JP2004005324A - Transport equipment - Google Patents

Transport equipment Download PDF

Info

Publication number
JP2004005324A
JP2004005324A JP2002189800A JP2002189800A JP2004005324A JP 2004005324 A JP2004005324 A JP 2004005324A JP 2002189800 A JP2002189800 A JP 2002189800A JP 2002189800 A JP2002189800 A JP 2002189800A JP 2004005324 A JP2004005324 A JP 2004005324A
Authority
JP
Japan
Prior art keywords
unit
amount data
moving
recording
transport device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002189800A
Other languages
Japanese (ja)
Inventor
Masaaki Matsumoto
松本  全陽
Hirohide Otani
大谷  博英
Takuya Okada
岡田  卓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP2002189800A priority Critical patent/JP2004005324A/en
Publication of JP2004005324A publication Critical patent/JP2004005324A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate setting for passing route of a transport equipment, and to enable self-propelling on the passing route. <P>SOLUTION: This transport equipment has a traveling means 4 for the transport equipment, a control means 3 for controlling driving condition of the traveling means, a measuring means 1 for measuring traveling rate of the transport equipment, and a transport equipment traveling rate recording means 2. In the first setting condition, traveling rate is recorded by the recording means, and in the second setting condition, drive of the traveling means is controlled in response to the traveling rate data recorded by the recording means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、定められた二点間を、定められた経路に沿って往復することを基本機能として持つ搬送装置に関するものである。
【0002】
【従来の技術】
これまでに実現あるいは提案された無人搬送車移動の誘導方法として、代表的なものを挙げる。(特開平11−265211号公報)
第一の方法は、移動経路に磁場、光学、電場、などの物理特性を利用した誘導路、あるいはレール、案内溝、などの機械特性を利用した誘導路を設け、搬送装置がそれに沿って移動する方法である。
【0003】
第二の方法は、搬送装置が移動経路近辺のマップデータを持ち、搭載された撮影装置あるいは非接触測長装置などの環境認識手段によってマップデータ上の自己位置を確認しつつ移動する方法である。
【0004】
【発明が解決しようとする課題】
このような従来の誘導方法は以下の問題を含んでいる。
【0005】
前記第1の方法は、移動経路に、誘導に用いるための物理特性あるい機械特性を含んだ設備を設ける必要がある。これは、移動経路の設定、構築に時間的、経済的な制約が大きいこと、また移動経路の変更が容易ではないことなどの問題がある。更に、家庭内使用、オフィス使用では特に、その誘導設備によって美観が損なわれることが大きな問題となる。
【0006】
前記第2の方法は、マップデータを保持するための比較的大きな容量の記録手段や環境認識手段が必要で、大がかりな装置になる。また、マップデータの取得、構成方法、目的地点までの経路策定方法も必要で、本発明に比較して、複雑で膨大なソフトウエア構成になる。更に、ゴミ箱、椅子、キャビネットの移動などでマップデータと実際のマップに相違が生じた場合は到着地点が目的地点と異なる、あるいは移動不能になるなどの問題がある。
【0007】
本発明は、搬送装置の移動経路設定が簡単に行え、その移動経路を自立的に走行できるようにしたものである。
【0008】
【課題を解決するための手段】
本発明は前述の課題を解決するためになされた。
【0009】
請求項1の発明は、移動手段と、その移動手段を駆動制御する制御手段と、移動量を計測する計測手段と、その計測手段によって得られた移動量データを直接あるいは変換して記録する記録手段とを備え、第一の設定状態と第二の設定状態の少なくとも二つの設定状態を有する搬送装置において、第一の設定状態時は、前記計測手段によって得られる移動量データを直接あるいは変換して前記記録手段に記録し、第二の設定状態時は、前記記録手段に記録された移動量データに応じて前記制御手段で前記移動手段を駆動制御することを特徴とする搬送装置を要旨とする。
【0010】
また請求項2の発明は、請求項1に記載の搬送装置であって、第二の設定状態時は、前記記録手段に記録された移動量データに応じて前記制御手段で前記移動手段を駆動制御するとともに、前記計測手段によって移動量データを取得し、前記制御手段が前記記録手段に記録された移動量データと前記計測手段によって得られた移動量データを比較し、前記記録手段に記録された移動量データに補正を加えることを特徴とする搬送装置を要旨とする。
【0011】
また請求項3の発明は、請求項1または請求項2に記載の搬送装置であって、前記記録手段に記録済みの移動量データに加えて、前記計測手段によって得られる移動量データを直接あるいは変換して前記記録手段に追加記録することを特徴とする。
【0012】
さらに、請求項4の発明は、請求項1または請求項2に記載の搬送装置であって、前記記録手段に記録済みの移動量データと前記計測手段によって得られる移動量データにより、演算手段が新たな移動経路を演算し、前記記録手段に記録済みの移動量データの一部あるいは全部を新たな移動経路に書き換えることを特徴とする。
【0013】
さらに、請求項5の発明は、請求項1または請求項2に記載の搬送装置であって、第二の設定状態時は、その走行途中に一つあるいは複数の停止状態が設定されることを特徴とする。
【0014】
加えて、請求項6の発明は、前記移動手段が少なくとも3個の車輪で構成され、前記計測手段は、その車輪のうち少なくとも2個に設けられた車輪回転角検出手段であることを特徴とする請求項1〜5に記載の搬送装置である。
【0015】
