JP2004009266A - Hard film coated high speed steel roughing end mill - Google Patents

Hard film coated high speed steel roughing end mill Download PDF

Info

Publication number
JP2004009266A
JP2004009266A JP2002169869A JP2002169869A JP2004009266A JP 2004009266 A JP2004009266 A JP 2004009266A JP 2002169869 A JP2002169869 A JP 2002169869A JP 2002169869 A JP2002169869 A JP 2002169869A JP 2004009266 A JP2004009266 A JP 2004009266A
Authority
JP
Japan
Prior art keywords
end mill
roughing end
speed steel
hard coating
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002169869A
Other languages
Japanese (ja)
Inventor
Takashi Ishikawa
石川 剛史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2002169869A priority Critical patent/JP2004009266A/en
Publication of JP2004009266A publication Critical patent/JP2004009266A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard film coated roughing end mill capable of attaining high speed and long life of rough cutting by a roughing end mill. <P>SOLUTION: In this hard film coated high speed steel roughing end mill, at least one or more layers of a hard film containing elements selected among one or morekinds selected among 4a, 5a and 6a groups of a periodic table and Al and Si, elements selected among one or more kinds of at least N, C and O and a B element are coated. At least one layer of the hard film contains coupling energy of B and N by an X-ray photoelectron spectroscopic analysis and is the hard film in which either one of coupling energy of Ti and O or coupling energy of Cr and O is recognized. V and Co in a base material of the roughing end mill is in the range of 10≤(V+Co)≤20 in wt.%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、金型や機械構造部品に代表される金属材料等の切削加工において、主に粗削り用として用いられるエンドミル(以下、ラフィングエンドミルと呼ぶ。)に関する。
【0002】
【従来の技術】
金型や機械構造部品に代表される金属材料等の粗加工用工具として、外周刃先部に連続して波状に形成された、波状切刃を有するラフィングエンドミルが使用されている。この波状切刃は、波状切刃のない直刃エンドミルと比べ切削加工時の切削応力が分散されるため、工具径に対する切込み量を大きくとることができ、荒削り加工に適する。このようにラフィングエンドミルは、通常の波状切刃を有しない直刃エンドミルによる切削加工よりも大きな衝撃力が刃先に加わると同時に、単位時間あたりの切屑排出量が多くなり、切屑が排出される波状切刃近傍の逃げ面側及びすくい面側は極めて高温にさらされる。そこで、ラフィングエンドミルの波状切刃近傍の工具摩耗を抑制するために、皮膜硬度がHV2000以上のTiN、TiCN等の硬質皮膜を被覆することも行なわれている。更に、例えば、特許第2576400号公報に代表される従来のTiNよりも皮膜硬度並びに耐酸化性の改善がなされたTiAlNを被覆したラフィングエンドミル等も提案されている。しかしながら、近年の切削加工の分野では、粗切削加工の長寿命化並びにコスト低減のため、高能率化を目的とした高速加工及び被加工物の高硬度化等が求められており、これらTiCN皮膜やTiAlN皮膜を被覆したラフィングエンドミルでは、これらの要求に対して満足される切削寿命は得られてはいない。
【0003】
【発明が解決しようとする課題】
本発明者は、金属の粗加工におけるラフィングエンドミルの波状切刃近傍の逃げ面及びすくい面の損傷状態を注意深く解析した結果、工具逃げ面側では硬質皮膜内に酸素が拡散しており、皮膜最表面にTiとOが結合した強度の低い酸化物を形成し、この強度の低い酸化物を起点とした硬質皮膜の脱落が繰り返されている事実を突き止めた。また、切屑の排出部となる工具すくい面側では被加工物である鉄と酸素が皮膜内部に拡散しており、この鉄と酸素が硬質皮膜の酸化を助長し、摩耗が進行していた。以上のように、波状切刃先端近傍では著しく温度が上昇し、硬質皮膜の酸化による摩耗進行と同時に被覆母材の軟化を伴い、その結果として工具切刃の欠損もしくはチッピングが発生していることが明らかとなった。従って、ラフィングエンドミルにおける切削加工の高能率化においては、波状切刃表面に被覆する硬質皮膜が高温環境下でより高い硬度を維持し、硬質皮膜が高温硬度を有し、また高温環境下で優れた耐酸化性を有し、切削過程で被加工物から硬質皮膜内部へ拡散する鉄に対して、親和性の低い硬質皮膜を被覆することによって切削温度上昇を抑制させる必要がある。また、工具母材としても高温環境下において母材の軟化を抑制する耐熱性と、これらの硬質皮膜との密着性を維持するために適切な母材強度を必要とすると考えた。
【0004】
本発明はこうした事情に鑑み、ラフィングエンドミルの波状切刃部表面に被覆する硬質皮膜の高温硬度、耐酸化性の改善並びに被加工物から切削過程で硬質皮膜内部に拡散する鉄に対して、親和性の低い硬質皮膜を被覆し、切削温度上昇を抑制させるとともに、ラフィングエンドミル母材の耐熱性と硬質皮膜との密着性を維持するための母材強度を更に改善することにより、ラフィングエンドミルによる粗切削加工の高速化並びに長寿命化を達成することのできる硬質皮膜被覆ラフィングエンドミルの構成を提供することを課題とする。
【0005】
【課題を解決するための手段】
これら課題を達成するための本発明は、周期律表の4a、5a、6a族の元素及びAl、Siから選ばれる1種以上から選択された元素と、少なくともN、C、Oのうち1種以上より選択された元素とB元素を含む硬質皮膜を少なくとも1層以上被覆した硬質皮膜被覆高速度鋼製ラフィングエンドミルにおいて、該硬質皮膜の少なくとも1層は、X線光電子分光分析によりBとNの結合エネルギーを含み、TiとOの結合エネルギーもしくはCrとOの結合エネルギーのどちらかが認知される硬質皮膜であり、該ラフィングエンドミルの母材中のV及びCoが、重量%で10≦(V+Co)≦20の範囲であることを特徴とする硬質皮膜被覆高速度鋼製ラフィングエンドミルである。
【0006】
【発明の実施の形態】
