JP2004007993A - Speed control method for induction motor - Google Patents

Speed control method for induction motor Download PDF

Info

Publication number
JP2004007993A
JP2004007993A JP2003204214A JP2003204214A JP2004007993A JP 2004007993 A JP2004007993 A JP 2004007993A JP 2003204214 A JP2003204214 A JP 2003204214A JP 2003204214 A JP2003204214 A JP 2003204214A JP 2004007993 A JP2004007993 A JP 2004007993A
Authority
JP
Japan
Prior art keywords
value
speed
command value
output
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003204214A
Other languages
Japanese (ja)
Other versions
JP3736551B2 (en
Inventor
Kazuaki Tobari
戸張 和明
Toshiaki Okuyama
奥山 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003204214A priority Critical patent/JP3736551B2/en
Publication of JP2004007993A publication Critical patent/JP2004007993A/en
Application granted granted Critical
Publication of JP3736551B2 publication Critical patent/JP3736551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a speed control method for an induction motor that does not cause the shortage of torque even in a zero-speed range without receiving an influence of a speed estimation error due to a change or the like in motor constant. <P>SOLUTION: When a speed command value or a speed estimation value is less than or equal to a prescribed value, the speed control method of the induction motor uses the speed command value for operating a frequency command value instead of the speed estimation value. Also, when the speed command value or the speed estimation value is less than or equal to the prescribed value, the method controls a slide frequency estimation value of the motor operated based on the output value of the current control unit, and an output frequency of a power transformer corresponding to the additional value of the speed command value. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、誘導電動機の速度制御方法に関し、特に電動機取り付けの速度センサが不要で零速度域から高トルクが得られる速度センサレスベクトル制御法に関する。
【0002】
【従来の技術】
誘導電動機のベクトル制御においては、電動機の回転速度とすべり周波数基準値の加算値に応じて変換器の出力周波数を制御する方法が一般的である。一方、速度センサレスベクトル制御においては、実回転速度の代わりに速度推定値を用いて出力周波数を制御する。ところが、速度推定値には誤差が含まれるため、実すべり周波数は適正基準値から変動するようになる。このとき、電動機磁束はトルク変化に応じて変動(減少)するようになり、この結果、電動機発生トルクはトルク電流に比例しなくなり、極度の場合は、トルク不足を来たす場合がある。
【0003】
速度推定の誤差原因としては、速度推定演算に用いる電動機定数(1次および2次抵抗)の設定誤差、並びにこれを1次原因として2次的に発生する電動機磁束の変動が挙げられる。従来はこれらの変動を補償する十分な方法がなく、このため、特に零速度近傍においてトルク不足を生じる場合があった。なお、関係の文献としては非特許文献1がある。
【0004】
【非特許文献1】
奥山、他「速度、電圧センサレスベクトル制御における制御定数設定誤差の影響とその補償」電学論D、110、447(平2−5)
【0005】
【発明が解決しようとする課題】
本発明の目的は、電動機定数の変動等による速度推定誤差の影響を受けることなく、零速度域においてもトルク不足を生じない誘導電動機の速度制御法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、速度指令値が所定値以下の場合、d軸電流を通常時の値以上に制御し、また、周波数指令値を速度推定値に代えて速度指令値に基づいて演算するようにしたことを特徴とする。
【0007】
【発明の実施の形態】
本発明の実施例について図を用いて説明する。
【0008】
図1は、本発明の一実施例の速度センサレスベクトル制御装置の構成例を示す。1は誘導電動機、2は電圧指令値V に比例した出力電圧を出力する電力変換器、3は変換器出力電流iu、iwを座標変換し、d軸およびq軸電流id、iqを演算する座標変換器、4はq軸電圧指令値V **およびiqに基づいて速度推定値ω^を演算する速度推定器、5は速度指令値ω と速度推定値ω^の偏差に応じて、q軸電流指令値iqを出力する速度制御器で、idに応じてiqを制限する制限器を備えている。6はiqとiqに応じてΔqを出力するq軸電流制御器、7はiqに基づいてすべり周波数基準値ω を演算するすべり周波数演算器、8はω^とω を加算して信号ω を得る加算器、9はω とω を回転速度の大小に応じて切り替えて出力する切り替え器で、ω と関数器91の出力Ga1を乗算する乗算器92、ω と関数器93の出力Ga2を乗算する乗算器94、および両乗算器の出力を加算する加算器95により構成される。10は切替回路9からの出力周波数指令値ω **を積分して位相基準値θを出力する位相基準発生器、11はd軸電流指令器で、添加電流値Δidと関数器111の出力Ga3を乗算する乗算器112、および基準電流値idと乗算器出力を加算し、その1次遅れ値id**を出力する遅れ回路113により構成される。12はid**とidの偏差に応じた信号Δdを出力するd軸電流制御器、13はid**、iq、およびω **に基づいてd軸およびq軸電圧基準値Vd、Vqを演算する電圧演算器、14はVdとΔdの加算値Vd**を出力する加算器、15はVqとΔqの加算値Vq**を出力する加算器、16はVd**とVq**を座標変換し、変換器出力電圧指令値V1(3相)を出力する座標変換器である。
【0009】
以上において、9、11が本発明の特徴的なところである。9、11内の関数器の特性は次のようである。関数器91の出力Ga1はω が零近傍では0、大では1の値をとり、関数器93の出力Ga2はその逆の値をとる。すなわち、Ga1、Ga2は互いに相補の、(数1)式の関係にある。
【0010】
Ga1+Ga2=1                    …(数1)
したがって、切り替え器9の出力ω **は(数2)式で与えられる。これにより、ω **は零速域ではω に、それ以外ではω に一致する。Ga1、Ga2の漸増/漸減領域は切り替えを円滑に行うためのもので、この領域ではω **としてω とω の中間値が出力される。
【0011】
ω **=ω Ga1+ω Ga2              …(数2)
また、関数器111の出力Ga3は、ω が零近傍では1、それ以外では0の値をとる。これにより、id**およびidは零速度域において基準値idからΔidだけ強められる。
【0012】
次にシステム全体の動作について述べる。構成要素の1〜7、10、12、13、14〜16については、従来の速度センサレスベクトル制御システムと同様であるが、先ず概要について述べる。
【0013】
速度センサレスベクトル制御においては、変換器出力電圧および出力電流に基づいて回転速度を推定し、これを速度制御器5にフィードバックして速度制御を行うと共に、速度推定値ω^とすべり周波数基準値ω の加算値に従い変換器出力周波数を制御する。周知の速度センサ付きベクトル制御との違いは、電動機取り付けの速度センサからの速度検出値を用いる代わりに速度推定値を用いる点にあるが、基本動作は同様である。
【0014】
速度制御器5からのq軸電流指令値iq並びにd軸電流指令id**に従い電動機電流iq、idを制御するには、このために必要な電動機電圧を変換器より供給する必要がある。そこで、電圧演算器13において、電流指令値id**、iqおよび周波数指令ω **に基づいてd軸およびq軸電圧基準値Vd、Vqを演算し、これを用いて変換器出力電圧を制御する。しかし、これだけでは制御誤差により電流id、iqが各指令値に一致しないため、q軸およびd軸電流制御器6、12からのΔq、Δdにより電圧Vq、Vdを修正し、iq、idを指令値に一致するように制御する。このようにしてすべり周波数制御型ベクトル制御の動作が行われ、電動機トルクはiqに比例して制御される。
【0015】
次に、各構成要素の詳細な動作について述べる。
【0016】
速度推定器4において(数3)式に従い速度推定値ω^を演算する。
【0017】

