JP2004007895A - Friction material for vibrating motor and apparatus having the same - Google Patents

Friction material for vibrating motor and apparatus having the same Download PDF

Info

Publication number
JP2004007895A
JP2004007895A JP2002159241A JP2002159241A JP2004007895A JP 2004007895 A JP2004007895 A JP 2004007895A JP 2002159241 A JP2002159241 A JP 2002159241A JP 2002159241 A JP2002159241 A JP 2002159241A JP 2004007895 A JP2004007895 A JP 2004007895A
Authority
JP
Japan
Prior art keywords
friction material
vibration motor
friction
contact
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002159241A
Other languages
Japanese (ja)
Inventor
Ichiro Chiba
千葉 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002159241A priority Critical patent/JP2004007895A/en
Publication of JP2004007895A publication Critical patent/JP2004007895A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a relatively low cost friction material for a vibrating motor which has long endurance life and is capable of stable operation, and an apparatus having the same. <P>SOLUTION: This friction material for the vibrating motor, in which a vibrating body for generating vibration and a contacting body coming into contact with the vibrating body travel relatively to each other, is provided in at least one of friction contact portions between the vibrating body and the contacting body. The friction material for the vibrating motor includes at least a heat-resistant surface layer on the friction contact surface. A base material of the friction material for the vibrating motor is constituted of metal or inorganic material with a hardness of ≥500 Hv in Vickers hardness. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は振動モータ用摩擦材及び機器に関するものである。
【0002】
【従来の技術】
一般に振動モータは、振動体の表面粒子に円運動または楕円運動を励起せしめ、これに加圧接触した接触体と、該振動体とを摩擦駆動により相対移動するものである。従って、振動体及び接触体の加圧接触部に摩擦係数の大きなものを摩擦材として設ける方が効率よく振動モータの出力をとりだすために望ましい。また摩擦材の摩耗がそのままモータの耐久寿命につながるため、摩耗の少ない材料が望ましい。
【0003】
そのため、従来から振動モータ用摩擦材として種々の材料や複合材料が提案されてきた。中でもコストが比較的低くく、且つ耐摩耗性に優れたものとして、摩擦材の接触面に耐摩耗性を高めるための膜を形成した物が多数提案されている。例えば特開平2−23075号公報においては、加圧接触する面に、酸化物、窒化物、炭化物または、それらの混合薄膜もしくは積層薄膜からなる硬化薄膜層を設けたものが提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来例では、振動モータ用摩擦材の母材について、鉄やステンレスが例示されているのみで、その硬度等については何ら言及されていない。振動モータ用摩擦材の母材の硬度が低い場合、硬化薄膜層の耐摩耗性や硬度がいくら高くても摺動により母材が変形して硬化薄膜層が破壊されシビアな摩耗が発生する。この様なシビアな摩耗が発生した場合、振動モータの寿命が急激に短くなると同時に、発生した摩耗紛により、振動モータの安定した回転が得られない場合があった。同時に摩擦材の接触面の表面粗さが大きすぎる場合も、前述したようなシビアな摩耗が発生する場合があった。
【0005】
本発明はこのような問題点に鑑みなされたもので、耐久寿命が長く、安定した動作をなし、比較的低コストな振動モータ用摩擦材及び機器を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
前述した目的を達成するため、本出願に係る振動モータの第1の解決手段は、請求項1に記載のように、振動を発生する振動体と、該振動体に接触する接触体とが相対移動する振動モータにおいて、前記振動体及び前記接触体のうち少なくとも一方の摩擦接触部分に設けられる振動モータ用摩擦材であって、該振動モータ用摩擦材は少なくともその摩擦接触面に耐熱性の表面層を有し、かつ該振動モータ用摩擦材の母材はビッカース硬度で500Hv以上の硬度の金属もしくは無機材料であることを特徴とする振動モータ用摩擦材にある。
【0007】
この解決手段では、振動体及び接触体の少なくとも一方の摩擦接触部分に設けられる摩擦材は、少なくともその相手材との接触面(摩擦接触面)に耐熱性の表面層を有する。従って、振動モータを駆動した場合に摺動部に発生する摩擦熱により、摩擦材と相手材との間に焼きつき等が起こり難い。同時に、該摩擦材の母材の硬度がビッカース硬度で500Hv以上であるため、摺動により母材が変形して前記耐熱性の表面層が破壊することが起こり難い。
【0008】