ラフィングエンドミルによる粗切削加工の高速化並びに長寿命化を達成する為には、上述した通りラフィングエンドミル波状切刃表面に被覆する硬質皮膜の高温硬度、耐酸化性の改善並びに被加工物から切削過程で硬質皮膜内部に拡散する鉄に対して親和性の低い硬質皮膜を被覆し、切削温度上昇を抑制させる必要がある。またこれら硬質皮膜の改善と同時にラフィングエンドミル母材の耐熱性と高硬度からなる硬質皮膜と高い密着性を有する母材強度を維持することが重要である。その手段として、高速度鋼製ラフィングエンドミルの母材中に含まれるV及びCoが、重量%で10≦V+Co≦20の範囲にすることが極めて有効である。上記該硬質皮膜は、高温環境下における皮膜硬度並びに耐酸化性に優れ、また被加工物中の鉄に対して親和性が低く、潤滑作用を併せ持っているため、切削温度上昇を抑制する作用を有する。これは該硬質皮膜内にBNとして存在することにより、高温環境下で該硬質皮膜最表面のBN結合がBとOの結合に変わり、緻密で強度の高いB酸化物を硬質皮膜最表面に形成し、この緻密で強度の高いB酸化物がその後の酸化防止層として作用する。また同時に、緻密で強度の高いB酸化物は動的な酸化環境下においても、該硬質皮膜と剥離し難く耐酸化性に優れる。更に、硬質皮膜の高温環境下における軟化は、酸素の拡散に起因するため、耐酸化性に著しく優れる本発明皮膜は高温硬度に関しても著しく改善された。更に、硬質皮膜内にBNとして存在する場合の利点として、鉄に対して極めて親和性が低いことである。このことにより、被加工物である鉄に対して優れた摩擦特性を示し、切削温度を抑制する作用も有する。更に、硬質皮膜の高硬度化に対しても、硬質皮膜内にBNとして存在する場合、硬質皮膜格子内の内部応力を高め、硬質皮膜を著しく高硬度化させる。しかしながら、高硬度化されると同時に、硬質皮膜内に残留する圧縮応力も高くなってしまうため、この残留圧縮応力に耐えうる強度を有する母材とすることが必要となる。そこで、母材中に含まれるV及びCoを、重量%で10≦V+Co≦20の範囲に限定する必要がある。この範囲であれば、上記硬質皮膜内に発生する残留圧縮応力に対して、母材内部で緩和することが可能であり密着性に優れ、上記該硬質皮膜の優れた耐酸化性と高硬度である特性を充分に発揮することができる。また、母材中のVとCoが上記範囲を満足する場合、高速度鋼中のマトリックスの耐熱強度も優れる。これらの構成により、ラフィングエンドミルによる粗切削加工の高速化並びに長寿命化を達成することが可能となる。
【0007】
該硬質皮膜被覆高速度鋼製ラフィングエンドミルの母材硬さはHRC66以上、HRC71未満であり、より好ましい硬質皮膜としては、該硬質皮膜内に最小結晶粒径が0.5nm以上、50nm以下である結晶質相と、アモルファス相を含み、更に該硬質皮膜はX線回折における回折強度が(200)面で最大ピークを示し、その(200)面の回折線が2θの半価幅で1.5度以上であることとする。更に好ましくは、該硬質皮膜の少なくとも1層が、B元素と金属元素としてTiもしくはCr、及びTiとCrを成分とする硬質皮膜であり、該硬質皮膜と、金属元素として少なくともAlとTiを含み、非金属元素として少なくともNを含む硬質皮膜が2層以上積層されることがより好ましい。
【0008】
このような構成を採用することで、ラフィングエンドミルの波状切刃表面に被覆する硬質皮膜が高温環境下で、より高い硬度を維持することが可能となり、また優れた耐酸化性を有するとともに、切削過程で被加工物から硬質皮膜内部に拡散する鉄に対して、親和性の低い硬質皮膜を採用することにより、切削温度上昇を抑制し、更にラフィングエンドミル母材の耐熱性と硬質皮膜との密着強度を更に改善することにより、ラフィングエンドミルによる粗切削加工の高速化並びに長寿命化が達成され、従来技術の課題を解決するに至った。
【0009】
本発明に用いる高速度鋼は、母材中に含まれるV及びCoが、重量%で10≦V+Co≦20の範囲である必要があり、10≦V+Co≦17の範囲であることが更に好ましい。母材中のV及びCoは高速度鋼の硬度及び耐熱強度を決定する添加元素であるが、10重量%未満の場合は、上記硬質皮膜内に発生する残留圧縮応力に対して母材強度が十分ではなく、工具寿命は不安定である。これは、硬質皮膜内に発生する残留圧縮応力により、皮膜剥離が発生する場合があるためである。一方、17重量%を越える場合は母材が脆くなる傾向となり、20重量%を越える場合は、母材が脆くなり過ぎてしまい波状切刃の山部にチッピングや欠けが発生し、短寿命を招いた。以上より、本発明である該硬質皮膜の該ラフィングエンドミル母材への密着強度に及ぼす影響を考慮した結果、本発明者は高速度鋼中のVとCoの含有量を上記範囲内に決定した。また、該硬質皮膜中にBとNの結合が確認されない場合、上述したように皮膜の高温硬度、耐酸化性並びに潤滑特性ともに十分ではなく、課題を解決するには至らなかった。また、BとNの結合エネルギーは認められるが、TiとOの結合エネルギーとCrとOの結合エネルギーの何れも認められない場合は、潤滑特性が十分ではなく、切削温度を抑制するには至らなかった。
【0010】
本発明のラフィングエンドミルの母材は、HRC66以上、HRC71未満であることが好ましい。母材がHRC66未満となる場合、過酷な切削環境下において波状切刃の山部が逃げ面側へ塑性変形を伴った摩耗進行も確認され、刃先強度が十分ではなく好ましくない。また、HRC71を超える場合は、波状切刃の山部がチッピングや欠けを生じる場合があり、好ましくない。本発明の硬質皮膜は、該硬質皮膜内に最小結晶粒径が0.5nm以上、50nm以下である結晶質相と、アモルファス相を含むことが望ましい。硬質皮膜内の最小結晶粒径が0.5nm以上、50nm以下となる場合、皮膜硬度が高く且つ高温硬度も著しく改善され、更に耐摩耗性に優れ好ましい。また、同時にアモルファス相を含む場合は、結晶と結晶の界面のような明瞭な結晶粒界がない為、結晶粒界を介して進行する酸素の拡散抑制に効果的であり、より好ましい。本発明の硬質皮膜は、(200)面に強く配向した場合が最も皮膜内の格子欠陥が少なく、高密度であり耐酸化性に優れることより(200)面に最大のピーク強度をもつことが好ましい。更にその半価幅が1.5度以上の広がりを有する場合、皮膜硬度並びに耐酸化性改善への寄与が大きく好ましい。
【0011】
本発明の硬質皮膜の少なくとも1層は、B元素と金属元素としてTiもしくはCr、及びTiとCrを成分とする硬質皮膜であることが更に好ましい。B元素と、金属元素として、TiもしくはCr、及びTiとCr、より構成される場合、皮膜硬度、耐酸化性並びに摺動特性のバランスが最も優れ、更に好ましい。該硬質皮膜は該被覆母材との優れた密着性、皮膜硬度及び耐酸化性を有すものの、母材との密着性を更に改善し、切削寿命を安定化させるために、該硬質皮膜と、金属元素として少なくともAlとTiを含み、非金属元素として少なくともNを含む硬質皮膜と多層にすることも可能である。更に、硬質皮膜の母材への密着性を改善し、切削寿命を延ばすために、被覆前後に波状切刃近傍のバリやカエリ、及び被覆中に付着したドロップレット等の欠陥をショットブラスト等の機械的処理により除去することも好ましい。以下、本発明を実施例に基づいて説明するが、下記実施例は本発明を限定するものではなく、本発明主旨に基づき適宜変更を施すことは何れも本発明の技術的範囲に含まれるものである。
【0012】
【実施例】
本発明の硬質皮膜被覆高速度鋼製ラフィングエンドミルは、その被覆方法については特に限定されるものではないが、被覆母材への熱影響、工具の疲労強度、皮膜の密着性等を考慮し、比較的低温で被覆でき被覆した皮膜に適度な圧縮応力が残留するアーク放電方式イオンプレーティング法による被覆処理を行なった。アークイオンプレーティング装置を用い、金属成分の蒸発源である各種合金製ターゲット並びに反応ガスであるNガス、CHガス、Ar+O混合ガス、Bガスから目的の皮膜が得られるものを選択し,被覆温度400℃,反応ガス圧力3.0Paの条件下にて、被覆母材である各種高速度工具鋼製の外径12mmの4刃ラフィングエンドミルにバイアス電圧−150Vを印加して、全皮膜の厚みが4μmとなるように被覆処理を行った。硬質皮膜中へのB添加に関しては、金属ターゲット内に予め所定量添加した合金ターゲットをいる場合、或いは被覆中にB含有気体を真空容器内に導入する場合においても可能である。更に必要に応じて予め、アークイオンプレーティング法によりTiAlN皮膜を被覆した後、該B含有硬質皮膜を被覆した。
【0013】
【表1】