Figure 2004007993
ここに、TO:オブザーバ時定数
、M:2次および励磁インダクタンス(基準値)
φ2d :2次磁束(基準値)
Rσ:1次および2次抵抗の和(基準値)
Lσ:1次および2次漏れインダクタンスの和(基準値)
ω **:変換器出力周波数(指令値)
図2に速度推定器4の(数3)式に基づく演算内容を示す。41は電動機モデルであり、電動機q軸電圧V(=V **)と誘導起電力eおよび電流iの関係を示す。推定原理は、eを逆モデルにより推定し、基準磁束量で割算することにより速度推定値ω^を演算するものである。
【0018】
ω^は速度制御器5へのフィードバック信号に用いると共に、ω の演算に用いられる。この演算式を(数4)式に示す。従来制御ではω がそのまま出力周波数指令値ω **に使用され、変換器の出力周波数が制御される。
【0019】
ω =ω^+ω                     …(数4)
一方、速度制御器5において、速度偏差ω −ω^に応じてq軸電流指令値iqが演算される。電動機トルクは基本的にはiqに比例するため、ω^がω に一致するように速度制御が行われる。電動機トルクがiqに正しく比例するためには、電動機電流iqがiqに一致し、また電動機磁束が基準値に保たれることが条件である。これには電動機電流id、iqを各指令値id**、iqに一致するように制御することが必要であり、このために、d軸およびq軸電流制御器12、6が設けてある。各運転条件における電動機電圧は(数5)式で示されるが、これに相当の電圧V 、V はid**、iq、ω **および電動機定数に基づいて(数6)式を用い、予め演算により求めることができる。電圧演算器13においてこの演算を行う。
【0020】
=rid−ωLσiq
=riq+ωLσid+ω(M/L)φ2d      …(数5)
ここに、r:1次抵抗(実際値)
Lσ:1次および2次漏れインダクタンスの和(実際値)
、M:2次および励磁インダクタンス(実際値)
φ2d:2次磁束(実際値)
=r id**−ω **Lσiq
=r iq+ω **Lσid**+ω **(M/L )φ2d  …(数6)
ここに、*および**は、基準値/指令値を示す。
【0021】
変換器出力電圧(電動機電圧)は、基本的にはこのV およびV に従い制御される。しかし、制御誤差があると、これだけでは実電流id、iqが各指令値に一致しないため、d軸およびq軸電流制御器12、6により電流偏差に応じた信号Δd、Δqを求め、これにより出力電圧を修正し、id、iqを指令値に一致するように制御している。
【0022】
以上が従来からのものと共通な動作であるが、次に本発明に直接関係する内容について述べる。
【0023】
速度推定器4で求めたω^には推定誤差が含まれる。このため、前述のようにトルク不足の問題が発生する。推定誤差の原因には、1次および2次抵抗の温度変化並びに電動機の鉄心飽和による漏れインダクタンスの変動などがあるが、特に零速度域では種々の原因からトルク低下が生じ易い。
【0024】
本発明は、零速度域のトルク低下の防止を目的に、零速度域では前述と異なる原理により速度制御を行う。以下、この内容について述べる。
【0025】
トルク低下は前述のように速度推定誤差が原因であるが、さらにこれを分析すると次の2つに大別できる。
(1)速度推定値を基に周波数を制御することから、推定誤差により実すべり周波数が適正値から変動する。
(2)速度推定値を用いて速度制御するため、推定誤差によりトルク電流を適正値に制御できない。
【0026】
そこで本発明においては、それぞれを次のようにして解決する。
【0027】
「1」零速度域では、推定値ω^に代えて速度指令値ω を用い出力周波数指令値ω **を演算する。すなわち、零速度域では、切り替え器9により通常時のω に代えてω を選択し出力させ、変換器出力周波数を速度指令値ω に応じて制御する。
【0028】
「2」零速度域では、d軸電流を通常時より大きめの所定値に制御する。すなわち、d軸電流指令器11において、通常時の基準値idにΔidを加算し、idを強め制御する。
【0029】
「1」「2」を適用した場合の、電動機発生トルクτと電流Ιの関係を(数7)式に示す。
【0030】
τ=k(ω)/(1+(ω)I         …(数7)
ここに、k:比例定数
ω:すべり
:2次時定数
:電動機電流の大きさ
が一定の場合、電動機トルクτeは、ω・T=±1において最大値をとるが、ω=0からこの間は、τはすべり周波数ωに応じて変化する。この場合、ωは、実速度ωが変換器出力周波数ω(=ω )に対して変動することにより受動的に発生する。すなわち、負荷トルクの増/減に応じてωが増/減することにより、τは負荷トルクに追従して発生する。この結果、電動機速度ωはω の近傍(すべり分だけ変動)に保たれる様になり、速度指令値に応じて速度制御が行われる。
【0031】
ここで、電動機最大トルクは負荷最大トルク以上であることが必要なため、Iを負荷最大トルクに見合う値以上に予め制御する必要がある。このためにidあるいはiqを所定値に制御する。この方法としては、iq を速度偏差とは無関係に所定値に設定する方法もあるが、零速度域では負荷トルクの方向をω^などから検知することが精度上、難しいので、iqの極性の設定が行えない。このため、極性の設定が不要なid**を所定値に設定する方法を図1の実施例では適用している。このとき、前記「2」でも記述したように、電流指令値id**を、通常時の基準値idにΔidを加算した値とし、id(=I相当)を最大負荷トルクに見合う値に制御する。
【0032】
零速度域においては、以上のように変換器の出力周波数と出力電流を制御するため、前記(1)(2)の問題が解決され、トルク不足も解消する。
【0033】
出力周波数が数Hz以上の範囲では、切り替え器9の出力はω からω に切り替えられ、従来方式と同様に速度推定値ω^を用いて周波数制御を行う。切り替えを円滑にするため、切り替えに伴うω **の急激な変化を抑制するように、ω とω を漸次切り替える。関数器91、93の出力Ga1、Ga2の漸増/漸減特性はこのために設けている。また、d軸電流指令器11においては、idの急変を抑えるため、遅れ回路113が設けてある。
【0034】
また、idを強めた状態(零速度域)では、電動機電流Iが定格値を超えないようにするため、iqを制限する必要があること、また、この期間では、ω^の精度低下により、iqは適正値から離れるため、iqを所定値または略零に制限することが必要である。本実施例では、(数8)式に従いidに応じてiqの制限値iqMAXを可変する方法を用いている。
【0035】
iqMAX=√(I *2−id)               …(数8)
ここに、I :電動機電流設定値
図3は本発明の他の実施例を示す。速度推定値ω^をq軸電流制御器6′の出力より得る方式の速度センサレスベクトル制御装置への適用例である。図3において、1〜3、5、7、9〜14、16は図1のものと同一物である。6′はiqとiqの偏差に応じてω^を出力するq軸電流制御器、8′はω^とω を加算し、信号ω を出力する加算器であり、切り替え器9は前記実施例と同様にω の大小に応じてω とω を選択し出力する。切り替え器9よりω が出力される従来制御の状態では、電流制御器6′の出力がω^相当となることを考慮すれば、前記実施例と同様に動作し、同様の効果が得られることは明らかである。
【0036】
図4は本発明の他の実施例を示す。信号ω をq軸電流制御器6″の出力より得る方式の速度センサレスベクトル制御装置への適用例である。図4において、1〜3、5、7、9〜14、16は図1のものと同一物である。6″はiqとiqの偏差に応じてω を出力するq軸電流制御器、8″はω からω を減算し、速度推定値ω^を求め速度制御器5にフィードバックする減算器であり、切り替え器9は前記実施例と同様にω の大小に応じてω とω を選択し出力する。切り替え器9よりω が出力される従来制御の状態では、電流制御器6″の出力がω 相当となることを考慮すれば、前記実施例と同様に動作し、同様の効果が得られることは明らかである。
【0037】
前記実施例では、零速度域においてidを所定値に強め制御しているが、零速度域でのトルクが正負両方向あり、一定していない場合はこの方法が適している。理由については先述した。一方、トルクが片方向のみの場合は、iqの極性はトルク方向に応じて設定すればよいので、前記実施例のようにidを所定値に設定する代わりに、零速度域においてiqを所定値(負荷最大トルクに見合う値)に設定する方法も可能である。
【0038】
図5に、この実施例の構成を示す。図5において、構成要素の1〜10、12〜16は図1のものと同一物であり、動作も同じである。17は回転速度の大小に応じて速度制御器5の出力iqと設定電流値iq0を切り替えて出力する切替回路で、ω に応じて零速度域において「1」、それ以外では「0」の信号を出力する関数器171、iq0と遅れ回路172の出力Ga4(0≦Ga4≦1)を乗算する乗算器173、Ga4に対して相補の関係にある信号Ga5(=1−Ga4、0≦Ga5≦1)とiqを乗算する乗算器174、および両乗算器の出力を加算し、q軸電流制御器6の電流指令iq**を出力する加算器175から構成される。
【0039】
このものの動作は、以下の通りである。関数器171は、前述したように、零速度域においては「1」、それ以外では「0」の信号を出力する。遅れ回路172は切り替えを円滑に行わせるためのもので、前記信号に1次遅れで追従する信号Ga4を出力する。
【0040】
零速度域ではGa4は「1」、Ga5は「0」のため、乗算器173、174および加算器175の動作に従い、q軸電流指令器17からはiq0が出力される。したがって、零速度近傍ではiq0に従いiqが制御されて十分なトルクが得られる(iq0は負荷最大トルクに見合う値に設定される)。なお、零速度域以外ではこれとは逆にiqに従いiqが制御され、動作は従来のものと同一となる。
【0041】
以上のようにして、零速度域では、ω に応じて変換器出力周波数を、また、所定値iq0に従い電動機電流を制御することから、このものにおいても前記実施例と同様の効果が得られる。
【0042】
前記実施例は、速度制御器5を備え、その出力信号iqに応じてトルクを制御する速度制御方式への適用例であったが、速度制御器を備えない方式にも本発明を適用し同様の効果が得られる。
【0043】
図6はこの実施例の構成を示す。図6において、構成要素の1〜3、10〜14、16は図1のものと同一物である。7′はq軸電流値iqに基づいてすべり周波数基準値ω を求めるすべり周波数演算器である。
【0044】
次にシステム全体の動作について述べる。零速度域以外の状態ではω +ω の周波数指令値ω **が、また、d軸電流指令器11からは基準値idが出力される。このとき全体の動作は従来の速度センサレスベクトル制御システムと同一となる。すなわち、略ω に応じて変換器出力周波数を制御すると共に、電圧演算器13においてid、iqおよびω **に基づいて所要の電動機電圧を演算し、これにより変換器出力電圧を制御する。
【0045】
以上のようにして、変換器の出力電圧と周波数が制御されることから、V/f制御に類似の動作が行われる。しかし、電圧演算器13により、電動機の内部電圧降下を補償して誘導起電力(電動機磁束)が所定値となるように制御しているため、低速度域まで十分なトルクが得られるものである。
【0046】
このものに本発明を適用した場合は、零速度域ではω を出力し、またd軸電流指令器11は、idにΔidを加算した指令値id**を出力し、idを強め制御する。これにより、前記実施例と同様に、速度指令値に応じて周波数を制御し、d軸電流を通常時より大きめの所定値に制御することが行われるため、零速度域のトルク不足は解消される。
【0047】
前記実施例までは、零速度域において、変換器出力周波数ωを速度指令値ω で制御する方式であり、負荷トルクが作用すると、電動機の回転速度ωはすべり周波数ω分だけω から低下する。この補償は、図1の実施例における、d軸およびq軸の電流制御器出力Δd、Δqを用いて、零速度域のすべり周波数を推定し、該すべり推定値を周波数指令値に加算することにより行うことができる。
【0048】
図7はこの実施例の構成を示す。図1の速度センサレスベクトル制御装置に、零速度域のすべり補償を適用した例である。図7において、1〜16は図1のものと同一物である。18は、d軸およびq軸の電流制御器出力Δd、Δqと、出力周波数指令値ω **を用いて零速度域のすべり周波数推定値ω^を求めるすべり推定器であり、19は、信号ω と18の出力値であるω^の加算値ω ***を出力する加算器である。切り替え器9の出力ω **は、零速度域では、ω +ω^に、それ以外ではω +ω に一致する。すべり推定器18の構造を図8を用いて説明する。
【0049】
すべり推定器18に入力された信号ω **は、電動機の速度起電力定数181が乗算され、その乗算値と信号Δqが加算器182に入力される。更に、信号Δdと加算器182の出力信号は、除算器183に入力される。除算器183の出力信号に電動機の2次時定数の逆数(1/T )を乗算し、信号ω^を出力する。
【0050】
次に、本実施例の特徴的な構成であるすべり推定器18のもたらす効果について説明する。電動機のd軸およびq軸の電圧指令値V **、V **、および、電動機のd軸およびq軸の電圧V、Vは、それぞれ(数9)式、(数10)式で示される。
【0051】
**=r id**−ω **Lσiq+Δd
**=r iq+ω **Lσid**
+ω **(M/L )φ2d +Δq         …(数9)
=rid−ωLσiq−ω(M/L)φ2q
=riq+ωLσid+ω(M/L)φ2q     …(数10)
零速度域では、(数9)式、(数10)式において、q軸電流iqを0に制御していることから、iq・r=0、また同式の第2項は、第3項に比べて小さく、例え、Lσ≠Lσであっても無視できる。ここで、(数9)式=(数10)式の関係より、d軸およびq軸の電流制御器出力Δd、Δqは(数11)式で示される。
【0052】
Δd=(r−r )id−ω(M/L)φ2q
Δq=ω(M/L)φ2d−ω **(M/L )φ2d    …(数11)
よって、d軸電流制御器の出力Δdには、q軸磁束φ2qによる速度起電力e(=ω(M/L)φ2q)が現れる。一方、Δqに速度起電力基準値[ω **(M/L )φ2d ]を加算すると、電動機のd軸磁束φ2dに関係した速度起電力e(=ω(M/L)φ2d)が得られる。
【0053】
また、前述のように、id:所定値、iq=0に制御した場合、d、q軸の磁束φ2d、φ2qと電動機のすべり周波数ωの関係は(数12)式で示される。
【0054】
ω=1/T (−φ2q/φ2d
=1/T (e/e)               …(数12)
そこで、(数13)式で示す演算を行うことにより、電動機のすべり周波数ω^を演算することができる。
【0055】
ω^=1/T {Δd/(Δq+ω **(M/L )φ2d )}…(数13)
(数13)式で求めた信号ω^を速度指令値ω に加算して、出力周波数指令値ω **を制御すれば、負荷トルクによる回転速度の低下を補償でき、高精度な速度制御を行うことができる。
【0056】
また、上記Δd、Δqの代わりに、電圧指令値V **から抵抗基準値r・idを差し引いてe^(=−ω(M/L)φ2q)を求め、V **から非干渉基準値(ω **Lσid**)を差し引き、ω **(M/L )φ2d を加算してe^(=ω(M/L)φ2d)を求めて、(数14)式で示す演算を行うことにより、ω^を演算することもできる。
【0057】
ω^=1/T {e^/e^}             …(数14)
すなわち、電圧指令値から2次磁束φ2d、φ2qに関係するd、q軸の速度起電力(e、e)を検出して、その比に基づいてすべり周波数ω^を演算し、演算値ω^を用いて周波数指令値を修正(ω **=ω +ω^)することにより回転速度の低下を補償する。
【0058】
図9は本発明の他の実施例を示す。本実施例は、速度推定値ω^をq軸電流制御器6′の出力より得る方式の速度センサレスベクトル制御装置に、零速度域のすべり補償を適用した例である。図9において、1〜3、5、7、9〜14、16、19は図7のものと同一物である。6′はiqとiqの偏差に応じてω^を出力するq軸電流制御器、8′はω^とω を加算し、信号ω を出力する加算器、18′はV とΔdによりω^を出力するすべり推定器である。
【0059】
本実施例では、q軸電圧基準値=q軸電圧(V =V)の関係から、((数6)式の2行目)=((数10)式の2行目)であり、零速度域では、q軸電流iqを0に制御していることから、iq・r=0、また同式の第2項は、第3項に比べて小さく、例え、Lσ≠Lσであっても無視できる。つまり、V =E(=ω(M/L)φ2d)となる。Δdは、前実施例と同様なので、V とΔdの比によりすべり周波数推定値ω^を演算することができる。すなわち、図10に示す構成でω^を演算することができ、ω^を用いて周波数指令値を修正(ω **=ω +ω^)すれば、前記実施例と同様に動作し、同様の効果が得られることは明らかである。
【0060】
図11は、本発明の他の実施例を示す。本実施例は、信号ω をq軸電流制御器6″の出力より得る方式の速度センサレスベクトル制御装置に、零速度域のすべり補償を適用した例である。図11において、1〜3、5、7、9〜14、16、19は図7のものと同一物である。
【0061】
6″はiqとiqの偏差に応じてω を出力するq軸電流制御器、8″はω からω を減算し、速度推定値ω^を求め速度制御器5にフィードバックする減算器、18′はV とΔdによりω^を出力するすべり推定器である。本実施例でも図9の実例と同様に、図10に示す構成でω^を演算することができ、ω^を用いて周波数指令値を修正(ω **=ω +ω^)すれば、前記実施例と同様に動作し、同様の効果が得られることは明らかである。
【0062】
図12は、本発明の他の実施例を示す。本実施例は、速度制御器を備えない速度センサレスベクトル制御装置に、零速度域のすべり補償を適用した例である。図12において、構成要素の1〜3、10〜14、16は図7のものと同一物である。7′はq軸電流値iqに基づいてすべり周波数基準値ω を求めるすべり周波数演算器、18′はV とΔdによりω^を出力するすべり推定器である。本実施例でも図11の実例と同様に、図10に示す構成でω^を演算することができ、ω^を用いて周波数指令値を修正(ω **=ω +ω^)すれば、前記実施例と同様に動作し、同様の効果が得られることは明らかである。
【0063】
前記実施例までは、零速度域において、d軸電流値idを負荷トルクに関係なく一定に制御する方式であったが、軽負荷時には運転効率が低下する。そこで、演算したすべり推定値ω^によりd軸電流指令値id**を修正することにより、軽負荷時の運転効率を向上させる。
【0064】
図13は、この実施例の構成を示す。本実施例は、図7の速度センサレスベクトル制御装置に、d軸電流指令値の修正補償を適用した例である。図13において、1〜10、12〜16、18、19は図7のものと同一物である。
【0065】
すべり推定器18の出力信号ω^はd軸電流指令器11′において、関数発生器115に入力される。関数発生器115では、ω^を用いて、負荷トルクに見合うd軸電流指令修正ゲインを演算する。乗算器116では、d軸電流指令基準idと関数発生器115の出力信号が入力され、出力信号id**が演算される。
【0066】
次に、本発明の特徴的な構成であるd軸電流指令器11′のもたらす効果について説明する。零速度域では、id:所定値、iq=0に制御した場合、d軸およびq軸の電流制御器出力Δd、Δqの比に基づいて、負荷トルクに見合った電動機のすべり周波数ωを推定することができた。この推定値ω^を用いて、(数15)式で示す演算を行うことにより、負荷トルクに見合ったd軸電流指令値を演算することができる。
【0067】
id**=F(ω^)id                …(数15)
ただし、F(ω^)は、ω^=0のとき、F(ω^)=1
^>0のとき、F(ω^)>1
となるような、任意の関数。
【0068】
(数15)式で求めたd軸電流指令値id**を用いれば、
無負荷(ω^=0)では、id**=id
負荷時(ω^>0)では、id**>id
となり、負荷トルク(すべり周波数推定値ω^)に応じてd軸電流指令値が修正されるため、軽負荷時の運転効率を高くすることができる。
【0069】
また、本実施例では、関数F(ω^)により、id**を直接修正しているが、関数F(ω^)に応じて、図7に示すΔidを修正することを行ってもその効果は同様である。
【0070】
図14は、本発明の他の実施例を示す。本実施例は、速度推定値ω^をq軸電流制御器6′の出力より得る方式の速度センサレスベクトル制御装置に、d軸電流指令値の修正補償を適用した例である。図14において、1〜3、5、6′、7、8′、9、10、12〜14、16、18′、19は図9のものと同一物である。