さらに、請求項7の発明は、前記計測手段は、床面の光学的特徴を取り込む画像撮影手段と、その画像撮影手段によって取り込まれた画像を記録する画像記録手段と、画像撮影手段によって取り込まれた画像とそれ以前に画像記録手段に記録された画像とを比較し、この画像間の差から移動量を検出する画像比較手段とで構成されることを特徴とする請求項1〜5に記載の搬送装置である。
【0016】
【発明の実施の形態】
本発明の搬送装置の一実施形態を、図を参照し説明する。
【0017】
図1は同実施形態による搬送装置の原理構成を示すブロック図である。
【0018】
計測手段1は、搬送装置のある時点での位置かつ方向とその直前の時点での位置かつ方向との差分を移動量データとして計測する装置で、搬送装置の2次元的な移動を捉える。この差分は等時間毎、等移動距離毎など様々な設定が可能であるが、いずれにしても間隔を細かく取れば移動経路を細かく計測できる。ここで捉えた移動量データはそのままの形で、あるいは計測手段1の直後に設ける変換手段(図示せず)を経由して移動距離と方向変化量に変換した形で記録手段2と制御手段3に伝えられる。
【0019】
記録手段2は、計測手段1から伝えられた移動量データを順次、記録し、一連のデータとして保持する。制御手段3からの求めに応じて、この一連のデータを最初から、あるいは最後から順々に制御手段に送り込む機能を有する。
【0020】
制御手段3は、記録手段2から送り出された移動データと計測手段1から伝えられる実際の移動量データに応じて移動手段4を駆動制御し、記録手段2に保持された移動データを再現すべく搬送装置を移動せしめる。
【0021】
移動手段4は計測手段1、記録手段2、制御手段3、その他の必要装置(電源等)と積載物を搭載し、制御手段3からの駆動信号に従って、加速、減速、進行方向変更(操舵)して移動する。
【0022】
図2は、移動経路設定のために外力によって搬送装置が移動する期間として定義される従動時の信号ブロック図である。この外力とは、人が押したり、引いたりすること以外に、リモコン操作等によって移動手段4を駆動して、搬送装置を移動せしめる場合をも含む。従動時、搬送装置が外力によって移動すると、計測手段1が移動量を計測し、定められた間隔毎に、それらを記録手段2に送り、移動量データとして記録手段2に順次、記録する。
【0023】
この構成により、任意の移動経路設定は、出発地点で搬送装置を従動モードにし、そこから目標地点まで引いて行くという動作で簡単に行うことがてきる。
【0024】
図3は、設定された移動経路に沿って搬送装置が移動する期間として定義される走行時の信号ブロック図である。
【0025】
移動経路設定を行った後の走行時、出発命令を制御手段3が受けると、記録手段2から移動量データを記録した順番とは逆に移動量データを読み出し、それを再現すべく移動手段4を駆動制御し、搬送装置が移動する。それに伴って計測手段1は実際の移動量を計測し、制御手段3に伝える。制御手段3は記録手段2から読み出した移動量データと計測手段1が計測した実際の移動量との差を移動誤差として計算し、それを補正するために、記録手段2から読み出す次の移動量データから移動誤差を差し引きし、補正移動量データとする。制御手段3はこの補正移動量データを再現すべく移動手段4を駆動制御し、搬送装置が移動する。この区間以降についても同様に移動誤差を求め、それを補正するための補正移動量データに従って駆動制御される。これは移動誤差を累積させないための方策で、こうした結果、到着地点での位置誤差が少ない、精度の高い移動が可能となった。
【0026】
これら一連の動作を移動量データが終了するまで繰り返すことで、搬送装置は出発地点に戻る。その後、同様に、移動量データを記録した順番で移動量データを読み出し、それを再現すべく移動手段4を駆動制御すれば、搬送装置が出発地点から目標地点へ移動する。つまり、移動経路の往復動作が何回でも可能である。
【0027】
上述のように、位置誤差が少なく、精度の高い移動を可能としたが、位置誤差が無視できず修正を加えたい場合、あるいは目標地点や出発地点を変更したい場合がある。これらの場合、記録手段2に記録された移動経路データを変更する必要がある。
【0028】
図4は記録手段2に記録される、一連の移動量データの集合体である移動経路データの概念図である。移動経路設定後の移動経路データを図4(a)で表した。搬送装置が移動経路を走行して、目標地点あるいは出発地点に到着、停止した後、その位置に修正を加える場合は、人力によって押す、あるいは引くなどの外力によって搬送装置を移動させる。その際、目標地点あるいは出発地点で搬送装置が停止した後、計測手段1が搬送装置の移動を検知すると、計測手段1が移動量を計測し、記録済みの移動経路データに加えて、新たな移動経路データを追加記録する。目標地点で修正を加えた場合は記録済みの移動経路データの目標地点側に順次、追加記録し、出発地点で修正を加えた場合は記録済みの移動経路データの出発地点側に順次、追加記録する。これによって、新たな出発地点あるいは目標地点が設定される。(図4(b)参照)
新たな目標地点が図5のように出発地点方向に修正される場合、前述の記録方法では、新目標地点を行き過ぎてから、追加データに従って戻るという非能率的な移動動作となる。これを防ぐために、移動経路の修正がなされた時は、図6に示すように、記録手段2は演算手段5に移動経路データと追加データを送り、演算手段5はそれらに基づいて、出発地点から新目標地点までの合理的な新たな移動経路を演算し、移動経路データと異なる部分は修正データに置き換え、新たな移動経路データとして、図4(c)に示す形で記録手段2に修正記録する。搬送装置はこの新たな移動経路データに従って移動するので、新目標地点から合理的な経路に沿って出発地点へ戻り、そこから合理的な経路に沿って新目標地点へ行くことが可能となった。ここでは目標地点での修正について言及したが、出発地点での修正についても同様である。
【0029】
移動経路設定時に、スイッチ操作あるいは一定時間以上搬送装置を停止させるなどの方法で、記録手段2に移動経路データに加えて停止点データを織り込んで記録すれば、移動経路上に停止点の設定が可能である。走行時、この移動経路データに応じて制御手段3は移動手段4を駆動制御し、織り込まれた停止点データに従って移動手段4を停止させる。再動操作がなされると、続きの移動経路データに応じて制御手段3は移動手段4を駆動制御する。これによって、出発地点と目標地点のみならず、移動経路途中の任意の位置で搬送装置を停止させることが可能となった。
【0030】
図7は本発明に基づく一実施形態を示す実施例で用いた搬送装置の移動手段である。
【0031】
搬送装置の基台11は、それぞれ独立して駆動される2個の駆動輪12、13と舵角自在の従動輪14を持ち、それらの回転動作で移動が可能である。
【0032】
左側の駆動輪12の車輪15は、減速機を内包し、上面を基台11に固着されたギヤボックス16に回転可能に支持され、減速機の出力軸を兼ねる。減速機の人力軸にはDCモータ17軸が直結され、そのDCモータ17軸の回転角を検出する計測手段1を構成する光学式エンコーダ18が設けられている。DCモータ17軸と駆動輪12の車軸15の回転は減速機を介して互いに拘束されるので、DCモータ17が回転すれば、その回転速度に減速機の減速比を乗じた速度で駆動輪12が回転し、駆動輪12が回転すればその回転速度に減速比の逆数を乗じた速度でDCモータ17が回転する。従って、DCモータ17軸の回転角を検出する光学式エンコーダ18の出力値は、駆動輪12が接地点で滑らないとすれば、駆動輪12の移動距離に比例することになる。
【0033】