ここで振動モータの場合、図6に示すように振動体と接触体は、それぞれの接触領域内で作用する摩擦力の方向が異なる。即ち、AとCの部分で図に示す様に左側に摩擦力が作用するとするとBの部分では右側に作用することになる。この様な場合、摩擦材の表面層に加えて、母材の硬度が高いことが表面層を破壊しないために特に重要であり、母材の硬度をビッカース硬度で500Hv以上とすることにより耐摩耗性が高く、安定した振動モータ用摩擦材が得られる。同時に、長寿命で安定した振動モータが得られる。
【0009】
本出願に係る第2の解決手段は、請求項2に記載のように前記耐熱性の表面層は、Fe2O3、Fe3O4、Cr2O3、Al2O3、TiN、TiCN、CrN、N、TiC、SiC、VC、NbC、C、およびCrのうち少なくとも1つを前記振動モータ用摩擦材の母材よりも多く含有することを特徴とする請求項1に記載の振動モータ用摩擦材にある。
【0010】
この解決手段では、前記耐熱性の表面層は、Fe2O3、Fe3O4、Cr2O3、Al2O3、TiN、TiCN、CrN、N、TiC、SiC、VC、NbC、C、Crのうち少なくとも1つを母材より豊富に含むため、母材に他種の表面層を設けた場合より接触面の耐熱性がさらに高まり、さらに耐摩耗性が高く、安定した振動モータ用摩擦材が得られる。
【0011】
本出願に係る第3の解決手段は、請求項3に記載のように該振動モータ用摩擦材の母材は、鉄合金であることを特徴とする請求項1または2に記載の振動モータ用摩擦材にある。この解決手段では該振動モータ用摩擦材の母材は、鉄合金であるため、焼き入れ等を実施することにより、他種の金属または無機材料を用いた場合よりもさらに低コストで容易にHv500以上の振動モータ用摩擦材の母材を提供することが出来る。同時に第2の解決手段にて示した14種類の耐熱性の表面層を比較的容易に母材の表面に形成することができる。
【0012】
本出願に係る第4の解決手段は、請求項4に記載のように該振動モータ用摩擦材の摩擦接触面の算術平均粗さRaが0.03μm以下であることを特徴とする請求項1から3のいずれかに記載の振動モータ用摩擦材にある。この解決手段では、該振動モータ用摩擦材の摩擦接触面の算術平均粗さRaが0.03μm以下であるため、振動モータの駆動の初期に摺動面に発生する摩耗紛の量が少なく、それにより急激な初期摩耗が発生することがない。従って、より安定した振動モータ用摩擦材がえられる。
【0013】
さらに、請求項1から4のいずれかに記載の振動モータ用摩擦材を有する振動モータを駆動源として備えたことを特徴とする機器を構成することも望ましい。
【0014】
【発明の実施の形態】
(第1実施形態)
図1は、本実施形態による摩擦材を用いた振動モータの断面図である。1aは振動体1に結合された摩擦材である。2aは接触体としての移動体2に結合された摩擦材である。本実験では、これらの摩擦材は母材が黄銅またはアルミ合金のものは切削加工で、鉄合金のものはプレス加工により作製したが、摩擦材1aの場合はエッチング加工でも良い。摩擦材2aの場合はパイプを切断しても良い。また、これら摩擦材の振動体及び移動体への結合方法は本実験では接着で行ったが、圧入もしくは溶着によるものであっても良い。
【0015】
なお、この振動モータの駆動原理等詳細は、特開平3−117384号公報に記載されているので、ここでは説明を省略する。実施形態での3は電気−機械エネルギー変換素子であり、不図示の駆動回路より交番電圧を受けて振動体1に進行波振動を発生させる。4は移動体2を振動体1に圧接するためのコイルスプリングであり5は出力ギアである。本検討では前記振動モータを使用し、摩擦材を変えて、摩擦材の組み合わせをいくつか設定した。使用した材料の一覧及び、それらをモータに組んで耐久試験した後の摩耗量等を図3に示す。なお、図3の耐久試験では、モータの駆動トルクが0.02N・m程度発生するように面圧を調整したうえで調べている。振動体側の摩擦材1aと移動体側の摩擦材2aは2aの幅(0.1mm)で接しており、摩擦面の中心直径は8.6mmであることから接触面積は2.7mmになる。一方、移動体側の摩擦材2aはコイルスプリング4により振動体側摩擦材1aに圧接しており、この力は前述調整の結果6〜10Nとなった。従って面圧は2.2〜3.7N/mmとなっている。また、本試験では、回転速度は0.24m/sで一定とし0.005N・mの負荷にて試験を行った。なお、本実施形態では、振動体1と摩擦材1aを別部材としたが両者を一体化することも可能であり、さらに移動体2と摩擦材2aについても一体化が可能である。
【0016】
ここで図3について説明する。図3の「表面層」と「母材」は摩擦材1aの表面層と母材であり、摩擦材2aには表面層は存在せず母材はSUS440Cに固定してある。次に「母材硬度」は、摩擦材1aの断面部分のサンプルを作製し、ビッカース硬度計にて母材部の硬度を測定した値である。母材がマルテンサイト系ステンレス鋼SUS420J2や合金工具鋼SKD11の場合は700Hvの硬度となっており、同じくマルテンサイト系ステンレス鋼SUS440Cの場合は、焼き戻しの温度を真空中にて150℃と800℃の2種類行うことにより、それぞれ750Hvと300Hvの硬度とした。なお、摩擦材2aの母材の硬度は750Hvに固定した。
【0017】
また、図3の「Ra」は摩擦材1aの移動体との接触面の算術平均粗さを表面形状測定器にて測定した値を示している。Raが0.013〜0.023μmの場合は、前記摺動面を粒径0.5μmの固定砥粒のペーパーラップにてハンドラップすることにより加工した。Raが0.039〜0.041μmの場合は、前記摺動面を粒径7.0μmの固定砥粒のペーパーラップにてハンドラップすることにより加工した。なお、摩擦材2aの摺動面のRaは0.015μm程度に固定してある。
【0018】
次に、図3の「表面層加工方法」は、前記した摩擦材1aの表面層を形成するための加工方法を示した。ここで高温酸化処理とある場合の手順は、摩擦材1a(試料No.1〜3、16)の接触面に前述したラップを実施した後に、通常のヒータに入れて500℃まで加熱し5時間放置した。その後ヒータから取り出した所、接触面に赤青色の皮膜が認められた。この皮膜をX線光電子分光法にて分析した所、母材がSUS440Cの場合はFe2O3とCr2O3が検出され、母材が420J2の場合はFe2O3、Fe3O4とCr2O3が検出された。従って、摺動面にそれぞれの表面層が形成されたことが確認された。次の窒化処理については、シアン酸ソーダを40%含む混合塩を用い、塩浴中に摩擦材1a(試料No.4〜6)を浸漬して1時間処理し窒素を含む表面層を形成した。前述したラップはその後に実施した。これら以外の表面層についてもそれぞれ公知の方法(例えば機械設計第44巻第5号参照)により加工し、その後にラップした。ここで、図3の摩耗量は、摩擦材同士の相対移動距離50Km当たりの摩耗深さ(振動体側)及び摩耗高さ(移動体側)として示してあるが、5Kmの時点で全条件の摩耗量を測定しており、この時点で摩耗が進んでいて、このまま正比例で摩耗が進行すれば50Kmの寿命はないと判断された条件では、50Km当たりの摩耗量は、5Km時点での摩耗量を10倍して表示した。また、図3の判定は、アルマイト膜厚やニッケル膜厚に相当する30μmを基準とし、摩擦材1aと摩擦材2aのいずれか大きい方の摩耗量が11μm〜30μmの範囲にあるものを△とし、4μm〜10μmの範囲にあるものを○、3μm以下を◎、そして30μmより大きいものを×とした。
【0019】
次に、試験の結果について述べる。図3の試料No.1〜15に示す様に表面層が、Fe2O3+Cr2O3、N、Cr、TiN、TiCの5種類の場合において、母材硬度とRaの組み合わせのうち、母材硬度が750Hvと硬く、Raが0.015μm程度と滑らかな組み合わせであるNo.1,4,7,10,13のみが摩耗量が少なく良好な結果となった。
【0020】
これに対して、母材硬度が300Hvと軟らかいNo.3,6,9,12,15の場合は激しい摩耗が生じた。後者のサンプルの摩擦材1aの摺動面を顕微鏡にて観察した所、摩擦により表面層が全て破壊されているのが確認された。同時に表面層の下の母材に凹凸が発生し変形していることが確認された。これらは摩擦により母材が変形して表面層が破れ、それにより母材金属が直接相手材と接触することになって、激しい摩耗が発生したことを表していると考えられる。また、摺動面のRaが0.04μm程度と粗れているNo.2,5,8,11,14の場合も激しい摩耗が生じた。この場合は、耐久試験の初期の段階で摺動面に多量の摩耗紛が発生し、相対移動距離5Km〜10Kmの段階で全てモータが停止してしまった。
【0021】
これは、摩擦材1aの摺動面が粗れていることにより、摺動により初期の摩耗紛が多量に発生したためと考えられる。さらに、図3の試料No.16〜23では、図示した8種類の表面層に対して、母材硬度が700Hv〜750Hvと硬く、Raが0.012μm〜0.023μmと比較的滑らかな組み合わせを示したが、判定は、△〜○と比較的良好であった。図3には示していないが、試料No.16〜23と同一の表面層にて、母材硬度が300Hvと軟らかいサンプルと、Raが0.040μm程度と粗いサンプルも作製し耐久試験を実施した。結果は全て相対移動距離50Km当たり100μm以上の激しい摩耗となった。さらに試料No.1と同一の仕様にて、表面層を移動体側の摩擦材2aの摺動面にのみ設けたサンプルの耐久試験を実施したが、判定はNo.1と同じく◎であった。
【0022】
最後に、図3の試料No.24〜26は比較例であり、No.24により母材硬度が高くRaが小さい場合であっても、表面層が無い場合は摩耗が激しいことがわかる。また、No.25とNo.26により表面層の種類が請求の範囲と異なる場合や、母材硬度が低い場合は、やはり摩耗が激しいことがわかる。
(第2実施形態)
次に摩擦材の母材硬度と摺動面の算術平均粗さRaが、良好な耐摩耗性を与える範囲を調べるために行った試験について図4及び図5に示す。図4は母材硬度について行った試験結果である。この試験では振動体と移動体の圧接力などの試験条件とサンプルの仕様は、母材硬度を除き図3の試料No.1、4、7、10、13と同一であり、それぞれ5種類の表面層が図4中の各グラフ線に対応している。なお、摩耗量は、振動体側と移動体側双方の平均値としている。
【0023】
ここで摩擦材1aの母材のSUS440Cに対して焼き戻し温度を真空中にて150℃〜800℃にて振って行うことにより、それぞれ母材硬度750Hv〜300Hvのサンプルを6種類作製し前述した耐久試験を実施した。結果は図4に示す様に、母材硬度500Hv以上で全ての場合に摩耗量30μm以下の良好な結果が得られた。従って母材硬度500Hv以上では、前述したモータ駆動時の母材の変形が起こらず耐摩耗性が大幅に向上することが確認された。
【0024】
図5は摺動面のRaについて行った試験結果である。この試験では振動体と移動体の圧接力などの試験条件とサンプルの仕様は、Raを除き図3の試料No.2、5、8、11、14と同一であり、それぞれ5種類の表面層が図4中の各グラフ線に対応している。なお、摩耗量は、図4と同様に振動体側と移動体側双方の平均値としている。ここで摩擦材1aの摺動面に0.5μm〜7.0μmの固定砥粒で振ったハンドラップを行うことにより、それぞれRa0.015μm〜0.040μmのサンプルを6種類作製し前述した耐久試験を実施した。結果は図5に示す様に、Ra0.03μm以下で全ての場合に摩耗量30μm以下の良好な結果が得られた。従ってRa0.03μm以下では、前述したモータ駆動時の初期摩耗紛の多量発生が起こらず耐摩耗性が大幅に向上することが確認された。
【0025】
【発明の効果】
以上説明したように、本願各発明によれば、振動モータの振動体または、接触体の少なくとも一方の摩擦接触面に設けられる振動モータ用摩擦材は、少なくとも相手材との接触面には予め耐熱性の表面層が存在し、かつ該振動モータ用摩擦材の母材はビッカース硬度で500Hv以上の硬さを有する金属または、無機材料であるため、耐摩耗性が高く、安定した振動モータ用摩擦材が得られる。同時に、長寿命で安定した振動モータが得られる。
【0026】
また、前記耐熱性の表面層は、Fe2O3、Fe3O4、Cr2O3、Al2O3、TiN、TiCN、CrN、N、TiC、SiC、VC、NbC、C、Crのうち少なくとも1つを振動モータ用摩擦材の母材よりも多く含有するため、さらに耐摩耗性が高く、安定した振動モータ用摩擦材が得られる。
【0027】
また、振動モータ用摩擦材の母材は、鉄合金であるため、焼き入れ等を実施することにより、さらに低コストで容易にHv500以上の振動モータ用摩擦材の母材を提供することが出来る。また、振動モータ用摩擦材の接触面の算術平均粗さRaが0.03μm以下であるため、より耐摩耗性が高く、安定した振動モータ用摩擦材がえられる。
【0028】
また、本発明は、上記の摩擦材が設けられた耐久寿命が長く、低コストで安定性が優れた振動モータを用いた機器を提供することが出来る。
【図面の簡単な説明】
【図1】本発明の検討に用いた振動モータの断面図。
【図2】摩擦材近傍の拡大図。
【図3】本検討に用いた摩擦材の一覧と判定を示す図。
【図4】摩擦材の母材硬度と摩耗量の関係を示す図。
【図5】摩擦材の摺動面のRaと摩耗量の関係を示す図。
【図6】振動モータの接触領域内の摩擦力の方向を表す図。
【符号の説明】
1 振動体
1a 振動体側摩擦材
2 移動体
2b 移動体側摩擦材
3 電気−機械エネルギー変換素子
4 コイルスプリング
5 出力ギア
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a friction material and a device for a vibration motor.
[0002]
[Prior art]