【0071】
11′は信号ω^に応じて信号id**を修正するd軸電流指令器である。本実施例でも、前記実施例と同様に動作し、同様の効果が得られることは明らかである。
【0072】
図15は、本発明の他の実施例を示す。本実施例は、信号ω をq軸電流制御器6″の出力より得る方式の速度センサレスベクトル制御装置にd軸電流指令値の修正補償を適用した例である。図15において、1〜3、5、6″、7、8″、9、10、12〜14,16、18′,19は図11のものと同一物である。11′は信号ω^に応じて信号id**を修正するd軸電流指令器である。本実施例でも、前記実施例と同様に動作し、同様の効果が得られることは明らかである。
【0073】
図16は、本発明の他の実施例を示す。本実施例は、速度制御器を備えない速度センサレスベクトル制御装置に、d軸電流指令値の修正補償を適用した例である。図16において、構成要素の1〜3、7′、10〜14、16、18′は図6のものと同一物である。11′は信号ω^に応じて信号id**を修正するd軸電流指令器である。本実施例でも、前記実施例と同様に動作し、同様の効果が得られることは明らかである。
【0074】
【発明の効果】
本発明によれば、零速度域においてもトルク不足を生じず、高精度、高効率な誘導電動機の速度制御方法を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す、導電動機の速度制御装置の制御回路構成図である。
【図2】図1の装置における速度推定器の演算内容の説明図である。
【図3】本発明の他の実施例を示す、誘導電動機の速度制御装置の制御回路構成図である。
【図4】本発明の他の実施例を示す、誘導電動機の速度制御装置の制御回路構成図である。
【図5】本発明の他の実施例を示す、誘導電動機の速度制御装置の制御回路構成図である。
【図6】本発明の他の実施例を示す、誘導電動機の速度制御装置の制御回路構成図である。
【図7】本発明の他の実施例を示す、誘導電動機の速度制御装置の制御回路構成図である。
【図8】図7の装置におけるすべり推定器の演算内容の説明図である。
【図9】本発明の他の実施例を示す、誘導電動機の速度制御装置の制御回路構成図である。
【図10】図9の装置におけるすべり推定器の演算内容の説明図である。
【図11】本発明の他の実施例を示す、誘導電動機の速度制御装置の制御回路構成図である。
【図12】本発明の他の実施例を示す、誘導電動機の速度制御装置の制御回路構成図である。
【図13】本発明の他の実施例を示す、誘導電動機の速度制御装置の制御回路構成図である。
【図14】本発明の他の実施例を示す、誘導電動機の速度制御装置の制御回路構成図である。
【図15】本発明の他の実施例を示す、誘導電動機の速度制御装置の制御回路構成図である。
【図16】本発明の他の実施例を示す、誘導電動機の速度制御装置の制御回路構成図である。
【符号の説明】
1…誘導電動機、2…電力変換器、3…座標変換器、4…速度推定器、5…速度制御器、6…q軸電流制御器、9…切り替え器、11…d軸電流指令器、12…d軸電流制御器、13…電圧演算器、16…座標変換器、18…すべり推定器。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a speed control method for an induction motor, and more particularly to a speed sensorless vector control method capable of obtaining a high torque from a zero speed region without requiring a speed sensor attached to the motor.
[0002]
[Prior art]
In vector control of an induction motor, a method of controlling an output frequency of a converter according to an added value of a rotation speed of the motor and a slip frequency reference value is generally used. On the other hand, in the speed sensorless vector control, the output frequency is controlled using a speed estimation value instead of the actual rotation speed. However, since the estimated speed value includes an error, the actual slip frequency fluctuates from the appropriate reference value. At this time, the motor magnetic flux fluctuates (decreases) according to the torque change. As a result, the motor generated torque is not proportional to the torque current, and in an extreme case, the torque may be insufficient.
[0003]
The causes of the error in the speed estimation include a setting error of the motor constants (primary and secondary resistances) used in the speed estimation calculation, and a fluctuation of the motor magnetic flux which is generated secondarily due to the primary error. Heretofore, there has been no sufficient method for compensating for these fluctuations, and this may cause a torque shortage especially near zero speed. Note that there is Non-Patent Document 1 as a related document.
[0004]
[Non-patent document 1]
Okuyama, et al. "Effect of Control Constant Setting Error in Speed and Voltage Sensorless Vector Control and Its Compensation"
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a speed control method for an induction motor that is not affected by a speed estimation error due to a change in a motor constant or the like and does not cause torque shortage even in a zero speed region.
[0006]
[Means for Solving the Problems]
According to the present invention, when the speed command value is equal to or less than a predetermined value, the d-axis current is controlled to be equal to or greater than a normal value, and the frequency command value is calculated based on the speed command value instead of the estimated speed value. It is characterized by the following.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
[0008]
FIG. 1 shows a configuration example of a speed sensorless vector control device according to an embodiment of the present invention. 1 is an induction motor, 2 is a voltage command value V1 *Is a power converter that outputs an output voltage proportional to the above, 3 is a coordinate converter that converts the converter output currents iu and iw and calculates d-axis and q-axis currents id and iq, and 4 is a q-axis voltage command value Vq **Velocity ω based onrA speed estimator that calculates ^, 5 is a speed command value ωr *And speed estimate ωrIn accordance with the deviation of ^, q-axis current command value iq*Is a speed controller that outputs iq according to id.*A limiter that limits the 6 is iq*Q-axis current controller that outputs Δq in accordance with*Frequency reference value ω based ons *, And 8 is ωr^ and ωs *And the signal ω1 *, And 9 is ω1 *And ωr *Is switched according to the magnitude of the rotation speed and output.1 *, Ω multiplied by the output Ga1 of the function unit 91r *And a multiplier 94 for multiplying the output Ga2 of the function unit 93 and an adder 95 for adding the outputs of both multipliers. 10 is an output frequency command value ω from the switching circuit 91 **A d-axis current commander, a multiplier 112 for multiplying the added current value Δid by the output Ga3 of the function unit 111, and a reference current value id*And the multiplier output, and the first-order lag value id**Is output from the delay circuit 113. 12 is the id**D-axis current controller that outputs a signal Δd corresponding to the deviation between**, Iq*, And ω1 **D-axis and q-axis voltage reference values Vd based on*, Vq*, And 14 is Vd*Value Vd of Δd and Δd**, And 15 is Vq*And Vq added value Vq**, And 16 is Vd**And Vq**Is converted to a coordinate, and the converter output voltage command value V1*This is a coordinate converter that outputs (3 phases).
[0009]
In the above, 9 and 11 are characteristic features of the present invention. The characteristics of the function units in 9 and 11 are as follows. The output Ga1 of the function unit 91 is ωr *Takes a value of 0 near zero and a value of 1 when large, and the output Ga2 of the function unit 93 takes the opposite value. That is, Ga1 and Ga2 are complementary to each other and have a relationship of (Equation 1).
[0010]
Ga1 + Ga2 = 1 (Equation 1)
Therefore, the output ω of the switch 91 **Is given by equation (2). This gives ω1 **Is ω at zero speedr *And ω otherwise1 *Matches. The gradually increasing / decreasing region of Ga1 and Ga2 is for smooth switching, and in this region, ω1 **As ω1 *And ωr *Is output.
[0011]
ω1 **= Ω1 *Ga1 + ωr *Ga2 (Equation 2)
The output Ga3 of the function unit 111 is ωr *Takes a value of 1 near zero and a value of 0 otherwise. This gives the id**And id are reference values id in the zero speed range.*Is increased by Δid.
[0012]
Next, the operation of the entire system will be described. The components 1 to 7, 10, 12, 13, and 14 to 16 are the same as those of the conventional speed sensorless vector control system.
[0013]
In the speed sensorless vector control, the rotation speed is estimated based on the converter output voltage and the output current, and this is fed back to the speed controller 5 to perform the speed control, and the speed estimation value ωr^ and slip frequency reference value ωs *The converter output frequency is controlled according to the added value of. The difference from the known vector control with a speed sensor is that a speed estimation value is used instead of a speed detection value from a speed sensor attached to a motor, but the basic operation is the same.
[0014]
Q-axis current command value iq from speed controller 5*And d-axis current command id**In order to control the motor currents iq and id according to the above, it is necessary to supply the necessary motor voltage for this purpose from the converter. Therefore, in the voltage calculator 13, the current command value id**, Iq*And frequency command ω1 **D-axis and q-axis voltage reference values Vd based on*, Vq*Is used to control the converter output voltage. However, since the currents id and iq do not match the respective command values due to the control error alone, the voltage Vq is determined by Δq and Δd from the q-axis and d-axis current controllers 6 and 12.*, Vd*Is corrected, and iq and id are controlled so as to match the command value. In this manner, the operation of the slip frequency control type vector control is performed, and the motor torque becomes iq*Is controlled in proportion to
[0015]
Next, a detailed operation of each component will be described.
[0016]
In the speed estimator 4, the estimated speed value ω is calculated according to the equation (3).rCalculate ^.
[0017]
Figure 2004007993
Where TO: Observer time constant
L2 *, M*: Secondary and exciting inductance (reference value)
φ2d *: Secondary magnetic flux (reference value)
*: Sum of primary and secondary resistance (reference value)
*: Sum of primary and secondary leakage inductances (reference value)
ω1 **: Converter output frequency (command value)
FIG. 2 shows the operation of the speed estimator 4 based on the expression (3). 41 is a motor model, and the motor q-axis voltage Vq(= Vq **) And induced electromotive force eqAnd current iqShows the relationship. The estimation principle is eqIs estimated by the inverse model, and divided by the reference magnetic flux amount to obtain the estimated speed ωr演算 is calculated.
