JP2004009920A - Impact-absorbing steering device - Google Patents

Impact-absorbing steering device Download PDF

Info

Publication number
JP2004009920A
JP2004009920A JP2002167626A JP2002167626A JP2004009920A JP 2004009920 A JP2004009920 A JP 2004009920A JP 2002167626 A JP2002167626 A JP 2002167626A JP 2002167626 A JP2002167626 A JP 2002167626A JP 2004009920 A JP2004009920 A JP 2004009920A
Authority
JP
Japan
Prior art keywords
tubes
elastic tongue
steering device
shock absorbing
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002167626A
Other languages
Japanese (ja)
Other versions
JP4085702B2 (en
Inventor
Takeshi Niwa
丹羽 健
Tetsuya Murakami
村上 哲也
Hiroaki Shindo
神藤 宏明
Katsutoshi Nishimura
西村 克利
Shuzo Hiragushi
平櫛 周三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2002167626A priority Critical patent/JP4085702B2/en
Publication of JP2004009920A publication Critical patent/JP2004009920A/en
Application granted granted Critical
Publication of JP4085702B2 publication Critical patent/JP4085702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein impact absorbing load varies due to minute relative rotational motion on a pair of tubes under a normal condition in a column contraction type impact-absorbing steering device. <P>SOLUTION: In this impact-absorbing steering device 1, an outer tube 8 and an inner tube 9 of a steering column 4 fitting each other are retained with a designated retention force under the normal condition and are allowed to relatively slide under an impact absorbing condition by a impact absorbing mechanism 21. An elastic tongue piece 37 obliquely extending from a part of a circumference edge 35 of an opening 34 of the outer tube 8 and is engaged with a through hole 32 of the inner tube 9. A side edge 38 of the elastic tongue piece 37 gets into contact with a side edge 41 of the through hole 32 to regulate relative rotational motion of both of the tube 8, 9 under the normal condition. An oblique cam surface 39 of the elastic tongue piece 37 engages with a drive part 42 of the circumference edge part of the through hole 32 under the impact absorbing condition and the elastic tongue piece 37 is elastically deformed and released from the through hole 32 to suppress harmful influence on impact absorbing load. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、自動車の衝突時の衝撃を緩和する衝撃吸収ステアリング装置に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
例えば、衝撃吸収ステアリング装置には、ステアリングコラムを互いに相対移動可能に圧入嵌合される一対のチューブにより構成するものがある。この場合、通常時には、圧入荷重による所定の保持力で両チューブの相対移動を抑制しつつ両チューブを保持する一方、衝突時にはチューブ同士を相対摺動させて、ステアリングコラムを収縮させ、衝撃吸収する。
【0003】
この場合、アウターチューブの内周にリブ状の突起を形成し、突起の先端をインナーチューブの外周に押圧させ、両チューブの当接部同士が互いに当接するタイプがある。
このタイプの衝撃吸収機構を、操舵補助用の電動モータがステアリングコラムに支持されるパワーステアリング装置に適用する場合、通常時に、チューブ同士がモータ反力により微小な相対回動を生じることがある。その結果、直接接触し合う両チューブの部位に異常摩耗や溶着が発生することがある。溶着が発生すると、衝突時の衝撃吸収荷重が大きな初期ピークを示すことがあり、また、異常摩耗が生じると、衝撃吸収荷重が小さくなることがある。その結果、個体ごとの衝撃吸収荷重がばらつき、例えば、所要の大きさを確保できない。
【0004】
また、このような課題は、上述したような電動パワーステアリング装置に限らず存在する。
そこで、本発明の目的は、上述の技術的課題を解決し、通常時のチューブ同士の微小な相対移動を規制でき、衝突時の衝撃吸収荷重のばらつきを抑制できる衝撃吸収ステアリング装置を提供することである。
【0005】
【課題を解決するための手段および発明の効果】
請求項1に記載の発明は、ステアリングシャフトを回転自在に支持するステアリングコラムが、互いに嵌合されるアウターチューブおよびインナーチューブと、両チューブを通常時に所定の保持力で保持し衝突時に両チューブを相対摺動させて衝撃を吸収する衝撃吸収機構とを有する衝撃吸収ステアリング装置において、一方のチューブに設けられる弾性変形可能な規制片と、この規制片に設けられる傾斜状カム面と、他方のチューブに設けられる係合孔と、この係合孔に設けられる駆動部とを備え、通常時には、規制片の側縁が係合孔の側縁に係合することにより、両チューブの相対回転が規制され、衝撃吸収時には、傾斜状カム面と駆動部がチューブの軸方向に相対摺動することにより規制片を弾性変形させて係合孔から離脱させるようにしてあることを特徴とする。
【0006】
この発明によれば、通常時に、両チューブの相対回転を規制するので、例えば、チューブ同士の異常摩耗や溶着の発生を防止できる結果、溶着や異常摩耗を原因とする衝撃吸収荷重のばらつきを抑制することができる。しかも、衝撃吸収時に、規制片と係合孔とが離脱できるので、規制片が衝撃吸収荷重に悪影響を及ぼすことがない。
請求項2に記載の発明は、請求項1において、上記規制片は、アウターチューブの開口の周縁の一部からインナーチューブ側に向けて傾斜状に切り起こされた弾性舌片からなることを特徴とする。この発明によれば、弾性舌片という簡素な構造にて、請求項1の作用効果を達成できる。
【0007】
請求項3に記載の発明は、請求項2において、上記弾性舌片を先細り状に形成してあることを特徴とする。この発明によれば、弾性舌片と係合孔との寸法のばらつきを吸収できて、通常時の弾性舌片と係合孔とを確実に係合でき、両チューブの相対回転を確実に規制することができる。
請求項4に記載の発明は、請求項2または3において、上記係合孔を、弾性舌片の先端側へ向かうほどに末広がり状に形成してあることを特徴とする。この発明によれば、請求項3の作用と同様に、両チューブの相対回転を確実に規制することができる。
【0008】
請求項5に記載の発明は、請求項2から4の何れかにおいて、上記弾性舌片は、衝撃吸収時の係合孔の相対移動する向きに向けて延びることを特徴とする。この発明によれば、衝撃吸収時に、弾性舌片と係合孔の周縁とが互いに突っ張り合わずに、弾性舌片が係合孔から確実に離脱できる。
請求項6に記載の発明は、ステアリングシャフトを回転自在に支持するステアリングコラムが、互いに嵌合されるアウターチューブおよびインナーチューブと、両チューブを互いにかしめる衝撃吸収用のかしめ部とを有する衝撃吸収ステアリング装置において、通常時に両チューブの相対回転を規制し、衝撃吸収時に両チューブの軸方向の相対摺動を許容するように両チューブを互いに係合させる手段を、かしめ部と異なる位置に設けたことを特徴とする。
【0009】
この発明によれば、衝撃吸収用のかしめ部とは別に設けた上記係合させる手段によって、請求項1の作用と同様にして、衝撃吸収荷重のばらつきを抑制でき、衝撃吸収に悪影響を与えることがない。
【0010】
【発明の実施の形態】
本発明の一実施形態の衝撃吸収ステアリング装置(以下、単にステアリング装置ともいう。)を図1を参照して説明する。
ステアリング装置1は、車輪(図示せず)を操向するためにステアリングホイール2の動きを伝達するステアリングシャフト3と、このステアリングシャフト3を内部に通して回転自在に支持するステアリングコラム4とを有している。ステアリングシャフト3の一端にステアリングホイール2が連結される。ステアリングシャフト3の他端には、ピニオン、ラック軸等を含む舵取り機構(図示せず)が連結される。ステアリングホイール2が回されると、その回転がステアリングシャフト3等を介して舵取り機構に伝達され、これにより車輪を操向することができる。
【0011】
ステアリングシャフト3は、軸方向に沿って互いに相対移動可能に且つ一体回転可能に連結されるアッパシャフト6およびロワシャフト7を有する。
ステアリングコラム4は、ステアリングホイール2側に配置されてアッパシャフト6を収容しつつ軸方向に位置決めした状態で回転自在に支持するアウターチューブ8と、ロワシャフト7を収容しつつ軸方向に位置決めした状態で回転自在に支持するインナーチューブ9とを有する。ステアリングコラム4には、インナーチューブ9に固定されるハウジング10と、インナーチューブ9にハウジング10を介して固定されるロワブラケット11と、アウターチューブ8に固定されるアッパブラケット12とが設けられる。なお、ハウジング10を省略した構成も考えられる。両チューブ8,9は、互いに軸方向に相対摺動可能に嵌合される嵌合部22,25を有する。嵌合部22の内周が嵌合部25の外周に嵌まる。
【0012】
ステアリングコラム4は、上述のロワブラケット11、アッパブラケット12等の複数の取付部材を介して車体5に取り付けられる。
また、ステアリング装置1は、コラムアシストタイプの電動パワーステアリング装置として構成され、ステアリングコラム4に設けられる操舵補助ユニットにより、操舵操作に伴い生じる操舵抵抗に見合った操舵補助力を得られるようになっている。すなわち、操舵補助ユニットは、ステアリングシャフト3に設けられて操舵トルクを検知するためのトルクセンサ18と、このトルクセンサ18からの出力信号、車速信号等に基づいて操舵補助力を発生させる電動モータ19と、この電動モータ19の回転軸の回転を減速してステアリングシャフト3に伝達するための減速機20と、減速機20、電動モータ19、トルクセンサ18等を支持する上述のハウジング10とを有している。
【0013】
また、ステアリング装置1は、衝突時にドライバがステアリングホイール2にぶつかるときの衝撃エネルギを吸収するための衝撃吸収機構21を有する。
衝撃吸収機構21は、両チューブ8,9の嵌合部22,25と、両チューブ8,9を互いにかしめる衝撃吸収用のかしめ部としての突起23および当接部26とを有する。突起23は、アウターチューブ8の嵌合部22の内周に形成され、例えば、かしめ等により形成されて径方向の内方に突出する。当接部26は、インナーチューブ9の嵌合部25の外周に設けられ、突起23と押圧状態で当接する円柱面からなる。突起23が当接部26に押圧されて、これにより圧入状態を達成する。
【0014】
衝撃吸収機構21は、圧入状態を利用して両チューブ8,9を衝突前の通常時に所定の保持力で保持し、衝突時に両チューブ8,9を相対摺動できるようにする。衝突時に、保持力を超える衝撃力を受けると、アウターチューブ8は車体5との連結を解除され、一方でインナーチューブ9は車体5に対しての移動を規制され、両チューブ8,9はその軸方向に沿って相対摺動し、衝突時の衝撃が吸収される。なお、衝撃吸収機構としては、嵌合部22,25を円柱面同士で圧入させたもの等、両チューブ8,9を衝突時に相対摺動可能な公知の構造を利用できる。
【0015】
ところで、嵌合部22,25は、通常時に微小な相対回動を生じ、その結果、突起23と当接部26との溶着や、異常摩耗を生じることがある。
そこで、本ステアリング装置1の嵌合部22,25は、図2〜図5に示すように、両チューブ8,9の回り止め用の一対の係合部として、弾性変形可能な規制片としての弾性舌片37と、規制片と係合する係合孔としての貫通孔32とを有している。対をなす係合部は、複数対を設けてもよく、少なくとも単一対が設けられていれば良い。
【0016】
図2〜図5に示すように、弾性舌片37は一方のチューブとしてのアウターチューブ8に設けられる。貫通孔32は他方のチューブとしてのインナーチューブ9に形成される。
これにより、通常時に、規制片としての弾性舌片37の側縁38が係合孔としての貫通孔32の側縁41と当接して係合し、両チューブ8,9の相対回転を規制するので、例えば、チューブ8,9同士の間での異常摩耗や溶着の発生を防止することができる結果、溶着や異常摩耗を原因とする衝撃吸収荷重のばらつきを抑制することができる。しかも、衝撃吸収時に、弾性舌片37のカム面39と貫通孔32の駆動部42とがチューブ8,9の軸方向に相対摺動することにより、弾性舌片37を弾性変形させて、弾性舌片37を貫通孔32から離脱させ、両チューブ8,9の相対摺動を許容するようにしてあるので、弾性舌片37が衝撃吸収荷重に悪影響を及ぼすことがない。
【0017】
弾性舌片37および貫通孔32を、嵌合部22,25に設けることにより、溶着等の不具合が生じる虞のある部位の直近に配置できるので、微小な相対回動を確実に規制できて好ましい。
弾性舌片37は、図3に示すように、アウターチューブ8の開口34の周縁35の一部36から径方向の内方に向けて所定長さで傾斜状に切り起こされている。このような弾性舌片37という簡素な構造にて、悪影響なしに衝撃吸収荷重のばらつきを抑制する効果を達成できる。しかも、弾性舌片37は片持ち状に支持されるので、アウターチューブ8とつながる端縁を固定端として曲げ変形可能とされる結果、衝撃吸収時に弾性変形させ易く、貫通孔32から確実に離脱させることができる。
【0018】
弾性舌片37は、アウターチューブ8と一体に、周縁35の一部36からステアリングホイール2側へ延設される略矩形の板状部材である。弾性舌片37を切り起こされた跡が、開口34となる。弾性舌片37の延設された先端40は、インナーチューブ9の外周よりも径方向の内方に達する。
弾性舌片37には、インナーチューブ9の外周と対向する部位に、傾斜状カム面39が一体に形成される。カム面39は、先端40寄り部分が径方向の内方となるような傾斜とされる。カム面39は、一対の側縁38と、一対の側縁38同士の間に形成される面部とを有している。
【0019】
貫通孔32は、インナーチューブ9の嵌合部25の内外周を貫通して形成され、この貫通孔32を通るチューブ9の径方向から見て、例えば、略長方形形状の矩形とされる。貫通孔32の一対の側縁41は、互いに周方向に対向する。貫通孔32の周縁部の、傾斜状カム面39と対向する部分には、衝突時に弾性舌片37を駆動するための駆動部42が一体に形成されている。
駆動部42は、当接位置33よりも弾性舌片37の根元寄りとなる一対の側縁41の部分と、この一対の側縁41の端部同士を接続しカム面39と対向する貫通孔32の端縁とを有している。