Figure 2004009266
【0014】
表1において、組成の定量分析にはエネルギー分散型X線分光法、オージェ光電子分光法及び電子線エネルギーロス分光法により総合的に決定した。またX線光電子分光分析によるBとNの結合エネルギー、TiとOの結合エネルギー、CrとOの結合エネルギーの定性分析には、硬質皮膜表面を10分間Arイオンミーリング後SiO換算で表面から約20nm除去に行なった。分析結果を表1に併記する。該硬質皮膜内のアモルファス相の定性分析及び結晶質相からなる最小結晶粒径の測定は、硬質皮膜断面を透過型電子顕微鏡によりランダムに選択した視野の断面写真より行なった。表1に透過型電子顕微鏡による断面写真から実測した結晶質相からなる最小結晶粒径を併記する。結晶粒径の実測方法は、断面写真から断面の面積を円の面積として置き換えた場合の直径である等価円直径により求めた。
【0015】
得られた硬質皮膜被覆高速度鋼製ラフィングエンドミルを用い、次に示す切削条件にて、刃先の欠けないしは摩耗等により工具が切削不能となるまで加工を行い、その時の切削長を工具寿命とした。表1に本発明例及び比較例に関する硬質皮膜被覆高速度鋼製ラフィングエンドミルの詳細及びその切削結果を示す。また,併せて同一切削条件で加工した従来例についても表2に示す。
工具:4枚刃ラフィングエンドミル外径12mm
切削方法:側面切削ダウンカット
被削材:SKD11HRC20
切込み:Ad18mm×Rd10mm
切削速度:70m/min
送り:0.1mm/tooth
切削油:エアーブロー
【0016】
【表2】
Figure 2004009266
【0017】
表1に示す本発明例は、従来例に比して安定した切削寿命が得られている。以下本発明例の詳細について述べる。表1に示す各組成の透過型電子顕微鏡による格子像観察結果から、本発明例の硬質皮膜内には何れも皮膜全体のB含有量よりもB含有量が多いアモルファス相が確認された。図1に本発明例1の硬質皮膜のX線光電子分光分析によるTiの2p軌道から得られる結合エネルギーを示し、少なくともTiとN、TiとOの結合エネルギーが確認された。図2に本発明例1の硬質皮膜のX線光電子分光分析によるBの1s軌道から得られる結合エネルギーを示し、少なくともBとNの結合エネルギーが確認された。図3に本発明例6の硬質皮膜のX線光電子分光分析によるCrの2p軌道から得られる結合エネルギーを示し、少なくともCrとN、CrとOの結合エネルギーが確認された。
【0018】
本発明例1、2、3はそれぞれ母材のV+Co重量%の合計が異なる場合の例であるが、従来例に比べ切削寿命が長い。一方、比較例15、16に母材中のV+Co重量%の合計が9重量%の場合と18.1重量%の場合の比較例を示す。母材中のV+Co重量%の合計が9重量%の場合、本発明である硬質皮膜が微細な剥離を伴い、摩耗状態が不安定であった。母材中のV+Co重量%の合計が18.1重量%の場合は、波状切刃の山部にチッピングが発生し、本発明である該硬質皮膜の特性を十分に発揮できなかった。したがって、ラフィングエンドミルによる粗切削加工においては、硬質皮膜によって、被覆母材の影響がかなり大きいことが明らかである。
本発明例4は母材の硬度がHRC65.3であるが従来例に比べ切削寿命が長い。本発明例5は本発明である(TiSi)(NOB)の場合であるが、従来例に比べ切削寿命が長い。本発明例6は本発明である該硬質皮膜の主成分がCrである(CrSi)(CNOB)の場合であるが、従来例に比べ切削寿命が長い。本発明例7は(CrTi)(NOB)の場合であるが、従来例に比べ切削寿命が長い。本発明例8は本発明である該硬質皮膜単一層の場合であるが、従来例に比べ切削寿命が長いものの、TiAlN皮膜等と組み合わせた多層膜がより好ましいといえる。本発明例9はTi(CNO)皮膜との多層膜であるが、従来例に比べ切削寿命が長い。本発明例10は本発明である該硬質皮膜の最大強度を示す面指数が(111)面の場合であるが従来例に比べては切削寿命に優れるものの、(200)面に最も強く配向する硬質皮膜がより好ましい。本発明例11は(CrAlSi)(NOB)皮膜との多層膜であるが従来例に比べ切削寿命が長い。本発明例12は本発明である該硬質皮膜内の結晶質相の最小結晶粒径が54nmの場合であるが、従来例に比べて切削寿命に優れるものの、50nm以下がより好ましいといえる。本発明例13は該硬質皮膜のX線回折から得られる(200)面の半価幅が1.5度未満の場合であるが従来例に比べて切削寿命が長いが1.5度以上がより好ましいといえる。本発明例14は、被覆時にB気体を用いた場合の事例であり、該硬質皮膜はTiとBのみからなる場合であるが従来例に比べ切削寿命が長い。
【0019】
【発明の効果】
以上の如く、本発明の硬質皮膜被覆高速度鋼製ラフィングエンドミルは、従来の硬質皮膜被覆ラフィングエンドミルに比べ、ラフィングエンドミル波状切刃表面に被覆する硬質皮膜が高温環境下でより高い硬度を維持することができ、優れた耐酸化性を有し、切削過程で被加工物から硬質皮膜内部へ拡散する鉄に対して、親和性の低い硬質皮膜であるため切削温度上昇を抑制させる効果を有しており、また、工具母材としても最適なV+Co含有量に規定しているため高温環境下において母材の軟化を抑制する耐熱性とこれらの硬質皮膜との強度に優れることより、波状切刃の山部のチッピング、欠けもしくは皮膜剥離等に起因した異常摩耗を著しく抑制することが可能となり、ラフィングエンドミルによる粗切削加工の高速化並びに長寿命化により、生産性向上並びにコスト低減に極めて有効である。
【図面の簡単な説明】
【図1】図1は、本発明例1のX線光電子分光分析によるTiの結合エネルギーを示す。
【図2】図2は、本発明例1のX線光電子分光分析によるBの結合エネルギーを示す。
【図3】図3は、本発明例6のX線光電子分光分析によるCrの結合エネルギーを示す。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an end mill (hereinafter, referred to as a roughing end mill) mainly used for rough cutting in cutting of a metal material or the like represented by a mold or a mechanical structural component.
[0002]
[Prior art]
A roughing end mill having a wavy cutting edge continuously formed in a wavy shape on an outer peripheral edge is used as a roughing tool for a metal material or the like represented by a mold or a mechanical structural component. This corrugated cutting edge disperses the cutting stress at the time of cutting compared to a straight-edged end mill having no corrugated cutting edge, so that the cutting amount with respect to the tool diameter can be increased, and is suitable for rough cutting. In this way, the roughing end mill applies a greater impact force to the cutting edge than cutting by a normal straight blade end mill that does not have a wavy cutting edge, and at the same time, the amount of chips discharged per unit time increases, and the wavy The flank side and rake side near the cutting edge are exposed to extremely high temperatures. Therefore, in order to suppress tool wear near the wavy cutting edge of the roughing end mill, coating with a hard coating such as TiN or TiCN having a coating hardness of HV2000 or more is also performed. Further, for example, a roughing end mill coated with TiAlN having improved film hardness and oxidation resistance over conventional TiN represented by Japanese Patent No. 2576400 has been proposed. However, in the field of cutting in recent years, in order to prolong the service life and reduce the cost of rough cutting, high-speed machining for the purpose of high efficiency and high hardness of the workpiece are required. With a roughing end mill coated with a TiAlN film or the like, a cutting life that satisfies these requirements has not been obtained.
[0003]
[Problems to be solved by the invention]
The present inventor carefully analyzed the damage state of the flank and rake face near the wavy cutting edge of the roughing end mill in the rough machining of metal.As a result, oxygen diffused into the hard coating on the tool flank side, It has been found out that a low-strength oxide in which Ti and O are bonded is formed on the surface, and the hard coating is repeatedly dropped off from the low-strength oxide. Also, on the tool rake face side, which is a chip discharge portion, iron and oxygen, which are workpieces, diffused into the film, and the iron and oxygen promoted oxidation of the hard film, and wear was progressing. As described above, the temperature rises remarkably near the tip of the wavy cutting edge, and the wear of the hard coating progresses, accompanied by the softening of the coating base material and the occurrence of chipping or chipping of the tool cutting edge. Became clear. Therefore, in improving the efficiency of cutting work in roughing end mills, the hard coating covering the wavy cutting edge surface maintains higher hardness under high temperature environment, the hard coating has high temperature hardness, and is excellent under high temperature environment. It is necessary to suppress the rise in cutting temperature by coating a hard coating having low affinity with iron having high oxidation resistance and diffusing from the workpiece into the hard coating during the cutting process. Also, it was considered that the tool base material needed to have heat resistance for suppressing softening of the base material under a high-temperature environment and appropriate base material strength in order to maintain adhesion to these hard films.
[0004]
In view of these circumstances, the present invention improves the high-temperature hardness and oxidation resistance of the hard coating that coats the wavy cutting edge surface of the roughing end mill, and has an affinity for iron that diffuses from the workpiece into the hard coating during the cutting process. In addition to covering the hard coating with low hardness, suppressing the rise in cutting temperature, and further improving the base material strength to maintain the heat resistance of the roughing end mill base material and the adhesion to the hard coating, roughing by the roughing end mill An object of the present invention is to provide a configuration of a hard film-coated roughing end mill capable of achieving a high speed cutting operation and a long life.
