JP2004006502A - Anode element for valve action electrolytic capacitors, and its manufacturing method - Google Patents

Anode element for valve action electrolytic capacitors, and its manufacturing method Download PDF

Info

Publication number
JP2004006502A
JP2004006502A JP2002159663A JP2002159663A JP2004006502A JP 2004006502 A JP2004006502 A JP 2004006502A JP 2002159663 A JP2002159663 A JP 2002159663A JP 2002159663 A JP2002159663 A JP 2002159663A JP 2004006502 A JP2004006502 A JP 2004006502A
Authority
JP
Japan
Prior art keywords
metal powder
valve
valve action
anode element
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002159663A
Other languages
Japanese (ja)
Other versions
JP4219616B2 (en
Inventor
Wataru Suenaga
末永 渉
Minoru Moriyama
森山 稔
Akiko Miyamoto
宮本 昭子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK, Dainippon Ink and Chemicals Co Ltd filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP2002159663A priority Critical patent/JP4219616B2/en
Publication of JP2004006502A publication Critical patent/JP2004006502A/en
Application granted granted Critical
Publication of JP4219616B2 publication Critical patent/JP4219616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin and high-performance anode element for valve action electrolytic capacitors and its manufacturing method, and to provide the electrolytic capacitors using the anode element. <P>SOLUTION: Valve action metal powder is dispersed into a solvent A by a dispersant, and the dispersion solution of obtained valve action metal powder is dried by a freeze-dry lyophilization method to obtain the surface-treated valve action metal powder. Then, the surface-treated metal powder, a solvent B, and a binding agent are mixed to obtain a paint containing valve action metal powder, and a substrate is coated with the paint containing the valve action metal powder as a coated object. The manufacturing method of the anode element for valve action electrolytic capacitors includes a process for sintering after lifting the coated object. The anode element for valve action electrolytic capacitors is obtained by the manufacturing method. Then, the anode element for valve action electrolytic capacitors is armored with resin. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、タンタル、ニオブ等の弁作用金属を用いた弁作用電解コンデンサ用陽極素子及びこれを用いた電解コンデンサ、並びに弁作用電解コンデンサ用陽極素子の製造方法に関する。
【0002】
【従来の技術】
近年、表面実装デバイスの小型化技術が飛躍的に進歩し、携帯電話、パソコン、デジタルカメラなど、電子機器における部品基板への実装技術が高密度化している。こうした中、電子部品であるコンデンサ素子においても、その小型化、高容量化の要求に対して、種々研究がなされている。
現在一般に使用されているコンデンサ素子としては、メタライズドフィルムコンデンサ、積層セラミックコンデンサ、アルミ電解コンデンサ、タンタル電解コンデンサ等がその主流となっているが、特に小型大容量化が可能であるタンタル電解コンデンサ、ニオブ電解コンデンサについては、特に電源回路に用いたときのその優れた特性のため盛んに研究がなされている。
タンタル金属と同じような特長を有する材料としては、いわゆる弁作用金属として、アルミニウム、ニオブ、チタン等の金属類の材料があげられるが、耐熱性、誘電体皮膜形成性の点において、特にタンタル金属、ニオブ金属は高い需要を得ている。
【0003】
前記の弁作用金属粉末、例えばタンタル、ニオブを用いた電解コンデンサの製造方法としては、通常、陽極金属としてタンタル又はニオブを使用し、バインダーとしての役割を担う樹脂とタンタル又はニオブ金属粉末とを金型に投入し、これらを加圧加工してチップ化した素子を作製する。このときタンタル又はニオブ金属粉末の充填密度にばらつきが生じると、得られるコンデンサの電気特性に影響を及ぼすことになるため、上記材料の充填、加圧条件等は厳重に管理しなければならない。
このように作製されたチップ化素子には、陽極端子となる部品(通常はタンタルリード線又はニオブリード線)を設ける。このリード線は通常、金型内に植立されてタンタル金属又はニオブ金属粉末を加圧成形することにより固定される。上記工程により得られた素子は、真空中において高温加熱処理することにより、素子中の不要な樹脂を蒸発除去する工程を経る。
この工程により、タンタル又はニオブ金属粉末間に存在していた樹脂が蒸発除去され、かつ、タンタル又はニオブ金属粉末同士の接触点における溶着により、多孔質体の形態をなすタンタル又はニオブ電解コンデンサ用陽極素子が得られる。
このようにして得られたタンタル又はニオブ電解コンデンサ用陽極素子を電解液槽中に入れ、所定の直流電圧を加えて化成処理を行ってタンタル又はニオブ金属粉末表面に酸化タンタル被膜又は酸化ニオブ被膜を形成させた後、該被膜の上に二酸化マンガン又は機能性高分子の固体電解質被膜を形成させる。
この後、さらにカーボン、銀ペースト等による陰極層処理を施して樹脂外装し、最終的なタンタル又はニオブ電解コンデンサを得る。
【0004】
図1にタンタル電解コンデンサの代表的な構造の模式図を示す。タンタル電解コンデンサは、リード線が設けられたタンタル電解コンデンサ用陽極素子1と、陰極端子2と、陽極端子3からなり、これらは樹脂4で外装されている。陽極素子1と陰極端子2は、導電性接着剤5により接触した状態となっており、また、リード線に二酸化マンガンを付着させないために樹脂リング6が設けられ、リード線は溶接点7を介して陽極端子3と接触した状態となっている。
【0005】
ところで、近年、回路の高集積化に伴う素子の小型化のため、また高周波特性の向上のためコンデンサ素子を薄くする要請が高まっている。このような要請を満たす製造方法として、リード線を、重畳した弁作用金属粉と結着剤を含む成形体シートの間に挿入して電解コンデンサを製造する技術が開発されている(特開昭56−83022号公報等)。そして、電解コンデンサ用の該成形体シートの成形法として、弁作用金属粉と結着剤を含む焼結体形成用の分散液を用いた塗布による成形方法が提案されている。
また、他の成形方法としては、弁作用金属粉と結着剤を含む分散液を用いて、加圧成形により成形体を形成することができ、該成形体を焼結することによって電解コンデンサ用陽極素子として用いられる金属焼結体を形成することができる。
これらの湿式成形による成形体を経て、これを燒結し金属焼結体を得る方法は、特に空孔体積の大きい金属多孔質焼結体の形成に適しており、特に塗布法や印刷法の場合は、薄型の電解コンデンサ用陽極素子を製造する技術として、従来の金型を用いた加圧による方法では極めて困難な、0.6mm以下の厚さの陽極素子の製造に用いることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、金属粉の中には比重が高く沈降し易いため、分散液としての保存に全く適していないものも多い。例えばタンタル金属粉、溶剤、および樹脂を混合し、分散したタンタル金属粉の分散液は、タンタル金属粉の真比重が16.6であるため、沈降しやすく長期保存安定性が得られず、実使用上耐えうるものではなかった。
さらに弁作用金属粉の中には、ニオブやタンタルなど発火し易いものも多く、粉体の取り扱いが難しいこと、その製造設備が特殊となり製造コストが非常に高くなること、あるいは分散機による塗料分散の時に、使用しうる樹脂等の種類、配合比の自由度が低いため、結果として出来る分散液の組成、物性が限定され、必ずしもその後の湿式成形に適したものとはならないという点で問題を有していた。