【0020】
衝撃吸収時には、インナーチューブ9がアウターチューブ8に対して移動すると、貫通孔32と弾性舌片37との側縁同士41,38の当接位置33が変遷し(図6(a)参照)、やがて、貫通孔32の端縁と弾性舌片37のカム面39の面部とが当接する(図6(b)参照)。傾斜状カム面39と駆動部42とがチューブ8,9の軸方向に相対摺動することにより、傾斜を利用したカム係合がなされて、弾性舌片37を弾性復元力に抗しつつ弾性曲げ変形させて、貫通孔32から離脱させる(図6(c)参照)。
【0021】
また、衝撃吸収時に弾性舌片37を離脱させるには、通例、小さな弾性復元力に抗すればよく、塑性変形を伴う場合に比べて、必要な力を軽くできる。しかも、傾斜状カム面39と駆動部42とをカム係合させて利用するので、弾性舌片37を離脱させる際に必要なチューブ8,9にかける力を小さくできる。
弾性舌片37は衝撃吸収時の貫通孔32の相対移動する向きに向けて延びるのが好ましい。この場合、衝撃吸収時に、弾性舌片37と貫通孔32の周縁とが互いに突っ張り合う虞がなく、弾性舌片37が貫通孔32から確実に離脱することができる。
【0022】
弾性舌片37は、チューブ8の周方向に沿う弾性舌片37の幅寸法が先端40に近くなるほどに小さくなるようにされ、弾性舌片37の一対の側縁38は、互いに対向しつつ交差する方向に真直に延びる。一方で貫通孔32は略長方形形状とされ、その側縁41はチューブ8の軸方向と略平行とされる(図4参照)。弾性舌片37の一対の側縁38が、これと対向する貫通孔32の周縁部の一対の側縁41と、当接位置33でそれぞれ当接して係合する。
【0023】
このように弾性舌片37を先細り状に形成する場合には、弾性舌片37の弾性変形により傾斜角度を自動的に調節でき、弾性舌片37と貫通孔32との寸法のばらつきを吸収しつつ、側縁38,41同士を確実に当接させることができる。また、ステアリングコラム4を曲げるような力がステアリングコラム4に作用する場合に、弾性舌片37と貫通孔32との、チューブ8,9の径方向のがたつきを抑制できる。なお、このような弾性舌片37を先細り状にすることによる効果は、貫通孔32の形状が略長方形の場合でも、以下の末広がり形状の場合でも得られる。
【0024】
また、貫通孔32を、図7に示すように、弾性舌片37の先端40側へ向かうほどに末広がり状に形成してもよい。貫通孔32の一対の側縁41は、互いに交差する方向に真直に延び、先端40側へ向かうほどに互いに遠ざかる。このように貫通孔32を末広がり状とする場合、弾性舌片37を先細りにするのと同様に、側縁38,41同士を確実に当接させることができる。なお、このような貫通孔32を末広がり状にすることによる効果は、弾性舌片37の形状が略長方形形状の場合でも得られるし、先細り状の場合にも得られる。
【0025】
また、チューブ8の周方向について、貫通孔32および弾性舌片37の寸法を合わせて、貫通孔32および弾性舌片37の形状をともに長方形とする場合も考えられる。
また、弾性舌片37は、一方向に長い断面形状とされ、この長手方向がチューブ8の周方向とされる場合には、弾性舌片37を周方向に高剛性にでき、チューブ8,9同士の相対回転の規制に好ましい。
【0026】
また、第1の実施形態では、通常時に両チューブ8,9の相対回動を規制し、衝撃吸収時に両チューブ8,9の軸方向の相対摺動を許容するように両チューブ8,9を互いに係合させる手段(以下、単に係合させる手段ともいう。)としての回り止め用の一対の係合部、例えば、弾性舌片37および貫通孔32を、チューブ8,9の周方向および軸方向の少なくとも一方について、衝撃吸収機構21のかしめ部と異なる位置に配置し、衝撃吸収機構21を併用してこれと別に設けるようにしている。これにより、衝撃吸収荷重は、衝撃吸収機構21により主に得られ、係合部の影響を受けずに済む。従って、衝撃吸収荷重のばらつきを抑制でき、衝撃吸収に悪影響を与えることがない。
【0027】
なお、カム面39を弾性舌片37と別体で形成しこれに固定してもよい。駆動部42をインナーチューブ9と別体で形成しこれに固定してもよい。上述の係合孔を有底のものにすることも考えられる。
また、上述の作用効果を得るには、上述の規制片をインナーチューブ9に設け、上述の係合孔をアウターチューブ8に設けることも考えられるが、規制片はアウターチューブ8に設けるのが好ましい。この場合、規制片をチューブ8の径方向の外側から貫通孔32に係合させ易い。上述の変形例では、変更された点を主に説明し、同様の点については、同じ符号を付して説明を省略した。また、以下の変形例や実施形態についても同様とする。
【0028】
第2実施形態のステアリング装置102は、図8〜図10に示すように、上述のチューブ8,9同士の回り止め用の一対の係合部として、第1実施形態の弾性舌片37および貫通孔32に代えて、突起53と凹溝54とを有している。
突起53は、アウターチューブ8の内周に、その径方向の内方に突出して形成される。凹溝54は、インナーチューブ9の外周に窪んで軸方向に沿って延びていて、所要の衝撃吸収ストローク量を得ることができる長さとされる。図示した例では、凹溝54は、チューブ8,9の周方向に離間した複数箇所、例えば、3箇所に形成される。各凹溝54に、チューブ8,9の軸方向に離間した複数、例えば、2つの突起53が当接している。
【0029】
通常時には、突起53の側面と凹溝54の側面とが当接して係合することにより、両チューブ8,9の相対回転が規制される。また、凹溝54はチューブ8,9の軸方向に沿って延び、突起53の移動する向きへ開放されるので、衝撃吸収時に、チューブ8,9が軸方向に相対摺動することを許容する。従って、上述のように、悪影響なしに衝撃吸収荷重のばらつきを抑制する効果を達成できる。
また、上述の係合させる手段としての突起53および凹溝54は、チューブ8,9の周方向および軸方向の少なくとも一方について、衝撃吸収機構21のかしめ部と異なる位置に配置される。上述のように、衝撃吸収用のかしめ部と別に設けた係合させる手段によって、衝撃吸収荷重のばらつきを抑制でき、衝撃吸収に悪影響を与えることがない。
【0030】
また、第2実施形態の上述の作用効果を得るには、突起53をインナーチューブ9に設け、凹溝54をアウターチューブ8に設けることも考えられる。
第3実施形態のステアリング装置103は、図11および図12に示すように、上述のチューブ8,9同士の回り止め用の一対の係合部として、第1実施形態の弾性舌片37および貫通孔32に代えて、変形可能な突起63および係合孔としての貫通孔64を有する。係合孔としては有底としてもよい。
【0031】
突起63は、アウターチューブ8の内周に径方向の内方へ突出し、貫通孔64の大きさ、位置に合わせてかしめ等により現合で形成される。通常時、突起63の側面と貫通孔64の側面とが確実に当接して係合し、両チューブ8,9の周方向の相対回動および軸方向の相対摺動を規制する。衝撃吸収時には、突起63およびその周縁部が変形して、突起63が浮き上がるように貫通孔64から離脱し、これにより、両チューブ8,9の相対摺動が許容される。両チューブ8,9が相対移動すると、突起63はインナーチューブ9の外周に沿って摺動する。なお、突起63が離脱する際に、突起63の少なくとも一部が塑性変形したり、削り取られても構わない。このように、第3実施形態においても、上述のように、悪影響なしに衝撃吸収荷重のばらつきを抑制する効果を達成できる。
【0032】
また、上述の係合させる手段としての突起63および貫通孔64は、チューブ8,9の周方向および軸方向の少なくとも一方について、衝撃吸収機構21のかしめ部と異なる位置に配置される。上述のように、衝撃吸収用のかしめ部と別に設けた係合させる手段によって、衝撃吸収荷重のばらつきを抑制でき、衝撃吸収に悪影響を与えることがない。
また、第3実施形態の上述の各作用効果を得るには、突起63をインナーチューブ9に設け、貫通孔64をアウターチューブ8に設けることも考えられるが、突起63は、アウターチューブ8に設けるのが、現合するのに都合がよい。
【0033】
第4実施形態のステアリング装置104は、図13に示すように、第1実施形態の弾性舌片37および貫通孔32に代えて貫通孔73,74を有している。また、貫通孔73と貫通孔74とを貫通する連結部材75が設けられている。連結部材75および貫通孔73,74とが、協働して、チューブ8,9同士の回り止めを達成し、少なくとも一組が設けられていればよい。
連結部材75は、貫通孔73および貫通孔74に圧入され、隙間のない嵌合状態で固定される。連結部材75はピン状の柱状部材である。連結部材75としては、金属製の細線材、合成樹脂により形成される柱状部材等を例示でき、衝突時に破断できるような材料、寸法で形成される。
【0034】
通常時には、連結部材75を介して両チューブ8,9の相対回転を規制する。衝撃吸収時に、連結部材75を破断させて、両チューブ8,9の連結を解除し、両チューブ8,9の相対摺動を許容する。従って、第4実施形態でも、上述のように、悪影響なしに衝撃吸収荷重のばらつきを抑制する効果を達成できる。
また、上述の係合させる手段としての連結部材75および貫通孔73,74は、チューブ8,9の周方向および軸方向の少なくとも一方について、衝撃吸収機構21のかしめ部と異なる位置に配置される。上述のように、衝撃吸収用のかしめ部と別に設けた係合させる手段によって、衝撃吸収荷重のばらつきを抑制でき、衝撃吸収に悪影響を与えることがない。
【0035】
また、第1〜第4の各実施形態において、上述の係合させる手段を、操舵補助用の電動モータ19をステアリングコラム4に支持する電動パワーステアリング装置に適用するのが好ましい。この場合、電動モータ19の反力により両チューブ8,9が相対回転し易い傾向にある。しかし、係合させる手段により、相対回転を確実に規制することができる。従って、例えば、規制するために嵌合部22,25の保持力を大きくせずに済み、また、嵌合部22,25の嵌合長を長くせずに済む。その結果、所要の衝撃吸収ストローク量を確保するのに好ましい。
【0036】
また、第1〜第4の各実施形態で、上述の係合させる手段を、衝撃吸収機構21と兼用することも考えられる。兼用する場合であっても、衝撃吸収荷重全体のなかで、係合させる手段が寄与する割合が、係合させる手段以外の部分が寄与する割合よりも小さくされる場合には、上述の悪影響を抑制できる。
なお、第1〜第4の各実施形態で、上述の係合させる手段を、操舵補助力を得られないマニアルタイプのステアリング装置や、コラムタイプ以外の電動パワーステアリング装置や、電動以外のパワーステアリング装置に適用してもよい。その他、本発明の特許請求の範囲で種々の変更を施すことが可能である。
【図面の簡単な説明】
【図1】本発明の第1実施形態の衝撃吸収ステアリング装置の概略構成の側面図。
【図2】図1に示す衝撃吸収ステアリング装置の両チューブの嵌合部の斜視図。
【図3】図2に示す弾性舌片と貫通孔の縦断面図であり、図4のB−B断面を示す。
【図4】図3に示す弾性舌片と貫通孔のA方向矢視図。
【図5】図3に示す弾性舌片と貫通孔の横断面図であり、図4のC−C断面を示す。
【図6】図2に示す衝撃吸収機構と弾性舌片と貫通孔の模式図であり、衝撃吸収時の両チューブの相対移動に伴う弾性舌片の動作を(a)〜(c)に順に示す。
【図7】弾性舌片と貫通孔の変形例を、図3のA方向から見た状態で示す。
【図8】本発明の第2実施形態の衝撃吸収ステアリング装置の嵌合部の斜視図。
【図9】図8に示す衝撃吸収機構の縦断面図であり、中心線から上方のみ図示した。
【図10】図9に示す衝撃吸収機構の横断面図。
【図11】本発明の第3実施形態の衝撃吸収ステアリング装置の嵌合部の斜視図。
【図12】図11に示す衝撃吸収機構を横断面図。
【図13】本発明の第4実施形態の衝撃吸収ステアリング装置の係合部の横断面図。
【符号の説明】
1 衝撃吸収ステアリング装置
3 ステアリングシャフト
4 ステアリングコラム
5 車体(車体側部材)
8 アウターチューブ(一方のチューブ)
9 インナーチューブ(他方のチューブ)
21 衝撃吸収機構
23 突起(かしめ部)
26 当接部(かしめ部)
32 貫通孔(係合孔、係合させる手段)
34 アウターチューブの開口
35 開口の周縁
36 開口の周縁の一部
37 弾性舌片(規制片、係合させる手段)
38 弾性舌片の側縁
39 傾斜状カム面
41 係合孔の側縁
42 駆動部
53 突起(係合させる手段)
54 凹溝(係合させる手段)
63 突起(係合させる手段)
64 貫通孔(係合させる手段)
73,74 貫通孔(係合させる手段)
75 連結部材(係合させる手段)
S チューブの軸方向(衝撃吸収時に係合孔の相対移動する向き)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shock-absorbing steering device that alleviates a shock at the time of a vehicle collision, for example.
[0002]
2. Description of the Related Art
For example, in some shock absorbing steering devices, a steering column is constituted by a pair of tubes press-fitted so as to be relatively movable with each other. In this case, at normal times, the two tubes are held while suppressing the relative movement of the two tubes with a predetermined holding force due to the press-fitting load, and at the time of a collision, the tubes are relatively slid with each other to shrink the steering column and absorb the shock. .
[0003]
In this case, there is a type in which a rib-like projection is formed on the inner periphery of the outer tube, and the tip of the projection is pressed against the outer periphery of the inner tube, so that the contact portions of both tubes come into contact with each other.
When this type of shock absorbing mechanism is applied to a power steering device in which an electric motor for assisting steering is supported on a steering column, a small relative rotation of the tubes may occur at normal times due to the reaction force of the motor. As a result, abnormal wear or welding may occur at the portions of both tubes that directly contact each other. When welding occurs, the shock absorbing load at the time of collision may show a large initial peak, and when abnormal wear occurs, the shock absorbing load may decrease. As a result, the impact absorption load varies for each individual, for example, a required size cannot be secured.
[0004]
Further, such a problem exists not only in the electric power steering device as described above.
Therefore, an object of the present invention is to solve the above-mentioned technical problems, to provide a shock absorbing steering device capable of restricting a minute relative movement between tubes in a normal state and suppressing a variation in a shock absorbing load at the time of a collision. It is.
