-coated silicon nitride sintered compact Pending JP2004010382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163143A JP2004010382A (en) 2002-06-04 2002-06-04 Surface-coated silicon nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163143A JP2004010382A (en) 2002-06-04 2002-06-04 Surface-coated silicon nitride sintered compact

Publications (1)

Publication Number Publication Date
JP2004010382A true JP2004010382A (en) 2004-01-15

Family

ID=30431694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163143A Pending JP2004010382A (en) 2002-06-04 2002-06-04 Surface-coated silicon nitride sintered compact

Country Status (1)

Country Link
JP (1) JP2004010382A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028002A (en) * 2004-06-18 2006-02-02 Kyocera Corp Corrosion-resistant silicon nitride ceramic
JP2006124226A (en) * 2004-10-28 2006-05-18 Kyocera Corp Ceramic part for corrosion-resistant gas turbine
CN113024232A (en) * 2021-03-17 2021-06-25 中山大学 Light-heavy rare earth mixed high-entropy rare earth silicate compact block and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028002A (en) * 2004-06-18 2006-02-02 Kyocera Corp Corrosion-resistant silicon nitride ceramic
JP4681841B2 (en) * 2004-06-18 2011-05-11 京セラ株式会社 Corrosion resistant silicon nitride ceramics
JP2006124226A (en) * 2004-10-28 2006-05-18 Kyocera Corp Ceramic part for corrosion-resistant gas turbine
JP4681851B2 (en) * 2004-10-28 2011-05-11 京セラ株式会社 Ceramic parts for corrosion resistant gas turbines
CN113024232A (en) * 2021-03-17 2021-06-25 中山大学 Light-heavy rare earth mixed high-entropy rare earth silicate compact block and preparation method thereof
CN113024232B (en) * 2021-03-17 2022-06-21 中山大学 Light-heavy rare earth mixed high-entropy rare earth silicate compact block and preparation method thereof

Similar Documents

Publication Publication Date Title
US8334062B1 (en) Environmental barrier coating
US6645649B2 (en) Surface-coated sintered body of silicon nitride
EP2371987B1 (en) Thermal barrier coating member, method for producing the same, use of the thermal barrier coating material, gas turbine, and sintered body
US6682821B2 (en) Corrosion-resistant ceramics
JP2006193828A (en) Heat-shielding coating material, heat-shielding member, heat-shielding coating member, and method for production of the heat-shielding coating member
JP2016528135A (en) Environmental barrier for heat-resistant substrates containing silicon
JP5552435B2 (en) BSAS powder
EP1312693A2 (en) Thermal barrier coating material, gas turbine parts and gas turbine
JP2003160852A (en) Thermal insulating coating material, manufacturing method therefor, turbine member and gas turbine
Feng et al. Effect of Yb2SiO5 addition on the physical and mechanical properties of sintered mullite ceramic as an environmental barrier coating material
JP5610698B2 (en) Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine
JP2005163185A (en) Gas turbine, thermal barrier coating material, its production method, and turbine member
JP4031244B2 (en) Corrosion resistant ceramics
JP2004010382A (en) Surface-coated silicon nitride sintered compact
JP4090335B2 (en) Corrosion resistant ceramics
JP5320352B2 (en) Thermal barrier coating member and manufacturing method thereof, thermal barrier coating material, gas turbine, and sintered body
JP2007197320A (en) Corrosion-resistant ceramic and its manufacturing method
Li et al. Oxidation resistance and thermal shock behavior of tri-layer Si/Si–Yb2SiO5/Yb2SiO5–SiC environmental barrier coatings at 1300° C
JP2004010381A (en) Surface-coated silicon nitride sintered compact
JP4064640B2 (en) Corrosion-resistant ceramics and method for producing the same
JP4069610B2 (en) Surface-coated silicon nitride sintered body
JP2004149395A (en) Method for producing surface coated silicon nitride sintered compact
JP2001130983A (en) Silicon nitride sintered compact
JP2003226581A (en) Corrosion resistant ceramic and manufacturing method thereof and part for gas turbine
JP5001567B2 (en) Corrosion resistant ceramic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127