【0007】
本発明は、薄形で高性能な弁作用電解コンデンサ用陽極素子を、弁作用金属粉と結着剤を含む分散液を用いて容易に製造する方法、該製造方法により得られる弁作用電解コンデンサ用陽極素子、及びそれを用いた弁作用電解コンデンサを提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究した結果、弁作用金属粉、特定の溶剤、分散剤を分散させて得た弁作用金属粉分散液を、真空凍結乾燥法により乾燥して表面処理された焼結体形成用金属粉が、発火しにくく、保存安定性等に優れていること、そして、該金属粉は、分散液製造用の溶剤、結着剤と任意の割合で混合することができるため、容易に成形体形成用の弁作用金属粉含有塗料を調整できることを見出した。
さらに、かかる弁作用金属粉含有塗料を基体上に塗布し、該塗布物を剥離して焼結すれば、等価直列抵抗等の電気特性や物理的強度等に優れた弁作用電解コンデンサ用陽極素子、弁作用電解コンデンサが容易に得られることを見出し、本発明を完成した。
【0009】
すなわち、本発明は、弁作用金属粉を溶剤A中に分散剤を用いて分散させ、得られた弁作用金属粉の分散液を、真空凍結乾燥法を用いて乾燥することにより表面処理された弁作用金属粉を得、次いで該表面処理された金属粉と溶剤Bと結着剤とを混合して弁作用金属粉含有塗料を得、次いで該弁作用金属粉含有塗料を基体上に塗布して塗布物とし、該塗布物を剥離後に焼結する工程を含むことを特徴とする弁作用電解コンデンサ用陽極素子の製造方法を提供するものである。
本発明においては、弁作用金属粉の分散液を真空凍結乾燥することにより、弁作用金属表面上には分散剤のみが残存し、分散剤により弁作用金属が表面処理された形態となる。このため弁作用金属粉の分散性が非常に良好となり、長期間保存しても安定である。また、真空凍結乾燥法を用いて低温で処理するため、発火し難く、安全性にも優れる。さらに、撹拌のみで溶剤、樹脂と任意の割合で容易に混合し、弁作用金属粉含有塗料を簡便に調整することができる。
通常、焼結体形成用金属粉の分散液を作製する時は、使用する分散機の特性に合わせ、分散時の粘度調整を行うため、分散液の分散時及び分散後の組成の設定範囲に自ずと制限があった。これに対して、本発明に記載の弁作用金属粉含有塗料は、該塗料作製時に該金属粉と樹脂と溶剤との広い範囲の混合比率が設定可能で、粘度等の物性を広範囲の自由度のなかから規定して分散液を作ることができる。このように、かかる表面処理金属粉を用いれば、少量の溶剤で塗料にすることもできるから、固い粘度状のものでも、容易に成形加工することができる。また、シート状、薄片状等の薄型の成形体も塗布工程によって容易に作成することができる。
【0010】
本発明の電解コンデンサ用陽極素子は、上記弁作用金属粉末含有塗料を基体上に塗布し、該塗布物を剥離し、焼結して得るものなので、従来の電解コンデンサ製造プロセスでは高い生産性での製造が困難だった極めて薄い、例えば厚さ0.6mm以下の、特に厚さ0.4mm以下の高性能な電解コンデンサを提供することができる。これによって等価直列抵抗を下げることができ、良好な高周波特性を得ることができる。
【0011】
本発明はまた、かかる製造方法により得られる弁作用電解コンデンサ用陽極素子を提供するものである。
本発明はまた、かかる弁作用電解コンデンサ用陽極素子を用いたことを特徴とする弁作用電解コンデンサを提供するものである。
【0012】
【発明の実施の形態】
本発明においては、溶剤という用語は、本発明のどの段階で使用されるかに応じて、真空凍結乾燥時に用いる、弁作用金属粉の表面処理用の溶剤Aと、塗布、印刷、加圧成形等の成形工程時に用いられる塗料化のための溶剤Bとの、二つの場合に共通して用いられている。溶剤Aとしては金属粉の分散が容易で、真空凍結法によって凍結、昇華し易い溶剤が選定される。一方溶剤Bには従来より金属粉の分散、塗料化に使用されてきた溶剤を広く適用することができるが、本発明では金属粉が表面処理され、易分散化されているため、従来より溶剤選定の自由度が拡がっている。
本文中、用語の意味に特に誤認の生じない場合においては、単に溶剤と記載したが、誤認のおそれのある場合、本発明のどの段階で使用される溶剤であるかを明確にするためにA、Bの区別を記入した。
【0013】
このような真空凍結法によって、弁作用金属粉の表面を分散剤処理する方法を用いると、基本的に低温状態で凍結した溶剤から、溶剤のみが昇華除去される。このように昇華の過程で表面処理を行うため、溶剤を用いて通常の方法で表面処理を行うときのように、溶剤に溶出して失われる分散剤がなく、添加した分散剤の全てが処理後の弁作用金属粉中に残留する。分散液中で分散剤は金属粉の表面付近に局在しており、真空凍結方法の実施時に、溶剤のみが除去されて、分散剤が金属粉表面に一様に付着した状態となる可能性が高く、しかも、通常の溶剤を除去する時のように除去時に金属粉同士が凝集することがないので、極めて効率的な処理方法といえる。このように使用した分散剤全てが弁作用金属粉中に残留するため、分散剤の効果と使用量の関係を把握し易く、使用量に対する最適化が行いやすい。これは発火の危険性のあるタンタル、ニオブのような金属粉を処理するに当たり該金属粉を完全被覆する量を検討する上でも重要である。
さらに真空凍結法は基本的に低温での処理であるため、発火の危険性はさらに小さいものとなる。
【0014】
また比重の大きいタンタルのような金属粉は、通常の処理方法では、沈降し易く、濃度分布が発生し易いため、一様な処理を行い難いが、分散剤を含んだ溶剤中に凍結を行ってタンタル金属粉を閉じこめることにより、より一様な処理条件で金属表面を処理することができる。
【0015】
真空凍結乾燥法を用い、分散剤によって表面処理した弁作用金属粉を用いることにより、塗布直前に添加溶剤、もしくは添加溶剤と添加結着剤との簡単な撹拌操作を行うことで、良好な分散液が得られるため、塗布装置に付随の設備として塗布液調整用に多くを必要としない。
【0016】
さらに真空凍結法においては、分散剤ばかりでなく、樹脂による表面処理を行うことも可能である。上記の分散剤におけると同様に、樹脂も弁作用金属粉の表面に一様に付着処理されるため、樹脂被覆状態の該金属粉を容易に形成することができる。このような処理済の弁作用金属粉は、そのまま圧着成形して焼結する事もできるし、再度溶剤を加えて塗料として用いる事もできる。その際溶剤の選定は、必ずしも金属粉の表面の樹脂を完全に溶解するものである必要はなく、樹脂との関係、各種成形法との関係において、種々のものを用いることができる。
【0017】
真空凍結法で表面処理された金属粉は、溶剤もしくは、樹脂と溶剤を添加して撹拌するだけで良好な弁作用金属粉含有塗料を形成することができる。このため分散完了直後の分散液の配合、粘度に対しては設定自由度が大きい。これに対して、従来のように表面処理をしていない金属粉を用い、分散機で混練して、分散液を作製するときは、あらかじめ個々の分散方法、分散機に最適な粘度領域へと、分散前の試料を設定しなくてはならなかった。従って、分散後の粘度も分散機に応じた粘度領域に決まってしまい、分散液の物性の設定自由度は低かった。
【0018】
上記のような弁作用金属の表面処理を行うと、分散液形成用の溶剤Bと任意の割合で撹拌させるだけで弁作用金属粉含有塗料を形成することができるため、成形体の作製に用いる成形手段に最も適した金属粉含有量と粘度を有する分散液を容易に作製することができる。
【0019】
本発明に適する弁作用金属粉の純度は、99.5%以上のものが好ましい。また、平均一次粒子径は0.01〜5.0μmであることが好ましく、特に0.01〜1.0μmであることが好ましい。
本発明に使用し得る金属粉は、いわゆる弁作用金属の粉体であり、弁作用金属としては、アルミニウム、ニオブ、チタン、タンタル等が挙げられ、このうち、ニオブ、タンタルが好ましい。特に多孔質の金属焼結体を形成するときには、本発明に記載の金属粉の表面処理方法を好適に使用することができる。
【0020】
本発明に適する溶剤Aとしては、たとえば、高級炭化水素類のデカンなど、芳香族炭化水素類のベンゼン、o−キシレンなど、ハロゲン化炭化水素類の1,1,1−トリクロロエタンなど、水・アルコール類の水、ベンジルアルコール、グリセリンなど、フェノール類のフェノールなど、エーテル類のアニソールなど、ケトン類の樟脳など、エステル類のステアリン酸エステルなど、凝固点が−40℃以上の各種溶剤を好ましい例として挙げることができる。これら溶剤はここに挙げたものに限定されるものではなく、その使用に際しては単独、或いは2種類以上混合して用いることができる。
【0021】
本発明に適する分散剤としては、カップリング剤、HLB値が6以上で好ましくは8以下のアニオン系、カチオン系、両性又は非イオン系界面活性剤、大豆レシチン、ソルスパーズ等の各種分散剤を挙げることができる。これら分散剤はここに挙げたものに限定されるものではなく、その使用に際しては単独、或いは2種類以上混合して用いてもよい。分散液中の分散剤の濃度は、Ta金属粉100に対して0.05〜3.0質量%、特に0.05〜0.5質量%が好ましい。
【0022】
上記弁作用金属粉、溶剤A、分散剤を所望の割合で混合して、適当な分散手段により分散させ、弁作用金属粉の分散液を得ることができる。凍結乾燥を行う場合の弁作用金属粉の分散液中の固形分濃度の範囲は、0.5〜80質量%が好ましく、特に1〜50質量%が好ましい。
分散手段としては、例えば、二本ロール、三本ロール、ボールミル、サンドミル、ペブルミル、トロンミル、サンドグラインダー、セグバリアトライター、高速インペラー分散機、高速ストーンミル、高速度衝撃ミル、ニーダー、ホモジナイザー、超音波分散機等により、混練、分散することができる。
こうして得られた弁作用金属粉の分散液を真空凍結乾燥に移行させることができる。
【0023】
真空凍結乾燥は、例えば、弁作用金属粉、水、及び分散剤を含む弁作用金属粉の分散液の場合は、大気圧で0℃以下に予備凍結し、理論上は0℃における水の蒸気圧4.5mmHg(=600Pa)を越えないよう真空度をコントロールすれば良い。乾燥速度、コントロールのやり易さを加味すれば1mmHg(=133.32Pa)以下にして、その蒸気圧で凍結する温度まで、温度を上げることが好ましい。
【0024】