[0005]
Means for Solving the Problems and Effects of the Invention
According to the first aspect of the present invention, a steering column that rotatably supports a steering shaft includes an outer tube and an inner tube that are fitted to each other, and holds both tubes with a predetermined holding force in a normal state, and holds both tubes in a collision. In a shock absorbing steering device having a shock absorbing mechanism for absorbing a shock by sliding relatively, an elastically deformable restricting piece provided on one tube, an inclined cam surface provided on this restricting piece, and the other tube And a drive portion provided in the engagement hole, and in a normal state, the relative rotation of both tubes is regulated by the side edge of the restriction piece engaging the side edge of the engagement hole. When absorbing the impact, the inclined cam surface and the drive section slide relative to each other in the axial direction of the tube so that the restricting piece is elastically deformed and detached from the engagement hole. Characterized that you have.
[0006]
According to the present invention, the relative rotation of the two tubes is normally regulated, so that, for example, the occurrence of abnormal wear and welding between the tubes can be prevented, thereby suppressing the variation in the shock absorbing load caused by the welding and abnormal wear. can do. In addition, since the restricting piece and the engaging hole can be separated from each other when the shock is absorbed, the restricting piece does not adversely affect the shock absorbing load.
According to a second aspect of the present invention, in the first aspect, the restricting piece is formed of an elastic tongue piece which is inclined and raised from a part of the periphery of the opening of the outer tube toward the inner tube. And According to this invention, the function and effect of claim 1 can be achieved with a simple structure of the elastic tongue.
[0007]
According to a third aspect of the present invention, in the second aspect, the elastic tongue piece is formed in a tapered shape. ADVANTAGE OF THE INVENTION According to this invention, the dispersion | variation in the dimension of an elastic tongue and an engaging hole can be absorbed, the elastic tongue and the engaging hole in normal time can be reliably engaged, and the relative rotation of both tubes is reliably controlled. can do.
A fourth aspect of the present invention is characterized in that, in the second or third aspect, the engagement hole is formed so as to expand toward the distal end side of the elastic tongue. According to the present invention, the relative rotation of the two tubes can be reliably restricted as in the operation of the third aspect.
[0008]
According to a fifth aspect of the present invention, in any one of the second to fourth aspects, the elastic tongue extends in a direction in which the engaging hole relatively moves at the time of absorbing a shock. According to the present invention, when the impact is absorbed, the elastic tongue can reliably be detached from the engagement hole without the elastic tongue and the peripheral edge of the engagement hole sticking to each other.
According to a sixth aspect of the present invention, a steering column rotatably supporting a steering shaft has an outer tube and an inner tube fitted to each other, and a caulking portion for caulking the two tubes together. In the steering device, a means for restricting the relative rotation of both tubes at normal times and engaging the two tubes with each other so as to allow relative sliding in the axial direction of both tubes at the time of absorbing shock is provided at a position different from the caulking portion. It is characterized by the following.
[0009]
According to the present invention, by the engaging means provided separately from the caulking portion for absorbing the shock, the variation in the shock absorbing load can be suppressed and the shock absorption is adversely affected in the same manner as in the first aspect. There is no.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
A shock absorbing steering device (hereinafter, also simply referred to as a steering device) according to an embodiment of the present invention will be described with reference to FIG.
The steering device 1 has a steering shaft 3 for transmitting a movement of a steering wheel 2 for steering a wheel (not shown), and a steering column 4 for rotatably supporting the steering shaft 3 through the inside thereof. are doing. The steering wheel 2 is connected to one end of the steering shaft 3. A steering mechanism (not shown) including a pinion, a rack shaft, and the like is connected to the other end of the steering shaft 3. When the steering wheel 2 is turned, the rotation is transmitted to the steering mechanism via the steering shaft 3 and the like, whereby the wheels can be steered.
[0011]
The steering shaft 3 has an upper shaft 6 and a lower shaft 7 which are connected to each other along the axial direction so as to be relatively movable and integrally rotatable.
The steering column 4 is arranged on the steering wheel 2 side and accommodates the upper shaft 6 and is axially positioned and rotatably supports the outer tube 8 in a state where it is axially positioned. The steering column 4 accommodates the lower shaft 7 and is axially positioned and accommodates the lower shaft 7. And an inner tube 9 rotatably supported by the inner tube 9. The steering column 4 includes a housing 10 fixed to the inner tube 9, a lower bracket 11 fixed to the inner tube 9 via the housing 10, and an upper bracket 12 fixed to the outer tube 8. Note that a configuration in which the housing 10 is omitted is also conceivable. Both tubes 8 and 9 have fitting portions 22 and 25 fitted to each other so as to be relatively slidable in the axial direction. The inner circumference of the fitting part 22 fits on the outer circumference of the fitting part 25.
[0012]
The steering column 4 is attached to the vehicle body 5 via a plurality of attachment members such as the lower bracket 11 and the upper bracket 12 described above.
Further, the steering device 1 is configured as a column assist type electric power steering device, and a steering assist unit provided in the steering column 4 can obtain a steering assist force corresponding to a steering resistance generated by a steering operation. I have. That is, the steering assist unit includes a torque sensor 18 provided on the steering shaft 3 for detecting a steering torque, and an electric motor 19 for generating a steering assist force based on an output signal from the torque sensor 18, a vehicle speed signal, and the like. And a reduction gear 20 for reducing the rotation of the rotating shaft of the electric motor 19 and transmitting the rotation to the steering shaft 3, and the above-described housing 10 supporting the reduction gear 20, the electric motor 19, the torque sensor 18, and the like. are doing.
[0013]
Further, the steering device 1 has an impact absorbing mechanism 21 for absorbing impact energy when the driver hits the steering wheel 2 at the time of a collision.