[0018]
ωr用 い る is used as a feedback signal to the speed controller 5 and ω1 *Is used for the calculation of This arithmetic expression is shown in Expression (4). With conventional control, ω1 *Is the output frequency command value ω1 **To control the output frequency of the converter.
[0019]
ω1 *= Ωr^ + ωs *… (Equation 4)
On the other hand, in the speed controller 5, the speed deviation ωr *−ωrQ-axis current command value iq according to ^*Is calculated. The motor torque is basically iq*Is proportional tor^ is ωr *The speed control is performed so as to coincide with. Motor torque is iq*Is correctly proportional to the motor current iq is iq*And the magnetic flux of the motor is kept at a reference value. For this, the motor currents id and iq are set to the respective command values id.**, Iq*Therefore, it is necessary to perform control so as to coincide with the following equation. For this purpose, d-axis and q-axis current controllers 12 and 6 are provided. The motor voltage under each operating condition is expressed by the following equation (5).d *, Vq *Is id**, Iq*, Ω1 **And Equation (6) based on the motor constant and can be obtained in advance by calculation. This calculation is performed in the voltage calculator 13.
[0020]
Vd= R1id-ω1Lσiq
Vq= R1iq + ω1Lσid + ω1(M / L2) Φ2d… (Equation 5)
Where r1: Primary resistance (actual value)
Lσ: Sum of primary and secondary leakage inductances (actual value)
L2, M: secondary and exciting inductances (actual values)
φ2d: Secondary magnetic flux (actual value)
Vd *= R1 *id**−ω1 ***iq*
Vq *= R1 *iq*+ Ω1 ***id**+ Ω1 **(M*/ L2 *) Φ2d *… (Equation 6)
Here, * and ** indicate a reference value / command value.
[0021]
The converter output voltage (motor voltage) is basicallyd *And Vq *Is controlled in accordance with However, if there is a control error, the actual currents id and iq do not match the respective command values by themselves, so that the signals Δd and Δq corresponding to the current deviation are obtained by the d-axis and q-axis current controllers 12 and 6, and The output voltage is corrected, and id and iq are controlled to match the command value.
[0022]
The above is the operation common to the conventional one. Next, the contents directly related to the present invention will be described.
[0023]
Ω obtained by the speed estimator 4r^ includes the estimation error. Therefore, the problem of insufficient torque occurs as described above. Causes of the estimation error include a temperature change of the primary and secondary resistances and a change in leakage inductance due to saturation of the iron core of the electric motor. In particular, in the zero speed region, the torque tends to decrease due to various causes.
[0024]
According to the present invention, speed control is performed in the zero speed range according to a principle different from that described above in order to prevent a torque reduction in the zero speed range. Hereinafter, this content will be described.
[0025]
As described above, the decrease in torque is caused by a speed estimation error. If this is further analyzed, it can be roughly classified into the following two.
(1) Since the frequency is controlled based on the estimated speed value, the actual slip frequency varies from an appropriate value due to an estimation error.
(2) Since the speed is controlled using the estimated speed, the torque current cannot be controlled to an appropriate value due to an estimation error.
[0026]
Therefore, in the present invention, each is solved as follows.
[0027]
In the “1” zero speed range, the estimated value ωrSpeed command value ω instead of ^r *Output frequency command value ω1 **Is calculated. That is, in the zero speed region, the switch 9 sets the normal ω1 *Instead of ωr *And output the output frequency of the converter.r *Control according to.
[0028]
In the "2" zero speed range, the d-axis current is controlled to a predetermined value which is larger than usual. That is, in the d-axis current commander 11, the reference value id in the normal state is used.*Is added to and the id is strengthened and controlled.
[0029]
Motor generated torque τ when “1” and “2” are appliedeAnd current Ι1Is shown in equation (7).
[0030]
τe= K (ωsT2) / (1+ (ωsT2)2) I1 2… (Equation 7)
Where k: proportionality constant
ωs: Slip
T2: Secondary time constant
I1: Motor current magnitude
I1Is constant, the motor torque τe becomes ωs・ T2= Maximum at ± 1 but ωs= 0 to τeSliding frequency ωsIt changes according to. In this case, ωsIs the actual speed ωrIs the converter output frequency ω1(= Ωr *) Is passively generated by fluctuations. That is, according to the increase / decrease of the load torque,sIncrease / decrease, τeIs generated following the load torque. As a result, the motor speed ωrIs ωr *(Variation by slip) is maintained, and speed control is performed according to the speed command value.
[0031]
Here, since the motor maximum torque needs to be equal to or more than the load maximum torque,1Must be controlled in advance to a value corresponding to the maximum load torque. For this purpose, id or iq is controlled to a predetermined value. As this method, iq*May be set to a predetermined value irrespective of the speed deviation.rSince it is difficult to detect from ^ etc. due to accuracy, iq*Polarity cannot be set. For this reason, it is unnecessary to set the polarity.**Is set to a predetermined value in the embodiment of FIG. At this time, as described in the above “2”, the current command value id**Is the reference value id at the normal time.*And a value obtained by adding Δid to id (= I1Equivalent) is controlled to a value commensurate with the maximum load torque.
[0032]
In the zero speed range, the output frequency and output current of the converter are controlled as described above, so that the problems (1) and (2) are solved, and the torque shortage is also solved.
[0033]
In the range where the output frequency is several Hz or more, the output of the switch 9 is ωr *From ω1 *And the speed estimation value ωrPerform frequency control using ^. For smooth switching, ω accompanying switching1 **Ω so as to suppress the sudden change ofr *And ω1 *Is switched gradually. The gradual increase / decrease characteristics of the outputs Ga1 and Ga2 of the function units 91 and 93 are provided for this purpose. In the d-axis current commander 11, a delay circuit 113 is provided to suppress a sudden change in id.
[0034]
In the state where id is strengthened (zero speed range), the motor current I1Iq*Must be limited, and in this period, ωrIq*Deviates from the proper value, so iq*Must be limited to a predetermined value or substantially zero. In this embodiment, according to the equation (8), iq is determined according to id.*Limit value iq ofMAXIs varied.
[0035]
iqMAX= √ (I1 * 2-Id2)… (Equation 8)
Where I1 *: Motor current set value
FIG. 3 shows another embodiment of the present invention. Speed estimate ωrThis is an example of application to a speed sensorless vector control device in which 得 る is obtained from the output of a q-axis current controller 6 ′. 3, 1 to 3, 5, 7, 9 to 14, and 16 are the same as those in FIG. 6 'is iq*And ω according to the deviation of iqrA q-axis current controller that outputs ^, 8 ′ is ωr^ and ωs *And the signal ω1 *And the switcher 9 outputs ω in the same manner as in the previous embodiment.r *Ω depending on the size of1 *And ωr *Select and output. Ω from switcher 91 *Is output, the output of the current controller 6 'is ωrConsidering that ^, the operation is the same as that of the above embodiment, and it is clear that the same effect can be obtained.
[0036]
FIG. 4 shows another embodiment of the present invention. Signal ω1 *Is an example of application to a speed sensorless vector control device of the type that obtains from the output of a q-axis current controller 6 ″. In FIG. 4, 1-3, 5, 7, 9-14, and 16 are the same as those in FIG. 6 ″ is iq*And ω according to the deviation of iq1 *The q-axis current controller that outputs1 *From ωs *Is subtracted, and the speed estimate ωr減 算 is a subtractor that obtains ^ and feeds it back to the speed controller 5.r *Ω depending on the size of1 *And ωr *Select and output. Ω from switcher 91 *Is output, the output of the current controller 6 ″ becomes ω1 *Considering the fact that it is considerable, it is clear that the operation is the same as that of the above-described embodiment and the same effect is obtained.
[0037]
In the above-described embodiment, id is controlled to a predetermined value in the zero speed range. However, this method is suitable when the torque in the zero speed range is in both positive and negative directions and is not constant. The reason has been described above. On the other hand, if the torque is only in one direction, iq*Can be set according to the torque direction. Instead of setting id to a predetermined value as in the above-described embodiment, iq in the zero speed region is used.*Can be set to a predetermined value (a value corresponding to the maximum load torque).