また、さらに溶剤Aを使用する場合の具体的な一例を挙げれば、1,1,2−トリクロロエタンを用いた分散液の場合、1,1,2−トリクロロエタンは大気圧で−37℃以下にすれば凍結するので、液体窒素等を用いることにより簡単に予備凍結することができる。1,1,2−トリクロロエタンの凝固点における蒸気圧は15mmHg(=2000Pa)程度なので、1mmHg以下にすれば、水の場合と同様に乾燥することができる。
【0025】
分散剤により表面処理された弁作用金属粉は、とくに金属粉表面の活性度が高い場合においても、有機物で表面処理されているため、表面が酸素に曝されることがないので、発火する危険性が少ない。
また、分散剤により表面処理された弁作用金属粉は、危険性のない状態で保存若しくは輸送することができ、原料の安全性及び長期保存安定性の問題をも解消することができる。
【0026】
表面処理された弁作用金属粉を原料とすれば、使用する際に、溶剤B、もしくは溶剤Bと結着剤とを用いて簡単な攪拌処理をするだけで、弁作用金属粉含有塗料が得られる。
【0027】
本発明に適する溶剤Bは、たとえば、メタノール、エタノール、n−プロパノール,ベンジルアルコール等のアルコール類;アセトン、メチルエチルケトン、シクロヘキサノン,イソホロン,アセチルアセトン等のケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;テトラヒドロフラン、ジオキサン、メチルセロソルブ,ジグライム等のエーテル類;酢酸メチル、酢酸エチル,炭酸ジエチル等のエステル類;ジメチルスルホキシド、スルホラン等のスルホキシド及びスルホン類;塩化メチレン、クロロホルム、四塩化炭素、1,1,2−トリクロロエタン等の脂肪族ハロゲン化炭化水素;ベンゼン、トルエン、o−キシレン、p−キシレン、m−キシレン、モノクロロベンゼン、ジクロロベンゼン等の芳香族類等が挙げられるが、これらに限定されるものではない。これら溶剤Bはここに挙げたものに限定されるものではなく、その使用に際しては単独、或いは2種類以上混合して用いることができる。塗料中の溶剤Bの濃度に特に制限はないが、例えば5〜70質量%が好ましい。
【0028】
本発明に用いる結着剤としては、アクリル樹脂、ブチラール樹脂、ポリビニルアルコール樹脂、アセタール樹脂、フェノール樹脂、尿素樹脂、酢酸ビニルエマルジョン、ポリウレタン樹脂、ポリ酢酸ビニル樹脂、エポキシ樹脂、メラミン樹脂、アルキド樹脂、ニトロセルロース樹脂、天然樹脂を単独、あるいは2種以上混合して利用することができる。塗料中の結着剤の濃度に特に制限はないが、例えば0.01〜20質量%が好ましい。
【0029】
表面処理された弁作用金属粉、溶剤B、結着剤の分散・撹拌手段としては、例えば、攪拌機、脱泡ミキシングマシンなどによる撹拌により分散できる。また、必要に応じて、二本ロール、三本ロール、ボールミル、サンドミル、ペブルミル、トロンミル、サンドグラインダー、セグバリアトライター、高速インペラー分散機、高速ストーンミル、高速度衝撃ミル、ニーダー、ホモジナイザー、超音波分散機等により、分散してもよい。このように上記弁作用金属粉と、溶剤と、結着剤とを所望の割合で混合撹拌手段により分散させて弁作用金属粉含有塗料を得ることができる。前記したとおり真空凍結法で表面処理された金属粉は、溶剤、樹脂と撹拌するだけで良好な弁作用金属粉含有塗料を形成することができるため、分散完了直後の分散液の配合、粘度に対しては設定自由度が大きい。
【0030】
次いで、上記で得られた弁作用金属粉含有塗料を、基体上に塗布して塗布物とする。弁作用金属粉含有塗料を適当な基体上に塗布した後、乾燥することによって、基体上に塗布された塗料中の溶剤が揮散し、基体上には弁作用金属粉末とバインダー樹脂(溶剤が残っていても良い)からなる薄いシートが残る。
【0031】
所定の大きさの成形体を作製するとき、種々の塗布方法により弁作用金属粉含有塗料の塗布物を形成することができる。塗布する方法は、例えば、公知のロール塗布方法等、具体的には、エアードクターコート、ブレードコート、ロッドコート、押し出しコート、エアーナイフコート、スクイズコート、含侵コート、リバースロールコート、トランスファーロールコート、グラビアコート、キスコート、キャストコート、スプレイコート等により基体上に塗布物を形成することができる。
【0032】
また、各種印刷方法を適用することも可能である。具体的には、孔版印刷方法、凹版印刷方法、平版印刷方法などを用いて基体上に所定の大きさに塗布物を印刷することができる。
特に、孔版印刷方法を使用することは、成形物の形状を所望の形状、例えば直方体状の形状、円柱状の形状、あるいは櫛の歯形状のように、種々の形状に形成することができるので好ましい。
また、塗布物(印刷物)の厚さは、本発明においては、塗布物の湿時厚さが10μm〜1mmの範囲が好ましい。
【0033】
また、ピロー成形等により凹版状に所定の寸法に形成された基材(鋳型)に弁作用金属粉含有塗料を流し込む方法を適用することも可能である。
成形物の作製方法は、例えば鋳型に弁作用金属粉含有塗料を流し込んだ後、弁作用金属粉末の粒子径の著しい変形を生じない程度に加圧してもよい。
【0034】
基体として使用できる材料としては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリエチレンナフタレートフィルム、ポリビニルアルコールフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリカーボネートフィルム、ナイロンフィルム、ポリスチレンフィルム、エチレン酢酸ビニル共重合体フィルム、エチレンビニル共重合体フィルム等からなるプラスチックフィルムまたはシート;若しくはアルミニウムなどの金属シート;紙、含浸紙;これらの各材料からなる複合体が挙げられ、これら以外の材料であっても、必要な強度、構成等を備えていれば、特に制限なく使用できる。
【0035】
このようにして得られた塗布物を基体から剥離した後、公知の方法で焼結を行うが、例えばタンタル金属粉の場合には、約60℃で約60〜120分乾燥し、次いで約300〜600℃の熱処理工程によって有機物質の除去を行い、さらに約10〜30分間、約1200〜1600℃の高温加熱処理を行って完全に有機物質の除去を行うとともに、弁作用金属粉末同士を融着させることにより、弁作用電解コンデンサ用陽極素子が得られる。
【0036】
なお、本発明においては、上記で得られた焼結前の塗布物(シート状あるいは薄片状成形体)を、少なくとも一部を扁平にした弁作用金属からなるリード線の該扁平部分を間に挟んで重ね合わせ、加圧して接合体を形成し、次いで該接合体を焼結することが好ましい。この方法によれば、扁平なリード線とシートとの密着性が良好となり、リード線と成形体との電気的接続状態が良好となる。また、従来の電解コンデンサ製造プロセスでは高い生産性での製造が困難だった、極めて薄い、例えば厚さ0.6mm以下の、特に厚さ0.4mm以下の高性能な電解コンデンサを提供することができる。これによって等価直列抵抗を下げることができ、良好な高周波特性を得ることができる。
【0037】
弁作用電解コンデンサを形成する場合には、得られた弁作用電解コンデンサ用陽極素子は均一の多孔質体であり、これを電解液槽に入れ、該素子に所定の直流電圧を加えることにより、該素子の表面に酸化タンタル皮膜を形成させる。
そして、酸化皮膜の形成後、その上に二酸化マンガン被膜、又は機能性高分子被膜の電解質層を形成させることができる。
【0038】
上述のようにして得られた素子を、必要であれば、カーボン層、銀ペースト層を形成し、コンデンサ素子の表面に陰極端子の一端側を半田で接合すると共に、リード線の先端部分を陽極端子にスポット溶接によって接合した後、例えば樹脂溶液中に浸漬させて形成させる等の方法により樹脂外装を施して、タンタル電解コンデンサとする。本発明によれば、弁作用電解コンデンサ用陽極素子自体が小型化、薄膜化が可能であるとともに、該素子1mg当たりの静電容量としても従来の製造方法によるコンデンサと同等以上のコンデンサを得ることが可能である。
【0039】
【実施例】
次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
【0040】
実施例1
平均一次粒子径0.5μmのタンタル金属粉末100g、分散剤としてソルスパーズ20000(ゼネカ(株)製)0.1g、溶媒である水50g、および3mm径のスチールボール50gを100ccのポリ瓶に入れて混合し、振とう機(ペイントコンディショナー)を用いて0.5時間練肉して、タンタル金属粉の分散液(a−1)を得た。
【0041】
このタンタル金属粉の分散液(a−1)を底面の寸法250mmL×150mmWの平型トレイに100g移し、液体窒素中にトレイを浸漬し予備凍結乾燥した後、真空凍結乾燥を行った。
【0042】
真空凍結乾燥機は日本真空(株)製の「DFM−05AS」を用いた。予備凍結したタンタル金属粉の分散液(a−1)を、あらかじめ約−40℃に冷却した棚にのせて、真空度7〜10Paで20時間の真空凍結乾燥後、嵩高のスポンジ状乾燥物としてタンタル金属粉の表面処理物(b−1)60gを得た。
次にタンタル金属粉の表面処理物(b−1)50g、バインダー樹脂としてアクリル樹脂「NCB−166」(大日本インキ化学工業(株)製)2.5g(固形分量)、およびトルエンとシクロヘキサノンの混合溶媒を50ccのポリ瓶に入れて混合し、固形分85%に調整後攪拌して、攪拌機「UM−102S」((株)ジャパンユニックス製)を用いて0.1時間攪拌して、タンタル金属粉末分散液B−1を作製した。分散状況は良好であった。この分散液B−1を50μmの厚さのPETフィルムに塗布、乾燥し、塗布物C−1を作製した。
次に、塗布物C−1をPETより剥離した。剥離した塗膜を3.6mm×4.4mmに打ち抜いて形成した2枚の薄膜状成形体に、一端を扁平にしたタンタルワイヤをはさみ800kg/cmの圧力でプレス加圧した。次にこの成形体を、5×10−4Torr6.6×10−3Paの真空中で温度350℃、90分間処理し、バインダー樹脂の分解、除去を行い、さらに13500℃、20分間の燒結処理を行って、図2に示すように、薄形直方体形状のタンタル多孔質焼結体11内に、扁平リード線12の扁平部分12aが埋入された構造の厚さが0.3mmタンタル電解コンデンサ用陽極素子1を得た。