The shock absorbing mechanism 21 has fitting portions 22 and 25 between the tubes 8 and 9, and a projection 23 and a contact portion 26 as a shock absorbing caulking portion for caulking the tubes 8 and 9 to each other. The projection 23 is formed on the inner periphery of the fitting portion 22 of the outer tube 8, and is formed by, for example, caulking and protrudes radially inward. The contact portion 26 is provided on the outer periphery of the fitting portion 25 of the inner tube 9 and has a cylindrical surface that comes into contact with the projection 23 in a pressed state. The protrusion 23 is pressed by the contact portion 26, thereby achieving the press-fit state.
[0014]
The shock absorbing mechanism 21 uses the press-fit state to hold the tubes 8 and 9 with a predetermined holding force at a normal time before the collision, so that the tubes 8 and 9 can slide relative to each other during the collision. When an impact force exceeding the holding force is received during a collision, the outer tube 8 is disconnected from the vehicle body 5, while the inner tube 9 is restricted from moving with respect to the vehicle body 5, and both tubes 8, 9 Relative sliding along the axial direction absorbs the impact at the time of collision. In addition, as the shock absorbing mechanism, a known structure in which the two tubes 8 and 9 can slide relative to each other at the time of collision, such as a structure in which the fitting portions 22 and 25 are press-fitted between the cylindrical surfaces, can be used.
[0015]
By the way, the fitting portions 22 and 25 normally generate a slight relative rotation, and as a result, welding between the projection 23 and the contact portion 26 and abnormal wear may occur.
Then, as shown in FIGS. 2 to 5, the fitting portions 22 and 25 of the steering device 1 serve as a pair of engaging portions for preventing rotation of the tubes 8 and 9 as elastically deformable restricting pieces. It has an elastic tongue 37 and a through hole 32 as an engagement hole that engages with the restriction piece. A plurality of pairs of engaging portions may be provided, and at least a single pair may be provided.
[0016]
As shown in FIGS. 2 to 5, the elastic tongue piece 37 is provided on the outer tube 8 as one tube. The through hole 32 is formed in the inner tube 9 as the other tube.
As a result, the side edge 38 of the elastic tongue piece 37 as a regulating piece abuts and engages with the side edge 41 of the through hole 32 as an engaging hole in normal times, thereby regulating the relative rotation of the tubes 8 and 9. Therefore, for example, the occurrence of abnormal wear and welding between the tubes 8 and 9 can be prevented. As a result, it is possible to suppress the variation of the shock absorbing load caused by the welding and abnormal wear. In addition, when the shock is absorbed, the cam surface 39 of the elastic tongue 37 and the driving portion 42 of the through hole 32 slide relative to each other in the axial direction of the tubes 8 and 9, thereby causing the elastic tongue 37 to be elastically deformed. Since the tongue piece 37 is detached from the through hole 32 to allow the two tubes 8 and 9 to slide relative to each other, the elastic tongue piece 37 does not adversely affect the shock absorbing load.
[0017]
By providing the elastic tongue piece 37 and the through hole 32 in the fitting portions 22 and 25, it is possible to dispose the elastic tongue piece in the vicinity of a portion where a problem such as welding may occur. .
As shown in FIG. 3, the elastic tongue 37 is cut and raised at a predetermined length from a part 36 of the peripheral edge 35 of the opening 34 of the outer tube 8 toward the inside in the radial direction. With such a simple structure of the elastic tongue piece 37, it is possible to achieve the effect of suppressing the variation of the shock absorbing load without any adverse effect. In addition, since the elastic tongue piece 37 is supported in a cantilever manner, the elastic tongue piece 37 can be bent and deformed with the end connected to the outer tube 8 as a fixed end. Can be done.
[0018]
The elastic tongue piece 37 is a substantially rectangular plate-like member that extends from a part 36 of the peripheral edge 35 toward the steering wheel 2 integrally with the outer tube 8. A mark formed by cutting the elastic tongue piece 37 becomes the opening 34. The extended end 40 of the elastic tongue 37 extends radially inward from the outer periphery of the inner tube 9.
An inclined cam surface 39 is integrally formed on the elastic tongue piece 37 at a portion facing the outer periphery of the inner tube 9. The cam surface 39 is inclined such that the portion near the tip end 40 is inward in the radial direction. The cam surface 39 has a pair of side edges 38 and a surface formed between the pair of side edges 38.
[0019]
The through hole 32 is formed to penetrate the inner and outer peripheries of the fitting portion 25 of the inner tube 9, and has a substantially rectangular shape, for example, when viewed from the radial direction of the tube 9 passing through the through hole 32. The pair of side edges 41 of the through-hole 32 oppose each other in the circumferential direction. A drive portion 42 for driving the elastic tongue piece 37 at the time of collision is integrally formed with a portion of the peripheral edge of the through hole 32 facing the inclined cam surface 39.
The drive portion 42 is a through-hole that connects the pair of side edges 41 closer to the base of the elastic tongue piece 37 than the contact position 33 and the ends of the pair of side edges 41 and faces the cam surface 39. 32 edges.
[0020]
When the inner tube 9 moves with respect to the outer tube 8 at the time of shock absorption, the contact position 33 between the side edges 41 and 38 of the through hole 32 and the elastic tongue piece 37 changes (see FIG. 6A). Eventually, the edge of the through hole 32 and the surface of the cam surface 39 of the elastic tongue piece 37 come into contact with each other (see FIG. 6B). When the inclined cam surface 39 and the driving portion 42 slide relative to each other in the axial direction of the tubes 8 and 9, cam engagement utilizing the inclination is performed, and the elastic tongue 37 is elastically deformed against the elastic restoring force. The sheet is bent and separated from the through-hole 32 (see FIG. 6C).
[0021]
Further, in order to detach the elastic tongue piece 37 at the time of absorbing a shock, it is usually sufficient to withstand a small elastic restoring force, and a necessary force can be reduced as compared with a case involving plastic deformation. In addition, since the inclined cam surface 39 and the drive portion 42 are used by being cam-engaged, the force applied to the tubes 8 and 9 required for detaching the elastic tongue 37 can be reduced.
The elastic tongue 37 preferably extends in a direction in which the through hole 32 relatively moves when absorbing the impact. In this case, there is no possibility that the elastic tongue piece 37 and the peripheral edge of the through-hole 32 stick to each other at the time of absorbing the impact, and the elastic tongue piece 37 can be securely separated from the through-hole 32.
[0022]
The elastic tongue piece 37 is configured such that the width dimension of the elastic tongue piece 37 along the circumferential direction of the tube 8 becomes smaller as it approaches the distal end 40, and the pair of side edges 38 of the elastic tongue piece 37 intersect while facing each other. It extends straight in the direction you want. On the other hand, the through hole 32 has a substantially rectangular shape, and its side edge 41 is substantially parallel to the axial direction of the tube 8 (see FIG. 4). The pair of side edges 38 of the elastic tongue 37 abut and engage with the pair of side edges 41 of the peripheral portion of the through hole 32 facing the same at the contact position 33.