[0005]
[Means for Solving the Problems]
In order to achieve these objects, the present invention provides an element selected from at least one element selected from the group consisting of elements of groups 4a, 5a, and 6a of the periodic table and Al and Si, and at least one element selected from the group consisting of N, C, and O. In a hard coating-coated high-speed steel roughing end mill coated with at least one hard coating containing an element selected from the above and the B element, at least one layer of the hard coating is made of B and N by X-ray photoelectron spectroscopy. It is a hard coating that contains the binding energy and recognizes either the binding energy of Ti and O or the binding energy of Cr and O. V and Co in the base material of the roughing end mill are 10 ≦ (V + Co ) A roughing end mill made of high-speed steel coated with a hard coating, characterized by satisfying the range of ≤ 20.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to achieve high speed and long life of rough cutting by the roughing end mill, as described above, it is necessary to improve the high temperature hardness and oxidation resistance of the hard coating on the rough cutting end mill corrugated cutting surface and to improve the cutting process from the workpiece. It is necessary to cover the hard coating with low affinity for iron that diffuses into the hard coating to suppress the rise in cutting temperature. It is also important to maintain the strength of the base material having high adhesion to the hard coating having high heat resistance and high hardness of the roughing end mill base material at the same time as improving the hard coating. As a means for achieving this, it is extremely effective that V and Co contained in the base material of the roughing end mill made of a high-speed steel are in the range of 10 ≦ V + Co ≦ 20 by weight%. The hard coating is excellent in coating hardness and oxidation resistance in a high-temperature environment, has low affinity for iron in a workpiece, and has a lubricating effect. Have. This is because the presence of BN in the hard coating changes the BN bond on the outermost surface of the hard coating into a bond of B and O in a high temperature environment, and forms a dense and strong B oxide on the outermost surface of the hard coating. Then, the dense and high-strength B oxide acts as a subsequent antioxidant layer. At the same time, the dense and high-strength B oxide is hardly peeled off from the hard coating even in a dynamic oxidizing environment and has excellent oxidation resistance. Further, the softening of the hard coating in a high-temperature environment is caused by the diffusion of oxygen, and thus the coating of the present invention, which is remarkably excellent in oxidation resistance, also has a remarkably improved high-temperature hardness. Another advantage of the presence of BN in the hard coating is that it has a very low affinity for iron. Thereby, it shows an excellent friction characteristic with respect to iron, which is a workpiece, and also has an effect of suppressing a cutting temperature. Further, when BN is present in the hard coating, the internal stress in the hard coating lattice is increased, and the hardness of the hard coating is significantly increased. However, at the same time as the hardness is increased, the compressive stress remaining in the hard coating also increases. Therefore, it is necessary to use a base material having a strength that can withstand the residual compressive stress. Therefore, it is necessary to limit V and Co contained in the base material to the range of 10 ≦ V + Co ≦ 20 by weight. Within this range, the residual compressive stress generated in the hard coating can be relaxed inside the base material and has excellent adhesion, and the hard coating has excellent oxidation resistance and high hardness. Certain characteristics can be sufficiently exhibited. When V and Co in the base material satisfy the above range, the heat resistance of the matrix in the high-speed steel is also excellent. With these configurations, it is possible to achieve high speed and long life of rough cutting by the roughing end mill.
[0007]
The base hardness of the hard film-coated high-speed steel roughing end mill is HRC66 or more and less than HRC71. As a more preferable hard film, the minimum crystal grain size in the hard film is 0.5 nm or more and 50 nm or less. The hard coating contains a crystalline phase and an amorphous phase. Further, the hard film shows a maximum peak in X-ray diffraction intensity at the (200) plane, and the diffraction line at the (200) plane has a half-width of 2θ of 1.5. Degrees or higher. More preferably, at least one layer of the hard film is a hard film containing Ti or Cr as a B element and a metal element, and Ti and Cr as components, and includes the hard film and at least Al and Ti as a metal element. More preferably, two or more hard films containing at least N as a nonmetallic element are laminated.
[0008]
By adopting such a configuration, the hard coating covering the wavy cutting surface of the roughing end mill can maintain higher hardness under high temperature environment, and also has excellent oxidation resistance and cutting The adoption of a hard coating with low affinity for the iron that diffuses from the workpiece to the inside of the hard coating during the process suppresses the increase in cutting temperature, furthermore the heat resistance of the roughing end mill base material and the close contact with the hard coating By further improving the strength, the rough cutting by the roughing end mill has been speeded up and the life has been extended, and the problem of the prior art has been solved.
[0009]