この陽極素子を燐酸溶液中で直流電圧20V印加して陽極化成処理を行い、30%硫酸中で静電容量と等価直列抵抗を測定した。測定法はEIAJ RC−2361Aに基づいた。測定結果を表1に示す。
【0043】
実施例2
平均1次粒子径0.5μmのニオブ金属粉末100g、分散剤としてソルスパーズ2000(ゼネカ(株)製)0.1g、溶媒である水50g、および3mm径のスチールボール50gを100ccのポリ瓶に入れて混合し、振とう機(ペイントコンディショナー)を用いて0.5時間練肉してニオブ金属粉の分散液(a−2)を得た。
このニオブ金属粉の分散液(a−2)を実施例1と同様の方法で凍結真空乾燥を行い、ニオブ金属粉の表面処理物(b−2)60gを得た。
次に、ニオブ金属粉の表面処理物(b−2)50g、バインダー樹脂としてアクリル樹脂「NCB−166」(大日本インキ化学工業(株)製)2.5g(固形分量)、およびシクロヘキサノンとトルエンの混合溶媒を50ccのポリ瓶に入れて不揮発分85%の調整、混合し、攪拌機「UM−102S」((株)ジャパンユニックス製)を用いて0.1時間攪拌して、ニオブ金属粉末分散液B−2を得た。分散状況は良好であった。この分散液B−2を50μmの厚さのPETフィルムに塗布、乾燥し、塗布物C−2を作製した。
次に塗布物C−2を用いて実施例1と同様の方法で1200℃、30分間の焼結を行って、厚さ0.3mmのニオブ電解コンデンサ用の陽極素子を得た。さらにこの陽極素子を燐酸溶液中で直流電圧20Vに印加して陽極化成処理を行い、30%硫酸中で静電容量と価直列抵抗を測定した。測定結果を表1に示す。
【0044】
【表1】

Figure 2004006502
【0045】
各実施例とも、いずれも素子は薄く、電気特性にも優れていた。特に素子が薄いため低いESRを得ることができた。
【0046】
【発明の効果】
本発明の製造方法を用いれば、薄形で高性能な弁作用電解コンデンサ用陽極素子及び弁作用電解コンデンサを容易に製造することができる。
すなわち、本発明の製造方法によれば、真空凍結乾燥法を用いるため、弁作用金属粉が表面処理される。表面処理された弁作用金属粉は、危険性のない状態で保存若しくは輸送することができ、原料の安全性及び長期保存安定性の問題をも解消することができる。該表面処理された金属粉は、溶剤及び結着樹脂と任意の割合で混合するため、分散液の配合、粘度に対する設定自由度が大きく、容易に弁作用金属粉含有塗料となる。そして、この弁作用金属粉含有塗料を基体上に塗布して塗布物とし、該塗布物を剥離後に焼結することにより、薄型で電気特性、強度に優れた弁作用電解コンデンサを容易に製造することができる。
【図面の簡単な説明】
【図1】従来のタンタル電解コンデンサの模式図である。
【図2】本発明の実施例に係るタンタル電解コンデンサ用陽極素子である。
【符号の説明】
1:タンタル電解コンデンサ用陽極素子。
2:陰極端子。
3:陽極端子。
4:モールド樹脂。
5:導電性接着剤
6:樹脂リング
7:溶接点
11:タンタル多孔質焼結体
12:扁平リード線
12a:扁平部分[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an anode element for a valve action electrolytic capacitor using a valve action metal such as tantalum or niobium, an electrolytic capacitor using the same, and a method for manufacturing an anode element for a valve action electrolytic capacitor.
[0002]
[Prior art]
2. Description of the Related Art In recent years, the technology for miniaturizing surface-mounted devices has dramatically advanced, and the technology for mounting components on electronic devices, such as mobile phones, personal computers, and digital cameras, has increased. Under such circumstances, various researches have been made on capacitor elements as electronic components in order to meet the demand for miniaturization and high capacity.
At present, the most commonly used capacitor elements are metallized film capacitors, multilayer ceramic capacitors, aluminum electrolytic capacitors, tantalum electrolytic capacitors, etc. Electrolytic capacitors have been actively studied especially for their excellent characteristics when used in power supply circuits.
Materials having the same characteristics as tantalum metal include so-called valve-acting metals such as aluminum, niobium, and titanium, and in particular, tantalum metal in terms of heat resistance and dielectric film forming property. Niobium metal is in high demand.
[0003]
As a method of manufacturing an electrolytic capacitor using the valve metal powder, for example, tantalum or niobium, usually, tantalum or niobium is used as an anode metal, and a resin serving as a binder and a tantalum or niobium metal powder are mixed with gold. They are put into a mold, and they are subjected to pressure processing to produce chips. At this time, if the packing density of the tantalum or niobium metal powder varies, it will affect the electrical characteristics of the obtained capacitor. Therefore, the filling and pressurizing conditions of the above materials must be strictly controlled.
A component (usually a tantalum lead wire or a niobium lead wire) serving as an anode terminal is provided on the chipped device manufactured in this manner. This lead wire is usually fixed in the mold by pressing and molding a tantalum metal or niobium metal powder. The element obtained in the above step is subjected to a high-temperature heat treatment in a vacuum to remove unnecessary resin in the element by evaporation.
In this step, the resin existing between the tantalum or niobium metal powder is removed by evaporation, and the anode for the tantalum or niobium electrolytic capacitor in the form of a porous body is formed by welding at the contact point between the tantalum or niobium metal powder. An element is obtained.
The thus obtained anode element for a tantalum or niobium electrolytic capacitor is placed in an electrolytic solution tank, a predetermined direct current voltage is applied thereto, and a chemical conversion treatment is performed to form a tantalum oxide film or a niobium oxide film on the surface of the tantalum or niobium metal powder. After the formation, a solid electrolyte film of manganese dioxide or a functional polymer is formed on the film.