[0023]
When the elastic tongue 37 is formed in a tapered shape in this manner, the inclination angle can be automatically adjusted by the elastic deformation of the elastic tongue 37, and the dimensional variation between the elastic tongue 37 and the through hole 32 is absorbed. In addition, the side edges 38 and 41 can be reliably brought into contact with each other. In addition, when a force that bends the steering column 4 acts on the steering column 4, it is possible to suppress the rattling of the tubes 8 and 9 between the elastic tongue 37 and the through hole 32 in the radial direction. The effect of making the elastic tongue piece 37 tapered can be obtained even when the shape of the through-hole 32 is substantially rectangular or in the following divergent shape.
[0024]
Further, as shown in FIG. 7, the through hole 32 may be formed so as to expand toward the tip end 40 of the elastic tongue piece 37. The pair of side edges 41 of the through hole 32 extend straight in a direction intersecting with each other, and move away from each other toward the tip end 40 side. When the through-hole 32 has a divergent shape in this manner, the side edges 38 and 41 can be reliably brought into contact with each other, as in the case where the elastic tongue piece 37 is tapered. The effect of making the through hole 32 divergent can be obtained even when the shape of the elastic tongue piece 37 is substantially rectangular or when it is tapered.
[0025]
In addition, in the circumferential direction of the tube 8, the shape of the through hole 32 and the elastic tongue piece 37 may be both rectangular by adjusting the dimensions of the through hole 32 and the elastic tongue piece 37.
The elastic tongue 37 has a cross section that is long in one direction, and when the longitudinal direction is the circumferential direction of the tube 8, the elastic tongue 37 can be made highly rigid in the circumferential direction. This is preferable for regulating the relative rotation between them.
[0026]
Further, in the first embodiment, the relative rotation of the tubes 8, 9 is normally restricted, and the tubes 8, 9 are allowed to slide relative to each other in the axial direction when absorbing shock. A pair of detent engaging portions, such as an elastic tongue piece 37 and a through hole 32, as means for engaging with each other (hereinafter also simply referred to as means for engaging with each other) are provided in the circumferential direction of the tubes 8, 9 and on the shaft. At least one of the directions is arranged at a position different from the caulking portion of the shock absorbing mechanism 21, and the shock absorbing mechanism 21 is used separately from the caulking part. As a result, the shock absorbing load is mainly obtained by the shock absorbing mechanism 21 and does not need to be affected by the engaging portion. Therefore, it is possible to suppress the variation of the shock absorbing load, and it does not adversely affect the shock absorption.
[0027]
Note that the cam surface 39 may be formed separately from the elastic tongue piece 37 and fixed thereto. The drive unit 42 may be formed separately from the inner tube 9 and fixed thereto. It is also conceivable to make the above-mentioned engagement hole a bottomed one.
In order to obtain the above-described effects, it is conceivable to provide the above-described regulating piece in the inner tube 9 and provide the above-described engaging hole in the outer tube 8, but it is preferable to provide the regulating piece in the outer tube 8. . In this case, the restriction piece is easily engaged with the through hole 32 from the outside in the radial direction of the tube 8. In the above-described modification, the changed points are mainly described, and the same points are denoted by the same reference numerals and the description is omitted. The same applies to the following modifications and embodiments.
[0028]
As shown in FIGS. 8 to 10, the steering device 102 according to the second embodiment includes the elastic tongue piece 37 of the first embodiment and a through-hole as a pair of engagement portions for preventing rotation of the tubes 8 and 9. In place of the hole 32, a projection 53 and a groove 54 are provided.
The protrusion 53 is formed on the inner periphery of the outer tube 8 so as to protrude radially inward. The concave groove 54 is depressed on the outer periphery of the inner tube 9 and extends along the axial direction, and has a length capable of obtaining a required shock absorbing stroke amount. In the illustrated example, the concave grooves 54 are formed at a plurality of positions, for example, three positions, which are separated from each other in the circumferential direction of the tubes 8 and 9. A plurality of, for example, two projections 53 spaced apart in the axial direction of the tubes 8 and 9 are in contact with each concave groove 54.
[0029]
At normal times, the side surfaces of the projections 53 and the side surfaces of the concave grooves 54 come into contact with and engage with each other, whereby the relative rotation of the tubes 8 and 9 is regulated. Further, since the concave groove 54 extends along the axial direction of the tubes 8 and 9 and is opened in the direction in which the projection 53 moves, the tubes 8 and 9 are allowed to slide relative to each other in the axial direction when absorbing shock. . Therefore, as described above, it is possible to achieve the effect of suppressing the variation in the impact absorbing load without any adverse effect.
In addition, the protrusion 53 and the concave groove 54 as the above-described engaging means are arranged at positions different from the caulked portion of the shock absorbing mechanism 21 in at least one of the circumferential direction and the axial direction of the tubes 8 and 9. As described above, the engagement means provided separately from the impact absorbing caulking portion can suppress the variation in the impact absorbing load, and does not adversely affect the impact absorption.
[0030]
Further, in order to obtain the above-described operation and effect of the second embodiment, it is conceivable to provide the projection 53 on the inner tube 9 and provide the concave groove 54 on the outer tube 8.
As shown in FIGS. 11 and 12, the steering device 103 according to the third embodiment includes the elastic tongue piece 37 of the first embodiment and a through-hole as a pair of engagement portions for preventing rotation of the tubes 8 and 9 described above. Instead of the hole 32, a deformable protrusion 63 and a through hole 64 as an engagement hole are provided. The engagement hole may have a bottom.
[0031]