搬送装置を外力によって移動させる時、駆動輪12の接地点での滑りを生じさせないために、減速機の減速比を1/40に抑え、DCモータ17の摩擦トルク等から減速機を介して生じる車軸15での負荷トルクが、駆動輪12と床面との摩擦によって生じる駆動輪12を回そうとするトルクを越えないように設計した。
【0034】
右側の駆動系も駆動輪13、車軸19、ギヤボックス20、DCモータ21、光学式エンコーダ22で、前述の左側の駆動系と同様に、構成され、同様の機能を有している。なお、左側の車軸15と右側の車軸19は同軸となるよう一直線上に配置した。
【0035】
従動輪14には施回可能なキャスターを用い、荷重を支えた状態で、あらゆる方向への移動が可能である。
【0036】
駆動輪12と駆動輪13の接地点の中間点を搬送装置の位置を代表する点A、接地点間の距離(トレッド)をBとし、ある微小区間で、駆動輪12の移動距離がL、駆動輪13の移動距離がRであることをそれぞれのエンコーダ18、22が検出したとすれば、この間の点Aの移動距離Sと搬送装置の方向変化Kは次式で示される。
【0037】
S=(L+R)/2
K=(L−R)/B (radian)
また、点Aの移動距離Sと搬送装置の方向変化Kから、駆動輪12の移動距離Lと駆動輪13の移動距離Rを次式で逆算できる。
【0038】
L=S+BK/2
R=S−BK/2
後続の微小区間についても、次々と同様の計算が行える。
【0039】
従動時の移動量データの記録は微小区間毎に駆動輪12の移動距離Lと駆動輪13の移動距離Rを順次、記録手段2に記録するか、あるいは上式の計算を実行し、点Aの移動距離Sと搬送装置の方向変化Kに変換して順次、SとKを記録手段2に記録する。本実施例では、駆動輪12の移動距離Lか駆動輪13の移動距離Rに変化がある毎に点Aの移動量Sを求める計算を実行し、それが定めた値に達すると微小区間終了の判断をし、搬送装置の方向変化Kを求め、次の微小区間に移行する。こうすることで、点Aの移動量Sは一定値なので記録の必要が無く、搬送装置の方向変化Kのみの記録で移動量データを記録でき、記憶容量を半分に減じられる。あるいは、同じ記憶容量なら、2倍の分解能での移動量データ記録が可能になる。
【0040】
走行時は先に記録された移動量データを読み出し、それに応じて、制御手段3がDCモータ17、21に電力を供給し、駆動輪12、13を回転駆動する。それと同時に実際の移動量がエンコーダ18、22の出力信号より求められる。
【0041】
走行によって路面状況が変わると、走行抵抗が刻々と変化する。そのため、実際の移動量は必ずしも読み出された移動量データに一致しなかった。この移動誤差を補正するために、記録手段2から読み出す次の移動量データから移動誤差を差し引いて、補正移動量データとし、これに応じて制御手段3が駆動輪12、13を回転駆動する移動方法とした。
【0042】
このように、位置誤差が少なく、精度の高い移動方法を考案し、実現したが、これは移動量を知るための計測手段が設けられた車輪と床面との相対的な滑りが無いことを前提としている。しかし、実用上の問題が無い範囲ではあるが、状況によっては僅かに滑りが発生することが確認された。更なる移動精度が求められる搬送装置には、図8で示す計測手段を用いた。
【0043】
搬送装置の底部のほぼ中央に床面が撮れるように取り付けられたCMOSあるいはCCDカメラ等からなる画像撮影手段6は極めて早いシャッタースピートを有し、搬送装置が移動中であっても、静止中と同程度に床面の瞬間画像を取り込める。床面は微細に見ると、場所毎に様々な光学的特徴を有しており、場所的な識別が可能である。画像撮影手段6はある間隔毎に床面の瞬間画像を取り込み、その画像データを画像記録手段7と画像比較手段8に伝送する。画像比較手段8はその画像データと画像記録手段7に記録されている一つ前の画像データとを比較し、その期間中のカメラレンズ位置における搬送装置の移動量を求める。
【0044】
図9(a)は図9(b)の一つ前に取り込まれた床面の簡略化された瞬間画像の例である。この二つの画像を画像比較手段8が比較すると、図9(c)に示すように移動距離Sと方向変化Kが求まる。この例からも理解されるように、比較のためには二つの画像の重複部分が不可欠で、望ましくは画像面積の半分以上の重複面積を得ることで、誤計測を皆無とすることができた。必要な面積の重複部分を得るための撮影時間間隔は搬送装置の移動速度によって決まり、実際の撮影時間間隔はそれを越えないように設定されなければならない。
【0045】
この床面画像から移動量を得る方法によれば、車輪の滑りは移動量の計測に影響が無い。
【0046】
本発明は、定められた二点間を、定められた経路に沿って往復することを基本機能として持つ搬送装置に関するものではあるが、複数の二点間経路に対し、二点間経路の少なくとも一つの端点が、他の二点間経路の端点と共通と成るような経路設定を行い、その複数の2点間経路の移動経路データを全て記録すれば、図10に示すような比較的複雑な移動経路においても、搬送装置は移動経路上の任意の端点への移動が可能となる。
【0047】
【発明の効果】
以上の如く、請求項1の発明によれば、搬送装置の移動経路設定が容易に行え、搬送装置はその移動経路を自立的に走行できる。
【0048】
請求項2の発明によれば、到着地点での位置誤差が少ない、精度の高い搬送装置の移動が可能となった。
【0049】
請求項3の発明によれば、出発地点と目標地点の修正と再設定が容易に行える。
【0050】
請求項4の発明によれば、出発地点あるいは目標地点の修正あるいは再設定が行われた後、搬送装置は合理的な経路に沿って移動することが可能になった。
【0051】
請求項5の発明によれば、出発地点と目標地点以外で、搬送装置が移動経路上の任意の位置に停止できる。
【0052】
請求項6の発明によれば、簡単な構成で計測手段を実現できる。
【0053】
請求項7の発明によれば、滑りやすい床面であっても、搬送装置の精度の高い移動量計測が行える。
【図面の簡単な説明】
【図1】本発明の実施の形態における搬送装置の原理構成を示すブロック図である。
【図2】本発明の実施の形態における従動時の信号ブロック図である。
【図3】本発明の実施の形態における走行時の信号ブロック図である。
【図4】記録手段に記録される移動経路データの概念図である。
【図5】移動経路データの修正方法の例を示す図である。
【図6】移動経路データの修正時の信号ブロック図である。
【図7】本実施例の移動手段と計測手段を表す鳥瞰図である。
【図8】本実施例の床面画像を用いた計測手段の信号ブロック図である。
【図9】床面画像を用いた計測方法の例を示す図である。
【図10】複数の二点間経路を組み合わせた移動経路を説明する図である。
【符号の説明】
1 計測手段
2 記録手段
3 制御手段
4 移動手段
5 演算手段
6 画像撮影手段
7 画像記録手段
8 画像比較手段
11 搬送装置の基台
12、13 駆動輪
14 従動輪
15、19 車軸
16、20 ギヤボックス
17、21 DCモータ
18、22 光学式エンコーダ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transport device having a basic function of reciprocating between two defined points along a defined route.
[0002]
[Prior art]
Representative methods that have been realized or proposed to guide the movement of the automatic guided vehicle are described below. (JP-A-11-265211)