Thereafter, a cathode layer treatment with carbon, silver paste, or the like is performed to cover the resin, thereby obtaining a final tantalum or niobium electrolytic capacitor.
[0004]
FIG. 1 shows a schematic diagram of a typical structure of a tantalum electrolytic capacitor. The tantalum electrolytic capacitor includes an anode element 1 for a tantalum electrolytic capacitor provided with lead wires, a cathode terminal 2 and an anode terminal 3, which are covered with a resin 4. The anode element 1 and the cathode terminal 2 are in contact with each other by a conductive adhesive 5, and a resin ring 6 is provided to prevent manganese dioxide from adhering to the lead wire. To be in contact with the anode terminal 3.
[0005]
In recent years, there has been an increasing demand for thinner capacitor elements in order to reduce the size of elements due to higher integration of circuits and to improve high frequency characteristics. As a manufacturing method that satisfies such demands, a technology has been developed in which an electrolytic capacitor is manufactured by inserting a lead wire between a superposed valve metal powder and a molded body sheet containing a binder (Japanese Patent Application Laid-Open (JP-A) No. No. 56-83022). As a method of forming the molded body sheet for an electrolytic capacitor, a molding method by application using a dispersion liquid for forming a sintered body containing valve metal powder and a binder has been proposed.
Further, as another molding method, a molded body can be formed by pressure molding using a dispersion liquid containing a valve action metal powder and a binder, and the molded body is sintered for sintering. A metal sintered body used as an anode element can be formed.
The method of obtaining a metal sintered body by sintering the formed body by these wet moldings is particularly suitable for forming a metal porous sintered body having a large pore volume, particularly in the case of a coating method or a printing method. Can be used as a technique for manufacturing a thin anode element for an electrolytic capacitor, in the manufacture of an anode element having a thickness of 0.6 mm or less, which is extremely difficult by a conventional method using pressure using a mold.
[0006]
[Problems to be solved by the invention]
However, many of the metal powders have a high specific gravity and tend to settle, and are therefore not at all suitable for storage as a dispersion. For example, a tantalum metal powder dispersion obtained by mixing and dispersing a tantalum metal powder, a solvent, and a resin tends to settle because the true specific gravity of the tantalum metal powder is 16.6, and long-term storage stability cannot be obtained. It was not useable.
In addition, many valve-acting metal powders, such as niobium and tantalum, are easily ignited, making it difficult to handle the powders, making the production equipment special and extremely expensive, or dispersing the paint using a dispersing machine. At the time, the type of resins and the like that can be used and the degree of freedom of the mixing ratio are low, so the composition and physical properties of the resulting dispersion are limited, and the problem is that the dispersion is not necessarily suitable for subsequent wet molding. Had.
[0007]
The present invention provides a method for easily producing a thin, high-performance anode element for a valve action electrolytic capacitor using a dispersion containing valve action metal powder and a binder, and a valve action electrolytic capacitor obtained by the production method. It is an object of the present invention to provide an anode element for use and a valve action electrolytic capacitor using the same.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, a valve action metal powder, a specific solvent, a valve action metal powder dispersion obtained by dispersing a dispersant, dried by vacuum freeze drying method The surface-treated metal powder for forming a sintered body is difficult to ignite and has excellent storage stability and the like, and the metal powder is mixed with a solvent and a binder for dispersion production at an arbitrary ratio. Thus, it has been found that a valve action metal powder-containing paint for forming a molded body can be easily adjusted.
Further, if such a coating material containing valve action metal powder is applied on a substrate, and the applied material is peeled off and sintered, an anode element for a valve action electrolytic capacitor having excellent electrical properties such as equivalent series resistance and physical strength. The present inventors have found that a valve action electrolytic capacitor can be easily obtained, and have completed the present invention.
[0009]
That is, in the present invention, the valve-acting metal powder was dispersed in the solvent A using a dispersant, and the resulting dispersion of the valve-acting metal powder was subjected to a surface treatment by drying using a vacuum freeze-drying method. A valve action metal powder is obtained, and then the surface-treated metal powder, solvent B and a binder are mixed to obtain a valve action metal powder-containing paint, and then the valve action metal powder-containing paint is applied on a substrate. The present invention provides a method for producing an anode element for a valve action electrolytic capacitor, which comprises a step of sintering the coated material after peeling off the coated material.
In the present invention, by subjecting the dispersion of the valve action metal powder to freeze-drying under vacuum, only the dispersant remains on the valve action metal surface, and the valve action metal is surface-treated with the dispersant. For this reason, the dispersibility of the valve action metal powder becomes very good, and it is stable even when stored for a long time. In addition, since the treatment is performed at a low temperature using a vacuum freeze-drying method, it is difficult to ignite and excellent in safety. Furthermore, it can be easily mixed with a solvent and a resin at an arbitrary ratio only by stirring, so that a valve metal powder-containing coating can be easily adjusted.
Normally, when preparing a dispersion of the metal powder for forming a sintered body, in order to adjust the viscosity at the time of dispersion according to the characteristics of the disperser to be used, the dispersion range of the dispersion and the set range of the composition after dispersion are adjusted. There were naturally restrictions. On the other hand, the valve-acting metal powder-containing paint according to the present invention has a wide range of mixing ratios of the metal powder, the resin and the solvent at the time of preparing the paint, and has a wide degree of freedom in physical properties such as viscosity. A dispersion can be prepared by defining from among the above. As described above, if such a surface-treated metal powder is used, a coating can be formed with a small amount of a solvent, so that even a material having a hard viscosity can be easily formed. Further, a thin molded body such as a sheet or a flake can be easily formed by the coating process.
[0010]
The anode element for an electrolytic capacitor of the present invention is obtained by applying the valve metal powder-containing paint on a substrate, peeling off the applied material, and sintering, so that the conventional electrolytic capacitor manufacturing process has high productivity. It is possible to provide a high-performance electrolytic capacitor having an extremely small thickness, for example, a thickness of 0.6 mm or less, particularly a thickness of 0.4 mm or less, which was difficult to manufacture. As a result, the equivalent series resistance can be reduced, and good high-frequency characteristics can be obtained.
[0011]
The present invention also provides an anode element for a valve action electrolytic capacitor obtained by such a manufacturing method.
The present invention also provides a valve electrolytic capacitor using the anode element for a valve electrolytic capacitor.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the term solvent is used at the time of vacuum freeze-drying, and the solvent A for the surface treatment of the valve action metal powder, and the coating, printing and pressure molding are used depending on the stage of the present invention. And the solvent B for forming a coating used in the molding process such as the above. As the solvent A, a solvent in which metal powder is easily dispersed and which is easily frozen and sublimated by a vacuum freezing method is selected. On the other hand, a solvent which has been conventionally used for dispersing metal powder and forming a paint can be widely used as the solvent B. However, in the present invention, since the metal powder is subjected to surface treatment and easily dispersed, the solvent B has been conventionally used. The degree of freedom in selection is expanding.
In the text, when there is no particular misunderstanding in the meaning of the term, it is simply described as a solvent, but when there is a possibility of misidentification, A is used to clarify at which stage of the present invention the solvent is used. , B were noted.
[0013]
When a method of treating the surface of the valve metal powder with a dispersant by such a vacuum freezing method is used, only the solvent is basically sublimated and removed from the solvent frozen at a low temperature. Since the surface treatment is performed in the process of sublimation in this way, there is no dispersant that is eluted and lost in the solvent, and all of the added dispersant is treated, as in the case of performing the surface treatment by a normal method using a solvent. It remains in the subsequent valve action metal powder. In the dispersion, the dispersant is localized near the surface of the metal powder, and when the vacuum freezing method is performed, only the solvent may be removed, and the dispersant may be uniformly attached to the surface of the metal powder. This is an extremely efficient treatment method because the metal powder does not agglomerate during the removal as in the case of removing the ordinary solvent. Since all of the used dispersant remains in the valve metal powder, it is easy to grasp the relationship between the effect of the dispersant and the amount used, and it is easy to optimize the amount used. This is also important when treating metal powder such as tantalum or niobium which has a risk of ignition, in considering the amount of the metal powder to be completely covered.
Furthermore, since the vacuum freezing method is basically a treatment at a low temperature, the risk of ignition is further reduced.
[0014]
In addition, metal powder such as tantalum having a large specific gravity easily sediments and a concentration distribution is easily generated by a normal processing method, so that it is difficult to perform uniform processing.However, the metal powder is frozen in a solvent containing a dispersant. By confining the tantalum metal powder by using this method, the metal surface can be processed under more uniform processing conditions.