The protrusion 63 protrudes radially inward on the inner circumference of the outer tube 8 and is formed by caulking or the like according to the size and position of the through hole 64. Normally, the side surface of the projection 63 and the side surface of the through hole 64 surely abut and engage with each other, thereby restricting the relative rotation of the tubes 8 and 9 in the circumferential direction and the relative sliding in the axial direction. At the time of shock absorption, the projection 63 and its peripheral edge are deformed and detached from the through-hole 64 so that the projection 63 rises, thereby allowing relative sliding between the tubes 8 and 9. When the tubes 8 and 9 move relative to each other, the protrusion 63 slides along the outer periphery of the inner tube 9. When the projection 63 is detached, at least a part of the projection 63 may be plastically deformed or scraped off. Thus, also in the third embodiment, as described above, the effect of suppressing the variation of the shock absorbing load can be achieved without adverse effects.
[0032]
Further, the projection 63 and the through hole 64 as the above-mentioned engaging means are arranged at positions different from the caulked portion of the shock absorbing mechanism 21 in at least one of the circumferential direction and the axial direction of the tubes 8 and 9. As described above, the engagement means provided separately from the impact absorbing caulking portion can suppress the variation in the impact absorbing load, and does not adversely affect the impact absorption.
In addition, in order to obtain the above-described respective effects of the third embodiment, it is conceivable to provide the projection 63 on the inner tube 9 and provide the through hole 64 on the outer tube 8. However, the projection 63 is provided on the outer tube 8. However, it is convenient to integrate.
[0033]
As shown in FIG. 13, the steering device 104 of the fourth embodiment has through holes 73 and 74 instead of the elastic tongue piece 37 and the through hole 32 of the first embodiment. In addition, a connecting member 75 that penetrates through holes 73 and 74 is provided. The connection member 75 and the through holes 73 and 74 cooperate to achieve the rotation prevention of the tubes 8 and 9 and at least one set is provided.
The connecting member 75 is press-fitted into the through holes 73 and 74 and is fixed in a fitted state without any gap. The connecting member 75 is a pin-shaped columnar member. Examples of the connecting member 75 include a thin metal wire, a columnar member formed of a synthetic resin, and the like, and are formed of a material and dimensions that can be broken at the time of collision.
[0034]
Normally, the relative rotation of the tubes 8, 9 is restricted via the connecting member 75. At the time of absorbing the impact, the connecting member 75 is broken to release the connection between the tubes 8 and 9 and allow the tubes 8 and 9 to slide relative to each other. Therefore, also in the fourth embodiment, as described above, the effect of suppressing the variation in the impact absorbing load can be achieved without any adverse effect.
Further, the connecting member 75 and the through holes 73 and 74 as the above-described engaging means are arranged at positions different from the caulked portion of the shock absorbing mechanism 21 in at least one of the circumferential direction and the axial direction of the tubes 8 and 9. . As described above, the engagement means provided separately from the impact absorbing caulking portion can suppress the variation in the impact absorbing load, and does not adversely affect the impact absorption.
[0035]
Further, in each of the first to fourth embodiments, it is preferable that the above-described engagement means is applied to an electric power steering device that supports the steering assist electric motor 19 on the steering column 4. In this case, the two tubes 8 and 9 tend to rotate relatively easily due to the reaction force of the electric motor 19. However, the relative rotation can be reliably restricted by the engagement means. Therefore, for example, it is not necessary to increase the holding force of the fitting portions 22 and 25 for regulation, and it is not necessary to lengthen the fitting length of the fitting portions 22 and 25. As a result, it is preferable to secure a required shock absorbing stroke amount.
[0036]
In each of the first to fourth embodiments, the above-mentioned engagement means may be used also as the shock absorbing mechanism 21. Even in the case where the shock absorbing load is shared, the above-described adverse effect is caused when the ratio of the contribution of the engaging means is made smaller than that of the portion other than the engaging means in the entire shock absorbing load. Can be suppressed.
In each of the first to fourth embodiments, the above-mentioned engaging means is replaced by a manual type steering device which cannot obtain the steering assist force, an electric power steering device other than the column type, or a power steering device other than the electric type. You may apply to an apparatus. In addition, various changes can be made within the scope of the claims of the present invention.
[Brief description of the drawings]
FIG. 1 is a side view of a schematic configuration of a shock absorbing steering device according to a first embodiment of the present invention.
FIG. 2 is a perspective view of a fitting portion of both tubes of the shock absorbing steering device shown in FIG.
3 is a longitudinal sectional view of the elastic tongue piece and the through hole shown in FIG. 2, and shows a BB section in FIG. 4;
FIG. 4 is a view of the elastic tongue piece and the through hole shown in FIG.
5 is a cross-sectional view of the elastic tongue piece and the through hole shown in FIG. 3, and shows a cross section taken along the line CC of FIG. 4;
FIG. 6 is a schematic diagram of the shock absorbing mechanism, the elastic tongue and the through hole shown in FIG. 2, and illustrates the operation of the elastic tongue in accordance with the relative movement of the two tubes during shock absorption in the order of (a) to (c). Show.
FIG. 7 shows a modification of the elastic tongue and the through hole when viewed from the direction A in FIG.
FIG. 8 is a perspective view of a fitting portion of the shock absorbing steering device according to the second embodiment of the present invention.
FIG. 9 is a longitudinal sectional view of the shock absorbing mechanism shown in FIG. 8, showing only an upper portion from a center line.
FIG. 10 is a transverse sectional view of the shock absorbing mechanism shown in FIG. 9;
FIG. 11 is a perspective view of a fitting portion of the shock absorbing steering device according to the third embodiment of the present invention.
FIG. 12 is a cross-sectional view of the shock absorbing mechanism shown in FIG.
FIG. 13 is a cross-sectional view of an engagement portion of the shock absorbing steering device according to the fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Shock absorbing steering device 3 Steering shaft 4 Steering column 5 Body (body side member)
8. Outer tube (one tube)
9 Inner tube (the other tube)
21 Shock absorbing mechanism 23 Projection (caulking part)
26 Abutment part (caulking part)
32 through holes (engaging holes, means for engaging)
34 Opening of outer tube 35 Peripheral edge of opening 36 Part of peripheral edge of opening 37 Elastic tongue piece (restriction piece, means for engaging)
38 Side edge of elastic tongue 39 Slant cam surface 41 Side edge of engagement hole 42 Drive unit 53 Projection (means for engaging)
54 concave groove (means for engaging)
63 Projection (means for engaging)
64 through hole (means for engaging)
73, 74 Through holes (means for engaging)
75 Connecting member (means for engaging)
S Tube axial direction (direction of relative movement of the engagement hole when absorbing shock)