[0038]
FIG. 5 shows the configuration of this embodiment. 5, components 1 to 10 and 12 to 16 are the same as those in FIG. 1, and the operation is the same. Reference numeral 17 denotes an output iq of the speed controller 5 according to the magnitude of the rotation speed.*And a set current value iq0 for switching and outputting.r *The multipliers 173 and Ga4 that multiply the function units 171 and iq0 that output a signal of “1” in the zero speed region and “0” in other cases and the output Ga4 (0 ≦ Ga4 ≦ 1) of the delay circuit 172 according to Signal Ga5 (= 1−Ga4, 0 ≦ Ga5 ≦ 1) and iq that are complementary to each other*174 and the outputs of both multipliers are added, and the current command iq of the q-axis current controller 6 is added.**Is output from the adder 175.
[0039]
The operation of this is as follows. As described above, the function unit 171 outputs a signal of “1” in the zero speed region, and outputs a signal of “0” in other cases. The delay circuit 172 is for smooth switching, and outputs a signal Ga4 that follows the signal with a first-order delay.
[0040]
Since Ga4 is “1” and Ga5 is “0” in the zero speed range, the q-axis current commander 17 outputs iq0 according to the operations of the multipliers 173 and 174 and the adder 175. Therefore, in the vicinity of zero speed, iq is controlled in accordance with iq0, and sufficient torque is obtained (iq0 is set to a value corresponding to the load maximum torque). It should be noted that, except for the zero-speed range, on the contrary, iq*Iq is controlled in accordance with the above, and the operation becomes the same as that of the conventional one.
[0041]
As described above, in the zero speed range, ωr *, And the motor current is controlled in accordance with the predetermined value iq0, so that the same effect as in the above embodiment can be obtained in this case as well.
[0042]
Said embodiment comprises a speed controller 5 whose output signal iq*However, the present invention can be applied to a system without a speed controller to achieve the same effect.
[0043]
FIG. 6 shows the configuration of this embodiment. 6, constituent elements 1 to 3, 10 to 14, and 16 are the same as those in FIG. 7 ′ is a slip frequency reference value ω based on the q-axis current value iq.s *Is a slip frequency calculator.
[0044]
Next, the operation of the entire system will be described. In states other than the zero speed range, ωr *+ Ωs *Frequency command value ω1 **However, from the d-axis current commander 11, the reference value id*Is output. At this time, the entire operation is the same as that of the conventional speed sensorless vector control system. That is, approximately ωr *, The converter output frequency is controlled in accordance with*, Iq and ω1 **Is used to calculate the required motor voltage, thereby controlling the converter output voltage.
[0045]
Since the output voltage and the frequency of the converter are controlled as described above, an operation similar to the V / f control is performed. However, the voltage calculator 13 controls the induced electromotive force (motor magnetic flux) to a predetermined value by compensating for the internal voltage drop of the motor, so that sufficient torque can be obtained up to a low speed region. .
[0046]
When the present invention is applied to this, ω in the zero speed regionr *And the d-axis current commander 11 outputs id*Command value id obtained by adding Δid to**Is output, and id is strengthened and controlled. As a result, similarly to the above-described embodiment, the frequency is controlled in accordance with the speed command value, and the d-axis current is controlled to a predetermined value which is larger than the normal time. You.
[0047]
Up to the above embodiment, in the zero speed range, the converter output frequency ω1Is the speed command value ωr *When load torque acts, the rotation speed ω of the motorrSliding frequency ωsΩ for the minuter *From. This compensation is performed by estimating the slip frequency in the zero speed range using the current controller outputs Δd and Δq of the d-axis and the q-axis in the embodiment of FIG. 1 and adding the estimated slip value to the frequency command value. Can be performed.
[0048]
FIG. 7 shows the configuration of this embodiment. This is an example in which slip compensation in the zero speed region is applied to the speed sensorless vector control device of FIG. 7, reference numerals 1 to 16 are the same as those in FIG. 18 is the d-axis and q-axis current controller outputs Δd and Δq, and the output frequency command value ω1 **Is used to estimate the slip frequency ω in the zero speed range.s19 is a slip estimator, and 19 is a signal ωr *And the output value of 18s値 added value ω1 ***Is an adder. Output ω of switch 91 **Is ω at zero speedr *+ Ωs^, otherwise ωr *+ Ωs *Matches. The structure of the slip estimator 18 will be described with reference to FIG.
[0049]
The signal ω input to the slip estimator 181 **Is multiplied by the speed electromotive force constant 181 of the motor, and the multiplied value and the signal Δq are input to the adder 182. Further, the signal Δd and the output signal of the adder 182 are input to the divider 183. The output signal of the divider 183 is added to the reciprocal (1 / T) of the secondary time constant of the motor.2 *) And the signal ωsOutput ^.
[0050]
Next, an effect provided by the slip estimator 18 which is a characteristic configuration of the present embodiment will be described. Voltage command value V for d-axis and q-axis of motord **, Vq **, And the voltage V on the d-axis and q-axis of the motord, VqAre represented by the following (Equation 9) and (Equation 10).
[0051]
Vd **= R1 *id**−ω1 ***iq*+ Δd
Vq **= R1 *iq*+ Ω1 ***id**
+ Ω1 **(M*/ L2 *) Φ2d *+ Δq (Equation 9)
Vd= R1id-ω1Lσiq−ω1(M / L2) Φ2q
Vq= R1iq + ω1Lσid + ω1(M / L2) Φ2q… (Equation 10)
In the zero speed region, since the q-axis current iq is controlled to 0 in the equations (9) and (10), iq · r1= 0, and the second term of the equation is smaller than the third term, for example, Lσ*Even ≠ Lσ can be ignored. Here, from the relationship of Expression (9) = Expression (10), the d-axis and q-axis current controller outputs Δd and Δq are expressed by Expression (11).
[0052]
Δd = (r1-R1 *) Id-ω1(M / L2) Φ2q
Δq = ω1(M / L2) Φ2d−ω1 **(M*/ L2 *) Φ2d *(Equation 11)
Therefore, the output Δd of the d-axis current controller includes the q-axis magnetic flux φ2qSpeed electromotive force eq(= Ω1(M / L2) Φ2q) Appears. On the other hand, the speed electromotive force reference value [ω1 **(M*/ L2 *) Φ2d *], The d-axis magnetic flux φ of the motor2dSpeed electromotive force e related tod(= Ω1(M / L2) Φ2d) Is obtained.
[0053]
Also, as described above, when id is controlled to a predetermined value and iq = 0, the magnetic flux φ of the d and q axes2d, Φ2qAnd motor slip frequency ωsIs expressed by equation (12).
[0054]
ωs= 1 / T2 *(-Φ2q/ Φ2d)
= 1 / T2 *(Ed/ Eq) ... (Equation 12)
Therefore, the slip frequency ω of the electric motor is calculated by performing the calculation represented by Expression (13).s^ can be calculated.
[0055]
ωs^ = 1 / T2 *{Δd / (Δq + ω1 **(M*/ L2 *) Φ2d *)} ... (Equation 13)
The signal ω obtained by Expression (13)s^ is the speed command value ωr *To the output frequency command value ω1 **, It is possible to compensate for a decrease in the rotation speed due to the load torque, and to perform high-accuracy speed control.
[0056]
Also, instead of the above Δd and Δq, a voltage command value Vd **From the resistance reference value r1-Subtract id and ed^ (= − ω1(M / L2) Φ2q) And Vq **From the non-interference reference value (ω1 ***id**) Minus ω1 **(M*/ L2 *) Φ2d *And add eq^ (= ω1(M / L2) Φ2d) Is obtained, and the calculation represented by Expression (14) is performed to obtain ωs^ can also be calculated.
[0057]
ωs^ = 1 / T2 *{Ed^ / eq^}… (Equation 14)
That is, from the voltage command value, the secondary magnetic flux φ2d, Φ2qD- and q-axis velocity electromotive force (ed, Eq), And based on the ratio, the slip frequency ωs^ is calculated and the calculated value ωsCorrect the frequency command value using ((ω1 **= Ωr *+ Ωs^) to compensate for the decrease in rotation speed.
[0058]
FIG. 9 shows another embodiment of the present invention. In the present embodiment, the speed estimation value ωrThis is an example in which slip compensation in the zero speed region is applied to a speed sensorless vector control device in which ^ is obtained from the output of the q-axis current controller 6 ′. 9, 1 to 3, 5, 7, 9 to 14, 16, and 19 are the same as those in FIG. 6 'is iq*And ω according to the deviation of iqrA q-axis current controller that outputs ^, 8 ′ is ωr^ and ωs *And the signal ω1 *And an adder 18 'outputs Vq *And Δd give ωsThis is a slip estimator that outputs ^.
[0059]