In the high-speed steel used in the present invention, V and Co contained in the base material must be in a range of 10 ≦ V + Co ≦ 20 by weight%, and more preferably in a range of 10 ≦ V + Co ≦ 17. V and Co in the base material are additional elements that determine the hardness and heat resistance of the high-speed steel. However, when the content is less than 10% by weight, the base material strength is less than the residual compressive stress generated in the hard coating. Not enough and tool life is unstable. This is because the peeling of the film may occur due to the residual compressive stress generated in the hard film. On the other hand, if the content exceeds 17% by weight, the base material tends to become brittle. If the content exceeds 20% by weight, the base material becomes too brittle and chipping or chipping occurs at the peaks of the wavy cutting edge, resulting in a short life. invited. From the above, as a result of considering the effect of the hard coating of the present invention on the adhesion strength to the roughing end mill base material, the present inventors determined the contents of V and Co in the high-speed steel within the above range. . When no bond between B and N is found in the hard coating, the high-temperature hardness, oxidation resistance and lubricating properties of the coating are not sufficient as described above, and the problem has not been solved. In addition, when the binding energy between B and N is recognized, but neither the binding energy between Ti and O or the binding energy between Cr and O is recognized, the lubricating properties are not sufficient, and it is difficult to suppress the cutting temperature. Did not.
[0010]
The base material of the roughing end mill of the present invention is preferably HRC66 or more and less than HRC71. When the base material is less than HRC 66, it is confirmed that the ridges of the corrugated cutting edge are accompanied by plastic deformation toward the flank side with severe deformation under severe cutting environment, and the cutting edge strength is not sufficient, which is not preferable. In addition, when it exceeds HRC71, the peak portion of the wavy cutting edge may cause chipping or chipping, which is not preferable. The hard coating of the present invention preferably contains a crystalline phase having a minimum crystal grain size of 0.5 nm or more and 50 nm or less and an amorphous phase in the hard coating. When the minimum crystal grain size in the hard coating is 0.5 nm or more and 50 nm or less, the coating hardness is high and the high-temperature hardness is remarkably improved, and the wear resistance is further improved, which is preferable. In addition, when an amorphous phase is contained at the same time, since there is no clear crystal grain boundary such as an interface between crystals, it is effective for suppressing diffusion of oxygen proceeding through the crystal grain boundary, which is more preferable. The hard coating of the present invention has the least lattice defects in the coating when it is strongly oriented on the (200) plane, and has the highest peak intensity on the (200) plane because of its high density and excellent oxidation resistance. preferable. Furthermore, when the half width has a spread of 1.5 degrees or more, the contribution to the improvement of the film hardness and the oxidation resistance is large, which is preferable.
[0011]
At least one layer of the hard coating of the present invention is more preferably a hard coating containing Ti and Cr as the B element and the metal element, and Ti and Cr as components. When composed of the B element and Ti or Cr as the metal element, and Ti and Cr, the balance between the film hardness, the oxidation resistance and the sliding characteristics is most excellent, and is more preferable. Although the hard coating has excellent adhesion to the coated base material, coating hardness and oxidation resistance, the hard coating is used to further improve the adhesion to the base material and stabilize the cutting life. It is also possible to form a multilayer with a hard coating containing at least Al and Ti as metal elements and at least N as non-metal elements. Furthermore, in order to improve the adhesion of the hard coating to the base material and extend the cutting life, defects such as burrs and burrs near the wavy cutting edge before and after coating, and defects such as droplets adhering during coating, such as shot blasting, are It is also preferable to remove by mechanical treatment. Hereinafter, the present invention will be described based on examples, but the following examples do not limit the present invention, and any appropriate modifications based on the gist of the present invention are included in the technical scope of the present invention. It is.
[0012]
【Example】
The hard film-coated high-speed steel roughing end mill of the present invention is not particularly limited in its coating method, but in consideration of the heat influence on the coated base material, the fatigue strength of the tool, the adhesion of the film, and the like. Coating was performed by an arc discharge ion plating method, which was capable of coating at a relatively low temperature and in which an appropriate compressive stress remained in the coated film. Using an arc ion plating apparatus, a target film can be obtained from various alloy targets as evaporation sources of metal components and N 2 gas, CH 4 gas, Ar + O 2 mixed gas, and B 3 N 3 H 6 gas as reaction gases. A bias voltage of -150 V is applied to a 12 mm outer diameter 4-flute roughing end mill made of various high-speed tool steels as a coating base material under the conditions of a coating temperature of 400 ° C. and a reaction gas pressure of 3.0 Pa. Then, the coating treatment was performed so that the thickness of the entire coating was 4 μm. The addition of B to the hard coating is also possible when there is an alloy target to which a predetermined amount is added in advance in the metal target, or when a B-containing gas is introduced into the vacuum vessel during coating. Further, if necessary, a TiAlN film was previously coated by an arc ion plating method, and then the B-containing hard film was coated.
[0013]
[Table 1]
Figure 2004009266
[0014]
In Table 1, the quantitative analysis of the composition was comprehensively determined by energy dispersive X-ray spectroscopy, Auger photoelectron spectroscopy, and electron beam energy loss spectroscopy. For qualitative analysis of B and N bond energies, Ti and O bond energies, and Cr and O bond energies by X-ray photoelectron spectroscopy, the hard coating surface was subjected to Ar ion milling for 10 minutes and then converted from SiO 2 in terms of SiO 2. 20 nm was removed. The analysis results are also shown in Table 1. The qualitative analysis of the amorphous phase in the hard film and the measurement of the minimum crystal grain size composed of the crystalline phase were performed from a cross-sectional photograph of a field of view in which the cross section of the hard film was randomly selected by a transmission electron microscope. Table 1 also shows the minimum crystal grain size of the crystalline phase actually measured from a cross-sectional photograph taken by a transmission electron microscope. The actual measurement method of the crystal grain size was determined from the equivalent circular diameter which is the diameter when the area of the cross section was replaced by the area of the circle from the cross section photograph.