[0015]
By using a valve freeze-drying method and using valve-acting metal powder surface-treated with a dispersing agent, a good dispersion can be achieved by a simple stirring operation of the additive solvent or the additive solvent and the additive binder immediately before application. Since the liquid is obtained, much equipment for adjusting the coating liquid is not required as a facility associated with the coating apparatus.
[0016]
Furthermore, in the vacuum freezing method, not only a dispersant but also a surface treatment with a resin can be performed. As in the case of the above-described dispersant, the resin is also uniformly adhered to the surface of the valve metal powder, so that the resin-coated metal powder can be easily formed. Such treated valve-acting metal powder can be compacted as it is and sintered, or can be used again as a paint by adding a solvent again. At this time, the selection of the solvent does not necessarily have to completely dissolve the resin on the surface of the metal powder, and various solvents can be used in relation to the resin and various molding methods.
[0017]
The metal powder surface-treated by the vacuum freezing method can form a good valve action metal powder-containing coating simply by adding a solvent or a resin and a solvent and stirring. Therefore, the degree of freedom in setting the blending and viscosity of the dispersion immediately after the completion of the dispersion is large. In contrast, when using a metal powder that has not been subjected to surface treatment as in the past and kneading with a disperser to prepare a dispersion, the individual dispersion method must be adjusted in advance to the optimum viscosity range for the disperser. The sample before dispersion had to be set. Therefore, the viscosity after dispersion was determined in the viscosity range according to the disperser, and the degree of freedom in setting the physical properties of the dispersion was low.
[0018]
When the surface treatment of the valve action metal is performed as described above, the valve action metal powder-containing paint can be formed only by stirring at an arbitrary ratio with the solvent B for forming a dispersion liquid, and thus used for forming a molded body. A dispersion having the most suitable metal powder content and viscosity for the molding means can be easily produced.
[0019]
The purity of the valve metal powder suitable for the present invention is preferably 99.5% or more. Further, the average primary particle diameter is preferably from 0.01 to 5.0 μm, and particularly preferably from 0.01 to 1.0 μm.
The metal powder that can be used in the present invention is a so-called valve metal powder. Examples of the valve metal include aluminum, niobium, titanium, and tantalum. Of these, niobium and tantalum are preferable. In particular, when forming a porous metal sintered body, the surface treatment method for metal powder described in the present invention can be suitably used.
[0020]
Examples of the solvent A suitable for the present invention include water and alcohol such as higher hydrocarbons such as decane, aromatic hydrocarbons such as benzene and o-xylene, and halogenated hydrocarbons such as 1,1,1-trichloroethane. Preferred solvents are various solvents having a freezing point of -40 ° C or higher, such as water, benzyl alcohol, glycerin, phenols, phenols, ethers, anisole, ketones, camphor, esters, stearic acid esters, and the like. be able to. These solvents are not limited to those listed here, and can be used alone or as a mixture of two or more.
[0021]
Examples of the dispersant suitable for the present invention include a coupling agent, an anionic, cationic, amphoteric or nonionic surfactant having an HLB value of 6 or more and preferably 8 or less, various dispersants such as soybean lecithin and Solspurs. be able to. These dispersants are not limited to those listed here, and may be used alone or in combination of two or more. The concentration of the dispersant in the dispersion is preferably from 0.05 to 3.0% by mass, particularly preferably from 0.05 to 0.5% by mass, based on 100 of the Ta metal powder.
[0022]
The valve action metal powder, the solvent A, and the dispersant are mixed in a desired ratio and dispersed by an appropriate dispersing means to obtain a dispersion of the valve action metal powder. When freeze-drying is performed, the range of the solid concentration in the dispersion of the valve metal powder is preferably 0.5 to 80% by mass, and particularly preferably 1 to 50% by mass.
Examples of the dispersing means include two rolls, three rolls, a ball mill, a sand mill, a pebble mill, a tron mill, a sand grinder, a segbar writer, a high-speed impeller disperser, a high-speed stone mill, a high-speed impact mill, a kneader, a homogenizer, The mixture can be kneaded and dispersed by an acoustic disperser or the like.
The dispersion of the valve metal powder thus obtained can be transferred to vacuum freeze-drying.
[0023]
Vacuum freeze-drying is, for example, in the case of a dispersion of valve action metal powder containing valve action metal powder, water, and a dispersant, pre-freezing to 0 ° C. or less at atmospheric pressure, and theoretically water vapor at 0 ° C. The degree of vacuum may be controlled so that the pressure does not exceed 4.5 mmHg (= 600 Pa). In consideration of the drying speed and the ease of control, it is preferable to set the temperature to 1 mmHg (= 133.32 Pa) or less and raise the temperature to a temperature at which the liquid freezes at the vapor pressure.
[0024]
Further, as a specific example in the case of using the solvent A, in the case of a dispersion using 1,1,2-trichloroethane, 1,1,2-trichloroethane can be reduced to -37 ° C or less at atmospheric pressure. Since it freezes, it can be easily preliminarily frozen by using liquid nitrogen or the like. Since the vapor pressure at the freezing point of 1,1,2-trichloroethane is about 15 mmHg (= 2000 Pa), drying can be performed in the same manner as with water if the vapor pressure is 1 mmHg or less.
[0025]
The valve-acting metal powder surface-treated with a dispersant, especially when the metal powder surface is highly active, is not exposed to oxygen because the surface is treated with an organic substance, so there is a risk of fire. There is little nature.
Further, the valve action metal powder surface-treated with the dispersant can be stored or transported without danger, and can also solve the problems of the safety of the raw material and the long-term storage stability.
[0026]
When the surface-treated metal powder with valve action is used as a raw material, a paint containing the valve action metal powder can be obtained by simply performing a simple stirring treatment using the solvent B or the solvent B and a binder at the time of use. Can be
[0027]
Solvent B suitable for the present invention includes, for example, alcohols such as methanol, ethanol, n-propanol and benzyl alcohol; ketones such as acetone, methyl ethyl ketone, cyclohexanone, isophorone and acetylacetone; N, N-dimethylformamide, N, N- Amides such as dimethylacetamide; ethers such as tetrahydrofuran, dioxane, methyl cellosolve, and diglyme; esters such as methyl acetate, ethyl acetate, and diethyl carbonate; sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane; methylene chloride, chloroform; Aliphatic halogenated hydrocarbons such as carbon chloride and 1,1,2-trichloroethane; benzene, toluene, o-xylene, p-xylene, m-xylene, monochlorobenzene, dichlorobenzene, etc. Aromatic compounds and the like, but not limited thereto. These solvents B are not limited to those listed here, and can be used alone or as a mixture of two or more. The concentration of the solvent B in the paint is not particularly limited, but is preferably, for example, 5 to 70% by mass.
[0028]
As the binder used in the present invention, acrylic resin, butyral resin, polyvinyl alcohol resin, acetal resin, phenol resin, urea resin, vinyl acetate emulsion, polyurethane resin, polyvinyl acetate resin, epoxy resin, melamine resin, alkyd resin, Nitrocellulose resins and natural resins can be used alone or as a mixture of two or more. The concentration of the binder in the paint is not particularly limited, but is preferably, for example, 0.01 to 20% by mass.
[0029]
As means for dispersing and stirring the surface-treated valve-acting metal powder, the solvent B, and the binder, for example, the dispersion can be performed by stirring using a stirrer, a defoaming mixing machine, or the like. Also, if necessary, two rolls, three rolls, ball mill, sand mill, pebble mill, tron mill, sand grinder, segbar lighter, high speed impeller disperser, high speed stone mill, high speed impact mill, kneader, homogenizer, super You may disperse | distribute with a sonic dispersion machine or the like. In this manner, the valve action metal powder, the solvent, and the binder are dispersed in a desired ratio by the mixing and stirring means, whereby a valve action metal powder-containing paint can be obtained. As described above, the metal powder surface-treated by the vacuum freezing method can form a good valve action metal powder-containing coating simply by stirring with a solvent and a resin. On the other hand, the degree of freedom in setting is large.
[0030]
Next, the valve-acting metal powder-containing paint obtained as described above is applied on a substrate to obtain a coated product. After coating the valve metal powder-containing paint on an appropriate substrate and drying, the solvent in the paint applied on the substrate volatilizes, and the valve metal powder and the binder resin (solvent remain) on the substrate. May remain).
[0031]
When producing a molded article having a predetermined size, an applied material of the valve metal powder-containing paint can be formed by various application methods. The coating method is, for example, a known roll coating method and the like, specifically, air doctor coat, blade coat, rod coat, extrusion coat, air knife coat, squeeze coat, impregnation coat, reverse roll coat, transfer roll coat A coating can be formed on a substrate by gravure coating, kiss coating, cast coating, spray coating, or the like.