In this embodiment, the q-axis voltage reference value = q-axis voltage (Vq *= VqFrom the relationship (), (the second line of the expression (6)) = (the second line of the expression (10)), and since the q-axis current iq is controlled to 0 in the zero speed region, iq · r1= 0, and the second term of the equation is smaller than the third term, for example, Lσ*Even ≠ Lσ can be ignored. That is, Vq *= Eq(= Ω1(M / L2) Φ2d). Since Δd is the same as in the previous embodiment, Vdq *Slip frequency estimated value ω by the ratio ofs^ can be calculated. That is, in the configuration shown in FIG.s^ can be calculated, and ωsCorrect the frequency command value using ((ω1 **= Ωr *+ Ωs^) Then, it is apparent that the same operation as in the above embodiment is performed and the same effect is obtained.
[0060]
FIG. 11 shows another embodiment of the present invention. In this embodiment, the signal ω1 *Is applied to the speed sensorless vector control device of the type that obtains the following from the output of the q-axis current controller 6 ″. In FIG. 16 and 19 are the same as those in FIG.
[0061]
6 ″ is iq*And ω according to the deviation of iq1 *The q-axis current controller that outputs1 *From ωs *Is subtracted, and the speed estimate ωr減 算 is obtained by a subtractor for feeding back to the speed controller 5, and 18 ′ is Vq *And Δd give ωsThis is a slip estimator that outputs ^. In the present embodiment, similarly to the actual example of FIG. 9, the configuration shown in FIG.s^ can be calculated, and ωsCorrect the frequency command value using ((ω1 **= Ωr *+ Ωs^) Then, it is apparent that the same operation as in the above embodiment is performed and the same effect is obtained.
[0062]
FIG. 12 shows another embodiment of the present invention. The present embodiment is an example in which a slip compensation in a zero speed region is applied to a speed sensorless vector control device having no speed controller. 12, the components 1-3, 10-14, and 16 are the same as those in FIG. 7 ′ is a slip frequency reference value ω based on the q-axis current value iq.s *, The slip frequency calculator for calculating theq *And Δd give ωsThis is a slip estimator that outputs ^. In the present embodiment, similarly to the actual example in FIG. 11, the configuration shown in FIG.s^ can be calculated, and ωsCorrect the frequency command value using ((ω1 **= Ωr *+ Ωs^) Then, it is apparent that the same operation as in the above embodiment is performed and the same effect is obtained.
[0063]
Up to the above-described embodiment, the d-axis current value id is controlled to be constant irrespective of the load torque in the zero speed range. However, at light load, the operation efficiency decreases. Therefore, the calculated slip estimated value ωsD is the d-axis current command value id**To improve the operating efficiency at light load.
[0064]
FIG. 13 shows the configuration of this embodiment. This embodiment is an example in which the correction compensation of the d-axis current command value is applied to the speed sensorless vector control device of FIG. 13, reference numerals 1 to 10, 12 to 16, 18, and 19 are the same as those in FIG.
[0065]
Output signal ω of slip estimator 18s^ is input to the function generator 115 in the d-axis current commander 11 ′. In the function generator 115, ωsUsing d, a d-axis current command correction gain corresponding to the load torque is calculated. In the multiplier 116, the d-axis current command reference id*And the output signal of the function generator 115 are input, and the output signal id**Is calculated.
[0066]
Next, the effect provided by the d-axis current commander 11 'which is a characteristic configuration of the present invention will be described. In the zero speed range, id: a predetermined value, and when controlled to iq = 0, the slip frequency ω of the motor corresponding to the load torque based on the ratio of the current controller outputs Δd, Δq on the d-axis and the q-axis.sCould be estimated. This estimate ωsBy using 演算 to perform the calculation represented by Expression 15, it is possible to calculate the d-axis current command value corresponding to the load torque.
[0067]
id**= F (ωs^) id*… (Equation 15)
Where F (ωs^) is ωsWhen ^ = 0, F (ωs^) = 1
sWhen ^> 0, F (ωs^)> 1
Any function such that
[0068]
D-axis current command value id obtained by equation (15)**If you use
No load (ωs^ = 0), id**= Id*
Under load (ωs^> 0), id**> Id*
And the load torque (slip frequency estimated value ωsSince the d-axis current command value is corrected in accordance with ^), the operation efficiency at light load can be increased.
[0069]
In this embodiment, the function F (ωs^) gives the id**Is directly corrected, but the function F (ωsEven if Δid shown in FIG. 7 is modified according to ^), the effect is the same.
[0070]
FIG. 14 shows another embodiment of the present invention. In the present embodiment, the speed estimation value ωrThis is an example in which correction compensation for a d-axis current command value is applied to a speed sensorless vector control device of a system that obtains ^ from the output of a q-axis current controller 6 ′. 14, 1 to 3, 5, 6 ', 7, 8', 9, 10, 12 to 14, 16, 18 'and 19 are the same as those in FIG.
[0071]
11 'is the signal ωsSignal id according to ^**Is a d-axis current commander that corrects. It is apparent that the present embodiment also operates in the same manner as the above-described embodiment and achieves the same effects.
[0072]
FIG. 15 shows another embodiment of the present invention. In this embodiment, the signal ω1 *15 is applied to a speed sensorless vector control device of a type that obtains from the output of a q-axis current controller 6 ″. In FIG. 8 ", 9, 10, 12-14, 16, 18 'and 19 are the same as those in Fig. 11. 11' is the signal ω.sSignal id according to ^**Is a d-axis current commander that corrects. It is apparent that the present embodiment also operates in the same manner as the above-described embodiment and achieves the same effects.
[0073]
FIG. 16 shows another embodiment of the present invention. The present embodiment is an example in which a correction compensation of a d-axis current command value is applied to a speed sensorless vector control device having no speed controller. In FIG. 16, the components 1-3, 7 ', 10-14, 16, 18' are the same as those in FIG. 11 'is the signal ωsSignal id according to ^**Is a d-axis current commander that corrects. It is apparent that the present embodiment also operates in the same manner as the above-described embodiment and achieves the same effects.
[0074]
【The invention's effect】
According to the present invention, it is possible to provide a high-precision and high-efficiency speed control method for an induction motor that does not cause torque shortage even in a zero speed range.
[Brief description of the drawings]
FIG. 1 is a control circuit configuration diagram of a speed control device for a conductive motive, showing one embodiment of the present invention.
FIG. 2 is an explanatory diagram of calculation contents of a speed estimator in the apparatus of FIG. 1;
FIG. 3 is a control circuit configuration diagram of an induction motor speed control device, showing another embodiment of the present invention.
FIG. 4 is a control circuit configuration diagram of an induction motor speed control device, showing another embodiment of the present invention.
FIG. 5 is a control circuit configuration diagram of a speed control device for an induction motor, showing another embodiment of the present invention.
FIG. 6 is a control circuit configuration diagram of a speed control device for an induction motor, showing another embodiment of the present invention.
FIG. 7 is a control circuit configuration diagram of a speed control device for an induction motor, showing another embodiment of the present invention.
FIG. 8 is an explanatory diagram of calculation contents of a slip estimator in the apparatus of FIG. 7;
FIG. 9 is a control circuit configuration diagram of an induction motor speed control device, showing another embodiment of the present invention.
FIG. 10 is an explanatory diagram of calculation contents of a slip estimator in the apparatus of FIG. 9;
FIG. 11 is a control circuit configuration diagram of a speed control device for an induction motor, showing another embodiment of the present invention.
FIG. 12 is a control circuit configuration diagram of a speed control device for an induction motor, showing another embodiment of the present invention.
FIG. 13 is a control circuit configuration diagram of a speed control device for an induction motor, showing another embodiment of the present invention.
FIG. 14 is a control circuit configuration diagram of a speed control device for an induction motor, showing another embodiment of the present invention.
FIG. 15 is a control circuit configuration diagram of a speed control device for an induction motor, showing another embodiment of the present invention.
FIG. 16 is a control circuit configuration diagram of an induction motor speed control device, showing another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Induction motor, 2 ... Power converter, 3 ... Coordinate converter, 4 ... Speed estimator, 5 ... Speed controller, 6 ... q-axis current controller, 9 ... Switching device, 11 ... d-axis current commander, 12: d-axis current controller, 13: voltage calculator, 16: coordinate converter, 18: slip estimator.