The first method is to provide a guiding path using physical characteristics such as a magnetic field, an optical field, an electric field, or the like, or a guiding path using mechanical characteristics such as rails, guide grooves, and the like, and the transport device moves along the guiding path. How to
[0003]
The second method is a method in which a transport device has map data in the vicinity of a movement path and moves while confirming its own position on the map data by an environment recognition unit such as a mounted photographing device or a non-contact length measuring device. .
[0004]
[Problems to be solved by the invention]
Such a conventional guidance method has the following problems.
[0005]
In the first method, it is necessary to provide facilities including physical characteristics or mechanical characteristics to be used for guidance in a moving route. This has a problem that time and economic restrictions on the setting and construction of the moving route are large, and changing the moving route is not easy. Further, particularly in home use and office use, it is a serious problem that the appearance is impaired by the guidance equipment.
[0006]
The second method requires a relatively large-capacity recording unit or environment recognition unit for holding map data, and is a large-scale apparatus. Also, a method of acquiring and configuring map data and a method of formulating a route to a destination point are required, which results in a complicated and enormous software configuration as compared with the present invention. Further, when a difference occurs between the map data and the actual map due to movement of a trash can, chair, cabinet, or the like, there is a problem that an arrival point is different from a destination point or cannot be moved.
[0007]
According to the present invention, it is possible to easily set a moving route of a transfer device and to travel independently on the moving route.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the aforementioned problems.
[0009]
According to the first aspect of the present invention, there is provided a moving unit, a control unit for controlling the driving of the moving unit, a measuring unit for measuring the moving amount, and a recording unit for directly or converting and recording the moving amount data obtained by the measuring unit. Means, the transport device having at least two setting states of a first setting state and a second setting state, in the first setting state, directly or converting the movement amount data obtained by the measuring means The transfer device is characterized in that, in the second setting state, the control means drives and controls the moving means in accordance with the movement amount data recorded in the recording means. I do.
[0010]
According to a second aspect of the present invention, in the transport device according to the first aspect, in the second setting state, the control unit drives the moving unit according to the moving amount data recorded in the recording unit. While controlling, the moving amount data is obtained by the measuring unit, and the controlling unit compares the moving amount data recorded by the recording unit with the moving amount data obtained by the measuring unit. The transfer device is characterized in that the movement data is corrected.