[0015]
Using the obtained hard coating coated high speed steel roughing end mill, under the following cutting conditions, processing was performed until the tool could not be cut due to chipping or wear of the cutting edge, and the cutting length at that time was taken as the tool life . Table 1 shows details of hard film-coated high-speed steel roughing end mills according to the present invention and comparative examples, and cutting results thereof. Table 2 also shows a conventional example processed under the same cutting conditions.
Tool: 4-flute roughing end mill, outer diameter 12mm
Cutting method: Side cut down cut Work material: SKD11HRC20
Cut: Ad18mm × Rd10mm
Cutting speed: 70m / min
Feed: 0.1mm / tooth
Cutting oil: air blow [0016]
[Table 2]
Figure 2004009266
[0017]
In the example of the present invention shown in Table 1, a stable cutting life was obtained as compared with the conventional example. Hereinafter, the details of the present invention will be described. From the results of observation of the lattice images of the respective compositions shown in Table 1 with a transmission electron microscope, an amorphous phase having a B content higher than the B content of the entire coating was confirmed in each of the hard coatings of the present invention. FIG. 1 shows the binding energy obtained from the 2p orbit of Ti by X-ray photoelectron spectroscopy analysis of the hard coating of Example 1 of the present invention, and at least the binding energy of Ti and N and Ti and O was confirmed. FIG. 2 shows the binding energy obtained from the 1s orbital of B by X-ray photoelectron spectroscopy of the hard coating of Example 1 of the present invention, and at least the binding energy between B and N was confirmed. FIG. 3 shows the binding energy obtained from the 2p orbital of Cr by X-ray photoelectron spectroscopy of the hard coating of Example 6 of the present invention, and at least the binding energy of Cr and N and Cr and O was confirmed.
[0018]
Inventive Examples 1, 2, and 3 are examples in which the sum of the V + Co weight% of the base materials is different, but the cutting life is longer than the conventional example. On the other hand, Comparative Examples 15 and 16 show Comparative Examples in which the total of V + Co weight% in the base material is 9% by weight and 18.1% by weight. When the total of V + Co weight% in the base material was 9% by weight, the hard coating of the present invention was accompanied by fine peeling and the wear state was unstable. When the sum of V + Co weight% in the base material was 18.1% by weight, chipping occurred at the peak of the wavy cutting edge, and the characteristics of the hard coating of the present invention could not be sufficiently exhibited. Therefore, in the rough cutting by the roughing end mill, it is clear that the influence of the coating base material is considerably large due to the hard coating.
In Example 4 of the present invention, the hardness of the base material was HRC65.3, but the cutting life was longer than that of the conventional example. Inventive Example 5 is the case of (TiSi) (NOB) of the present invention, but has a longer cutting life than the conventional example. Inventive Example 6 is a case where the main component of the hard coating of the present invention is Cr (CrSi) (CNOB), but the cutting life is longer than that of the conventional example. Example 7 of the present invention is the case of (CrTi) (NOB), but has a longer cutting life than the conventional example. Example 8 of the present invention is a case of the single layer of the hard film of the present invention. However, although the cutting life is longer than that of the conventional example, a multilayer film combined with a TiAlN film or the like is more preferable. Inventive Example 9 is a multilayer film with a Ti (CNO) film, but has a longer cutting life than the conventional example. Inventive Example 10 is a case where the surface index indicating the maximum strength of the hard coating of the present invention is the (111) plane. Although the cutting life is superior to that of the conventional example, the hard coating is most strongly oriented on the (200) plane. Hard coatings are more preferred. Inventive Example 11 is a multilayer film with a (CrAlSi) (NOB) film, but has a longer cutting life than the conventional example. Inventive Example 12 is a case where the minimum crystal grain size of the crystalline phase in the hard coating according to the present invention is 54 nm. Although the cutting life is superior to that of the conventional example, it can be said that 50 nm or less is more preferable. Invention Example 13 is a case where the half-value width of the (200) plane obtained from the X-ray diffraction of the hard coating is less than 1.5 degrees. The cutting life is longer than that of the conventional example, but the cutting life is 1.5 degrees or more. It can be said that it is more preferable. Example 14 of the present invention is a case in which B gas is used at the time of coating, and the hard coating consists of only Ti and B, but has a longer cutting life than the conventional example.
[0019]
【The invention's effect】
As described above, the hard film-coated high-speed steel roughing end mill of the present invention maintains a higher hardness in a high-temperature environment in which the hard film coated on the roughing end mill corrugated cutting surface is higher than the conventional hard film-coated roughing end mill. It has excellent oxidation resistance and has the effect of suppressing cutting temperature rise because it is a hard coating with low affinity for iron that diffuses from the workpiece into the hard coating during the cutting process. In addition, since the content of V + Co is specified as the optimum value for the tool base material, the heat resistance for suppressing the softening of the base material in a high-temperature environment and the strength of these hard coatings are excellent, so that the corrugated cutting edge is obtained. Abnormal wear caused by chipping, chipping or peeling of coating on the peaks of steel can be remarkably suppressed, speeding up rough cutting by roughing end mill and long life Accordingly, it is extremely effective for improving and cost productivity.
[Brief description of the drawings]
FIG. 1 shows the binding energy of Ti by X-ray photoelectron spectroscopy of Example 1 of the present invention.
FIG. 2 shows the binding energy of B by X-ray photoelectron spectroscopy of Example 1 of the present invention.
FIG. 3 shows the binding energy of Cr by X-ray photoelectron spectroscopy of Example 6 of the present invention.