Claims (6)

誘導電動機を駆動する電力変換器の出力電流を、回転磁界座標系のd軸の電流指令値と回転磁界座標系のq軸の電流指令値とに従って制御する電流制御器を備えた制御装置によって制御する誘導電動機の速度制御方法において、
速度指令値あるいは速度推定値が所定値以下の場合は、周波数指令値の演算を速度推定値に代えて速度指令値を用いて行い、また、速度指令値あるいは速度推定値が所定値以下の場合は、前記電流制御器の出力値に基づいて演算した電動機のすべり周波数推定値と、前記速度指令値の加算値に応じて前記変換器の出力周波数を制御することを特徴とする誘導電動機の速度制御方法。
The output current of the power converter that drives the induction motor is controlled by a control device including a current controller that controls the d-axis current command value of the rotating magnetic field coordinate system and the q-axis current command value of the rotating magnetic field coordinate system. In the speed control method of the induction motor to be performed,
When the speed command value or the estimated speed value is equal to or less than the predetermined value, the calculation of the frequency command value is performed using the speed command value instead of the speed estimated value, and when the speed command value or the estimated speed value is equal to or less than the predetermined value. Controlling an output frequency of the converter in accordance with an estimated value of a slip frequency of the motor calculated based on an output value of the current controller and an added value of the speed command value. Control method.
誘導電動機を駆動する電力変換器の出力電流を、速度指令値と速度推定値の偏差に応じて回転磁界座標系のq軸電流指令値を出力する速度制御器と、回転磁界座標系のd軸の電流指令値と回転磁界座標系のq軸の電流指令値とに従って制御する電流制御器とを備えた制御装置によって制御する誘導電動機の速度制御方法において、
速度指令値あるいは速度推定値が所定値以下の場合は、周波数指令値の演算を速度推定値に代えて速度指令値を用いて行い、また、速度指令値あるいは速度推定値が所定値以下の場合は、前記電流制御器の出力値に基づいて演算した電動機のすべり周波数推定値と、前記速度指令値の加算値に応じて前記変換器の出力周波数を制御することを特徴とする誘導電動機の速度制御方法。
A speed controller that outputs an output current of a power converter that drives an induction motor, a q-axis current command value in a rotating magnetic field coordinate system according to a deviation between a speed command value and a speed estimated value, and a d-axis in a rotating magnetic field coordinate system Speed control method of an induction motor controlled by a control device including a current controller for controlling according to a current command value of the current and a current command value of the q-axis of the rotating magnetic field coordinate system,
When the speed command value or the estimated speed value is equal to or less than the predetermined value, the calculation of the frequency command value is performed using the speed command value instead of the speed estimated value, and when the speed command value or the estimated speed value is equal to or less than the predetermined value. Controlling an output frequency of the converter in accordance with an estimated value of a slip frequency of the motor calculated based on an output value of the current controller and an added value of the speed command value. Control method.
誘導電動機を駆動する電力変換器の出力電流を回転磁界座標系のd軸の電流指令値に従って制御する電流制御器と、前記d軸および回転磁界座標系のq軸の電流検出値あるいは指令値と、前記電力変換器の出力周波数指令値とに基づいて、前記電力変換器の出力電圧基準値を演算する電圧演算器とを備え、速度指令値に応じて前記電力変換器の出力周波数を制御する制御装置による誘導電動機の速度制御方法において、
前記電流制御器の出力値に基づいて、電動機のすべり周波数推定値を演算し、前記速度指令値に該すべり推定値および前記q軸電流検出値に基づいて演算したすべり周波数演算値を加算し、該加算値に応じて前記変換器の出力周波数を制御することを特徴とする誘導電動機の速度制御方法。
A current controller that controls an output current of a power converter that drives the induction motor in accordance with a current command value of a d-axis of a rotating magnetic field coordinate system; and a current detection value or a command value of the q-axis of the d-axis and the rotating magnetic field coordinate system. A voltage calculator that calculates an output voltage reference value of the power converter based on an output frequency command value of the power converter, and controls an output frequency of the power converter according to a speed command value. In the speed control method of the induction motor by the control device,
Based on the output value of the current controller, calculate the slip frequency estimated value of the motor, add the slip frequency calculated value based on the slip estimated value and the q-axis current detection value to the speed command value, A speed control method for an induction motor, comprising: controlling an output frequency of the converter according to the added value.
請求項1に記載の誘導電動機の速度制御方法において、
前記すべり周波数推定値に応じて、d軸電流指令値を修正することを特徴とする誘導電動機の速度制御方法。
The speed control method for an induction motor according to claim 1,
A speed control method for an induction motor, wherein a d-axis current command value is corrected according to the slip frequency estimated value.
請求項2に記載の誘導電動機の速度制御方法において、
前記すべり周波数推定値に応じて、d軸電流指令値を修正することを特徴とする誘導電動機の速度制御方法。
The speed control method for an induction motor according to claim 2,
A speed control method for an induction motor, wherein a d-axis current command value is corrected according to the slip frequency estimated value.
請求項3に記載の誘導電動機の速度制御方法において、
前記すべり周波数推定値に応じて、d軸電流指令値を修正することを特徴とする誘導電動機の速度制御方法。
The speed control method for an induction motor according to claim 3,
A speed control method for an induction motor, wherein a d-axis current command value is corrected according to the slip frequency estimated value.
JP2003204214A 2003-07-31 2003-07-31 Induction motor speed control method Expired - Lifetime JP3736551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204214A JP3736551B2 (en) 2003-07-31 2003-07-31 Induction motor speed control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204214A JP3736551B2 (en) 2003-07-31 2003-07-31 Induction motor speed control method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9354360A Division JPH11187699A (en) 1997-12-24 1997-12-24 Speed control method for induction motor