[0011]
According to a third aspect of the present invention, in the transport device according to the first or second aspect, in addition to the movement amount data recorded in the recording means, the movement amount data obtained by the measurement means is directly or directly transferred. The data is converted and additionally recorded in the recording means.
[0012]
Further, the invention according to claim 4 is the transport device according to claim 1 or claim 2, wherein the operation means uses the movement amount data recorded in the recording means and the movement amount data obtained by the measurement means. A new movement route is calculated, and part or all of the movement amount data recorded in the recording means is rewritten to a new movement route.
[0013]
Further, the invention according to claim 5 is the transfer device according to claim 1 or 2, wherein in the second setting state, one or more stop states are set during the traveling. Features.
[0014]
In addition, the invention of claim 6 is characterized in that the moving means is constituted by at least three wheels, and the measuring means is a wheel rotation angle detecting means provided on at least two of the wheels. The transfer device according to claim 1.
[0015]
Further, in the invention according to claim 7, the measuring means is an image photographing means for capturing an optical characteristic of the floor, an image recording means for recording an image captured by the image photographing means, and an image capturing means for capturing the image captured by the image photographing means. 6. An image comparing means for comparing a captured image with an image previously recorded in the image recording means and detecting a movement amount from a difference between the images. Transport device.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the transport device of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a block diagram showing the principle configuration of the transport device according to the embodiment.
[0018]
The measuring means 1 is a device for measuring a difference between a position and a direction at a certain point of the transfer device and a position and a direction at a time immediately before the transfer device as movement amount data, and captures a two-dimensional movement of the transfer device. This difference can be set in various ways, such as at equal time intervals or at equal movement distances. In any case, if the interval is made small, the movement route can be measured finely. The recording means 2 and the control means 3 capture the movement amount data as they are, or convert them into movement distances and direction change amounts via a conversion means (not shown) provided immediately after the measurement means 1. Conveyed to.
[0019]
The recording means 2 sequentially records the movement amount data transmitted from the measuring means 1 and holds the data as a series of data. In response to a request from the control means 3, a function of sequentially sending the series of data to the control means from the beginning or from the end is provided.
[0020]
The control means 3 controls the driving of the moving means 4 in accordance with the movement data sent from the recording means 2 and the actual movement amount data transmitted from the measuring means 1 so as to reproduce the movement data held in the recording means 2. Move the transport device.
[0021]
The moving means 4 includes the measuring means 1, the recording means 2, the control means 3, and other necessary devices (such as a power supply) and a load, and accelerates, decelerates, and changes the traveling direction (steering) according to a drive signal from the control means 3. And move.
[0022]
FIG. 2 is a signal block diagram at the time of follow-up, which is defined as a period during which the transfer device moves by an external force for setting a movement route. The external force includes, in addition to pushing and pulling by a person, a case where the moving unit 4 is driven by a remote control operation or the like to move the transport device. At the time of follow-up, when the transport device moves by an external force, the measuring means 1 measures the movement amount, sends them to the recording means 2 at predetermined intervals, and sequentially records the movement amount data on the recording means 2.
[0023]
With this configuration, an arbitrary moving route can be easily set by setting the transport device in the driven mode at the departure point and pulling it from there to the target point.
[0024]
FIG. 3 is a signal block diagram at the time of traveling defined as a period during which the transport device moves along the set movement route.
[0025]
When the control means 3 receives a departure command during traveling after setting the movement route, the movement amount data is read from the recording means 2 in the reverse order of the order in which the movement amount data was recorded, and the movement means 4 is read in order to reproduce the movement amount data. And the transfer device moves. Along with this, the measuring means 1 measures the actual amount of movement and transmits it to the control means 3. The control means 3 calculates the difference between the movement amount data read from the recording means 2 and the actual movement amount measured by the measurement means 1 as a movement error, and corrects the difference by reading the next movement amount read from the recording means 2. The movement error is subtracted from the data to obtain corrected movement amount data. The control means 3 controls the driving of the moving means 4 so as to reproduce the corrected movement amount data, and the transfer device moves. The drive error is similarly determined for this section and thereafter, and drive control is performed in accordance with the corrected movement amount data for correcting the movement error. This is a measure to prevent the accumulation of movement errors, and as a result, highly accurate movement with a small position error at the arrival point has become possible.
[0026]
By repeating these series of operations until the movement amount data ends, the transport device returns to the starting point. Thereafter, similarly, if the moving amount data is read out in the order in which the moving amount data is recorded, and the moving means 4 is drive-controlled to reproduce the data, the transport device moves from the starting point to the target point. That is, the reciprocating operation of the moving route can be performed any number of times.
[0027]
As described above, the position error is small and the movement with high accuracy is enabled. However, there are cases where the position error cannot be ignored and it is desired to make a correction, or there is a case where the target point or the starting point is to be changed. In these cases, it is necessary to change the movement route data recorded in the recording means 2.