Claims (6)

ステアリングシャフトを回転自在に支持するステアリングコラムが、互いに嵌合されるアウターチューブおよびインナーチューブと、両チューブを通常時に所定の保持力で保持し衝突時に両チューブを相対摺動させて衝撃を吸収する衝撃吸収機構とを有する衝撃吸収ステアリング装置において、
一方のチューブに設けられる弾性変形可能な規制片と、
この規制片に設けられる傾斜状カム面と、
他方のチューブに設けられる係合孔と、
この係合孔に設けられる駆動部とを備え、
通常時には、規制片の側縁が係合孔の側縁に係合することにより、両チューブの相対回転が規制され、衝撃吸収時には、傾斜状カム面と駆動部がチューブの軸方向に相対摺動することにより規制片を弾性変形させて係合孔から離脱させるようにしてあることを特徴とする衝撃吸収ステアリング装置。
A steering column that rotatably supports the steering shaft has an outer tube and an inner tube that are fitted to each other, and holds both tubes with a predetermined holding force in a normal state, and absorbs a shock by causing the two tubes to slide relative to each other in a collision. A shock absorbing steering device having a shock absorbing mechanism;
An elastically deformable regulating piece provided on one of the tubes,
An inclined cam surface provided on the regulating piece;
An engagement hole provided in the other tube,
A drive unit provided in the engagement hole,
Normally, the relative rotation of the two tubes is restricted by engaging the side edge of the restricting piece with the side edge of the engagement hole, and at the time of shock absorption, the inclined cam surface and the drive unit slide relative to each other in the axial direction of the tube. An impact-absorbing steering device characterized in that the restricting piece is elastically deformed by being moved to be disengaged from the engagement hole.
請求項1に記載の衝撃吸収ステアリング装置において、上記規制片は、アウターチューブの開口の周縁の一部からインナーチューブ側に向けて傾斜状に切り起こされた弾性舌片からなることを特徴とする衝撃吸収ステアリング装置。2. The shock absorbing steering device according to claim 1, wherein the restricting piece is formed of an elastic tongue piece which is inclined and raised from a part of the periphery of the opening of the outer tube toward the inner tube. Shock absorbing steering device. 請求項2に記載の衝撃吸収ステアリング装置において、上記弾性舌片を先細り状に形成してあることを特徴とする衝撃吸収ステアリング装置。3. The shock absorbing steering device according to claim 2, wherein the elastic tongue is tapered. 請求項2または3に記載の衝撃吸収ステアリング装置において、上記係合孔を、弾性舌片の先端側へ向かうほどに末広がり状に形成してあることを特徴とする衝撃吸収ステアリング装置。4. The shock absorbing steering device according to claim 2, wherein the engagement hole is formed so as to expand toward the tip end of the elastic tongue. 請求項2から4の何れかに記載の衝撃吸収ステアリング装置において、上記弾性舌片は、衝撃吸収時の係合孔の相対移動する向きに向けて延びることを特徴とする衝撃吸収ステアリング装置。The shock absorbing steering device according to any one of claims 2 to 4, wherein the elastic tongue extends in a direction in which the engagement holes move relative to each other when the shock is absorbed. ステアリングシャフトを回転自在に支持するステアリングコラムが、互いに嵌合されるアウターチューブおよびインナーチューブと、両チューブを互いにかしめる衝撃吸収用のかしめ部とを有する衝撃吸収ステアリング装置において、
通常時に両チューブの相対回転を規制し、衝撃吸収時に両チューブの軸方向の相対摺動を許容するように両チューブを互いに係合させる手段を、かしめ部と異なる位置に設けたことを特徴とする衝撃吸収ステアリング装置。
In a shock absorbing steering apparatus, a steering column rotatably supporting a steering shaft has an outer tube and an inner tube fitted to each other, and a caulking portion for shock absorption for caulking both tubes.
Normally, means for restricting the relative rotation of both tubes and engaging the tubes with each other so as to allow relative sliding of the tubes in the axial direction when absorbing shock is provided at a position different from the caulked portion. Shock absorbing steering device.
JP2002167626A 2002-06-07 2002-06-07 Shock absorbing steering device Expired - Fee Related JP4085702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167626A JP4085702B2 (en) 2002-06-07 2002-06-07 Shock absorbing steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167626A JP4085702B2 (en) 2002-06-07 2002-06-07 Shock absorbing steering device

Publications (2)

Publication Number Publication Date
JP2004009920A true JP2004009920A (en) 2004-01-15
JP4085702B2 JP4085702B2 (en) 2008-05-14

Family

ID=30434823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167626A Expired - Fee Related JP4085702B2 (en) 2002-06-07 2002-06-07 Shock absorbing steering device

Country Status (1)

Country Link
JP (1) JP4085702B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060035867A (en) * 2004-10-21 2006-04-27 주식회사 만도 A shock absorbing structure of steering column for an automobile
JP2010115950A (en) * 2008-11-11 2010-05-27 Nsk Ltd Steering column and electric power steering device using this
KR100986567B1 (en) 2004-08-30 2010-10-07 현대자동차주식회사 Device for preventing steering column from being popped up
JP2011168244A (en) * 2010-02-22 2011-09-01 Nsk Ltd Steering column device and assembling method thereof
JP2013100002A (en) * 2011-11-08 2013-05-23 Fuji Kiko Co Ltd Steering column device
JP2013136385A (en) * 2013-04-12 2013-07-11 Nsk Ltd Steering column and electric power steering device using the same
WO2014119630A1 (en) * 2013-01-30 2014-08-07 日本精工株式会社 Steering column
JP2016112997A (en) * 2014-12-12 2016-06-23 株式会社ジェイテクト Steering device
JP2016117435A (en) * 2014-12-22 2016-06-30 ヒルタ工業株式会社 Steering column device
CN107878551A (en) * 2016-09-29 2018-04-06 长城汽车股份有限公司 Crumple energy-absorbing sleeve pipe, driving-shaft assembly and steering column and its energy-absorbing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986567B1 (en) 2004-08-30 2010-10-07 현대자동차주식회사 Device for preventing steering column from being popped up
KR20060035867A (en) * 2004-10-21 2006-04-27 주식회사 만도 A shock absorbing structure of steering column for an automobile
JP2010115950A (en) * 2008-11-11 2010-05-27 Nsk Ltd Steering column and electric power steering device using this
JP2011168244A (en) * 2010-02-22 2011-09-01 Nsk Ltd Steering column device and assembling method thereof
JP2013100002A (en) * 2011-11-08 2013-05-23 Fuji Kiko Co Ltd Steering column device
WO2014119630A1 (en) * 2013-01-30 2014-08-07 日本精工株式会社 Steering column
CN104245476A (en) * 2013-01-30 2014-12-24 日本精工株式会社 Steering column
US9227651B2 (en) 2013-01-30 2016-01-05 Nsk Ltd. Steering column
JP5850144B2 (en) * 2013-01-30 2016-02-03 日本精工株式会社 Steering column and telescopic steering device
EP2915721A4 (en) * 2013-01-30 2016-11-09 Nsk Ltd Steering column
JP2013136385A (en) * 2013-04-12 2013-07-11 Nsk Ltd Steering column and electric power steering device using the same
JP2016112997A (en) * 2014-12-12 2016-06-23 株式会社ジェイテクト Steering device
JP2016117435A (en) * 2014-12-22 2016-06-30 ヒルタ工業株式会社 Steering column device
CN107878551A (en) * 2016-09-29 2018-04-06 长城汽车股份有限公司 Crumple energy-absorbing sleeve pipe, driving-shaft assembly and steering column and its energy-absorbing method
CN107878551B (en) * 2016-09-29 2020-02-28 长城汽车股份有限公司 Collapse energy-absorbing sleeve, transmission shaft assembly, steering column and energy-absorbing method of collapse energy-absorbing sleeve

Also Published As

Publication number Publication date
JP4085702B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP5528868B2 (en) Steering device
US8657339B2 (en) Steering apparatus
JP2005042913A (en) Worm speed reducer and electric power steering device
JP2003341528A (en) Telescopic structure of steering column
JP2010095006A (en) Electric power steering device
KR20180089691A (en) Reducer of Electric Power Steering Apparatus
EP1884446A1 (en) Steering apparatus equipped with ring type support yoke
JP2004009920A (en) Impact-absorbing steering device
JPWO2004108502A1 (en) Shock absorbing steering column device for vehicles
JP2011038644A (en) Worm reduction gear and electric power steering device
JP2008074218A (en) Steering device
JP2006103391A (en) Electric power steering device
KR101085336B1 (en) Electrical Power Steering Apparatus For Vehicle Equipped with Damping Coupler having Serration
JP2009286387A (en) Device for reducing noise of electric power steering device
JP2002323059A (en) Joint structure and steering assisting device using the same
JP2007203947A (en) Worm reduction gear for electric power steering device, and electric power steering device with the worm reduction gear built therein
JP2010221925A (en) Energy absorption steering column
JP2006205956A (en) Rattling prevention structure for steering column
KR20150028887A (en) Electric power steering apparatus
US9446783B2 (en) Steering apparatus
JP2007239787A (en) Worm gear mechanism and electric power steering device with worm gear mechanism
JP7310166B2 (en) steering column device
JP5800233B2 (en) Electric power steering device
JP5772042B2 (en) Steering device
CN110536825B (en) Steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050525

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Effective date: 20071219

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120229

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20140228

LAPS Cancellation because of no payment of annual fees