Publications (2)

Publication Number Publication Date
JP2004007993A true JP2004007993A (en) 2004-01-08
JP3736551B2 JP3736551B2 (en) 2006-01-18

Family

ID=30438522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204214A Expired - Lifetime JP3736551B2 (en) 2003-07-31 2003-07-31 Induction motor speed control method

Country Status (1)

Country Link
JP (1) JP3736551B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238605A (en) * 2005-02-25 2006-09-07 Hitachi Ltd Motor drive
JP2007520987A (en) * 2004-02-05 2007-07-26 ハネウェル・インターナショナル・インコーポレーテッド Motor control and driver for electrical boost applications
JP2010088257A (en) * 2008-10-02 2010-04-15 Yaskawa Electric Corp Control device for induction motor, and method of controlling the same
EP2819297A3 (en) * 2013-06-21 2015-07-15 Hamilton Sundstrand Corporation Permanent magnet motor control

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520987A (en) * 2004-02-05 2007-07-26 ハネウェル・インターナショナル・インコーポレーテッド Motor control and driver for electrical boost applications
JP2006238605A (en) * 2005-02-25 2006-09-07 Hitachi Ltd Motor drive
JP4581739B2 (en) * 2005-02-25 2010-11-17 株式会社日立製作所 Electric motor drive
JP2010088257A (en) * 2008-10-02 2010-04-15 Yaskawa Electric Corp Control device for induction motor, and method of controlling the same
EP2819297A3 (en) * 2013-06-21 2015-07-15 Hamilton Sundstrand Corporation Permanent magnet motor control

Also Published As

Publication number Publication date
JP3736551B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
US6690137B2 (en) Sensorless control system for synchronous motor
JP3815113B2 (en) Induction motor control method
US9041325B2 (en) Control device for alternating current motor
US8450955B2 (en) Alternating-current motor control apparatus
WO2012014526A1 (en) Control apparatus of ac rotating machine
JP3152058B2 (en) Variable speed control device for induction motor
JPH11187699A (en) Speed control method for induction motor
JP2001238499A (en) Speed control method of induction motor
US6321606B1 (en) Apparatus for calculating torque generated by induction motor
US10333446B2 (en) Controller for induction motor
JP3736551B2 (en) Induction motor speed control method
JP2010273400A (en) Device for control of induction motor
JP2004129381A (en) Control device of permanent magnet synchronous motor
JP2017077099A (en) Controller compensating for iron loss of ac motor
JP3070391B2 (en) Induction motor vector control device
JP3351244B2 (en) Induction motor speed control method
JP7433445B2 (en) Motor iron loss calculation device and motor control device equipped with the same
KR100421612B1 (en) Apparatus for vector control of induction motor
JP3602938B2 (en) Induction motor speed control method
KR20200101615A (en) Real-time torque ripple reduction apparatus for motor
JP3891103B2 (en) Induction motor speed control method
JP3446557B2 (en) Induction motor speed control method
Finch Scalar and vector: a simplified treatment of induction motor control performance
JP2013183558A (en) Motor controller
JP3770228B2 (en) Induction motor speed control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

EXPY Cancellation because of completion of term