[0032]
Also, various printing methods can be applied. Specifically, the coating material can be printed on the substrate in a predetermined size using a stencil printing method, an intaglio printing method, a lithographic printing method, or the like.
In particular, the use of the stencil printing method allows the shape of the molded product to be formed into various shapes such as a desired shape, for example, a rectangular parallelepiped shape, a columnar shape, or a comb tooth shape. preferable.
In the present invention, the thickness of the applied material (printed material) is preferably in a range of 10 μm to 1 mm when the applied material is wet.
[0033]
Further, it is also possible to apply a method of pouring a valve metal powder-containing paint into a substrate (mold) formed in an intaglio shape with a predetermined size by pillow molding or the like.
As a method for producing a molded product, for example, after pouring a valve metal powder-containing coating material into a mold, pressure may be applied to such an extent that the particle diameter of the valve metal powder is not significantly deformed.
[0034]
Examples of the material that can be used as the substrate include polyethylene film, polypropylene film, polyvinyl chloride film, polyvinylidene chloride film, polyethylene naphthalate film, polyvinyl alcohol film, polyethylene terephthalate (PET) film, polycarbonate film, nylon film, and polystyrene film. A plastic film or sheet comprising an ethylene-vinyl acetate copolymer film, an ethylene-vinyl copolymer film, or the like; or a metal sheet such as aluminum; paper, impregnated paper; a composite comprising each of these materials. Even if it is a material, it can be used without particular limitation as long as it has the necessary strength, configuration, and the like.
[0035]
After the coating material thus obtained is peeled from the substrate, sintering is performed by a known method. For example, in the case of tantalum metal powder, drying is performed at about 60 ° C. for about 60 to 120 minutes, and then about 300 ° C. The organic substance is removed by a heat treatment step of up to 600 ° C., and a high temperature heat treatment of about 1200 to 1600 ° C. is further performed for about 10 to 30 minutes to completely remove the organic substance and to fuse the valve action metal powders together. By attaching the anode element, an anode element for a valve action electrolytic capacitor is obtained.
[0036]
In the present invention, the coating material (sheet-like or flake-like molded product) obtained above before sintering is placed between the flat part of the lead wire made of valve action metal having at least partly flattened. It is preferable to form a joined body by sandwiching and overlapping, and then pressurizing, and then sintering the joined body. According to this method, the adhesion between the flat lead wire and the sheet is improved, and the electrical connection between the lead wire and the molded body is improved. Further, it has been difficult to provide a high-performance electrolytic capacitor having a thickness of 0.6 mm or less, particularly a thickness of 0.4 mm or less, which was difficult to manufacture with high productivity in the conventional electrolytic capacitor manufacturing process. it can. As a result, the equivalent series resistance can be reduced, and good high-frequency characteristics can be obtained.
[0037]
In the case of forming a valve action electrolytic capacitor, the obtained anode element for a valve action electrolytic capacitor is a uniform porous body, put this in an electrolytic solution tank, and apply a predetermined DC voltage to the element, A tantalum oxide film is formed on the surface of the device.
After forming the oxide film, an electrolyte layer of a manganese dioxide film or a functional polymer film can be formed thereon.
[0038]
If necessary, a carbon layer and a silver paste layer are formed on the element obtained as described above, and one end of the cathode terminal is joined to the surface of the capacitor element by soldering, and the tip of the lead wire is connected to the anode. After joining to the terminals by spot welding, the terminal is covered with a resin by, for example, dipping in a resin solution to form a tantalum electrolytic capacitor. ADVANTAGE OF THE INVENTION According to this invention, while the anode element itself for valve action electrolytic capacitors can be miniaturized and thinned, it is possible to obtain a capacitor whose capacitance per 1 mg of the element is equal to or higher than that of the capacitor manufactured by the conventional manufacturing method. Is possible.
[0039]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
[0040]
Example 1
100 g of tantalum metal powder having an average primary particle diameter of 0.5 μm, 0.1 g of Solspers 20000 (manufactured by Zeneca Corporation) as a dispersant, 50 g of water as a solvent, and 50 g of steel balls having a diameter of 3 mm were put into a 100 cc poly bottle. The mixture was mixed and kneaded for 0.5 hour using a shaker (paint conditioner) to obtain a dispersion (a-1) of tantalum metal powder.
[0041]
100 g of the dispersion liquid (a-1) of the tantalum metal powder was transferred to a flat tray having a bottom surface of 250 mmL × 150 mmW, immersed in liquid nitrogen, preliminarily freeze-dried, and then vacuum freeze-dried.
[0042]
The vacuum freeze dryer used was "DFM-05AS" manufactured by Japan Vacuum Corporation. The pre-frozen dispersion liquid of tantalum metal powder (a-1) is placed on a shelf previously cooled to about −40 ° C., and is subjected to vacuum freeze-drying at a degree of vacuum of 7 to 10 Pa for 20 hours. 60 g of a surface-treated tantalum metal powder (b-1) was obtained.
Next, 50 g of surface-treated tantalum metal powder (b-1), 2.5 g (solid content) of an acrylic resin "NCB-166" (manufactured by Dainippon Ink and Chemicals, Inc.) as a binder resin, and toluene and cyclohexanone The mixed solvent was placed in a 50 cc plastic bottle, mixed, adjusted to a solid content of 85%, and stirred. The mixture was stirred for 0.1 hour using a stirrer “UM-102S” (manufactured by Japan Unix Co., Ltd.) to obtain tantalum. A metal powder dispersion B-1 was prepared. The dispersion situation was good. This dispersion B-1 was applied to a 50-μm-thick PET film and dried to prepare a coating C-1.
Next, the coating material C-1 was peeled off from PET. 800 kg / cm of a tantalum wire with one end flattened between two thin film-shaped molded bodies formed by punching the peeled coating film into 3.6 mm x 4.4 mm 2 And pressurized at a pressure of Next, this molded product was added to 5 × 10 -4 Torr 6.6 × 10 -3 In a vacuum of Pa at a temperature of 350 ° C. for 90 minutes, the binder resin is decomposed and removed, and a sintering process is performed at 13500 ° C. for 20 minutes to obtain a thin rectangular parallelepiped tantalum porous as shown in FIG. Element 1 for a tantalum electrolytic capacitor having a structure in which a flat portion 12a of a flat lead wire 12 is embedded in a porous sintered body 11 having a thickness of 0.3 mm.
The anode element was subjected to anodizing treatment by applying a DC voltage of 20 V in a phosphoric acid solution, and the capacitance and the equivalent series resistance were measured in 30% sulfuric acid. The measurement method was based on EIAJ RC-2361A. Table 1 shows the measurement results.
[0043]
Example 2
100 g of niobium metal powder having an average primary particle diameter of 0.5 μm, 0.1 g of Solspers 2000 (manufactured by Zeneca Corporation) as a dispersing agent, 50 g of water as a solvent, and 50 g of steel balls having a diameter of 3 mm are placed in a 100 cc plastic bottle. The mixture was kneaded with a shaker (paint conditioner) for 0.5 hour to obtain a dispersion liquid (a-2) of niobium metal powder.
This dispersion liquid (a-2) of niobium metal powder was subjected to freeze-vacuum drying in the same manner as in Example 1 to obtain 60 g of a surface-treated niobium metal powder (b-2).
Next, 50 g of a surface-treated niobium metal powder (b-2), 2.5 g (solid content) of an acrylic resin "NCB-166" (manufactured by Dainippon Ink and Chemicals, Inc.) as a binder resin, and cyclohexanone and toluene Is mixed in a 50 cc plastic bottle, and the mixture is adjusted and mixed with a nonvolatile content of 85%, and stirred for 0.1 hour using a stirrer “UM-102S” (manufactured by Japan Unix Corporation) to disperse the niobium metal powder. Liquid B-2 was obtained. The dispersion situation was good. This dispersion liquid B-2 was applied to a PET film having a thickness of 50 μm, and dried to prepare a coating material C-2.
Next, sintering was performed at 1200 ° C. for 30 minutes using the coated product C-2 in the same manner as in Example 1 to obtain a 0.3 mm-thick anode element for a niobium electrolytic capacitor. Further, the anode element was subjected to anodizing treatment by applying a DC voltage of 20 V in a phosphoric acid solution, and the capacitance and valence series resistance were measured in 30% sulfuric acid. Table 1 shows the measurement results.
[0044]
[Table 1]
Figure 2004006502
[0045]
In each of the examples, the element was thin and had excellent electric characteristics. In particular, a low ESR could be obtained because the element was thin.
[0046]
【The invention's effect】
By using the manufacturing method of the present invention, a thin and high-performance anode element for a valve action electrolytic capacitor and a valve action electrolytic capacitor can be easily manufactured.