In general, a vibration motor excites a circular motion or an elliptical motion on surface particles of a vibrating body, and relatively moves a contact body pressed against the vibrating body and the vibrating body by friction driving. Therefore, it is desirable to provide a material having a large coefficient of friction as a friction material at the pressure contact portion of the vibrating body and the contact body in order to efficiently obtain the output of the vibration motor. Further, since the wear of the friction material directly leads to the durable life of the motor, a material with little wear is desirable.
[0003]
Therefore, various materials and composite materials have been conventionally proposed as friction materials for a vibration motor. Above all, there have been proposed a large number of products in which a film for improving abrasion resistance is formed on a contact surface of a friction material as having a relatively low cost and excellent abrasion resistance. For example, Japanese Patent Application Laid-Open No. Hei 2-23075 proposes a device in which a cured thin film layer made of an oxide, a nitride, a carbide, or a mixed thin film or a laminated thin film thereof is provided on a surface which is brought into pressure contact.
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned conventional example, only iron and stainless steel are exemplified as the base material of the friction material for the vibration motor, but the hardness and the like are not mentioned at all. If the hardness of the base material of the friction material for the vibration motor is low, even if the hardened thin film layer has high wear resistance and hardness, the base material is deformed by sliding and the hardened thin film layer is destroyed, resulting in severe wear. When such severe wear occurs, the life of the vibration motor is rapidly shortened, and at the same time, stable rotation of the vibration motor may not be obtained due to the generated wear powder. At the same time, when the surface roughness of the contact surface of the friction material is too large, severe wear as described above may occur.
[0005]
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object to provide a friction material and a device for a vibration motor which have a long durability life, perform stable operation, and are relatively inexpensive.
[0006]
[Means for Solving the Problems]
In order to achieve the above-described object, a first solution of the vibration motor according to the present application is as described in claim 1, wherein the vibration body that generates vibration and the contact body that contacts the vibration body are relatively positioned. In a moving vibration motor, a friction material for a vibration motor provided on at least one friction contact portion of the vibration body and the contact body, wherein the friction material for a vibration motor has a heat-resistant surface on at least its friction contact surface. The friction material for a vibration motor has a layer, and a base material of the friction material for the vibration motor is a metal or an inorganic material having a Vickers hardness of 500 Hv or more.
[0007]
In this solution, the friction material provided in at least one of the friction contact portions of the vibrating body and the contact body has a heat-resistant surface layer on at least a contact surface (friction contact surface) with a counterpart material. Therefore, seizure or the like is unlikely to occur between the friction material and the counterpart material due to frictional heat generated in the sliding portion when the vibration motor is driven. At the same time, since the base material of the friction material has a Vickers hardness of 500 Hv or more, it is unlikely that the base material is deformed by sliding and the heat-resistant surface layer is broken.
[0008]
Here, in the case of the vibration motor, as shown in FIG. 6, the directions of the frictional force acting in the respective contact areas are different between the vibrating body and the contacting body. That is, if a frictional force acts on the left side in the portions A and C as shown in the figure, it acts on the right side in the portion B. In such a case, it is particularly important that the hardness of the base material be high in addition to the surface layer of the friction material so as not to destroy the surface layer. By setting the hardness of the base material to 500 Vv or more in Vickers hardness, wear resistance is improved. Highly stable and stable friction material for vibration motor can be obtained. At the same time, a long life and stable vibration motor can be obtained.
[0009]
A second solution according to the present application is that the heat-resistant surface layer is made of Fe2O3, Fe3O4, Cr2O3, Al2O3, TiN, TiCN, CrN, N, TiC, SiC, VC, NbC. 2. The friction material for a vibration motor according to claim 1, wherein at least one of C, C, and Cr is contained more than a base material of the friction material for the vibration motor. 3.
[0010]
In this solution, the heat-resistant surface layer contains at least one of Fe2O3, Fe3O4, Cr2O3, Al2O3, TiN, TiCN, CrN, N, TiC, SiC, VC, NbC, C, and Cr more abundantly than the base material. Therefore, the heat resistance of the contact surface is further increased as compared with the case where another type of surface layer is provided on the base material, and abrasion resistance is further improved, and a stable friction material for a vibration motor can be obtained.
[0011]
A third solution according to the present application is the vibration motor according to claim 1 or 2, wherein a base material of the vibration motor friction material is an iron alloy. In friction material. In this solution, since the base material of the friction material for the vibration motor is an iron alloy, quenching or the like is carried out so that the Hv500 can be easily manufactured at a lower cost than in the case where another kind of metal or inorganic material is used. A base material of the friction material for a vibration motor described above can be provided. At the same time, the 14 heat-resistant surface layers described in the second solution can be formed relatively easily on the surface of the base material.
[0012]
According to a fourth aspect of the present invention, as in the fourth aspect, the arithmetic mean roughness Ra of the friction contact surface of the friction material for the vibration motor is 0.03 μm or less. 4. The friction material for a vibration motor according to any one of (1) to (3). In this solution, since the arithmetic mean roughness Ra of the friction contact surface of the friction material for the vibration motor is 0.03 μm or less, the amount of wear powder generated on the sliding surface in the initial stage of driving the vibration motor is small. Thereby, rapid initial wear does not occur. Therefore, a more stable friction material for a vibration motor can be obtained.
[0013]
Furthermore, it is also desirable to configure a device characterized by comprising, as a drive source, a vibration motor having the friction material for a vibration motor according to any one of claims 1 to 4.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
FIG. 1 is a sectional view of the vibration motor using the friction material according to the present embodiment. 1a is a friction material coupled to the vibrating body 1. 2a is a friction material connected to the moving body 2 as a contact body. In this experiment, these friction materials were made of a brass or aluminum alloy by cutting, and those of an iron alloy were made by pressing. However, in the case of the friction material 1a, etching may be used. In the case of the friction material 2a, the pipe may be cut. In addition, although the method of connecting these friction materials to the vibrating body and the moving body is performed by bonding in this experiment, it may be performed by press-fitting or welding.
[0015]
The details such as the driving principle of the vibration motor are described in JP-A-3-117384, and the description is omitted here. Reference numeral 3 in the embodiment denotes an electro-mechanical energy conversion element which generates a traveling wave vibration in the vibrator 1 by receiving an alternating voltage from a drive circuit (not shown). Reference numeral 4 denotes a coil spring for pressing the moving body 2 against the vibrating body 1, and reference numeral 5 denotes an output gear. In this study, several combinations of friction materials were set by using the vibration motor and changing the friction materials. FIG. 3 shows a list of used materials and the amount of wear after assembling them into a motor and performing a durability test. In the endurance test shown in FIG. 3, the surface pressure is adjusted so that the driving torque of the motor is about 0.02 N · m, and the examination is performed. The friction material 1a on the vibrating body side and the friction material 2a on the moving body side are in contact with a width (0.1 mm) of 2a, and the center area of the friction surface is 8.6 mm, so that the contact area is 2.7 mm 2 . On the other hand, the friction member 2a on the moving body side is in pressure contact with the friction member 1a on the vibration body side by the coil spring 4, and this force is 6 to 10 N as a result of the above-described adjustment. Therefore, the surface pressure is 2.2 to 3.7 N / mm 2 . In this test, the rotation speed was fixed at 0.24 m / s, and the test was performed with a load of 0.005 N · m. In the present embodiment, the vibrating body 1 and the friction material 1a are separate members, but they can be integrated, and the moving body 2 and the friction material 2a can also be integrated.
[0016]
Here, FIG. 3 will be described. The “surface layer” and “base material” in FIG. 3 are the surface layer and the base material of the friction material 1a, and the friction material 2a has no surface layer and the base material is fixed to SUS440C. Next, the "base material hardness" is a value obtained by preparing a sample of the cross section of the friction material 1a and measuring the hardness of the base material portion with a Vickers hardness meter. When the base material is martensitic stainless steel SUS420J2 or alloy tool steel SKD11, the hardness is 700 Hv. When the base material is martensitic stainless steel SUS440C, the tempering temperature is 150 ° C. and 800 ° C. in vacuum. The hardness of 750 Hv and 300 Hv, respectively, was obtained by performing the above two types. The hardness of the base material of the friction material 2a was fixed at 750 Hv.
[0017]
In addition, “Ra” in FIG. 3 indicates a value obtained by measuring the arithmetic average roughness of the contact surface of the friction material 1a with the moving body using a surface shape measuring instrument. When Ra was 0.013 to 0.023 µm, the sliding surface was processed by hand wrapping with paper wrap of fixed abrasive grains having a particle size of 0.5 µm. When Ra was 0.039 to 0.041 µm, the sliding surface was processed by hand wrapping with paper wrap of fixed abrasive having a particle size of 7.0 µm. The sliding surface Ra of the friction material 2a is fixed at about 0.015 μm.
[0018]
Next, the “surface layer processing method” in FIG. 3 indicates a processing method for forming the surface layer of the friction material 1a described above. Here, the procedure in the case of a high-temperature oxidation treatment is as follows. After the above-described wrap is performed on the contact surface of the friction material 1a (sample Nos. 1 to 3 and 16), the wrap is put into a normal heater and heated to 500 ° C. for 5 hours. I left it. After that, when it was taken out of the heater, a red-blue film was observed on the contact surface. When this film was analyzed by X-ray photoelectron spectroscopy, Fe2O3 and Cr2O3 were detected when the base material was SUS440C, and Fe2O3, Fe3O4, and Cr2O3 were detected when the base material was 420J2. Therefore, it was confirmed that each surface layer was formed on the sliding surface. In the next nitriding treatment, using a mixed salt containing 40% of sodium cyanate, the friction material 1a (sample Nos. 4 to 6) was immersed in a salt bath and treated for 1 hour to form a nitrogen-containing surface layer. . The lap described above was subsequently performed. The other surface layers were processed by a known method (for example, see Mechanical Design Vol. 44, No. 5), and then wrapped. Here, the wear amount in FIG. 3 is shown as a wear depth (oscillator side) and a wear height (moving body side) per 50 km of relative movement distance between the friction materials. Under the condition that the wear has progressed at this time and the wear progresses in direct proportion without the life of 50 km, it is determined that the wear amount per 50 km is 10 wear at 5 km. Displayed twice. In addition, the judgment in FIG. 3 is based on 30 μm corresponding to the alumite film thickness or the nickel film thickness, and the friction material 1a or the friction material 2a having a larger wear amount in the range of 11 μm to 30 μm is defined as Δ. , Those in the range of 4 μm to 10 μm were rated as ◎, those of 3 μm or less were rated as ◎, and those of more than 30 μm were rated as x.
[0019]
Next, the results of the test will be described. Sample No. of FIG. As shown in Nos. 1 to 15, when the surface layer is composed of five types of Fe2O3 + Cr2O3, N, Cr, TiN, and TiC, of the combinations of the base metal hardness and Ra, the base material hardness is 750 Hv and Ra is 0.015 [mu] m. No. which is a smooth combination with the degree. Only 1, 4, 7, 10, and 13 showed good results with a small amount of wear.
[0020]
On the other hand, when the base material hardness was as soft as 300 Hv, In the case of 3, 6, 9, 12, and 15, severe wear occurred. When the sliding surface of the friction material 1a of the latter sample was observed with a microscope, it was confirmed that the entire surface layer was destroyed by friction. At the same time, it was confirmed that the base material below the surface layer was uneven and deformed. These are considered to indicate that the base metal was deformed by friction and the surface layer was broken, whereby the base metal was brought into direct contact with the mating material, and severe wear occurred. In addition, in the case of No. 4 in which Ra on the sliding surface was rough to about 0.04 μm In the cases of 2, 5, 8, 11, and 14, severe wear occurred. In this case, a large amount of abrasion powder was generated on the sliding surface at an early stage of the durability test, and all the motors were stopped at a stage of a relative movement distance of 5 km to 10 km.
[0021]
This is probably because a large amount of initial wear powder was generated due to the sliding due to the rough sliding surface of the friction material 1a. Further, the sample No. of FIG. 16 to 23, the base material hardness was as high as 700 Hv to 750 Hv and the Ra was relatively smooth as 0.012 μm to 0.023 μm with respect to the eight types of surface layers shown in the drawing. To ○ were relatively good. Although not shown in FIG. On the same surface layer as that of Sample Nos. 16 to 23, a soft sample having a base material hardness of 300 Hv and a rough sample having a Ra of about 0.040 μm were also prepared and subjected to a durability test. The results were all intense abrasion of 100 μm or more per 50 km of relative movement distance. Further, the sample No. Under the same specifications as in Example 1, a durability test was performed on a sample in which the surface layer was provided only on the sliding surface of the friction material 2a on the moving body side. It was ◎ as well as 1.
[0022]
Finally, the sample No. of FIG. Nos. 24 to 26 are comparative examples. 24, even if the base material hardness is high and Ra is small, it can be seen that wear is severe when there is no surface layer. No. 25 and no. According to 26, when the type of the surface layer is different from the claimed range or when the hardness of the base material is low, it can be seen that abrasion is also severe.
(2nd Embodiment)
Next, FIGS. 4 and 5 show tests performed to examine a range in which the base material hardness of the friction material and the arithmetic average roughness Ra of the sliding surface provide good wear resistance. FIG. 4 shows the results of a test performed on the base metal hardness. In this test, the test conditions such as the pressing force between the vibrating body and the moving body and the specifications of the sample are the same as those of the sample No. of FIG. 1, 4, 7, 10, and 13 and five types of surface layers respectively correspond to the respective graph lines in FIG. The wear amount is an average value on both the vibrating body side and the moving body side.
[0023]
Here, six kinds of samples each having a base material hardness of 750 Hv to 300 Hv were prepared by shaking the tempering temperature of SUS440C of the base material of the friction material 1 a in a vacuum at 150 ° C. to 800 ° C. in vacuum. A durability test was performed. As shown in FIG. 4, good results with a base material hardness of 500 Hv or more and a wear amount of 30 μm or less were obtained in all cases. Therefore, it was confirmed that when the base material hardness was 500 Hv or more, the base material was not deformed when the motor was driven and the wear resistance was significantly improved.
[0024]
FIG. 5 shows the results of a test performed on Ra on the sliding surface. In this test, the test conditions such as the pressing force between the vibrating body and the moving body and the specification of the sample are the same as those of the sample No. shown in FIG. 2, 5, 8, 11, and 14, and five types of surface layers respectively correspond to the respective graph lines in FIG. The wear amount is an average value on both the vibrating body side and the moving body side as in FIG. Here, six types of samples each having a Ra of 0.015 μm to 0.040 μm were prepared by hand lapping the sliding surface of the friction material 1 a with fixed abrasive grains of 0.5 μm to 7.0 μm, and the durability test described above was performed. Was carried out. As shown in FIG. 5, good results were obtained with Ra of 0.03 μm or less and a wear amount of 30 μm or less in all cases. Therefore, it was confirmed that when Ra is 0.03 μm or less, a large amount of initial wear powder does not occur when the motor is driven, and the wear resistance is greatly improved.
[0025]
【The invention's effect】
As described above, according to the invention of the present application, the vibration member of the vibration motor or the friction material for the vibration motor provided on at least one of the friction contact surfaces of the contact member has a heat resistant surface at least in contact with the counterpart material. A friction material for a vibration motor, the base material of which is a metal or an inorganic material having a Vickers hardness of 500 Hv or more, which has high wear resistance and stable friction for a vibration motor. Wood is obtained. At the same time, a long life and stable vibration motor can be obtained.
[0026]
Further, the heat-resistant surface layer is formed of at least one of Fe2O3, Fe3O4, Cr2O3, Al2O3, TiN, TiCN, CrN, N, TiC, SiC, VC, NbC, C, and Cr as a mother material of a friction material for a vibration motor. Since it is contained more than the material, a friction material for a vibration motor having higher abrasion resistance and stable can be obtained.
[0027]
Further, since the base material of the friction material for the vibration motor is an iron alloy, the base material of the friction material for the vibration motor having an Hv of 500 or more can be easily provided at a lower cost by performing quenching or the like. . Further, since the arithmetic average roughness Ra of the contact surface of the friction material for the vibration motor is 0.03 μm or less, a friction material for the vibration motor having higher wear resistance and stability can be obtained.
[0028]
Further, the present invention can provide a device using a vibration motor provided with the friction material, having a long durability life, low cost, and excellent stability.
[Brief description of the drawings]
FIG. 1 is a sectional view of a vibration motor used in the study of the present invention.
FIG. 2 is an enlarged view near a friction material.
FIG. 3 is a diagram showing a list and determination of friction materials used in the present study.
FIG. 4 is a diagram showing a relationship between a base material hardness of a friction material and a wear amount.
FIG. 5 is a diagram illustrating a relationship between Ra of a sliding surface of a friction material and a wear amount.
FIG. 6 is a diagram illustrating a direction of a frictional force in a contact area of the vibration motor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vibration body 1a Vibration body side friction material 2 Moving body 2b Moving body side friction material 3 Electric-mechanical energy conversion element 4 Coil spring 5 Output gear

Claims (5)

振動を発生する振動体と、該振動体に接触する接触体とが相対移動する振動モータにおいて、前記振動体及び前記接触体のうち少なくとも一方の摩擦接触部分に設けられる振動モータ用摩擦材であって、
該振動モータ用摩擦材は少なくともその摩擦接触面に耐熱性の表面層を有し、かつ該振動モータ用摩擦材の母材はビッカース硬度で500Hv以上の硬度の金属もしくは無機材料であることを特徴とする振動モータ用摩擦材。
In a vibration motor in which a vibrating body that generates vibration and a contact body that comes into contact with the vibrating body relatively move, a friction material for a vibration motor provided in at least one friction contact portion of the vibrating body and the contact body. hand,
The friction material for a vibration motor has a heat-resistant surface layer on at least a friction contact surface thereof, and a base material of the friction material for the vibration motor is a metal or an inorganic material having a Vickers hardness of 500 Hv or more. Friction material for vibration motors.