Claims (6)

周期律表の4a、5a、6a族の元素及びAl、Siから選ばれる1種以上から選択された元素と、少なくともN、C、Oのうち1種以上より選択された元素とB元素を含む硬質皮膜を少なくとも1層以上被覆した硬質皮膜被覆高速度鋼製ラフィングエンドミルにおいて、該硬質皮膜の少なくとも1層は、X線光電子分光分析によりBとNの結合エネルギーを含み、TiとOの結合エネルギーもしくはCrとOの結合エネルギーのどちらかが認知される硬質皮膜であり、該ラフィングエンドミルの母材中のV及びCoが、重量%で10≦(V+Co)≦20の範囲であることを特徴とする硬質皮膜被覆高速度鋼製ラフィングエンドミル。Including elements selected from at least one element selected from the elements of groups 4a, 5a, and 6a of the periodic table and Al and Si, and at least an element selected from at least one of N, C, and O and a B element In a hard coating coated high-speed steel roughing end mill coated with at least one hard coating, at least one layer of the hard coating contains the binding energy of B and N by X-ray photoelectron spectroscopy, and the binding energy of Ti and O Alternatively, it is a hard coating in which either the binding energy of Cr and O is recognized, and V and Co in the base material of the roughing end mill are in a range of 10 ≦ (V + Co) ≦ 20 by weight%. Hard film coated high speed steel roughing end mill. 請求項1記載の硬質皮膜被覆高速度鋼製ラフィングエンドミルにおいて、該硬質皮膜内に含まれる結晶粒子の粒径を、粒子断面の面積を円の面積として置き換えた場合の直径である等価円直径として求めた場合に、最小結晶粒径が0.5nm以上、50nm以下である結晶質相と、アモルファス相を含むことを特徴とする硬質皮膜被覆高速度鋼製ラフィングエンドミル。In the hard coating coated high speed steel roughing end mill according to claim 1, the particle diameter of crystal grains contained in the hard coating is defined as an equivalent circular diameter which is a diameter when the area of the particle cross section is replaced by the area of a circle. A hard film-coated high-speed steel roughing end mill comprising a crystalline phase having a minimum crystal grain size of 0.5 nm or more and 50 nm or less, and an amorphous phase. 請求項1乃至請求項2記載の硬質皮膜被覆高速度鋼製ラフィングエンドミルにおいて、該硬質皮膜はX線回折における回折強度が(200)面で最大ピークを示し、該(200)面の回折線が2θの半価幅で1.5度以上であることを特徴とする硬質皮膜被覆高速度鋼製ラフィングエンドミル。3. The hard film-coated high-speed steel roughing end mill according to claim 1, wherein the hard film has a diffraction peak in X-ray diffraction at the (200) plane, and the diffraction line on the (200) plane has a diffraction peak. A hard film-coated high-speed steel roughing end mill characterized by a half-width of 2θ of 1.5 ° or more. 請求項1乃至請求項3に記載の硬質皮膜被覆高速度鋼製ラフィングエンドミルにおいて、該硬質皮膜の少なくとも1層がB元素と、金属元素としてTi又はCr及びTiとCrを成分とする硬質皮膜であることを特徴とする硬質皮膜被覆高速度鋼製ラフィングエンドミル。The hard film-coated high-speed steel roughing end mill according to any one of claims 1 to 3, wherein at least one layer of the hard film is a hard film containing a B element and Ti or Cr as a metal element and Ti and Cr as components. A roughing end mill made of a high-speed steel coated with a hard coating. 請求項1乃至請求項4記載の硬質皮膜被覆高速度鋼製ラフィングエンドミルにおいて、該硬質皮膜と、金属元素として少なくともAlとTiを含み、非金属元素として少なくともNを含む硬質皮膜が2層以上積層されたことを特徴とする硬質皮膜被覆高速度鋼製ラフィングエンドミル。5. The hard film coated high-speed steel roughing end mill according to claim 1, wherein at least two hard films including at least Al and Ti as metal elements and at least N as nonmetal elements are laminated. A roughing end mill made of high-speed steel coated with a hard coating. 請求項1記載の硬質皮膜被覆高速度鋼製ラフィングエンドミルにおいて、該高速度鋼の硬さがHRC66以上、HRC71未満であることを特徴とする硬質皮膜被覆高速度鋼製ラフィングエンドミル。The hard film coated high speed steel roughing end mill according to claim 1, wherein the high speed steel has a hardness of HRC66 or more and less than HRC71.
JP2002169869A 2002-06-11 2002-06-11 Hard film coated high speed steel roughing end mill Withdrawn JP2004009266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169869A JP2004009266A (en) 2002-06-11 2002-06-11 Hard film coated high speed steel roughing end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169869A JP2004009266A (en) 2002-06-11 2002-06-11 Hard film coated high speed steel roughing end mill