[0028]
FIG. 4 is a conceptual diagram of movement route data, which is an aggregate of a series of movement amount data, recorded in the recording unit 2. The moving route data after setting the moving route is shown in FIG. When the transport device travels along the movement route, arrives at a target point or a departure point, stops, and then corrects the position, the transport device is moved by an external force such as pushing or pulling by human power. At that time, after the transport device stops at the target point or the departure point, when the measuring means 1 detects the movement of the transport device, the measuring means 1 measures the amount of movement and adds a new travel route data in addition to the recorded travel route data. The travel route data is additionally recorded. When a correction is made at the target point, additional recording is sequentially performed on the recorded travel route data at the target point side, and when a correction is made at the departure point, additional recording is sequentially performed at the recorded travel route data at the departure point side. I do. As a result, a new departure point or target point is set. (See FIG. 4B)
When the new target point is corrected in the direction of the departure point as shown in FIG. 5, the above-described recording method results in an inefficient moving operation in which the vehicle goes past the new target point and returns according to the additional data. In order to prevent this, when the moving route is corrected, as shown in FIG. 6, the recording means 2 sends the moving route data and the additional data to the calculating means 5, and the calculating means 5 determines the starting point based on them. Calculates a reasonable new travel route from to the new target point, replaces the portion different from the travel route data with the correction data, and corrects it as new travel route data in the recording means 2 in the form shown in FIG. Record. Since the transport device moves according to the new travel route data, it is possible to return from the new target point along the reasonable route to the starting point and from there to the new target point along the reasonable route. . Although the correction at the target point has been described here, the same applies to the correction at the departure point.
[0029]
At the time of setting the movement route, if the stop point data is recorded in the recording means 2 in addition to the movement route data by a switch operation or a method of stopping the transport device for a certain period of time or the like, the stop point can be set on the movement route. It is possible. During traveling, the control means 3 controls the driving of the moving means 4 according to the moving route data, and stops the moving means 4 according to the woven stop point data. When the re-moving operation is performed, the control unit 3 controls the driving of the moving unit 4 according to the subsequent moving route data. This makes it possible to stop the transport device not only at the departure point and the target point, but also at any position along the movement route.
[0030]
FIG. 7 shows a moving means of the transport device used in an example showing one embodiment according to the present invention.
[0031]
The base 11 of the transport device has two drive wheels 12 and 13 that are driven independently of each other, and a driven wheel 14 that can be freely steered, and can be moved by rotating them.
[0032]
The wheel 15 of the left driving wheel 12 includes a speed reducer, is rotatably supported on a top surface of a gear box 16 fixed to the base 11, and also serves as an output shaft of the speed reducer. A DC motor 17 shaft is directly connected to the human-powered shaft of the speed reducer, and an optical encoder 18 constituting the measuring means 1 for detecting the rotation angle of the DC motor 17 shaft is provided. Since the rotation of the DC motor 17 shaft and the rotation of the axle 15 of the drive wheel 12 are restrained to each other via the speed reducer, when the DC motor 17 rotates, the drive wheel 12 is rotated at a speed obtained by multiplying the rotation speed by the speed reduction ratio of the speed reducer. When the drive wheel 12 rotates, the DC motor 17 rotates at a speed obtained by multiplying the rotation speed by the reciprocal of the reduction ratio. Therefore, the output value of the optical encoder 18 that detects the rotation angle of the DC motor 17 axis is proportional to the moving distance of the drive wheel 12 if the drive wheel 12 does not slip at the ground.
[0033]
When the transfer device is moved by an external force, the reduction ratio of the reduction gear is suppressed to 1/40 in order to prevent the driving wheels 12 from slipping at the ground contact point, and is generated via the reduction gear from the friction torque of the DC motor 17 and the like. The design was made so that the load torque on the axle 15 did not exceed the torque for rotating the drive wheel 12 caused by the friction between the drive wheel 12 and the floor.
[0034]
The drive system on the right side also has a drive wheel 13, an axle 19, a gear box 20, a DC motor 21, and an optical encoder 22, and is configured and has the same functions as the drive system on the left side. The left axle 15 and the right axle 19 are arranged on a straight line so as to be coaxial.
[0035]
The driven wheel 14 uses a rotatable caster, and can move in any direction while supporting a load.
[0036]
An intermediate point between the ground points of the drive wheels 12 and 13 is represented by a point A representing the position of the transport device, a distance (tread) between the ground points is represented by B, and a moving distance of the drive wheel 12 is L in a minute section. Assuming that the respective encoders 18 and 22 detect that the moving distance of the drive wheel 13 is R, the moving distance S of the point A and the direction change K of the transport device during this period are expressed by the following equations.
[0037]
S = (L + R) / 2
K = (LR) / B (radian)
Further, the moving distance L of the driving wheel 12 and the moving distance R of the driving wheel 13 can be inversely calculated from the following formula based on the moving distance S of the point A and the direction change K of the transport device.
[0038]
L = S + BK / 2
R = S-BK / 2
The same calculation can be performed for the subsequent minute sections one after another.
[0039]
To record the movement amount data at the time of follow-up, the moving distance L of the driving wheel 12 and the moving distance R of the driving wheel 13 are sequentially recorded in the recording means 2 for each minute section, or the calculation of the above equation is executed, and the point A is calculated. Is converted into the moving distance S and the direction change K of the transfer device, and S and K are sequentially recorded in the recording means 2. In the present embodiment, a calculation is performed to calculate the movement amount S of the point A every time the movement distance L of the drive wheel 12 or the movement distance R of the drive wheel 13 changes, and when it reaches a predetermined value, the minute section ends. Is determined, the direction change K of the transfer device is obtained, and the process proceeds to the next minute section. In this way, since the movement amount S of the point A is a constant value, there is no need for recording, and the movement amount data can be recorded by recording only the direction change K of the transport device, and the storage capacity can be reduced by half. Alternatively, if the storage capacity is the same, the movement amount data can be recorded at twice the resolution.
[0040]
During traveling, the previously recorded movement amount data is read out, and the control means 3 supplies electric power to the DC motors 17 and 21 to rotate the drive wheels 12 and 13 accordingly. At the same time, the actual movement amount is obtained from the output signals of the encoders 18 and 22.
[0041]
When the road surface condition changes due to running, the running resistance changes every moment. Therefore, the actual movement amount did not always match the read movement amount data. In order to correct this movement error, the movement error is subtracted from the next movement amount data read from the recording means 2 to obtain corrected movement amount data, and the control means 3 drives the driving wheels 12 and 13 to rotate in accordance with the corrected movement amount data. Method.
[0042]
As described above, the present inventors have devised and realized a moving method with a small position error and high accuracy, but this is because there is no relative slip between the wheel provided with the measuring means for knowing the moving amount and the floor surface. It is assumed. However, it was confirmed that slight slippage occurred depending on the situation, although this was within a range where there was no practical problem. The measuring device shown in FIG. 8 was used for a transport device requiring further movement accuracy.
[0043]
The image photographing means 6 such as a CMOS or CCD camera which is attached to the bottom of the transfer device so that the floor surface can be photographed substantially at the center thereof has an extremely fast shutter speed. It can capture instantaneous images of the floor to the same extent. When the floor surface is viewed finely, the floor surface has various optical characteristics for each location, and the location can be identified. The image photographing means 6 captures an instantaneous image of the floor surface at certain intervals, and transmits the image data to the image recording means 7 and the image comparing means 8. The image comparing means 8 compares the image data with the immediately preceding image data recorded in the image recording means 7 and obtains the movement amount of the transport device at the camera lens position during that period.
[0044]
FIG. 9A is an example of a simplified instantaneous image of the floor taken just before FIG. 9B. When the two images are compared by the image comparing means 8, a moving distance S and a direction change K are obtained as shown in FIG. 9C. As can be understood from this example, the overlapping portion of the two images is indispensable for comparison, and it is possible to eliminate erroneous measurement by obtaining an overlapping area that is preferably half or more of the image area. . The photographing time interval for obtaining the necessary overlapping area is determined by the moving speed of the transport device, and the actual photographing time interval must be set so as not to exceed it.
[0045]
According to the method of obtaining the movement amount from the floor image, the slip of the wheel does not affect the measurement of the movement amount.
[0046]
The present invention relates to a transport device having a basic function of reciprocating along a predetermined route between a predetermined two points, but at least a plurality of the two-point routes, If a route is set so that one end point is common to the end points of the other two-point routes, and all the movement route data of the plurality of two-point routes are recorded, a relatively complicated configuration as shown in FIG. The transfer device can be moved to any end point on the movement route even on a simple movement route.
[0047]
【The invention's effect】
As described above, according to the first aspect of the present invention, it is possible to easily set the movement route of the transfer device, and the transfer device can travel independently on the movement route.
[0048]
According to the second aspect of the present invention, it is possible to move the transport device with high accuracy, with a small positional error at the arrival point.
[0049]
According to the invention of claim 3, correction and resetting of the departure point and the destination point can be easily performed.
[0050]
According to the invention of claim 4, after the start point or the target point is corrected or reset, the transport device can move along a reasonable route.
[0051]
According to the invention of claim 5, the transport device can be stopped at an arbitrary position on the movement route other than the departure point and the destination point.
[0052]
According to the invention of claim 6, the measuring means can be realized with a simple configuration.
[0053]
According to the invention of claim 7, it is possible to measure the movement amount of the transfer device with high accuracy even on a slippery floor surface.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a principle configuration of a transport device according to an embodiment of the present invention.
FIG. 2 is a signal block diagram at the time of follow operation in the embodiment of the present invention.
FIG. 3 is a signal block diagram during traveling in the embodiment of the present invention.
FIG. 4 is a conceptual diagram of movement route data recorded in a recording unit.
FIG. 5 is a diagram illustrating an example of a method of correcting movement route data.
FIG. 6 is a signal block diagram when moving route data is corrected.
FIG. 7 is a bird's-eye view showing a moving unit and a measuring unit according to the embodiment.
FIG. 8 is a signal block diagram of a measuring unit using a floor image of the present embodiment.
FIG. 9 is a diagram illustrating an example of a measurement method using a floor image.
FIG. 10 is a diagram illustrating a moving route obtained by combining a plurality of two-point routes.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Measuring means 2 Recording means 3 Control means 4 Moving means 5 Computing means 6 Image photographing means 7 Image recording means 8 Image comparing means 11 Bases 12 and 13 of a conveyance device Drive wheels 14 Follower wheels 15 and 19 Axles 16 and 20 Gearbox 17, 21 DC motor 18, 22 Optical encoder

Claims (7)

移動手段と、その移動手段を駆動制御する制御手段と、移動量を計測する計測手段と、その計測手段によって得られた移動量データを直接あるいは変換して記録する記録手段とを備え、第一の設定状態と第二の設定状態の少なくとも二つの設定状態を有する搬送装置において、第一の設定状態時は、前記計測手段によって得られる移動量データを直接あるいは変換して前記記録手段に記録し、第二の設定状態時は、前記記録手段に記録された移動量データに応じて前記制御手段で前記移動手段を駆動制御することを特徴とする搬送装置。A moving unit, a control unit for controlling the driving of the moving unit, a measuring unit for measuring the moving amount, and a recording unit for recording the moving amount data obtained by the measuring unit directly or after converting the data, In the transport device having at least two setting states of the setting state and the second setting state, during the first setting state, the movement amount data obtained by the measuring means is directly or converted and recorded in the recording means. And a control device for controlling the driving of the moving means in accordance with the moving amount data recorded in the recording means in the second setting state. 請求項1に記載の搬送装置であって、第二の設定状態時は、前記記録手段に記録された移動量データに応じて前記制御手段で前記移動手段を駆動制御するとともに、前記計測手段によって移動量データを取得し、前記制御手段が前記記録手段に記録された移動量データと前記計測手段によって得られた移動量データを比較し、前記記録手段に記録された移動量データに補正を加えることを特徴とする搬送装置。The transport device according to claim 1, wherein in the second setting state, the control unit drives and controls the moving unit in accordance with the moving amount data recorded in the recording unit, and the measuring unit controls the driving of the moving unit. The moving amount data is obtained, the control unit compares the moving amount data recorded in the recording unit with the moving amount data obtained by the measuring unit, and corrects the moving amount data recorded in the recording unit. A transfer device characterized by the above-mentioned. 請求項1または請求項2に記載の搬送装置であって、前記記録手段に記録済みの移動量データに加えて、前記計測手段によって得られる移動量データを直接あるいは変換して前記記録手段に追加記録することを特徴とする搬送装置。3. The transport device according to claim 1, wherein, in addition to the movement amount data recorded in said recording means, movement amount data obtained by said measuring means is directly or converted and added to said recording means. A transport device for recording. 請求項1または請求項2に記載の搬送装置であって、前記記録手段に記録済みの移動量データと前記計測手段によって得られる移動量データにより、演算手段が新たな移動データを演算し、前記記録手段に記録済みの移動量データの一部あるいは全部を新たな移動量データに書き換えることを特徴とする搬送装置。3. The transport device according to claim 1, wherein the arithmetic unit calculates new movement data based on the movement amount data recorded on the recording unit and the movement amount data obtained by the measurement unit. A transport device characterized in that part or all of the movement amount data recorded in the recording means is rewritten with new movement amount data. 請求項1または請求項2に記載の搬送装置であって、第二の設定状態時は、その走行途中に一つあるいは複数の停止状態が設定されることを特徴とする搬送装置。3. The transfer device according to claim 1, wherein one or more stop states are set during the traveling in the second set state. 前記移動手段が少なくとも3個の車輪で構成され、前記計測手段は、その車輪のうち少なくとも2個の車輪の回転角をそれぞれ検出できる車輪回転角検出手段であることを特徴とする請求項1〜5に記載の搬送装置。The said movement means is comprised by at least three wheels, and the said measurement means is a wheel rotation angle detection means which can each detect the rotation angle of at least two wheels among the wheels. 6. The transport device according to 5. 前記計測手段は、床面の光学的特徴を取り込む画像撮影手段とその画像撮影手段によって取り込まれた画像を記録する画像記録手段と、画像撮影手段によって取り込まれた画像とそれ以前に画像記録手段に記録された画像とを比較し、この画像間の差から移動量を検出する画像比較手段とで構成されることを特徴とする請求項1〜5に記載の搬送装置。The measuring unit includes: an image capturing unit that captures an optical characteristic of a floor surface; an image recording unit that records an image captured by the image capturing unit; an image captured by the image capturing unit; The transport device according to claim 1, further comprising: an image comparison unit configured to compare a recorded image with the image and detect a movement amount based on a difference between the images.
JP2002189800A 2002-04-15 2002-06-28 Transport equipment Pending JP2004005324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189800A JP2004005324A (en) 2002-04-15 2002-06-28 Transport equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002112432 2002-04-15
JP2002189800A JP2004005324A (en) 2002-04-15 2002-06-28 Transport equipment

Publications (1)

Publication Number Publication Date
JP2004005324A true JP2004005324A (en) 2004-01-08

Family

ID=30447027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189800A Pending JP2004005324A (en) 2002-04-15 2002-06-28 Transport equipment

Country Status (1)

Country Link
JP (1) JP2004005324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003841A1 (en) * 2004-07-01 2006-01-12 Sharp Kabushiki Kaisha Mobile vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003841A1 (en) * 2004-07-01 2006-01-12 Sharp Kabushiki Kaisha Mobile vehicle
US8049902B2 (en) 2004-07-01 2011-11-01 Sharp Kabushiki Kaisha Mobile vehicle

Similar Documents

Publication Publication Date Title
CN106527432B (en) The indoor mobile robot cooperative system corrected certainly based on fuzzy algorithmic approach and two dimensional code
US8373110B2 (en) System and method for linear and angular measurements of a moving object
TW200825645A (en) Running carriage, method of controlling the same, and running carriage system
US10427542B2 (en) Mobile body
CN205655844U (en) Robot odometer based on ROS
WO2018192465A1 (en) Method and device for controlling travelling of transfer robot, and robot
CN102092405A (en) Method and system device for measuring rail curve parameters
TWI668543B (en) Automatic driving vehicle and automatic driving system including same
TWI639070B (en) Autonomous vehicle
CN111474938A (en) Inertial navigation automatic guided vehicle and track determination method thereof
JP5561730B2 (en) Guidance control system and guidance control method for moving body
JP3809698B2 (en) Transport device
CN112829684A (en) Four-degree-of-freedom three-dimensional laser radar sensing device for unmanned driving
JP2004005324A (en) Transport equipment
CN111044080A (en) Calibration parameter acquisition device and method based on optical flow sensor
JP6690904B2 (en) Self-driving vehicle
JP5298959B2 (en) Moving body
JP2010262461A (en) Mobile object
US9768721B2 (en) Mobile body and mobile body system
CN105486309B (en) It is a kind of based on color mode and assist in identifying Indoor Robot navigation and localization method
Bonarini et al. Dead reckoning for mobile robots using two optical mice
JPS59112310A (en) Directing device of unmanned car
CN202054037U (en) Rail curve parameter measuring system device
JP3975981B2 (en) Moving body
JP3231340B2 (en) Truck traveling control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009