前記耐熱性の表面層は、Fe2O3、Fe3O4、Cr2O3、Al2O3、TiN、TiCN、CrN、N、TiC、SiC、VC、NbC、C、およびCrのうち少なくとも1つを前記振動モータ用摩擦材の母材よりも多く含有することを特徴とする請求項1に記載の振動モータ用摩擦材。The heat-resistant surface layer includes at least one of Fe2O3, Fe3O4, Cr2O3, Al2O3, TiN, TiCN, CrN, N, TiC, SiC, VC, NbC, C, and Cr as a mother material of the friction material for the vibration motor. The friction material for a vibration motor according to claim 1, wherein the friction material is contained in a larger amount than the material. 該振動モータ用摩擦材の母材は、鉄合金であることを特徴とする請求項1または2に記載の振動モータ用摩擦材。The friction material for a vibration motor according to claim 1, wherein a base material of the friction material for the vibration motor is an iron alloy. 該振動モータ用摩擦材の摩擦接触面の算術平均粗さRaが0.03μm以下であることを特徴とする請求項1から3のいずれかに記載の振動モータ用摩擦材。The friction material for a vibration motor according to any one of claims 1 to 3, wherein an arithmetic mean roughness Ra of a friction contact surface of the friction material for the vibration motor is 0.03 µm or less. 請求項1から4のいずれかに記載の振動モータ用摩擦材を有する振動モータを駆動源として備えたことを特徴とする機器。A device comprising a vibration motor having the friction material for a vibration motor according to claim 1 as a drive source.
JP2002159241A 2002-05-31 2002-05-31 Friction material for vibrating motor and apparatus having the same Pending JP2004007895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159241A JP2004007895A (en) 2002-05-31 2002-05-31 Friction material for vibrating motor and apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159241A JP2004007895A (en) 2002-05-31 2002-05-31 Friction material for vibrating motor and apparatus having the same

Publications (1)

Publication Number Publication Date
JP2004007895A true JP2004007895A (en) 2004-01-08

Family

ID=30429094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159241A Pending JP2004007895A (en) 2002-05-31 2002-05-31 Friction material for vibrating motor and apparatus having the same

Country Status (1)

Country Link
JP (1) JP2004007895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089023A1 (en) * 2011-12-16 2013-06-20 株式会社豊田自動織機 Vibration actuator
US20140119681A1 (en) * 2011-06-15 2014-05-01 Schaeffler Technologies AG & Co. KG Slide bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140119681A1 (en) * 2011-06-15 2014-05-01 Schaeffler Technologies AG & Co. KG Slide bearing
US9062713B2 (en) * 2011-06-15 2015-06-23 Schaeffler Technologies AG & Co. KG Slide bearing
WO2013089023A1 (en) * 2011-12-16 2013-06-20 株式会社豊田自動織機 Vibration actuator
CN103988414A (en) * 2011-12-16 2014-08-13 株式会社丰田自动织机 Vibration actuator

Similar Documents

Publication Publication Date Title
JP2578903B2 (en) Vibration wave motor
JP5631018B2 (en) Rotational vibration wave drive
US6198202B1 (en) Vibration actuator
US5760529A (en) Vibration wave actuator and system using the same
JP5236160B2 (en) Manufacturing method of surface hardening member, friction member, and vibration type driving device
JPH072024B2 (en) Vibration wave motor
JPH1084682A (en) Vibration wave driving device and equipment having vibration wave driving device
JP2004007895A (en) Friction material for vibrating motor and apparatus having the same
JP3397627B2 (en) Vibration type driving device and device using the same
JP2000175466A (en) Oscillatory actuator and apparatus
JP2003134854A (en) Friction material for vibration wave motor, vibration wave motor, and apparatus using vibration wave motor as drive source
JP2012191846A (en) Friction member and vibration type drive device
JP3016617B2 (en) Vibration wave motor
JP2005176508A (en) Vibrating motor
JP4343553B2 (en) Vibration wave motor
JP2005221040A (en) Gear and its manufacturing method
JP2874773B2 (en) Vibration wave drive
JP2004007923A (en) Friction material for vibrating motor, manufacturing method, vibrating motor, and electric apparatus
JP4976804B2 (en) Nitriding member, friction member and vibration wave driving device
JPH11318090A (en) Oscillatory driver, its manufacture, and apparatus equipped with the same
JP2926600B2 (en) Ultrasonic motor and method of manufacturing the same
JP2004072993A (en) Piezoelectric actuator, power transmission with the same, liquid discharge device, and clock
JP2005027388A (en) Oscillatory driver and electronic apparatus
JP3015816B2 (en) Friction transmission member
JP2000228885A (en) Piezoelectric actuator