Publications (1)

Publication Number Publication Date
JP2004009266A true JP2004009266A (en) 2004-01-15

Family

ID=30436306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169869A Withdrawn JP2004009266A (en) 2002-06-11 2002-06-11 Hard film coated high speed steel roughing end mill

Country Status (1)

Country Link
JP (1) JP2004009266A (en)

Similar Documents

Publication Publication Date Title
CN100488684C (en) Surface-coated cutting tool
EP1710326A1 (en) Surface-coated cutting tool
JPWO2005105348A1 (en) Surface-coated cubic boron nitride sintered body tool and its manufacturing method
JPH08209337A (en) Coated hard alloy
WO2017094628A1 (en) Tool and coated tool
JP2008013852A (en) Hard film, and hard film-coated tool
JP2009107028A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2005126736A (en) Hard film
JP3586218B2 (en) Coated cutting tool
JP2004009267A (en) Hard film coated high speed steel roughing end mill
WO2016181813A1 (en) Hard coating and hard coating-covered member
JP2004009266A (en) Hard film coated high speed steel roughing end mill
JP2004009269A (en) Hard film coated high speed steel roughing end mill
JP4117389B2 (en) Hard coat coated high speed steel brooch
JP2004009268A (en) Hard film coated high speed steel roughing end mill
JP2004249433A (en) Coated broach
JP2004017164A (en) Hard film coated high speed steel broach
JP3779948B2 (en) Hard coating tool
JP4456905B2 (en) Surface coated cutting tool
JP2004255553A (en) Coated broach
JP3679078B2 (en) Hard coating tool
JP3679077B2 (en) Hard coating tool
JP3598035B2 (en) Coated carbide end mill
JP5201936B2 (en) Surface coating tool
JP6861137B2 (en) Hard coating for cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050421

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20071016

Free format text: JAPANESE INTERMEDIATE CODE: A761