That is, according to the production method of the present invention, since the vacuum freeze-drying method is used, the valve action metal powder is surface-treated. The valve-treated metal powder having been subjected to surface treatment can be stored or transported in a state without danger, and can also solve the problems of safety of raw materials and long-term storage stability. Since the surface-treated metal powder is mixed with the solvent and the binder resin at an arbitrary ratio, the degree of freedom in setting the mixing and viscosity of the dispersion liquid is large, and the valve action metal powder-containing paint can be easily obtained. Then, the valve action metal powder-containing paint is applied on a substrate to form a coating, and the coating is peeled off and sintered to easily produce a thin valve action electrolytic capacitor having excellent electrical characteristics and strength. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic view of a conventional tantalum electrolytic capacitor.
FIG. 2 is an anode element for a tantalum electrolytic capacitor according to an embodiment of the present invention.
[Explanation of symbols]
1: Anode element for tantalum electrolytic capacitor.
2: Cathode terminal.
3: Anode terminal.
4: Mold resin.
5: conductive adhesive
6: Resin ring
7: welding point
11: Tantalum porous sintered body
12: Flat lead wire
12a: flat part

Claims (6)

弁作用金属粉を溶剤A中に分散剤を用いて分散させ、得られた弁作用金属粉の分散液を、真空凍結乾燥法を用いて乾燥することにより表面処理された弁作用金属粉を得、次いで該表面処理された金属粉と溶剤Bと結着剤とを混合して弁作用金属粉含有塗料を得、次いで該弁作用金属粉含有塗料を基体上に塗布して塗布物とし、該塗布物を剥離後に焼結する工程を含むことを特徴とする弁作用電解コンデンサ用陽極素子の製造方法。The valve-acting metal powder is dispersed in the solvent A using a dispersant, and the resulting dispersion of the valve-acting metal powder is dried using a vacuum freeze-drying method to obtain a surface-treated valve-acting metal powder. Next, the surface-treated metal powder, the solvent B, and the binder are mixed to obtain a valve-acting metal powder-containing paint, and then the valve-acting metal powder-containing paint is applied on a substrate to form a coating. A method for producing an anode element for a valve action electrolytic capacitor, comprising a step of sintering after peeling off an applied material. 焼結前の該塗布物を、少なくとも一部を扁平にした弁作用金属からなるリード線の該扁平部分を間に挟んで重ね合わせ、加圧して接合体を形成し、次いで該接合体を焼結するものである請求項1に記載の弁作用電解コンデンサ用陽極素子の製造方法。The coating material before sintering is overlapped with the flat portion of a lead wire made of a valve metal having at least a portion flattened therebetween, and pressed to form a joined body, and then the joined body is fired. The method for producing an anode element for a valve action electrolytic capacitor according to claim 1, wherein the anode element is used. 溶剤Aの凝固点が−40℃以上である請求項1又は2に記載の弁作用電解コンデンサ用陽極素子の製造方法。The method for producing an anode element for a valve action electrolytic capacitor according to claim 1, wherein the freezing point of the solvent A is −40 ° C. or higher. 金属粉が、ニオブ粉又はタンタル粉である請求項1〜3のいずれか1項に記載の弁作用電解コンデンサ用陽極素子の製造方法。The method for producing an anode element for a valve action electrolytic capacitor according to any one of claims 1 to 3, wherein the metal powder is niobium powder or tantalum powder. 請求項1〜4のいずれかの製造方法により得られる弁作用電解コンデンサ用陽極素子。An anode element for a valve action electrolytic capacitor obtained by the method according to claim 1. 請求項5記載の弁作用電解コンデンサ用陽極素子を用いたことを特徴とする弁作用電解コンデンサ。A valve electrolytic capacitor using the anode element for a valve electrolytic capacitor according to claim 5.
JP2002159663A 2002-05-31 2002-05-31 Anode element for valve action electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP4219616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159663A JP4219616B2 (en) 2002-05-31 2002-05-31 Anode element for valve action electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159663A JP4219616B2 (en) 2002-05-31 2002-05-31 Anode element for valve action electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004006502A true JP2004006502A (en) 2004-01-08
JP4219616B2 JP4219616B2 (en) 2009-02-04

Family

ID=30429350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159663A Expired - Fee Related JP4219616B2 (en) 2002-05-31 2002-05-31 Anode element for valve action electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4219616B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057348A1 (en) 2004-11-29 2006-06-01 Dainippon Ink And Chemicals, Inc. Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
JP2007100062A (en) * 2005-02-28 2007-04-19 Dainippon Ink & Chem Inc Method for producing electro conductive coating material
JP2007254635A (en) * 2006-03-24 2007-10-04 Dainippon Ink & Chem Inc Electroconductive ink composition and printed matter
JP2009218502A (en) * 2008-03-12 2009-09-24 Sanyo Electric Co Ltd Solid electrolytic capacitor
US8067702B2 (en) 2005-06-03 2011-11-29 Gunze Limited Electromagnetic wave shielding material and production process of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057348A1 (en) 2004-11-29 2006-06-01 Dainippon Ink And Chemicals, Inc. Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
US7771625B2 (en) 2004-11-29 2010-08-10 Dainippon Ink And Chemicals, Inc. Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
JP2007100062A (en) * 2005-02-28 2007-04-19 Dainippon Ink & Chem Inc Method for producing electro conductive coating material
US8067702B2 (en) 2005-06-03 2011-11-29 Gunze Limited Electromagnetic wave shielding material and production process of the same
JP2007254635A (en) * 2006-03-24 2007-10-04 Dainippon Ink & Chem Inc Electroconductive ink composition and printed matter
JP2009218502A (en) * 2008-03-12 2009-09-24 Sanyo Electric Co Ltd Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP4219616B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
CN111508712B (en) Method for manufacturing powder sintered anode foil and anode foil
US20080106853A1 (en) Process for Producing Porous Sintered Metal
EP1800773A1 (en) Nickel powder, conductive paste, and multilayer electronic component using same
CN102714098B (en) Electrode material for aluminum electrolytic capacitor and production method therefor
US8597376B2 (en) Method of producing porous valve metal thin film and thin film produced thereby
JP2006049816A (en) Porous bulb metal film
EP2149144A1 (en) Conductive paste for solid electrolytic capacitor electrode and process for producing solid electrolytic capacitor electrode using the same
JP4219616B2 (en) Anode element for valve action electrolytic capacitor and manufacturing method thereof
CZ2001875A3 (en) Paste for producing sintered refractive metallic layers, particularly for electrolytic capacitors or anodes made of acid earth metals
JP2002134367A (en) Porous compact made of tantalum metal powder, anode element for tantalum electrolytic capacitor and tantalum electrolytic capacitor using the same, and method of manufacturing anode element for tantalum electrolytic capacitor
JP2007137693A (en) Method for producing ceramic slurry
US7295425B2 (en) Molding for electrolytic capacitor anode element, molding with substratum, production methods therefor, and production method for electrolytic capacitor anode element
KR20110074486A (en) Method for manufacturing dielectric ceramic material
WO2019026701A1 (en) Electrode for electrolytic capacitors, method for producing electrode for electrolytic capacitors, and electrolytic capacitor
JP2002167603A (en) Method for surface treating metal powder for forming sintered body
JP2002050550A (en) Tantalum metal powder dispersion liquid, anode element for tantalum electrolytic capacitor and tantalum electrolytic capacitor using the same, and manufacturing method of anode element for the tantalum electrolytic capacitor
JP3195871B2 (en) Method for manufacturing solid electrolytic capacitor
EP3139393A1 (en) Method for manufacturing tungsten-based capacitor element
JP4188195B2 (en) Metal powder dispersion, molded body for electrolytic capacitor anode element and electrolytic capacitor anode element using the same, and production method thereof
JP2004335364A (en) Highly dielectric powder, highly dielectric resin composite, and electronic component
JP2002198268A (en) Porous sintered metal material and method of manufacturing anode element for solid electrolytic capacitors
JP2004006776A (en) Metallic powder dispersion solution, molding for electrolytic capacitor positive electrode element using it and the element, and manufacturing method thereof
JP2001203130A (en) Tantalum metal powder dispersed solution, anode element for tantalum electrolytic capacitor, tantalum electrolytic capacitor using anode element and method of manufacturing for anode element for tantalum electrolytic capacitor
JP2003516619A (en) Static device with composite
JP2003188055A (en) Anode element for solid electrolytic capacitor and manufacturing method thereof, and solid electrolytic capacitor using anode element for solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050506

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Effective date: 20080408

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20081104

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111121

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees