JP2004004870A - 光位相共役を用いた光ファイバ通信システム並びに該システムに適用可能な装置及びその製造方法 - Google Patents

光位相共役を用いた光ファイバ通信システム並びに該システムに適用可能な装置及びその製造方法 Download PDF

Info

Publication number
JP2004004870A
JP2004004870A JP2003155404A JP2003155404A JP2004004870A JP 2004004870 A JP2004004870 A JP 2004004870A JP 2003155404 A JP2003155404 A JP 2003155404A JP 2003155404 A JP2003155404 A JP 2003155404A JP 2004004870 A JP2004004870 A JP 2004004870A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
dispersion
fiber
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003155404A
Other languages
English (en)
Other versions
JP4056933B2 (ja
Inventor
Shigeki Watanabe
渡辺 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003155404A priority Critical patent/JP4056933B2/ja
Publication of JP2004004870A publication Critical patent/JP2004004870A/ja
Application granted granted Critical
Publication of JP4056933B2 publication Critical patent/JP4056933B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】本発明は光位相共役の光ファイバ通信への適用に関し、波長分散及び非線形性を効果的に補償することができるシステムの提供が主な課題である。
【解決手段】本発明による光ファイバ通信システムは、例えば、信号ビームを伝搬する第1の光ファイバ104と、信号ビームを位相共役ビームに変換して出力する位相共役器106と、位相共役ビームを伝搬する第2の光ファイバ108と、第1の光ファイバ、位相共役器及び第2の光ファイバを含む光路上に設けられ第1及び第2の光ファイバの各々の波長分散と逆符号の波長分散を与える少なくとも1つの分散補償器112とを備えており、第1の光ファイバの波長分散の平均値及び長さの積は上記第2の光ファイバの波長分散の平均値及び長さの積に実質的に一致している。
【選択図】    図19

Description

【0001】
【発明の属する技術分野】
本発明は光位相共役を用いた光ファイバ通信システム並びに該システムに適用可能な装置及びその製造方法に関する。
【0002】
【従来の技術】
低損失なシリカ光ファイバが開発されたことにより、光ファイバを伝送路として用いる光ファイバ通信システムが数多く実用化されてきた。光ファイバそれ自体は極めて広い帯域を有している。しかしながら、光ファイバによる伝送容量は実際上はシステムデザインによって制限される。最も重要な制限は、光ファイバにおいて生じる波長分散による波形歪みに起因する。光ファイバはまた例えば約0.2dB/kmの割合で光信号を減衰させるが、この減衰による損失は、エルビウムドープファイバ増幅器(EDFA)を始めとする光増幅器の採用によって補償されてきた。
【0003】
しばしば単純に分散と称される波長分散は、光ファイバ内における光信号の群速度が光信号の波長(周波数)の関数として変化する現象である。例えば標準的なシングルモードファイバにおいては、1.3μmよりも短い波長に対しては、より長い波長を有する光信号がより短い波長を有する光信号よりも速く伝搬し、その結果としての分散は、通常、正常分散と称される。1.3μmよりも長い波長に対しては、より短い波長を有する光信号がより長い波長を有する光信号よりも速く伝搬し、その結果としての分散は異常分散と称される。
【0004】
近年、EDFAの採用による光信号パワーの増大に起因して、非線形性が注目されている。伝送容量を制限する光ファイバの最も重要な非線形性は光カー効果である。光カー効果は光ファイバの屈折率が光信号の強度に伴って変化する現象である。屈折率の変化は光ファイバ中を伝搬する光信号の位相を変調し、その結果信号スペクトルを変更する周波数チャーピングが生じる。この現象は自己位相変調(self−phase  modulation:SPM)として知られている。SPMによってスペクトルが拡大され、波長分散による波形歪みが更に大きくなる。
【0005】
このように、波長分散及びカー効果は、伝送距離の増大に伴って光信号に波形歪みを与える。従って、光ファイバによる長距離伝送を可能にするためには、波長分散及び非線形性は制御され、補償され或いは抑圧されることが必要である。
【0006】
波長分散及び非線形性を制御する技術として、主信号のための電子回路を含む再生中継器を用いたものが知られている。伝送路の途中に例えば複数の再生中継器が配置され、各々の再生中継器では、光信号の波形歪みが過剰になる前に光/電気変換、再生処理及び電気/光変換がこの順で行われる。しかし、この方法では、高価で複雑な再生中継器が必要であるとともに、再生中継器が有する電子回路が主信号のビットレートを制限するという問題がある。
【0007】
波長分散及び非線形性を補償する技術として、光ソリトンが知られている。与えられた異常分散の値に対して精度よく規定された振幅、パルス幅及びピークパワーを有する光信号パルスが発生させられ、それにより、光カー効果によるSPMと異常分散とに起因するパルス圧縮と、分散によるパルス拡がりとがバランスして、光ソリトンはその波形を維持したまま伝搬して行く。
【0008】
波長分散及び非線形性を補償するための他の技術として、光位相共役の適用がある。例えば、伝送路の波長分散を補償するための方法がヤリフらによって提案されている(A. Yariv, D.Fekete, and D. M. Pepper, “Compensation for  channel dispersion by nonlinear optical phase conjugation” Opt. Lett., vol. 4, pp. 52−54, 1979 )。伝送路の中間点で光信号が位相共役光に変換され、伝送路の前半で受けた波長分散による波形歪みが伝送路の後半の波長分散による歪みで補償される。
【0009】
特に、2つの地点での電場の位相変化の要因が同じであり、その要因をもたらす環境変化が2地点の間の光の伝搬時間内で緩やかであるとすれば、2地点の中間に位相共役器(位相共役光発生装置)を配置することによって、位相変化は補償される(S.Watanabe, “Compensationof phase fluctua−tion in a transmission line by optical conjugation” Opt. Lett., vol. 17, pp. 1355−1357, 1992)。従って、位相共役器の採用によって、SPMに起因する波形歪みも補償される。しかし、位相共役器の前後で光パワーの分布が非対象である場合には、非線形性の補償が不完全になる。
【0010】
【発明が解決しようとする課題】
発明者は、先に、位相共役器を用いる場合に光パワーの非対称性による補償の不完全さを克服するための技術を提案した(S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation” J. Lightwave Technol.,vol. 14, pp. 243−248, 1996)。位相共役器は伝送路におけるその前後の分散値又は非線形効果の総量が等しくなる点の近傍に配置され、その前後における種々のパラメータが微小区間毎に設定される。しかし、位相共役器が伝送路の途中に配置されるので、例えば伝送路を大陸間に敷設する場合に、位相共役器は海底に沈めなければならないかもしれない。この場合、位相共役器の保守が困難になる。伝送路のうち前半部分或いは後半部分を送信端局又は受信端局内に配置し、伝送路の残りの半分を大陸間に敷設することが提案され得る。この場合、位相共役器は送信端局又は受信端局内に設けることができるので、その保守は容易である。しかし、この場合には、伝送路の前半部分と後半部分とでパラメータの設定に偏りが生じ、補償が不完全になるかもしれない。
【0011】
よって、本発明の目的は、2つ又はそれより多い位相共役器を用いることにより波長分散及び非線形性を効果的に補償することができる光ファイバ通信システムを提供することにある。
【0012】
本発明の他の目的は、波長分散及び非線形性を補償するために位相共役器を伝送路の途中に配置する必要のない光ファイバ通信システムを提供することにある。
【0013】
本発明の他の目的は、そのようなシステムに適用可能な装置及びその製造方法を提供することである。
【0014】
本発明の別の目的は以下の説明から明らかになる。
【0015】
【課題を解決するための手段】
本発明によると、第1及び第2の位相共役器を有する光ファイバ通信システムが提供される。第1の位相共役器には第1の光ファイバにより信号ビームが供給される。第1の位相共役器は、信号ビームを第1の位相共役ビームに変換して出力する。第1の位相共役ビームは第2の光ファイバにより第2の位相共役器に供給される。第2の位相共役器は第1の位相共役ビームを第2の位相共役ビームに変換して出力する。第2の位相共役ビームは第3の光ファイバにより伝送される。第2の光ファイバの途中にシステム中間点が設定される。即ち、第2の光ファイバは、第1の位相共役器及びシステム中間点の間の第1の部分と、システム中間点及び第2の位相共役器の間の第2の部分とからなる。第1の光ファイバの総分散(波長分散の平均値及び長さの積)は第1の部分の総分散と実質的に一致し、第2の部分の総分散は第3の光ファイバの総分散に実質的に一致する。各パラメータの具体的な設計例は後述する。
【0016】
このようなパラメータの設定によって波長分散及び非線形性が効果的に補償される。また、2つの位相共役器を用いてシステム中間点で波形歪みが最も小さくなるようにしたので、位相共役器を伝送路の途中に配置する必要がない。本発明によると、光カー効果だけでなく、ラマン効果等の他の非線形性も補償される。
【0017】
望ましくは、第1、第2及び第3の光ファイバを含む光路上には複数の光増幅器が設けられ、これにより長距離の伝送が可能になる。各光増幅器で発生するノイズが累積したとしても、本発明ではシステム中間点で光信号の波形が一旦元に戻っているので、システム中間点の近傍において光帯域通過フィルタにより有効にノイズを除去することができる。即ち、本発明では、システム中間点において信号スペクトルが元のように狭くなっているので、ノイズを除去するための狭い通過帯域を有する光帯域通過フィルタの使用が可能になるのである。
【0018】
【発明の実施の形態】
以下、添付図面を参照して本発明の望ましい実施の形態を詳細に説明する。
【0019】
図1を参照すると、本発明の光ファイバ通信システムの基本構成が示されている。光送信機(OS)2は信号ビームを出力する。第1の光ファイバ4は、信号ビームの入力端及び出力端にそれぞれ相当する第1端4A及び第2端4Bを有している。第2端4Bには第1の位相共役器(1st  PC)6が動作的に接続されている。
【0020】
この出願において、ある要素と他の要素とが動作的に接続されるというのは、これらの要素が直接接続される場合を含み、更に、これらの要素の間で光信号(又は電気信号)の受渡しができる程度の関連性をもってこれらの要素が設けられている場合を含む。
【0021】
第1の位相共役器6は、第1の光ファイバ4から供給された信号ビームを第1の位相共役ビームに変換して出力する。第2の光ファイバ8は、第1の位相共役ビームの入力端及び出力端にそれぞれ相当する第3端8A及び第4端8Bを有している。第4端8Bには第2の位相共役器(2nd  PC)10が動作的に接続される。第2の位相共役器10は、第2の光ファイバ8から供給された第1の位相共役ビームを第2の位相共役ビームに変換して出力する。第3の光ファイバ12は、第2の位相共役ビームの入力端及び出力端にそれぞれ相当する第5端12A及び第6端12Bを有している。第3の光ファイバ12によって伝送された第2の位相共役ビームを受けるために、光受信機(OR)14が設けられている。
【0022】
第2の光ファイバ8の途中にはシステム中間点16が設定される。システム中間点16は、例えば、波形歪みが最も小さくなる点として定義され、その具体的な位置については後述する。第2の光ファイバ8は、第3端8A及びシステム中間点16の間の第1の部分81と、システム中間点16及び第4端8Bの間の第2の部分82とからなる。
【0023】
光ファイバ4,8及び12における各パラメータは、例えば次のようにして設定される。
【0024】
まず、第1の光ファイバ4がN個(Nは1より大きい整数)の区間4(#1,…,#N)に仮想的に分割され、第2の光ファイバ8の第1の部分81も同じ数の区間81(#1,…,#N)に仮想的に分割される。このとき、第1の位相共役器6から数えて対応する2つの区間の波長分散の平均値及び区間長の積が実質的に一致するようにされる。即ち、第1の光ファイバ4において第1の位相共役器6から数えてi(1≦i≦N)番目の区間4(#i)の波長分散(又は分散パラメータ)の平均値及び区間長をそれぞれD1i及びL1iとし、第2の光ファイバ8の第1の部分81において第1の位相共役器6から数えてi番目の区間81(#i)の波長分散(又は分散パラメータ)の平均値及び区間長をそれぞれD2i及びL2iとするときに、
1i1i  =  D2i2i            …  (1)
が満足される。更に、区間4(#i)における光パワーの平均値及び非線形係数の平均値をそれぞれP1i及びγ1iとし、区間81(#i)における光パワーの平均値及び非線形係数の平均値をそれぞれP2i及びγ2iとするときに、
1iγ1i1i  =  P2iγ2i2i    …  (2)
が満足される。
【0025】
一方、第2の光ファイバ8の第2の部分82がM個(Mは1より大きい整数)の区間82(#1,…,#M)に仮想的に分割され、第3の光ファイバ12も同じ数の区間12(#1,…,#M)に仮想的に分割される。このとき、第2の光ファイバ8の第2の部分82において第2の位相共役器10から数えてj(1≦j≦M)番目の区間82(#j)の波長分散の平均値及び区間長をそれぞれD3j及びL3jとし、第3の光ファイバ12において第2の位相共役器10から数えてj番目の区間12(#j)の波長分散の平均値及び区間長をそれぞれD4j及びL4jとするときに、
3j3j  =  D4j4j            …  (3)
が満足される。更に、区間82(#j)における光パワーの平均値及び非線形係数の平均値をそれぞれP3j及びγ3jとし、区間12(#j)における光パワーの平均値及び非線形係数の平均値をそれぞれP4j及びγ4jとするときに、
3jγ3j3j  =  P4jγ4j4j    …  (4)
が満足される。
【0026】
図1のシステムにおいては、第1の位相共役器6の前後で波形歪みは一旦大きくなるが、(1)式及び(2)式の条件により、システム中間点16において波長分散及び非線形性が補償され、波形は一旦元の状態に戻る。この回復した波形は再び第2の位相共役器10の前後で歪むが、(3)式及び(4)式の条件により光受信機14においては波長分散及び非線形性が補償された結果、波形は再び元に戻る。
【0027】
また、本発明のシステムは、海底等に敷設される可能性のある第2の光ファイバ8についての長さ等のパラメータの設定誤差に対して寛容である。即ち、システム中間点16において例え波形が完全に元の状態に戻らないとしても、この不完全性を第2の部分82、第2の位相共役器10及び第3の光ファイバ12で再現することによって、光受信機14において波形を実質的に完全に元に戻すことができるのである。
【0028】
図2を参照すると、波長分散及び非線形性の補償の原理が示されている。ここでは、光送信機2からシステム中間点16に至るまでの補償の原理が説明される。まず、図2の説明に先立ち、位相共役波の一般的事項について説明する。
【0029】
光ファイバ伝送における光信号E(x,y,z,t)=F(x,y)φ(z,t)exp〔i(ωt−kz)〕の伝搬は、一般に以下の非線形波動方程式によって記述可能である。ここに、F(x,y)は横方向のモード分布、φ(z,t)は光の複素包絡線を表し、このφ(z,t)は光の周波数ωに比べて十分にゆっ
くり変化すると仮定する。
【0030】
【数1】
Figure 2004004870
【0031】
ここに、T=t−βz(βは伝搬定数)、αはファイバの損失、βはファイバの波長分散を表し、
【0032】
【数2】
Figure 2004004870
【0033】
は、3次の非線形係数(光カー効果の係数)を表す。ここに、nとAeffはそれぞれファイバの非線形屈折率と有効コア断面積を表す。cは真空中の光速である。ここでは1次分散までを考慮し、それより高次の分散は省略した。また、α,β,γはzの関数であるとし、それぞれα(z),β(z),γ(z)と表されるものとする。さらに、位相共役器の位置を原点(z=0)とする。ここで、以下の規格化関数を導入する。
【0034】
【数3】
Figure 2004004870
【0035】
は、振幅を表し、α(z)>0の場合は伝送路が損失を持ち、α(z)<0の場合は利得を持つことをそれぞれ表す。A(z)≡A(0)は損失無しの場合を表す。また、A(z)=P(z)は光パワーに相当する。(7),(8)式を(5)式に代入すると、次の発展方程式が得られる。
【0036】
【数4】
Figure 2004004870
【0037】
ここで、sgn[β]≡±1は、β>0,即ち正常分散の場合には+1を、β<0,即ち異常分散の場合には−1をそれぞれとる。
(11)式が成り立てばその複素共役も成り立ち、次の式が得られる。
【0038】
【数5】
Figure 2004004870
【0039】
複素共役光uはuに対する発展方程式と同じ発展方程式に従う。ただし、その際の伝搬方向は反転する。この動作はまさしく位相共役器の動作である。特に透過型の位相共役器においては上記のことは波長分散とSPMとによる位相シフトを反転させることと等価である。
【0040】
ここで、図2においては、第1の光ファイバ4の長さはL1 であり、第2の光ファイバ8の第1の部分81の長さはLであるとする。また、位相共役器6はz座標及びζ座標の原点z=0(ζ=0)に配置される。システム中間点16のz座標及びζ座標はそれぞれL及びζである。
【0041】
第1の光ファイバ4においては、信号ビームu(Es)は発展方程式(11)に従って伝搬する。位相共役器6により信号ビームuは位相共役ビームu(Ec)に変換される。位相共役ビームuは第2の光ファイバ8の第1の部分81において発展方程式(12)式に従って伝搬する。このときζ軸上の位相共役器6の位置(ζ=0)に関して対称な位置にある任意の2点−ζ,ζにおける規格化距離dζ内において、(11)式の右辺第一、二項の係数が等しくなるように各パラメータの値を設定すれば、−ζにおけるuはζにおけるuの位相共役波となる。即ち、次の2式が条件となる。
【0042】
【数6】
Figure 2004004870
【0043】
(13)式は第1の光ファイバ4及び第1の部分81の分散の符号が等しい必要性を示している。ファイバ内では、γ>0,A(z)>0であることを考慮すると、上記条件は次のようにまとめることができる。
【0044】
【数7】
Figure 2004004870
【0045】
第1の光ファイバ4内の(−ζ)における波長分散とSPMとによる位相シフトは位相共役器6により符号が反転する。従って、この位相シフトによる波形歪みは第1の部分81内の(ζ)における位相シフトによる歪みにより補償される。このように区間毎に上記のような設定による補償を繰り返していけば、全長に渡る補償が可能となる。
【0046】
次に、上記の補償条件をz座標で記述する。(15)式より、
【0047】
【数8】
Figure 2004004870
【0048】
を得る。即ち、各区間内での非線形係数と光パワーの積に対する波長分散の比を等しくすることが条件となる。ここで、−z,zは次の式を満足させる2点である。
【0049】
【数9】
Figure 2004004870
【0050】
(16),(17)式より(18),(19)式が得られる。
【0051】
【数10】
Figure 2004004870
【0052】
dz,dzはそれぞれ−z,zにおける小区間の長さであり、各区間長は当該区間内の分散に反比例するかあるいは非線形係数と光パワーの積に反比例する。ここで、分散βと分散パラメータDの関係、D=−(2πc/λ)βを考慮すれば、(18),(19)式より以下の関係が得られる。Dはzの関数であり、D(z)とも表される。
【0053】
【数11】
Figure 2004004870
【0054】
分散及び非線形性について何れも位相共役器6に関して対称な二つの位置の一方における増加分と他方における減少分とが等しいことが補償の条件であることがわかる。
【0055】
(20),(21)式は、補償のための必要条件であり、対応する2つの区間で総分散量とカー効果の総量とが等しくなることを示している。即ち、(1)式乃至(4)式の条件の有効性が確認された。
【0056】
特にα,D及びγが実質的に一定であり且つパワーの変動が小さい場合には(20),(21)式を積分すれば、
【0057】
【数12】
Figure 2004004870
【0058】
を得る。ここで、P,Pはそれぞれ第1の光ファイバ4及び第1の部分81における平均パワーである。また、D,γはそれぞれ第1の光ファイバ4の分散パラメータ及び非線形係数又はそれらの平均値、D,γはそれぞれ第1の部分81の分散パラメータ及び非線形係数又はそれらの平均値である。(22),
(23)式は分散補償及び平均値近似によるSPMの補償法における条件と一致する。
【0059】
実用的には、(22)式の条件を満足するだけでも本発明を実施することができる。例えば、図1のシステムにおいて、第1の光ファイバ4の波長分散の平均値及び長さの積が第2の光ファイバ8の第1の部分81の波長分散の平均値及び長さの積に実質的に一致するようにし、且つ、第2の光ファイバ8の第2の部分82の波長分散の平均値及び長さの積が第3の光ファイバ12の波長分散の平均値及び長さの積に実質的に一致するようにするのである。この設定により、波長分散による波形歪みが補償される。
【0060】
望ましくは、更に(23)式の条件を満足するために、第1の光ファイバ4における光パワーの平均値及び非線形係数の平均値並びに第1の光ファイバ4の長さの積が第1の部分81における光パワーの平均値及び非線形係数の平均値並びに第1の部分81の長さの積に実質的に一致するようにし、第2の部分82における光パワーの平均値及び非線形係数の平均値並びに第2の部分82の長さの積が第3の光ファイバ12における光パワーの平均値及び非線形係数の平均値並びに第3の光ファイバ12の長さの積に実質的に一致するようにする。この設定により、波長分散による波形歪みに加えて非線形性による波形歪みも補償される。
【0061】
第1、第2及び第3の光ファイバ4,8及び12を含む光路上に複数の光増幅器が設けられている場合には、これらのうちの隣り合う各2つの光増幅器の間隔を光路(光ファイバ)の非線形長よりも短く設定するのが望ましい。非線形長については後述する。
【0062】
図2においては、システム中間点16の上流側における補償の原理が示されている。システム中間点16の下流側における補償の原理はこれと同じようにして理解することができるのでその説明を省略する。
【0063】
図2による説明においては、(10)式に示されるように、位相共役器6からの波長分散の累積値によって規格化座標が定義されている。その結果、要求される条件は、(15)式により示されているように、位相共役器6からの波長分散の累積値が等しい第1の光ファイバ4及び第1の部分81上の2点の各々における光パワー及び非線形係数の積と波長分散との比が実質的に一致することである。
【0064】
図2においては、位相共役器6からの非線形効果の累積値(即ち光パワー及び非線形係数の積の累積値)によって規格化座標が定義されてもよい。この場合には、位相共役器6からの当該累積値が等しい第1の光ファイバ4及び第1の部分81上の2点の各々における波長分散と光パワー及び非線形係数の積との比が実質的に一致することが条件となる。
【0065】
次に、図2の原理の有効性を実証するための実験の結果について説明する。
【0066】
図3を参照すると、実証実験で用いられたシステムのブロック図が示されている。
【0067】
送信機(Transmitter)は図1の光送信機2に対応し、ファイバ補償器(Fiber  compensator)は図1の第1の光ファイバ4に対応し、位相共役器(Phase  conjugator)は図1の第1の位相共役器6に対応し、分散シフトファイバ(DSF−1,2,・・・,46)及びエルビウムドープファイバ増幅器(EDFA1,2,・・・,45)は図1の第2の光ファイバ8の第1の部分81に対応する。伝送特性を測定するための受信機(Receiver)は図1のシステム中間点16に設けられた。
【0068】
送信機における光源としては、3電極λ/4シフト型のDFB−LD(分布帰還型レーザダイオード)が二つ用いられた。時分割多重された20Gb/sの信号光E(波長λ=1551nm)が、約40psのパルス幅(FWHM)を有する10Gb/sの2チャネルのRZ信号を時分割多重することによって生成された。10Gb/sのRZパルスを生成するために、第1のLiNbO変調器(LN−1)を用いて10−GHzの正弦波によりEを強度変調し、次いで第2のLiNbO変調器(LN−2)を用いて10Gb/sのNRZデータ信号(PN:223−1)によって強度変調を行った。変調されたEはパワーPで二段のDD−DCF1,2に入力され、これにより波形が予め補償された。
【0069】
ここで、「DD−DCF」は分散漸減型の分散補償ファイバ(dispersion−decreasing  dispersion−compensating  fiber:DD−DCF)を表している。
【0070】
DD−DCFの各々は5本のDCF(DCF−a,b,c,d,e)を互いにスプライスして構成される。DD−DCFの各々の損失は0.46dB/kmであり、DCFの各々のモードフィールド径は約4μmに設定された。
【0071】
(16)式の条件を近似的に満足するために、分散パラメータDはDD−DCFの各々における平均光パワーの減少に従って減少すべきである。そのために、5本のDCFの各々の長さ及びDは、表に示されるように設定された。
【0072】
【表1】
Figure 2004004870
【0073】
DD−DCFの各々の長さは13.7kmであり、各々の総分散は−662.8ps/nmであった。
【0074】
尚、DD−DCFの各々に入力する光のパワーをPに設定するために、二つの光増幅器がカスケード接続された。
【0075】
次いで、位相共役器が、20kmのDSFにおける波長λ=1554nmのポンプ光Eを用いた非縮退型のフォワードFWM(四光波混合)によって、予め補償された(歪を与えられた)Eをこれと同方向に伝搬する位相共役光E(波長λ=1557nm)に変換した。EからEへの変換効率は−12dBであった。
【0076】
次いで、位相共役光Eは、カスケード接続された46本のDSF(0.21dB/km損失)及びこれらの間に設けられる45個のEDFA(各々の雑音指数は約6dB)からなる3036kmの伝送路へ供給された。この伝送路のλにおける平均分散は−0.44ps/nm/kmであった。従って、二段のDD−DCFにおける総分散と上記伝送路における総分散との間の差は約10ps/mであった。各DSFの長さは66kmであり、各DSFへの光入力パワーPは+6dBmに設定された。
【0077】
の最適値は上述の条件では+16dBmであった。DD−DCFの非線形係数γは約18.0W−1km−1であると見積もられた。
【0078】
誘導ブリユアン散乱(SBS)を抑圧するために、E及びEはそれぞれ500−kHz及び150−kHzの正弦波信号により周波数変調された。受信機では、第3のLiNbO変調器(LN−3)及びフェイズロックループ(PLL)を用いることによってEは時分割デマルチプレキシングされ、ビットエラーレート(BER)が測定された。
【0079】
比較のため、一つのDD−DCF及び23本のDSFを用いた1518kmの伝送実験も行われた。
【0080】
図4に測定されたBERの特性を示す。3036kmの伝送の後であっても、10−9より小さいBERで信号の検出を行うことができた。10−9のBERにおける4.8dBのパワーペナルティは、EDFAの雑音等の理論値からのS/N劣化によるものであった。この実験ではλは各EDFAにおけるゲインピークを与える波長λ≒1558.5nmから1.5nmほど離調していた。もしλをλに一致させることができれば、より高いS/N特性を得ることができる。1518kmの伝送実験では、ペナルティは約1.2dBであった。
【0081】
図5A〜5Eに3036km伝送実験における検出された波形の変化の様子を示す。図5Aは送信機の出力波形、図5Bは位相共役器の出力波形、図5Cは1518km伝送後の波形、図5Dは2706km伝送後の波形、図5Eは3036km伝送後の波形をそれぞれ示している。予めひずめられた波形がEC の伝搬に伴って次第に改善されていることが判る。図5Eにおける波形歪みの残留は、不完全な補償条件によるものであった。即ち、この実証実験では、EDFAの間隔(DSFの長さ;66km)が非線形係数と光パワーの積の逆数で定義される非線形長よりも十分に短くないことにより、波形の改善が完全でなかったものである。
【0082】
従って、本発明では、光増幅器を複数用いる場合には、これらの間隔を非線形長よりも短く設定することが望ましい。
【0083】
また、DD−DCFにおけるDCFの分割数を実験における5よりも大きくすることによって、補償を更に改善することができる。
【0084】
図1の光ファイバ4,8及び12の各々としてはシングルモードのシリカファイバを用いることができる。光ファイバ通信において用いられるシリカファイバとしては、1.3μm零分散ファイバや1.55μm分散シフトファイバ等がある。
【0085】
光送信機2における信号光の変調方式としては、光振幅(強度)変調、周波数変調、位相変調その他の実施可能なあらゆる変調方式が挙げられる。また、光受信機14における信号検出は、光帯域フィルタによるフィルタリングの後での光直接検波、或いは光ヘテロダイン検波により行うことができる。
【0086】
位相共役器6及び10の各々は、2次又は3次の非線形光学媒質と、この媒質をポンピングする手段とを有する。2次の非線形光学媒質が用いられている場合には、パラメトリック効果により位相共役変換が行われ、また、3次の非線形光学媒質が用いられている場合には、縮退型或いは非縮退型の四光波混合により位相共役変換が行われる。
【0087】
3次の非線形光学媒質としては例えばシリカファイバを用いることができ、この場合、四光波混合におけるポンプ光の波長をそのシリカファイバの零分散波長にほぼ一致させておくことにより、良好な位相共役変換がなされる。シリカファイバを用いた位相共役器は、高速性、広帯域性、低歪み性、及び伝送路との整合性において優れている。
【0088】
3次の非線形光学媒質として、半導体光増幅器(SOA)を用いることもできる。SOAを用いた位相共役器は広帯域性及び小型化の面で優れている。
【0089】
3次の非線形光学媒質として分布帰還型レーザダイオード(DFB−LD)それ自身を用いることもできる。電流注入によってDFB−LDがポンプ光を生成し、四光波混合によって位相共役変換が行われる。従って、外部のポンプ光源が不要である。DFB−LDを用いた位相共役器は広帯域性及び小型化の面で優れている。DFB−LDを用いた位相共役器の詳細については、文献(H. Kuwatsuka, H. Shoji, M. Ma tsuda and H. Ishikawa,“THz freuency con− version using nondegenerate four−wave mix−ing process in a lasing long−cavity λ/4−shifted DFB laser”Electron. Lett., vol. 31, pp. 2108−2110, 1995)を参照されたい。
【0090】
2次の非線形光学媒質としてはLiNbOやAlGaAs等からなる光導波路を用いることができる。この光導波路を用いた位相共役器は、疑似位相整合構造の採用により良好な位相整合を可能にすると共に、広帯域性において優れており、また位相共役ビームの抽出が容易である。これに関しては、例えば、文献(C.Q. Xu,H. Okayama and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain−inverted LiNbO3 channel waveguide ” Appl. Phys. Lett., vol. 63, No. 26, pp. 3559−3561, 1993)を参照されたい。
【0091】
図6を参照すると、図1の位相共役器6及び10の各々として用いることができる位相共役器が示されている。この位相共役器は、3次の非線形光学媒質としての光ファイバ18と、ポンプ光源としてのレーザダイオード(LD)20と、入力ビーム及びポンプ光を加え合わせて光ファイバ18に供給するための光カプラ22とを備えている。
【0092】
光ファイバ18は望ましくはシングルモードファイバである。この場合において、入力ビームの波長とポンプ光の波長をわずかに異ならせて非縮退型の四光波混合を生じさせるときには、光ファイバ18の零分散波長がポンプ光の波長(LD20の発振波長)に一致するようにしておく。光カプラ22は4つのポート22A,22B,22C及び22Dを有している。ポート22Aには入力ビーム(信号ビーム又は第1の位相共役ビーム)が供給され、ポート22BはLD20に接続され、ポート22Cは光ファイバ18の第1端に接続され、ポート22Dはデッドエンドにされている。光ファイバ18の第2端はこの位相共役器の出力ポートとなる。光カプラ22は、ポート22A及び22Bにそれぞれ供給された入力ビーム及びポンプ光をポート22Cから出力する。光カプラ22としては、例えば、ファイバ融着型のもの、ハーフミラー、光合波器、変更ビームスプリッタ等が使用される。
【0093】
図7を参照すると、本発明の第1実施形態が示されている。第1の光ファイバ4としては、実証実験で用いられたような2つのDD−DCF24が採用されている。各DD−DCF24の入力側には光増幅器26が設けられており、これにより各DD−DCF24に供給される信号ビームのパワーが予め定められたレベルになるようにされている。第2の光ファイバ8の第1の部分81は複数の光ファイバ28をカスケード接続して構成される。各光ファイバ28の間には、第1の部分81における光パワーをほぼ一定に保つために、光増幅器30が設けられている。第2の光ファイバ8の第2の部分82は複数の光ファイバ32から構成される。各光ファイバ32の間には、第2の部分82における光パワーをほぼ一定に保つために、光増幅器34が設けられている。
【0094】
特にこの実施形態では、システム中間点16には、ノイズの除去が効果的に行われる光増幅器36が設けられてる。第3の光ファイバ12としては、実証実験で用いられたのと同じような2つのDD−DCF38が採用されている。各DD−DCF38の入力側には、各DD−DCF38に供給される第2の位相共役ビームのパワーが予め定められたレベルになるようにするために、光増幅器40が設けられている。
【0095】
光送信機2、第1の光ファイバ4及び第1の位相共役器6は第1の端局42に含まれ、第2の位相共役器10、第3の光ファイバ12及び光受信機14は第2の端局44に含まれる。端局42及び44は例えばそれぞれ別の大陸に設置され、この場合、これらの大陸間の海底に第2の光ファイバ8を伝送路として敷設することができる。
【0096】
図8を参照すると、図7のシステムにおける光パワー等のダイアグラムが示されている。第1の光ファイバ4を構成する2つのDD−DCF24の各々においては、非線形効果(非線形係数γ及び光パワーPの積)が減少するのに伴って波長分散βが漸減しており、これにより非線形効果と波長分散の比(γP/β)がほぼ一定になるようにされている。
【0097】
また、第2の光ファイバ8の途中には第2の光ファイバ8における光パワーをほぼ一定にするために複数の光増幅器30,34及び36が設けられている。従って、この実施形態によると、パラメータが特別に設計されていない既設の光ファイバ伝送路を用いて或いは組み合わせて第2の光ファイバ8とすることができる。具体的には次の通りである。
【0098】
今、第2の光ファイバ8の第1の部分81として、図7に示されるように、複数の光ファイバ28と複数の光増幅器30とからなる既設の伝送路が提供されているとする。一般に既設の伝送路においては波長分散の平均値は一定であるから、光増幅器30の各々の利得を適切に設定することによって、第2の光ファイバ8の第1の部分81における非線形効果と波長分散の比(γP/β)を予め与えられた値xに設定することができる。伝送路についてこの比xが与えられると、端局42において、DD−DCF24の各々における非線形係数及び光パワーの積γPの分布と波長分散βの分布とが設定される。そしてこれにより第1の光ファイバ4における非線形効果と波長分散の比(γP/β)を第2の光ファイバ8の第1の部分81に関する比xに一致させることができる。その結果、システム中間点16において波形が元に戻るのである。
【0099】
尚、ここでは第1の光ファイバ4の全長と第2の光ファイバ8の第1の部分81とに関して一定の比xが得られるようにシステムが設計されているが、例えば第1の部分81を構成する光ファイバ28の各々が異なる波長分散βを有している場合には、第1の部分81には異なる波長分散を有する複数の区間が生じるので、第1の光ファイバ4についても本発明に従って複数の区間に仮想的に分割し、対応する2つの区間について前述した条件を満足させることによって、システム中間点16において波形を元に戻すことができる。
【0100】
第2の光ファイバ8の第2の部分82と第3の光ファイバ12についても同じように設計することによって、光受信機14において波形を元に戻すことができる。図8の例では、第2の光ファイバ8の第1の部分81と第2の部分82が同じ値の波長分散を有しているとしてダイアグラムが示されているが、異なる波長分散を有している場合であっても、端局44において光増幅器40の利得とDD−DCF38の構成を適切に設定することによって、光受信機14において波形を元に戻すことができる。
【0101】
このようにこの実施形態によると、第2の光ファイバ8を伝送路として用いることによって、波長分散及び非線形性を補償した極めて長距離な伝送システムの構築が可能になる。また、端局42及び44にそれぞれ位相共役器6及び10を設けておくことによって、伝送路の途中に配置される1つの位相共役器も必要でないので、システムの保守性が向上する。即ち、一旦海底に敷設した伝送路については保守が極めて困難であることに鑑み、一般に複雑な構成を有する位相共役器は伝送路の途中に設けたくないという要求があるのであるが、本発明はこのような要求を満足するものである。
【0102】
尚、図7のシステムにおいて、システム中間点16における波形改善を良好にするためには、光増幅器30の間隔を非線形係数と光パワーの積の逆数で与えられる非線形長よりも十分短くすることが望ましい。同様に、光受信機14における波形改善を良好にするためは、光増幅器34の間隔を非線形長よりも十分に短くすることが望ましい。つまり、光増幅器の間隔を非線形長に比べて十分小さくすることによって、光パワーが全長に渡って一定(の平均パワー)であるとして扱うことができるのである。この場合、光ファイバ8の分散が一定であるにもかかわらず、位相共役器の前後で波長分散及び非線形効果の比が一定であるという条件が近似的に成り立つ。
【0103】
ところで、図7のシステムにおいては、複数の光増幅器が用いられていることから、ノイズが累積する。例えば、各光増幅器がEDFAである場合には、EDF(エルビウムドープファイバ)において発生するASE(AmplifiedSpontaneous  Emisson)によるノイズが累積する。
【0104】
本発明では、図2に示されるように、信号スペクトルは第1の光ファイバ4において徐々に広がり、第1の位相共役器6において信号スペクトルは一旦周波数軸上で裏返された後、第2の光ファイバの第1の部分81において信号スペクトルは再び徐々に狭くなり、システム中間点16において信号スペクトルは最も狭くなる。従って、本発明においては、システム中間点16においてASEによるノイズを効果的に除去することができる。
【0105】
図9を参照すると、本発明のシステムに適用可能な光増幅器が示されている。光増幅媒体としてのEDF46の第1端には、光カプラ48を介して増幅すべきビームとレーザダイオード50からの第1のポンプビームとが供給される。EDF46の第2端には、光カプラ52を介してレーザダイオード54からの第2のポンプビームが供給される。第1及び第2のポンプビームによってポンピングされているEDF46に増幅すべきビームが供給されると、このビームは増幅され、光カプラ52及び光帯域通過フィルタ56を通ってこの光増幅器から出力される。
EDF46において発生するASEは増幅されたビームよりも十分広い帯域を有しているので、光帯域通過フィルタ56によってASEの大部分を除去して増幅されたビームにおけるS/Nの低下を抑えることができる。
【0106】
図7のシステムにおいて、システム中間点16に設けられる光増幅器36に例えば図9に示される光増幅器を適用する場合には、システム中間点16においては信号スペクトルが最も狭くなっていることから、信号スペクトルの帯域幅よりも僅かに広い通過帯域を有する光帯域通過フィルタをフィルタ56として用いることによって、累積したASEによるノイズを効果的に除去することができる。
【0107】
尚、図9の光増幅器では2つのレーザダイオード50及び54を用いてEDF46をポンピングしているが、何れか一方のレーザダイオードのみによってEDF46をポンピングしてもよい。
【0108】
このように本発明の望ましい実施形態によると、第2の光ファイバ8におけるシステム中間点16の近傍に第1の位相共役ビームの波長を含む通過帯域を有する光帯域通過フィルタを設けておくことによって、S/Nの劣化を効果的に防ぐことができる。
【0109】
図10を参照すると、本発明の第2実施形態を示す光通信システムが示されている。この実施形態は、図1の基本構成と対比して、第2の光ファイバ8におけるシステム中間点16に分岐ユニット58が設けられている点で特徴付けられる。
【0110】
光送信機2が出力した信号ビームは第1の光ファイバ4により位相共役器6に供給される。位相共役器6は受けた信号ビームを位相共役ビームに変換して出力する。位相共役器6が出力した位相共役ビームは第2の光ファイバ8の第1の部分81により分岐ユニット58に供給される。分岐ユニット58は、受けた位相共役ビームを第1及び第2の分岐ビームに分岐する。第1及び第2の分岐ビームは、それぞれ、第2の光ファイバ8の第2の部分82−1及び82−2により位相共役器10−1及び10−2に供給される。位相共役器10−1は受けた第1の分岐ビームを位相共役ビームに変換し、これを光ファイバ(第3の光ファイバ)12−1により光受信機14−1へ送る。位相共役器10−2は受けた第2の分岐ビームを位相共役ビームに変換し、これを光ファイバ(第3の光ファイバ)12−2により光受信機14−2へ供給する。
【0111】
光ファイバ4及び81のパラメータ設定、光ファイバ82−1及び12−1のパラメータ設定、並びに光ファイバ82−2及び12−2のパラメータ設定は本発明に従って図1におけるのと同じようになされている。
【0112】
分岐ユニット58はシステム中間点16に設けられているので、この分岐ユニット58において受けた位相共役ビームの伝送特性をモニタリングすることができる。そのために、分岐ユニット58にはモニタ回路60が付随的に設けられている。図示はしないが分岐ユニット58に光受信機を接続してもよい。
【0113】
例えば、光送信機2、光ファイバ4及び位相共役器6は第1の大陸に設けられ、位相共役器10−1、光ファイバ12−1及び光受信機14−1は第2の大陸に設けられ、位相共役器10−2、光ファイバ12−2及び光受信機14−2は第3の大陸に設けられ、分岐ユニット58及びモニタ回路60はこれらの大陸の間の島に設けられる。分岐ユニット58は正確にシステム中間点16に設けられていなくても良く、波形が十分に改善されているという条件の下に分岐ユニット58はシステム中間点16からある程度離れた位置に設けられていてもよい。
【0114】
ここでは、本発明の第2実施形態を図1の基本構成に対比して説明したが、図7の第1実施形態を図10の第2実施形態に適用してもよい。また、図10では分岐ユニット58が第1及び第2の分岐ビームを出力するとしているが、分岐ユニット58が受けた位相共役ビームを3以上の分岐ビームに分岐し、これに対応して分岐ユニット58の下流側の位相共役器及び光受信機を増設してもよい。
【0115】
図11を参照すると、本発明の第3実施形態が示されている。ここでは、図1の基本構成をWDM(波長分割多重)に拡大適用するために、光マルチプレクサ(MUX)62及び光デマルチプレクサ(DE−MUX)64が用いられている。
【0116】
光送信機2−1,…,n(nは1よりも大きい整数)は、互いに異なる波長を有する信号ビームをそれぞれ出力する。信号ビームは図1の第1の光ファイバ4にそれぞれ対応する光ファイバ4−1,…,nによって光マルチプレクサ62に供給される。光マルチプレクサ62は、受けた信号ビームを波長分割多重してWDM信号ビームを出力する。そしてこのWDM信号ビームが第1の位相共役器6に供給される。ここでは、光送信機2−1,…,nのそれぞれに専用の光ファイバ4−1,…,nが与えられているので、各波長チャネル毎に本発明によるパラメータの設定が可能である。即ち、波長チャネ
ルによって非線形係数や波長分散が異なるので、この実施形態によると波長チャネル毎の厳密な補償が可能になる。
【0117】
位相共役器6において位相共役変換されたWDM信号ビームは第2の光ファイバ8により第2の位相共役器10に供給され、ここで更に位相共役変換される。位相共役器10の出力ビームは光デマルチプレクサ64に供給される。光デマルチプレクサ64は受けたビームを波長チャネル毎に分離し、各チャネルのビームは図1の第3の光ファイバ12に対応する光ファイバ12−1,…,nによってそれぞれ光受信機14−1,…,nに供給される。光ファイバ4−1,…,nの各々と第2の光ファイバ8の第1の部分81とについてのパラメータ設定は図1の基本構成におけるのと同じようになされており、第2の光ファイバ8の第2の部分82と光ファイバ12−1,…,nの各々とについてのパラメータ設定も図1におけるのと同じようになされている。
【0118】
この実施形態では、位相共役器10が出力したビームをnチャネルに分けるために、光デマルチプレクサ64を用いているが、1つの光受信機を用いる場合には光デマルチプレクサ64は不要である。この場合には、光受信機はnチャネルから所望のチャネルを選択するための光学的或いは電気的な手段を有している。
【0119】
尚、第3実施形態を図1の基本構成に対比して説明したが、図7の第1実施形態を第3実施形態に適用してもよい。
【0120】
図12を参照すると、本発明の第4実施形態が示されている。ここでは、図1の基本構成と対比して、光ファイバ4、8及び12の各々の波長分散と逆符号の波長分散を与える少なくとも1つの分散補償器(DC)66が付加的に設けられている。図示された例では、分散補償器66は位相共役器6及び10の間の光ファイバ8の途中に設けられているが、分散補償器66は光ファイバ8の入力端又は出力端に接続されていてもよい。また、分散補償器66は、光ファイバ4の途中に設けられ若しくは入力端若しくは出力端に接続され又は光ファイバ12の途中に設けられ若しくはその入力端若しくは出力端に接続されていてもよい。
【0121】
分散補償器66としては絶対値が大きい波長分散を有する分散補償ファイバ(DCF)を用いることができる。光ファイバ4、8及び12の各々の分散が正常分散或いは異常分散の何れである場合でも、DCFからなる分散補償器66を用いることによって、その長さを短く抑えることができるので、分散補償器66における損失を小さく抑えることができる。特に、光ファイバ4、8及び12の各々が正常分散を有している場合には、分散補償器66としては1.3μm零分散ファイバが適している。例えば複数の分散補償器66を光ファイバ8の途中に設ける場合には、その長手方向に分散補償器66を均等間隔で設けるのが望ましい。
【0122】
図12では図1の基本構成に分散補償器66が付加されているが、本発明の第1乃至第3実施形態において少なくとも1つの分散補償器を付加的に設けてもよい。
【0123】
図13を参照すると、ファイバグレーティングFGを用いた分散補償器の構成が示されている。この分散補償器は図12の分散補償器66として、或いは後述の用途で用いることができる。光パルスの両縁の波長がそれぞれλ及びλである光パルスが光サーキュレータOCを通ってファイバグレーティングFGに供給される。ファイバグレーティングFGのグレーティングピッチは予め定められた分布を有しており、波長λのビームは光サーキュレータOCに比較的近い位置でブラッグ反射され、波長λのビームは比較的遠い位置でブラッグ反射される。これにより光パルスの圧縮が行われ、ファイバグレーティングFGからのブラッグ反射ビームを光サーキュレータOCを介して取り出すことによって、分散補償を行うことができる。
【0124】
図14を参照すると、本発明の第5実施形態が示されている。ここでは、図1の基本構成と対比して、第1の光ファイバ4、第1の位相共役器6、第2の光ファイバ8、第2の位相共役器10及び第3の光ファイバ12にそれぞれ相当する光学要素を含む光学ユニット68を更に備えたシステムが示されている。光学ユニット68の第1端は、図1の光受信機14に対応する点Aにおいて第3の光ファイバ12に接続され、光学ユニット68の第2端は光受信機14´に接続される。光学ユニット68は、光ファイバ4、位相共役器6、光ファイバ8、位相共役器10及び光ファイバ12にそれぞれ相当する光ファイバ4´、位相共役器6´、光ファイバ8´、位相共役器10´及び光ファイバ12´を含む。光学ユニット68は図1のシステム中間点16に対応するシステム中間点16´を有している。図14の実施形態では、光学要素68を1つだけ示しているが、点Aと光受信機14´との間に光学ユニット68が複数直列に設けられていてもよい。
【0125】
この実施形態によると、図示されたシステムの各部分について本発明の条件を適用することによって、光送信機2と光受信機14´との間の距離を十分に伸ばすことができる。また、システム中間点16及び16´並びに点Aにおいては光信号の波形が元に戻っているので、これらの点にノードを設けることによって、光信号のアッド/ドロップ或いは光信号波形のモニタリングを容易に行うことができる。また、システム中間点16及び16´並びに点Aの少なくとも何れかに図9の光増幅器の光帯域通過フィルタ56を適用することによって、ASEによるノイズを効果的に除去することができる。
【0126】
尚、ここでは第5実施形態を図1の基本構成に対比して説明したが、図7の第1実施形態を第5実施形態に適用してもよい。
【0127】
図15を参照すると、本発明の第6実施形態が示されている。図11の第3実施形態では、図1の基本構成をWDM(波長分割多重)に適用するために、複数の光送信機2−1,…,nに対応して複数の第1の光ファイバ4−1,…,nを設け、複数の光受信機14−1,…,nに対応して複数の第3の光ファイバ14−1,…,nを設けている。これに対して、図15の第6実施形態では、光送信機2−1,…,nの直後に光マルチプレクサ62´を設け、光マルチプレクサ62´と第1の位相共役器6との間に共通の第1の光ファイバ4を設けている。また、光受信機14−1,…,nの直前に光デマルチプレクサ64´を設け、第2の位相共役器10と光デマルチプレクサ64´との間に共通の第3の光ファイバ12を設けている。
【0128】
光送信機2−1,…,nが出力する信号ビームの波長は互いに異なる。従って、もし、光送信機2−1と光受信機14−1とに関する波長チャネルについて(1)〜(4)式の条件が満たされているとすれば、その波長チャネルについてはシステム中間点16において波形が完全に元に戻るが、他の波長チャネルについては厳密な意味では(1)〜(4)式を満足することができないので、当該他の波長チャネルについてはシステム中間点16において波形が完全には元には戻らないかもしれない。しかし、本発明では、システム中間点16を中心として対称な条件設定を行うことによって、システム中間点16で波形が完全に元に戻らない波長チャネルについても受信側で波形を実質的に完全に元に戻すことができる。
【0129】
図16を参照すると、本発明の第7実施形態が示されている。ここでは、図15の第2の光ファイバ8の第2の部分82と、位相共役器10と、第3の光ファイバ12とが省略され、システム中間点16に光デマルチプレクサ64”が設けられている。図16の位相共役器6が3次の非線形光学媒質を有しているとした場合における分散パラメータの設計例を説明する。
【0130】
図17Aに示されるように、光送信機2−1,…,nが出力する信号ビームの波長がそれぞれλS1,…,λSnとした場合、位相共役器6が出力する位相共役ビームの波長λC1,…,λCnは、それぞれ、ポンプ光の波長λに対して信号ビームの波長λS1,…,λSnと対称の位置に配置される。もし、図16のシステムにおいて、位相共役器6の前後の光ファイバ4及び第1の部分81として同じ種類の光ファイバが用いられており、そのファイバが図17AにDで示されるように分散パラメータが波長に依存して変化する特性を有しているとすると、信号ビームが受ける波長分散がチャネル毎に異なるので、補償が不完全になるかもしれない。そこで、図17Aに示される例では、波長λS1,…,λSnの信号ビームが伝搬する光ファイバ4としてDで示されるような特性のファイバを用いている場合には、波長λC1,…,λCnの位相共役ビームが伝搬する第1の部分81としてDで示されるようにポンプ光の波長λに対してDと対称の特性を有するようなファイバを用いるのである。例えば、第1の光ファイバ4の分散傾斜(2次分散;分散パラメータの波長微分)が正である場合には、第1の部分81の分散傾斜を負にするのである。このようにして、各チャネルの信号ビームが受ける波長分散と対応する位相共役ビームが受ける波長分散とが等しくなるようにすることによって、波長分散及び非線形性をチャネル毎に補償することができる。
【0131】
特に、WDMが適用される場合には、各チャネルについて発生するSPMだけでなく、チャネル間の相互作用によるXPM(相互位相変調)によっても波形劣化が生じるが、図17Aに示されるように分散パラメータを設計することによって、XPMを補償することができる。尚、図16の実施形態にDD−DCFを適用する場合には、DD−DCFの各々として例えば図17Aのものの特性を縦方向にシフトしたものを用いることができる。
【0132】
図17Bに示されるように、分散傾斜がないファイバを用いることもできる。即ち、位相共役器6の前後において、光ファイバ4としては分散パラメータDが波長に従って変化しないファイバを用いるとともに、第1の部分81としては分散パラメータDが波長に従って変化しないファイバを用いるのである。このように分散傾斜のないファイバを用いることによって、SPM及びXPMによる波形劣化だけでなく、チャネル間のFWMを補償することができる。FWMの発生効率は各ファイバの分散値に依存するので、光ファイバ4と第1の部分81とで分散パラメータを同じにするのが望ましい。尚、チャネル間のFWMの発生効率は偏波依存性を有しているので、図16のようにWDMが適用される場合には、光送信機2−1,…,nの各々の直後或いは光マルチプレクサ62´の直後に偏波スクランブラを設けるのが望ましい。また、図17Bに示されるような特性を有するファイバを用いてDD−DCFを構成することもできる。
【0133】
図18A及び18Bを参照すると、本発明が適用可能な光ネットワークが示されている。図18Aに示される光ネットワークにおいては、3つの端局70の間がそれぞれ光ファイバにより接続されており、各光ファイバの途中には光信号のアッド/ドロップのためのノード72が設けられている。ターミナル70の各々は図1の位相共役器6又は10を有しており、光ファイバの各々について本発明の条件が満足されるようにしてある。各ノード72は本発明に従うシステム中間点16(図1参照)に配置されている。システム中間点では波形が元に戻っているので、システム中間点にノード72を配置することによって、波形の劣化を考慮することなしに光信号のアッド/ドロップが可能になる。
【0134】
図18Aの光ネットワークにWDMが適用される場合には、各ターミナル70はWDMのチャネル毎に位相共役器を有していることが望ましい。このように各ターミナル70が複数の位相共役器を有する場合には、光信号がターミナル70を通過するときに位相共役変換及び波長変換がチャネル毎に行われるので、各ターミナル70において光信号の分岐や切り換え(クロスコネクト)が可能になる。
【0135】
図18Bに示される光ネットワークにおいては、2つのターミナル70が幹線上に配置され、ターミナル70の間にノード72が設けられている。また、ターミナル70の各々はサブシステム74に接続されている。サブシステム74の各々はリング状光ファイバネットワークとその途中に設けられる複数のノード76とを有している。
【0136】
この構成によると、例えば幹線ネットワークにWDMが適用されている場合に、WDMの各チャネルをサブシステム74の各々に割り当てることで、比較的低速なLAN(ローカルエリアネットワーク)を容易に提供することができる。
【0137】
図19を参照すると、本発明による光通信システムの他の基本構成が示されている。このシステムは、信号ビームを出力する光送信機102と、信号ビームを伝送するための第1の光ファイバ104と、第1の光ファイバ104により伝送された信号ビームを位相共役ビームに変換して出力する位相共役器106と、位相共役ビームを伝送する第2の光ファイバ108と、第2の光ファイバ108により伝送された位相共役ビームを受ける光受信機110とを備えている。
【0138】
第1の光ファイバ104、位相共役器106及び第2の光ファイバ108を含む光路上には、光ファイバ104及び108の各々の波長分散と逆符号の波長分散を与える少なくとも1つの分散補償器112が設けられている。図示された例では分散補償器112は第2の光ファイバ108の途中に設けられているが、分散補償器112は第1の光ファイバ104の途中に設けられていてもよい。また、分散補償器112は光ファイバ104又は108の端部に設けられていてもよい。
【0139】
第1の光ファイバ104及び第2の光ファイバ108のパラメータ設定は、それぞれ、図1のシステムにおける第1の光ファイバ4及び第2の光ファイバ8の第1の部分81のパラメータ設定に準じて行われる。例えば、第1の光ファイバ104の波長分散の平均値及び長さの積は、第2の光ファイバ108の波長分散の平均値及び長さの積に実質的に一致するようにされる。各波長分散の平均値を求めるためには、分散補償器112の分散値を含めてもよいし含めなくてもよい。
【0140】
図19のシステムを実施する場合、光ファイバ104又は108として、波長1.55μm帯で最低損失及び異常分散を与えるシングルモードファイバを使用したいという要求がある。その理由は、第1に、このようなシングルモードファイバからなる光ファイバ伝送路が既に多くの地域で敷設されておりこれをそのまま利用したいという点と、第2に、波長1.55μm帯でWDMを実施する場合にシングルモードファイバでは比較的大きな異常分散が生じることによりXPM及びFWMによるチャネル間クロストークが生じにくいという点とに基づく。
【0141】
分散補償器112が無い場合、光ファイバ104を端局内に設け、光ファイバ108を伝送路として使用しようとすると、光ファイバ104を比較的短くする必要があるので、例えば光ファイバ108の分散パラメータが+18ps/km/nmである場合に、光ファイバ104の分散パラメータをそれより大きな値にする必要があるのであるが、現状ではこのような大きな異常分散を与える光ファイバは入手困難であるから、システムが制限されてしまう。これに対して、図19のように分散補償器112を用いることによって、光ファイバ108の総分散を小さくすることができるので、光ファイバ108の分散パラメータと同等の分散パラメータを有する光ファイバ104の使用が可能になるのである。
【0142】
図示された例では、分散補償器112は1つだけ設けられているが、複数の分散補償器を長手方向に例えば均等に配置することによって、本発明の条件の設定を容易に行うことができるようになる。
【0143】
尚、光ファイバ104及び108が異常分散を与えるシングルモードファイバである場合には、分散補償器112としては正常分散を与える光ファイバを用いることができる。また、図13により説明したファイバグレーティングを用いた分散補償器を用いることもできる。
【0144】
以下、本発明の付加的な説明を行う。本発明を実施する場合、最も単純には、図2並びに(22)及び(23)式から明らかなように、位相共役器の前後における総分散及び/又は総非線形効果がそれぞれ等しく設定される。(22)及び(23)式においては、D及びγ(j=1,2)を定数として扱っているが、実際のパラメータ設定では、分散値及び非線形係数はファイバの位置により異なる値を示すから、正確を期すためにはこれらの平均値が採用される。
【0145】
(22)及び(23)式による補償は、非線形効果が余り大きくない場合に成り立つ近似である。具体的は、光ファイバの長さ或いは光増幅器による中継間隔が光ファイバの非線形長に比べて十分短い場合に有効な近似である。例えば、非線形係数が2.6W−1km−1である通常のDSF(分散シフトファイバ)により平均ピークパワー+5dBmの信号光を伝送する場合を考えると、非線形長は121.6kmとなる。従って、100km程度よりも短い光ファイバ長或いは光増幅器による中継間隔であれば、上述の近似により波長分散及び非線形効果を補償することができることになる。
【0146】
しかし、パワーが更に高くなると、光ファイバの損失による位相共役器前後の光パワー分布の非対称性により補償に限界が出る。このような場合には、本発明に従って(20)及び(21)式の条件を満足させることによって、波長分散及び非線形効果による波形歪みを補償することができる。
【0147】
一般的には伝送路には損失があるため、(20)及び(21)式を満足するためには、何らかの損失補償効果を与える必要がある。これにはいくつかの方法が考えられる。第1に、伝送路として分布定数的な利得媒質を用いることである。ラマン増幅器やEDFを用いたインライン型の増幅器等が挙げられる。第2に、非線形効果と分散値の比を制御することである。損失によって非線形効果が伝送路に沿って減少することを補償するためには、伝送路に沿って分散を小さくしていくか或いは非線形効果を大きくしていけばよい。分散の値を変化させることは、光ファイバの設計により可能であり、有望である。例えば、分散シフトファイバ(DSF)の零分散波長を変化させることや、ファイバのコア及びクラッド間の比屈折率差或いはファイバのコア径を変えることにより、分散の値を変化させることができる。一方、非線形効果を変化させることは、非線形屈折率を変化させたり光パワーを変化させることにより可能である。
【0148】
損失のある伝送路に沿って光強度を大きくするには、ファイバの有効コア断面積Aeffをファイバの長手方向に沿って次第に小さくすればよい。例えば、モードフィールド径(MFD)が半分になれば、光強度は約4倍になる。従って、6dB程度の損失はこれだけで補償可能である。もっと大きな損失に対しては更にMFDを小さくする必要があるが、余りMFDを小さくし過ぎるとそれにより損失が増えてしまい逆効果となる。現実的なMFDの最小値は3μm程度であろう。1.3μm零分散SMF(シングルモードファイバ)のMFDが約10μm、1.55μm零分散DSF(分散シフトファイバ)のそれが約8μmであることを考慮すると、MFDだけで対応可能な損失はSMFで約10dB、DSFでは約8dBということになる。
【0149】
更に大きな損失がある場合には、MFDを小さくすると共に分散の値を小さくすることが考えられる。例えば、分散の値を半分にできれば、更に3dBの損失のある場合でも分散と非線形効果との比を位相共役器に対して対称にすることが可能である。近年開発が進められている分散補償ファイバ(DCF)においては、分散値を約−120ps/nm/kmから−10ps/nm/km程度の範囲で変化させることが可能であり、しかもMFDを5μm以下にすることもできる。従って、分散値の異なる複数のDCFを例えばスプライシングによりカスケード接続することによって、10dB程度の損失の補償が可能となる。
【0150】
伝送路(例えば図7の光ファイバ8の第1の部分81)の平均分散が−0.5ps/nm/kmであるとすると、補償ファイバ(例えば図7の第1の光ファイバ4)の平均分散を−50ps/nm/kmにすることにより、伝送路の1/100の長さの補償ファイバによりシステムを構築可能である。この場合、例えば補償ファイバの損失が0.4dB/kmであれば、分散値の絶対値を0.4dB/kmの割合で小さくしていくことにより、補償条件を実現することができる。伝送路の全長が2000kmである場合には20kmの補償ファイバを用いることになり、その際の分散値の差は8dBである。
【0151】
尚、補償ファイバ内の光強度も伝送路における光強度の100倍程度にする必要があるが、例えば補償ファイバのMFDが4μmであれば光パワーとしては25倍程度で済むことになる。
【0152】
光増幅器を用いた長距離伝送においては、伝送路として正常分散ファイバを用いることが光増幅器の雑音光による非線形歪みを低減する上でよいことが分かっている。従って、上述のDCFを用いたシステム構成は有望である。
【0153】
図6の位相共役器において、非線形光学媒質として用いられる光ファイバ18に供給される信号光若しくはポンプ光又は光ファイバ18において発生する位相共役光のパワーが光ファイバ18における誘導ブリユアン散乱(SBS)の閾値を越えると、信号光から位相共役光への変換効率が小さくなる。SBSの影響を抑圧するためには、信号光及びポンプ光の少なくとも何れか一方に周波数変調又は位相変調を掛ければよい。その際の変調速度は数100kHz程度で十分であり、この変調速度は信号光における変調速度よりも一般に十分に低いので、SBSを抑圧するための変調により伝送特性が劣化する恐れはない。
【0154】
通常のDSF(分散シフトファイバ)の非線形係数γは2.6W−1km−1程度と小さいので、位相共役光を発生させるための非線形光学媒質、例えば図6の光ファイバ18として通常のDSFを用いる場合に十分な変換効率を得るためには、ファイバ長を10km以上にすることが要求される。従って、ファイバ長を短くするのに十分大きな非線形係数γを有するDSFの提供が要望されているのである。位相共役光を発生させるための非線形光学媒質として使用されるDSFの長さを短くすることができるとすれば、その零分散波長を高精度に管理することができ、従ってポンプ光の波長をDSFの零分散波長に正確に一致させるのが容易になり、その結果広い変換帯域を得ることができる。ここで、変換帯域は、あるパワーの位相共役光が得られる条件下におけるポンプ光及び信号光の最大の離調波長(離調周波数)として定義される。
【0155】
(6)式により定義される非線形係数γを大きくするためには、非線形屈折率nを大きくし或いは有効コア断面積Aeffに対応するモードフィールド径(MFD)を小さくすることが有効である。非線形屈折率nを大きくするためには、例えば、クラッドにフッ素等をドープし或いはコアに高濃度のGeOをドープすればよい。コアにGeOを25乃至30mol%ドープすることによって、非線形屈折率nとして5×10−20/W以上の大きな値が得られている(通常のシリカファイバでは約3.2×10−20/W)。MFDを小さくすることは、比屈折率差Δ又はコアの形状の設計により可能である。このようなDSFの設計はDCF(分散補償ファイバ)の場合と同様である。例えば、コアにGeOを25乃至30mol%ドープし、且つ、比屈折率差Δを2.5乃至3.0%に設定することによって、4μmよりも小さなMFDの値が得られている。これらの総合効果として、15W−1km−1以上の大きな非線形係数γの値が得られている。
【0156】
他に重要な要素として、このような大きな値の非線形係数γを提供するDSFがポンプ帯域に含まれる零分散波長を有するべきであることが挙げられる。零分散波長とポンプ帯域とのこのような一致性は、ファイバパラメータ(例えば比屈折率差Δ及びMFD)を次のようにして設定することにより可能である。通常の光ファイバにおいては、MFDを一定にした条件で比屈折率差Δを大きくすると、分散値は正常分散領域で大きくなる。位相共役器による前置補償或いは後置補償に用いられる前述のようなDD−DCFはこのような原理により実現するものである。一方、コア径を大きくすると分散は減少し、コア径を小さくすると分散は大きくなる。従って、MFDをポンプ帯域に適合するある値に設定した後に、零分散波長がポンプ光の予め定められた値に一致するようにコア径を調節することによって、ポンプ光に対する零分散が得られる。
【0157】
長さL、損失αの光ファイバにおける変換効率ηは、
η=exp(−αL)(γPL) … (24)
で近似することができる。ここで、Pは平均ポンプ光パワーである。従って、非線形係数γが15W−1km−1のファイバは通常のDSFに比べて2.6/15≒1/5.7程度の長さで同じ変換効率を達成可能である。通常のDSFにあっては、十分大きな変換効率を得るためには前述のように10km程度の長さが必要であるのに対して、このように大きな非線形係数γを有するファイバにあっては、1乃至2km程度の長さで同様の変換効率を得ることができる。実際には、ファイバ長が短くなる分損失も小さくなるので、同じ変換効率を得るために更にファイバ長を短くすることができる。このような短い長さのDSFにおいては、零分散波長の制御性が良くなり、従って、ポンプ光の波長を零分散波長に正確に一致させることができ、広い変換帯域を得ることができる。更に、数kmのファイバ長であれば、偏波面保存能力が確保されているので、このようなDSFの使用は、高い変換効率及び広い変換帯域を達成し偏波依存性を排除する上で極めて有効である。
【0158】
光ファイバを用いて四光波混合を有効に発生させるためには、信号光、ポンプ光及び位相共役光の位相を整合させることが重要である。位相不整合量Δkは次のように近似される。
Δk=δωβ(ω)+2γP  … (25)
ここに、β(ω)はポンプ光周波数ωにおける波長分散であり、δωは信号光及びポンプ光の周波数差である。特別大きなパワー(例えば100mW以上)のポンプ光を用いない限り、(25)式の第2項は第1項に比べて十分小さいのでこれを無視することができる。従って、位相整合(Δkを限りなく0に近付けること)は、ポンプ光の波長をファイバの零分散波長に一致させることにより得られる。しかし、実際のファイバにおいては、零分散波長が長手方向にばらついているので、位相整合条件をファイバ全長に渡って保つことが容易ではない。
【0159】
このように、位相共役光を発生するための非線形光学媒質として光ファイバを有している装置においては、変換帯域は光ファイバの分散により制限される。従って、光ファイバの長手方向の分散が完全に制御され、例えば全長(正確には非線形長)に渡り唯一の零分散波長を有する光ファイバが作られたとすれば、ポンプ光波長をその零分散波長に合わせることにより、事実上無限大の(分散傾斜が直線上である範囲内で制限のない程広い)変換帯域が得られる。しかし、実際には、光ファイバの製造技術上の問題により零分散波長が長手方向にばらつくため、
位相整合条件が理想状態からずれ、これにより変換帯域が制限される。
【0160】
しかし、このような場合であっても、光ファイバを切断して複数の小区間に分割し、零分散波長の似ている区間同士をスプライス等により繋ぎ合わせていく(当初のファイバ端から数えた順番とは違う順番で)ことにより、全長における平均分散は同じであるにも関わらず、広い変換帯域を有する位相共役器を提供するのに適した光ファイバを得ることができる。
【0161】
或いはまた、十分広い変換帯域を得るのに必要な程度に高精度な分散制御が可能な長さ(例えば数100m以下)のファイバを予め多数用意しておき、所要の零分散波長のものを組み合わせてスプライスして所要の変換効率を得るのに必要な長さのファイバを得、これを用いて位相共役器を提供することによって、広い変換帯域を得ることができる。
【0162】
このようにして変換帯域を拡大する場合には、非線形光学媒質のポンプ光入力端の近くでポンプ光のパワーが高いので、ポンプ光入力端の近くに零分散波長の小さい部分或いは零分散波長のばらつきが小さい部分を集めることが有効である。また、必要に応じて順次分割数を増やしたり、ポンプ光入力端から離れた位置で比較的分散値の大きなところでは、分散値の正負を交互に配置する等により適切に組み合わせることによって、更に変換帯域を拡大することができる。
【0163】
光ファイバを分割するに際して各区間をどの程度短くすれば十分か否かの目安としては、例えば、非線形長を基準にすればよい。非線形効果の補償におけるのと同様、非線形長に比べて十分短いファイバ内でのFWM(四光波混合)においては、位相整合はそのファイバの平均分散値に依存すると考えることができる。一例として、非線形係数γが2.6W−1km−1のファイバで30mW程度のポンプ光パワーを用いたFWMにおいては、非線形長は12.8km程度になるから、その1/10程度、即ち1km程度が1つの目安となる。他の例としては、非線形係数γが15W−1km−1のファイバで30mW程度のポンプ光パワーを用いたFWMにおいては、非線形長は2.2km程度になるから、その1/10程度、即ち200mが1つの目安となろう。何れにしても、非線形長に比べて十分短いファイバの平均零分散波長を測定し、ほぼ同じ値のものを組み合わせて所要の変換効率を有する非線形光学媒質を提供すれば、広い変換帯域の位相共役器を得ることができる。
【0164】
このように、本発明によると、位相共役光を発生するための非線形光学媒質を有する装置を製造するための第1の方法が提供される。この方法では、まず、光ファイバが切断されて複数の区間に分割され、次いで、非線形光学媒質を用いた非縮退四光波混合における変換帯域が最大になるように複数の区間が並べ替えられて繋ぎ合わされることにより非線形光学媒質が提供される。この非線形光学媒質にポンプ光及び信号光を供給することによって、位相共役光が発生する。信号光から位相共役光への変換帯域は十分に広くなっているので、例えば信号光として、異なる波長を有する複数の光信号を波長分割多重してなるWDM信号光が用いられている場合に、複数の光信号は一括して位相共役光(複数の位相共役光信号)に変換される。
【0165】
望ましくは、複数の区間の各々の分散値(例えばポンプ光に対する分散値)が測定され、非線形光学媒質にポンプ光を入力するときの入力端に近い側に比較的分散値の小さい区間が配置されるように複数の区間が並べ替えられる。これにより、ポンプ光のパワーが高い部分で効果的に位相整合条件を得ることができるので、変換帯域が効果的に拡大される。
【0166】
望ましくは、複数の区間の少なくとも一部は分散値の正負が交互になるように繋ぎ合わされる。これにより、光ファイバの各部分の平均分散を小さく抑えることができるので、変換帯域の効果的な拡大が可能になる。
【0167】
また、本発明によると、位相共役光を発生するための非線形光学媒質を有する装置を製造するための第2の方法が提供される。この方法では、まず、光ファイバが切断されて複数の区間に分割され、次いで、複数の区間の各々の分散値(例えばポンプ光に対する分散値)が測定され、その後、非線形光学媒質を用いた非縮退四光波混合による所要の変換帯域を得るのに十分小さい分散値を有する区間だけが選ばれて繋ぎ合わされることにより非線形光学媒質が得られる。この第2の方法により得られた非線形光学媒質を用いて位相共役器を構成した場合にも、広い変換帯域が得られているので、WDM信号光の一括変換が可能である。
【0168】
本発明による第1及び第2の方法の各々においては、最初に光ファイバが切断されて複数の区間に分割されるが、本発明はこれに限定されない。例えば、次のように必要に応じて光ファイバを切断することもできる。
【0169】
即ち、本発明によると、位相共役光を発生するための非線形光学媒質を有する装置を製造するための第3の方法が提供される。この方法では、まず、光ファイバの零分散波長の偏差が測定され、次いで、測定された偏差が予め定められた範囲を越えている場合に光ファイバが切断され切断された各ファイバの零分散波長の偏差が予め定められた範囲内に入るようにされ、その後、ポンプ光の波長に実質的に等しい零分散波長を有する光ファイバ又は切断されたファイバが選ばれて、選ばれたファイバを繋ぎ合わせることにより非線形光学媒質が得られる。
【0170】
零分散波長の偏差の測定は、例えば、零分散波長に従って四光波混合の発生効率が異なることを用いて行うことができる。一般に、波長分散は群速度の波長依存性を測定することにより求めることができるのであるが、上述のように、四光波混合の位相整合はポンプ光波長と零分散波長とが一致するときに最良の条件となるので、零分散波長は、ポンプ光と信号光の波長差を例えば10〜20nm程度の比較的大きな一定の値にした状態でポンプ光波長に対する四光波混合(位相共役光)の発生効率を測定し、最大の発生効率を与えるポンプ光波長として求めることができる。また、四光波混合の発生効率はポンプ光の強度の二乗に比例する。従って、零分散波長が光ファイバの長手方向に変化している場合、一般的には、信号光及び励起光を光ファイバの一方の端面から入力した場合と他方の端面から入力した場合とで異なる零分散波長が測定される。従って、これら2つの零分散波長の測定値に基づいてその光ファイバの零分散波長の偏差を求めることができる。具体的には次の通りである。
【0171】
図20を参照すると、零分散波長の偏差が小さい非線形光学媒質の製造プロセス120が示されている。ステップ122においては、零分散波長の許容範囲Δλが決定される。範囲Δλは、所要の変換帯域からシステムの要求特性として決定することができ、その具体的な値は例えば2nmである。次いでステップ124では、零分散波長の偏差δλが測定される。例えば、光ファイバF1が与えられると、前述の四光波混合の発生効率により、信号光及び励起光を光ファイバF1の第1端から入力した場合に得られる零分散波長λ01と、光ファイバF1の第2端から信号光及びポンプ光を入力した場合に得られる零分散波長λ02とが測定される。この場合、|λ01−λ02|を以て零分散波長の偏差δλの代替値とすることができる。
【0172】
続いてステップ126では、偏差δλが範囲Δλよりも小さいか否かが判断される。ここでは、δλ≧Δλであるとして先のフローを説明すると、ステップ128では、光ファイバF1が切断により光ファイバF1A及びF1Bに二分割される。ステップ128の後ステップ124に戻り、光ファイバF1A及びF1Bの各々について偏差δλが測定され、各測定値についてステップ126で判断がなされる。ここでは、各偏差δλがΔλより小さいとすると、このフローは終了する。尚、ステップ128における光ファイバF1の切断点は任意であり、従って、光ファイバF1A及びF1Bの長さは等しいかもしれないし異なるかもしれない。
【0173】
上述の説明では、ステップ124及び126が繰り返されているが、ステップ124及び126は繰り返されないかもしれないし更に多く繰り返されるかもしれない。例えば、零分散波長の偏差が小さい光ファイバF2が与えられた場合には、ステップ126の1回目の判断で条件が満たされ、この場合には光ファイバF2は切断されない。一方、零分散波長が長手方向に大きくばらついている光ファイバF3が与えられると、光ファイバF3は最初のステップ128で光ファイバF3A及びF3Bに分割され、2度目の判断ステップ126で光ファイバF3Aは条件を満足するものの光ファイバF3Bが条件を満足しない場合には、2度目のステップ128において光ファイバF3Bが光ファイバF3B1及びF3B2に分割されてこのフローが終了するかもしれない。この場合、オリジナルの光ファイバF3から3つの光ファイバF3A,F3B1及びF3B2が得られており、各ファイバの零分散波長の偏差は許容範囲Δλよりも小さくなっていることとなる。
【0174】
このようにして得られた複数の光ファイバ片(光ファイバF1A,F1B,…)を零分散波長の値毎に整理しておき、四光波混合のためのポンプ光の波長に実質的に等しい零分散波長を有する光ファイバ片を選んで繋ぎ合わせて所要の変換効率を得ることができる長さにすることによって、長手方向おける零分散波長のばらつきが極めて小さい非線形光学媒質を得ることができる。この非線形光学媒質を用いて位相共役器を構成することによって、広い変換帯域を得ることができる。
【0175】
零分散波長λ01及びλ02の値がほぼ一致しているとしても、零分散波長の長手方向のバラツキが大きい光ファイバも想定される。例えば、零分散波長の長手方向の分布が光ファイバの長手方向の中央に対して対称な場合である。このような場合には、プロセス120に先立って、その光ファイバを少なくとも2つの光ファイバ片に分割することを行って、各光ファイバ片についてプロセス120を適用すればよい。或いは、プロセス120を複数回繰り返してもよい。
【0176】
実験により、本発明方法により得られた非線形光学媒質を用いて構成される位相共役器が10Gb/sの信号に対して40nmより広い変換帯域を有していることが明らかとなった。この位相共役器は、信号光とポンプ光との離調波長が21nmを超える範囲で、離調波長に依存せずに、ポンプ光パワー+15dBmの下で変換効率としてほぼ一定の値−10.9dBを有していた。即ち、変換帯域は40nmよりも広い。その非線形光学媒質は、具体的には、750mの高度非線形分散シフトファイバ(HNL−DSF:highly nonlineardispersion−shifted fiber)であった。HNL−DSFは各250mの3つの区間をスプライシングすることにより得られた。区間毎の平均零分散波長はそれぞれ1547.3nm、1546.3nm及び1548.4nmであった。結果としてのHNL−DSFの平均零分散波長は1547.2nmと測定された。MFD(モードフィールド形)は3.8μm、非線形係数γは20.4W−1km−1、分散傾斜は0.032ps/nm/kmであった。
【0177】
このように、非線形係数の大きな光ファイバを用いると共に、本発明方法を適用して零分散波長の偏差を概略±1nm内に収めることによって、高い変換効率で且つ広い変換帯域を有する位相共役器の提供が可能になる。非線形光学媒質として光ファイバを有する従来の位相共役器の変換帯域が精々数nmであることを考慮すると、本発明方法により得られる効果は従来技術に対して自明でなく或いは進歩性を有しており或いは臨界性を有している。特に、後述するような実施形態のように、位相共役器を用いて光ネットワーク間でWDM信号光の一括変換を行う場合には、本発明による変換帯域の拡大は極めて効果的である。
【0178】
本発明による第1、第2又は第3の方法により得られた非線形光学媒質は、図6の位相共役器の光ファイバ18として採用可能である。この場合、レーザダイオード20から出力されるポンプ光の波長と光ファイバ18の零分散波長との一致性を極めて高精度に保つことができるので、広い変換帯域を得ることができる。
【0179】
図21を参照すると、位相共役器の他の構成例が示されている。この位相共役器は非線形光学媒質として図6におけるのと同様な光ファイバ18が用いられている。光ファイバ18は望ましくは本発明による第1、第2又は第3の方法により提供されている。また、ポンプ光源としてレーザダイオード20が用いられている。信号光及びポンプ光を非線形光学媒質としての光ファイバ18に双方向に導波させるために、光カプラ132及び偏波ビームスプリッタ134が用いられている。光カプラ132はポート132A,132B及び132Cを有し、ポート132A及び132Bに供給された光をポート132Cから出力する。ポート132Aには入力ポート130が接続され、ポート132Bは光ファイバ133によりポンプ光源としてのレーザダイオード20に接続される。偏波ビームスプリッタ134はポート134A,134B,134C及び134Dを有している。ポート134A及び134B間とポート134C及び134D間とは、第1の偏波面(例えば紙面に垂直な偏波面)により結合され、ポート134A及び134C間とポート134B及び134D間とは、第1の偏波面に垂直な第2の偏波面(例えば紙面に平行な偏波面)により結合されている。ポート134Aは光ファイバ135によりポート132Cに接続され、ポート134B及び134C間には非線形光学媒質としての光ファイバ18が接続され、ポート134Dは出力ポート136に接続されている。光ファイバ18の途中には、1/4波長板及び1/2波長板等を用いて通常通り構成される偏波制御器138が設けられており、この偏波制御器138は、光ファイバ18の入力及び出力の偏波状態が一致するような制御を行う。
【0180】
入力ポート130からの信号光及びレーザダイオード20からのポンプ光は、光カプラ132を介して偏波ビームスプリッタ134のポート134Aに供給される。供給された信号光及びポンプ光は、偏波ビームスプリッタ134により第1及び第2の偏波面をそれぞれ有する第1及び第2の偏波成分に分離される。第1及び第2の偏波成分は、光ファイバ18を互いに逆方向に伝搬する。このとき、光ファイバ18内においては、四光波混合によって、互いに逆方向に伝搬する2つの位相共役成分が発生する。即ち、第1の偏波面を有する位相共役成分はポート134Bからポート134Cに向けて伝搬し、第2の偏波面を有する位相共役成分はポート134Cからポート134Bに向けて伝搬する。偏波ビームスプリッタ134に供給された第1及び第2の位相共役成分は偏波合成され、その結果としての位相共役光がポート134Dから出力ポート136に向けて出力される。
【0181】
レーザダイオード20から出力されるポンプ光の偏波面は、偏波ビームスプリッタ134で分離される第1及び第2の偏波成分への、ポンプ光の分配比が1:1になるように設定されるのが望ましい。例えば、偏波ビームスプリッタ134のポート134Aに供給されるポンプ光の偏波面が第1及び第2の偏波面に対してそれぞれほぼ45°傾斜するように、レーザダイオード20が設定される。こうしておくと、光ファイバ18に互いに逆方向に導波される信号光の直交二偏波成分に対して、ポンプ光の直交二偏波成分がそれぞれ一致した偏波面で以て作用するので、入力ポート130における信号光の偏波状態の変動に関わらず一定強度の位相共役光を得ることができる。即ち、発生効率が入力信号光の偏波状態に依存しない位相共役器の提供が可能になる。
【0182】
偏波ビームスプリッタ134のポート134Aに供給されるポンプ光の偏波面が第1及び第2の偏波面に対してそれぞれほぼ45°傾斜するようにするためには、実質的に直線偏波としてレーザダイオード20から出力されるポンプ光の偏波面を維持してこれをポート134Aに供給することが要求される。そのためには、光ファイバ133及び135の各々として偏波保持ファイバ(PMF)を用いることができる。
【0183】
PMFは径方向に主軸を有している。PMFは、主軸に平行な偏波面を有する偏波成分或いは主軸に垂直な偏波面を有する偏波成分の偏波状態を維持してこれを伝搬させる。従って、ポート134Aにおいてポンプ光の偏波面を第1及び第2の偏波面に対して45°傾斜させるためには、光ファイバ135として用いられるPMFの主軸を第1及び第2の偏波面に対して45°傾斜させればよい。
【0184】
しかしながら、光ファイバ135としてPMFが用いられる場合、直線偏波に必ずしも限定されない信号光もこのPMFを通ることになり、PMFを通る信号光の直交二偏波モード間の遅延により偏波分散が生じるかもしれない。この偏波分散に対処するためには、光ファイバ135として用いられるPMFを、長さが実質的に等しい第1及び第2のPMFをスプライス接続することにより提供すればよい。当該スプライス接続点においては、第1のPMFの第1の主軸と第2のPMFの第2の主軸とは互いに直交するようにされ、これにより偏波モード間の遅延が相殺されて偏波分散が解消される。例えば、第1の主軸が第1の偏波面に対して時計回り方向に45°傾斜している場合には、第2の主軸は第1の偏波面に対して反時計回り方向に45°傾斜するようにされる。
【0185】
尚、前述したように、光ファイバ18の非線形係数が十分大きくその長さが偏波面保存能力を有している程度に短い場合には、偏波制御器138を省略することができる。
【0186】
このように、本発明によると、発生効率が入力信号光の偏波状態に依存せず、且つ、偏波分散が小さい位相共役器が提供される。この位相共役器は、偏波ビームスプリッタと、非線形光学媒質と、ポンプ光源と、カップリング手段とを備えている。偏波ビームスプリッタは第1乃至第4のポートを有する。第1及び第2のポート間並びに第3及び第4のポート間は第1の偏波面により結合される。第1及び第3のポート間並びに第2及び第4のポート間は第1の偏波面に垂直な第2の偏波面により結合される。非線形光学媒質は第2及び第3のポート間に動作的に接続される。ポンプ光源はポンプ光を出力する。カップリング手段は、信号光及びポンプ光をそれぞれ受ける第1及び第2の入力ポート並びに出力ポートを有する光カプラと、出力ポート及び偏波ビームスプリッタの第1のポート間に動作的に接続される偏波保持ファイバとを含む。カップリング手段は、信号光及びポンプ光を偏波ビームスプリッタの第1のポートに供給する。
【0187】
偏波保持ファイバは、偏波ビームスプリッタの第1のポートにおけるポンプ光の偏波面が第1及び第2の偏波面に対して実質的に45°傾斜するように設定される主軸を有している。
【0188】
望ましくは、偏波保持ファイバは、スプライス接続された第1及び第2の偏波保持ファイバからなり、これらは互いに直交する第1及び第2の主軸を有している。
【0189】
図22は、広い変換帯域を有する位相共役器によるWDM信号光の一括変換を説明するための図である。WDM信号光は、異なる波長λ,λ,…,λを有するNチャネルの光信号を波長分割多重(WDM)することにより得られる。ここでは、λが最短波長であり、λが最長波長であるとする。ポンプ光の波長λは例えばλよりも短く設定される。ポンプ光を用いた非縮退四光波混合によって、WDM信号光は変換光に変換される。変換光は、異なる波長λ´,λ´,…,λ´を有するNチャネルの変換光信号からなる。WDM信号光における各チャネルの光信号と変換光における各変換光信号の配置はポンプ光の波長λに対して対称である。
【0190】
非線形光学媒質として光ファイバを用いた四光波混合においては、変換帯域がほぼ平坦であるため、各チャネルの光信号に対してほぼ同じ変換効率で波長変換及び位相共役変換を行うことができる。従って、各チャネルに対して伝送路の波長分散と非線形効果とによる波形歪みを補償可能であり、長距離大容量の伝送が可能である。図22においては、長波長帯から短波長帯への変換を示しているが、光ファイバによる変換帯域は零分散波長に関して対称であるから、短波長帯から長波長帯への変換も同様にして可能であることは言うまでもない。
【0191】
図23は、波長変換及び位相共役変換が適用されるシステムの実施形態を示す図である。各々WDMが適用される複数の光ファイバネットワークNW1,NW2及びNW3は、光ファイバ伝送路140及びノード142によって接続されている。ネットワークNW1及びNW2間における変換を行うために、光ファイバ伝送路140の途中には位相共役器PC11が設けられ、ネットワークNW2及びNW3間の変換を行うために、光ファイバ伝送路140の途中には位相共役器23が設けられている。ネットワークNW1,NW2及びNW3においては、それぞれ、異なる波長帯λ1j,λ2j,λ3jのWDM伝送が行われているものとする。位相共役器PC11は波長帯λ1j及びλ2j間で波長変換及び位相共役変換を行い、位相共役器PC23は波長帯λ2j及びλ3j間で波長変換及び位相共役変換を行う。光ファイバ伝送路140の途中には、波長分散及び非線形効果による波形歪みが本発明に従って最も改善される位置が幾つかできるので、各ノード142はそのような位置に設けられている。各ノード142は、光信号の付加及び抽出を行うための光アッド/ドロップ装置を含む。光アッド/ドロップ装置はWDM信号光或いは変換光における全チャネル或いは一部のチャネルに対して機能する。例えば、光ファイバネットワークNW1の波長帯λ1jが図22に示されるWDM信号光により与えられており、位相共役器PC11におけるポンプ光の波長がλであるとすると、光ファイバネットワークNW2の波長帯λ2jは変換光の帯域によって与えられる。
【0192】
このようなシステム構成によると、位相共役器による波形歪みの補償と波長変換機能とが有効に活かされるので、柔軟性に富んだ長距離大容量システムの構築が可能になる。また、このようなネットワーク間伝送への応用は、次の点で最近特に重要である:
(1)光増幅器の広帯域化;
(2)伝送路として使用される光ファイバの分散のバラエティー化。
【0193】
これらのうち、(1)は最近におけるEDFA(エルビウムドープファイバ増幅器)の広帯域化に関係しており、(2)は伝送信号の高速化とWDM伝送を行うための分散制御に関係している。最近、50nmを超えるような広帯域でしかもWDMを指向した利得の平坦性に優れたEDFAが開発されている。将来的に更に帯域が拡大し、60〜80nm程度の広帯域なEDFAが開発されよう。このようなEDFAの広帯域化は、WDMのチャネル数(伝送容量)を大きくするのに役立っているのは勿論であるが、図23に示されるようなネットワーク間伝送等において新しい概念の導入を可能とする。
【0194】
例えば、図24に示されるように、図23の光ファイバネットワークNW1及びNW2の波長帯が設定されている場合、光ファイバネットワークNW1及びNW2間において本発明による有効な伝送が可能である。図24において、符号144は光増幅器(例えばEDFA)の比較的平坦な利得帯域を示している。
【0195】
このようにネットワーク毎に用いる波長帯が異なることの理由の1つは、ネットワーク毎に用いる伝送路としての光ファイバが異なる処にある。既に実用化されている光ファイバとしては、1.3μm零分散シングルモードファイバ(所謂標準SMF)と、1.55μm分散シフトファイバ(DSF)とがある。一方、最近におけるEDFAの開発により、特に高速長距離伝送の中心は1.55μm帯となってきている。
【0196】
標準SMFが+16〜+20ps/nm/km程度の大きな異常分散値を示すのに対して、DSFでは±1〜2ps/nm/km程度の小さな分散値に抑えることができるので、1.55μm帯における高速長距離伝送に対してはDSFの方が有利である。しかし、既に多くの標準SMFが敷設されており、これを伝送路として用いなければならないネットワークも多い。こうしたネットワークからDSFを用いたネットワークへの接続においては、DSFの最適な分散値となる波長帯への波長変換が必要になり、従って、このような場合に本発明は有効である。
【0197】
一方、各々DSFを用いたネットワーク間の接続においても本発明は有効である。その理由は、WDMにおいては必ずしも分散が小さい方が有利である訳ではないからである。比較的高速のWDMにおいては、所要の信号対雑音比(SNR)を確保するために、各チャネルのパワーレベルはかなり高く設定する必要がある。この場合、伝送路として使用される光ファイバの分散が小さいと、四光波混合により隣接チャネル間のクロストークが発生し、伝送特性が劣化する。この影響を避けるため、最近では、零分散波長を信号帯域から大きくシフトさせた比較的大きな分散のファイバ(Nonzero dispersion−shifted fiber) を用いることがある。このように伝送路として使用される光ファイバのバラエティーが豊富になった分、いろいろな波長帯でのネットワーク構成が可能となり、こうしたネットワーク間を接続する場合において本発明のような広帯域な波長変換及び位相共役変換が有効となる。
【0198】
最近では、光ファイバと共にEDFAのバラエティーも豊富になっているが、何といっても一般的なEDFAは1.53μm帯及び1.55μm帯に利得ピークを有するタイプである。このうち前者はブルーバンド、後者はレッドバンドと称されている。
【0199】
図25は、図23における波長帯の他の設定例を示す図である。ここでは、光ファイバネットワークNW1の波長帯は符号146で示されるEDFAのレッドバンドに含まれ、光ファイバネットワークNW2の波長帯は符号148で示されるEDFAのブルーバンドに含まれている。このような設定によると、光ファイバ伝送路140或いは各ネットワークがインライン型のEDFAを含む場合に、レッドバンド及び位相共役変換を容易に行うことができる。
【0200】
図26は、図23における分散配置の例を示す図である。D及びD(各々単位はps/nm/km)は、それぞれ、光ファイバネットワークNW1及びNW2における分散を表している。図では、各ネットワーク内で正常分散ファイバを用いてWDMを行う例が示されている。
【0201】
図22に示されるように、波長変換によりチャネル配置が反転するので、各チャネルに対する変換前後の分散の影響が異なることが予想されるが、中心付近のチャネルに対して分散の影響がほぼ同じになるようにするとともに、各ネットワーク内で分散補償を行うことにより、この問題は解決可能である。尚、各ネットワーク内の分散は正常分散であってもよいし異常分散であってもよい。
【0202】
以上のように、本発明によると、異なる波長を有する複数の光信号を波長分割多重(WDM)してなるWDM信号光のための複数の光ファイバネットワークと、これらを結ぶための少なくとも1つの変換器とを備えた光ファイバ通信システムが提供される。変換器が、複数の光信号の波長変換及び位相共役変換を一括に行うことによって、柔軟性に富んだ長距離大容量のシステムの構築が容易になる。
【0203】
図27は、図6に示される位相共役器の改良例を示す図である。ここでは、第1及び第2の光帯域阻止フィルタ152及び154と光帯域通過フィルタ156とが付加的に設けられている。信号光(入力ビーム)は第1の帯域阻止フィルタ152を通って光カプラ22のポート22Aに供給され、非線形光学媒質としての光ファイバ18内で発生した位相共役光は第2の光帯域阻止フィルタ154及び光帯域通過フィルタ156をこの順に通って出力される。フィルタ154及び156の接続順序は逆でもよい。
【0204】
図28Aを参照すると、図27に示される光フィルタ152,154及び156の各特性が示されている。図28Aにおいて縦軸は透過率、横軸は波長を示している。第1の光帯域阻止フィルタ152は、符号158で示されるように、光ファイバ18内で発生する位相共役光の波長λの波長を含む阻止帯域を有している。即ち、波長λの近傍の領域におけるフィルタ152の透過率は実質的に0%であり、それ以外の領域における同透過率は実質的に100%である。第2の光帯域阻止フィルタ154は、符号160で示されるように、レーザダイオード20から出力されるポンプ光の波長λを含む比較的狭い阻止帯域を有している。即ち、波長λの近傍の領域におけるフィルタ154の透過率は実質的に0%であり、それ以外の領域における同透過率は実質的に100%である。光帯域通過フィルタ156は、符号162で示されるように、光ファイバ18内で発生する位相共役光の波長λC の波長を含む通過帯域を有している。即ち、波長λの近傍の領域におけるフィルタ156の透過率は実質的に100%であり、それ以外の領域における同透過率は実質的に0%である。
【0205】
図28B〜28Dを参照すると、図27の位相共役器の各位置において観測される光スペクトルが示されている。図28Bは、第1の光帯域阻止フィルタ152の出力のスペクトルを示している。ここでは、信号光は、ASE光に重畳されたWDM信号光により与えられている。第1の光帯域阻止フィルタ152が用いられていることにより、符号164で示されるように、ASEスペクトルには雑音電力が極めて小さい窓が形成される。図28Cは光ファイバ18の出力のスペクトルを示している。光ファイバ18内における非縮退四光波混合の結果位相共役変換及び波長変換が行われ、WDM信号光は変換光に変換される。WDM信号光及び変換光間における各チャネルの波長配置は、前述したように、ポンプ光の波長λに対して対称である。
【0206】
変換光の各チャネルの波長は窓164内に含まれる。図28Dは光帯域通過フィルタ156の出力のスペクトルを示している。第2の光帯域阻止フィルタ154が狭い阻止帯域を有していることにより、ポンプ光のパワーは効果的に抑圧されている。また、光帯域通過フィルタ156を採用していることにより、窓164の近傍におけるASE光が効果的に抑圧されている。
【0207】
図27の実施形態では、ポンプ光を除去するための光帯域阻止フィルタ154を光ファイバ18の出力側に設けているので、受信局或いは光伝送路の下流側に配置される光デバイスに対するポンプ光の影響が低減され、位相共役光の処理(抽出及び増幅等)を容易に行うことができる。例えば、位相共役器の下流側に光増幅器が設けられている場合、パワーの大きいポンプ光がその光増幅器に供給されると光増幅器が飽和してしまい、所要の利得を得ることができない可能性があるのであるが、図27のような構成を採用することによって、このような問題を解決することができる。
【0208】
特に、図27の実施形態では、光帯域阻止フィルタ154及び光帯域通過フィルタ156が光ファイバ18の出力側にカスケード接続されているので、ポンプ光の抑圧を効果的に行うことができ、従って、ポンプ光のパワーを大きくして変換効率を効果的に高めることができる。例えば、光ファイバ18の出力側に光帯域通過フィルタ156だけを設けた場合、フィルタ156の製造技術上ポンプ光の除去能力が低いかもしれないことを考慮すると、フィルタ154及び156の組み合わせは効果的である。その意味において、図27の実施形態により得られる、ポンプ光及び/又は信号光を効果的に除去し得るという効果は、従来技術に対して自明ではなく或いは進歩性を有しており或いは臨界性を有している。
【0209】
図27の実施形態において、光ファイバ18の入力側に光帯域阻止フィルタ152を設けているのは、発生させられるべき位相共役光の波長λの近傍においてASE雑音を予め除去するためである。その結果、信号対雑音比(SNR)の劣化を防止することができる。
【0210】
図27は図6に示される位相共役器の改良を示しているが、同様の改良を図21に示される位相共役器に施してもよい。この場合、第1の光帯域阻止フィルタ152は入力ポート130と光カプラ132のポート132Aとの間に設けられ、第2の光帯域阻止フィルタ154及び光帯域通過フィルタ156は偏波ビームスプリッタ134のポート134Dと出力ポート136との間に設けられる。
【0211】
以上のように、本発明によると、位相共役光を発生させるための装置として、SNRの劣化が少なく且つ下流側への影響が小さい位相共役器が提供される。この位相共役器は、非線形光学媒質と、ポンプ光源と、光帯域阻止フィルタとを備えている。非線形光学媒質は第1端及び第2端を有しており、第1端には信号光が供給される。ポンプ光源は第1端及び第2端の少なくとも何れかからポンプ光を非線形光学媒質に供給する。光帯域阻止フィルタは非線形光学媒質の第2端に動作的に接続される。光帯域阻止フィルタはポンプ光の波長を含む阻止帯域を有している。
【0212】
本発明を実施する場合、各光フィルタとしてはファイバグレーティングを用いることができる。光学媒質(例えばガラス)の屈折率が光照射によって恒久的に変化する場合、その媒質は感光性であると言われる。この性質を用いることにより、光ファイバのコアにファイバグレーティングを作製することができる。このようなファイバグレーティングの特徴は、グレーティングピッチとファイバモードの有効屈折率とによって決定される共振波長近傍の狭い帯域で光をブラッグ反射させることである。ファイバグレーティングは、例えば、フェイズマスクを用いて波長248nm又は193nmで発振するエキシマレーザを照射することによって作製することができる。
【0213】
例えば、ファイバグレーティングを用いて図27に示される光帯域阻止フィルタ152及び154の各々を作製することによって、正確で且つ狭い阻止帯域を得ることができる。
【0214】
【発明の効果】
以上のように、本発明によると、位相共役器を用いて波長分散及び非線形性を効果的に補償することができるので、長距離大容量の光ファイバ通信システムの提供が可能になる。また、そのようなシステムに使用するのに適した広い変換帯域で高い変換効率の位相共役器及びその製造方法の提供が可能になる。
【図面の簡単な説明】
【図1】図1は本発明の光ファイバ通信システムの基本構成を示すブロック図である。
【図2】図2は図1のシステムにおける補償の原理の説明図である。
【図3】図3は実証実験で用いたシステムのブロック図である。
【図4】図4はBER(ビットエラーレート)特性を示す図である。
【図5】図5の(A)乃至(B)は図3のシステムにおける波形の変化を説明するための図である。
【図6】図6は本発明に適用可能な位相共役器の構成例を示すブロック図である。
【図7】図7は本発明の光通信システムの第1実施形態を示すブロック図である。
【図8】図8は図7のシステムにおける光パワー等のダイアグラムを示す図である。
【図9】図9は本発明に適用可能な光増幅器のブロック図である。
【図10】図10は本発明の光通信システムの第2実施形態を示すブロック図である。
【図11】図11は本発明の光通信システムの第3実施形態を示すブロック図である。
【図12】図12は本発明の光通信システムの第4実施形態を示すブロック図である。
【図13】図13はファイバグレーティングを用いた分散補償器を示す図である。
【図14】図14は本発明の光通信システムの第5実施形態を示すブロック図である。
【図15】図15は本発明の光通信システムの第6実施形態を示すブロック図である。
【図16】図16は本発明の光通信システムの第7実施形態を示すブロック図である。
【図17】図17A及び17Bは図16のシステムにおける分散パラメータの設計例を示す図である。
【図18】図18の(A)及び(B)は本発明が適用可能な光ネットワークの例を示す図である。
【図19】図19は本発明の光ファイバ通信システムの他の基本構成を示すブロック図である。
【図20】図20は本発明による非線形光学媒質の製造プロセスの実施形態を示す図である。
【図21】図21は本発明に適用可能な他の位相共役光発生器の構成例を示す図である。
【図22】図22は広い変換帯域を有する位相共役器によるWDM(波長分割多重)信号光の一括変換を説明するための図である。
【図23】図23は波長変換及び位相共役変換が適用されるシステムの実施形態を示す図である。
【図24】図24は図23における波長帯の設定例を示す図である。
【図25】図25は図23における波長帯の他の設定例を示す図である。
【図26】図26は図23における分散配置の例を示す図である。
【図27】図27は図6に示される位相共役器の改良例を示すブロック図である。
【図28】図28の(A)は図27に示される光フィルタ152,154及び156の特性を示す図、(B)〜(D)は図27に示される位相共役器の各位置において観測されるスペクトルを示す図である。
【符号の説明】
2 光送信機
4 第1の光ファイバ
6 第1の位相共役器
8 第2の光ファイバ
10 第2の位相共役器
12 第3の光ファイバ
14 光受信機
112 分散補償器

Claims (46)

  1. 信号ビームの入力端及び出力端にそれぞれ相当する第1端及び第2端を有する第1の光ファイバと、
    上記第2端に動作的に接続され上記信号ビームを位相共役ビームに変換して出力する位相共役器と、
    上記位相共役ビームの入力端及び出力端にそれぞれ相当する第3端及び第4端を有する第2の光ファイバと、
    上記第1の光ファイバ、上記位相共役器及び上記第2の光ファイバを含む光路上に設けられ上記第1及び第2の光ファイバの各々の波長分散と逆符号の波長分散を与える少なくとも1つの分散補償器とを備え、
    上記第1の光ファイバの波長分散の平均値及び長さの積は上記第2の光ファイバの波長分散の平均値及び長さの積に実質的に一致する光ファイバ通信システム。
  2. 請求項1に記載のシステムであって、
    上記第1の光ファイバにおける光パワーの平均値及び非線形係数の平均値並びに上記第1の光ファイバの長さの積は上記第2の光ファイバにおける光パワーの平均値及び非線形係数の平均値並びに上記第2の光ファイバの長さの積に実質的に一致するシステム。
  3. 請求項1に記載のシステムであって、
    上記第1の光ファイバ及び上記第2の光ファイバを含む光路上に設けられる複数の光増幅器を更に備えたシステム。
  4. 請求項3に記載のシステムであって、
    上記複数の光増幅器の隣り合う各2つの光増幅器の間の距離は上記光路の非線形長よりも短いシステム。
  5. 請求項1に記載のシステムであって、
    上記第1及び第2の光ファイバが仮想的にそれぞれ同数の区間に分割されたときに、上記位相共役器から数えて対応する2つの区間の波長分散の平均値及び区間長の積は実質的に一致すると共に、当該2つの区間における光パワーの平均値、非線形係数の平均値及び区間長の積は実質的に一致する光ファイバ通信システム。
  6. 請求項1に記載のシステムであって、
    上記位相共役器からの波長分散の累積値が等しい上記第1及び第2の光ファイバ上の2点の各々における光パワー及び非線形係数の積と波長分散との比が実質的に一致するシステム。
  7. 請求項1に記載のシステムであって、
    上記位相共役器からの光パワー及び非線形係数の積の累積値が等しい上記第1及び第2の光ファイバ上の2点の各々における光パワー及び非線形係数の積と波長分散との比が実質的に一致するシステム。
  8. 請求項1に記載のシステムであって、
    上記分散補償器は上記第1の光ファイバの途中に設けられるシステム。
  9. 請求項1に記載のシステムであって、
    上記分散補償器は上記第2の光ファイバの途中に設けられるシステム。
  10. 請求項1に記載のシステムであって、
    上記第1及び第2の光ファイバの各々はシングルモードファイバであるシステム。
  11. 請求項10に記載のシステムであって、
    上記シングルモードファイバは波長1.55μm帯で異常分散を与えるシステム。
  12. 請求項1に記載のシステムであって、
    上記分散補償器はファイバグレーティングからなるシステム。
  13. 請求項1に記載のシステムであって、
    上記分散補償器の波長分散の値は上記第2の光ファイバの上記第4端における上記位相共役ビームの波形歪みが最も小さくなるように設定されるシステム。
  14. 請求項1に記載のシステムであって、
    上記第1及び第2の光ファイバの各々は正常分散を与え、
    上記分散補償器は1.3μm零分散ファイバからなるシステム。
  15. 信号ビームの入力端及び出力端にそれぞれ相当する第1端及び第2端を有する第1の光ファイバと、
    上記第2端に動作的に接続され上記信号ビームを位相共役ビームに変換して出力する位相共役器と、
    上記位相共役ビームの入力端及び出力端にそれぞれ相当する第3端及び第4端を有する第2の光ファイバとを備え、
    上記第1の光ファイバの波長分散の平均値及び長さの積は上記第2の光ファイバの波長分散の平均値及び長さの積に実質的に一致し、
    上記信号ビームは互いに異なる波長を有する複数の信号ビームを含む波長分割多重信号ビームであり、
    上記第1及び第2の光ファイバの2次分散(分散傾斜)は両方とも実質的に零であるか或いは互いに逆の符号を有している光ファイバ通信システム。
  16. 請求項15に記載のシステムであって、
    上記第1の光ファイバにおける光パワーの平均値及び非線形係数の平均値並びに上記第1の光ファイバの長さの積は上記第2の光ファイバにおける光パワーの平均値及び非線形係数の平均値並びに上記第2の光ファイバの長さの積に実質的に一致する光ファイバ通信システム。
  17. 請求項15に記載のシステムであって、
    上記第1の光ファイバ及び上記第2の光ファイバを含む光路上に設けられる複数の光増幅器を更に備えたシステム。
  18. 請求項17に記載のシステムであって、
    上記複数の光増幅器の隣り合う各2つの光増幅器の間の距離は上記光路の非線形長よりも短いシステム。
  19. 請求項15に記載のシステムであって、
    上記第1及び第2の光ファイバが仮想的にそれぞれ同数の区間に分割されたときに、上記位相共役器から数えて対応する2つの区間の波長分散の平均値及び区間長の積は実質的に一致すると共に、当該2つの区間における光パワーの平均値、非線形係数の平均値及び区間長の積は実質的に一致する光ファイバ通信システム。
  20. 請求項15に記載のシステムであって、
    上記位相共役器からの波長分散の累積値が等しい上位第1及び第2の光ファイバ上の2点の各々における光パワー及び非線形係数の積と波長分散との比が実質的に一致するシステム。
  21. 請求項15に記載のシステムであって、
    上記位相共役器からの光パワー及び非線形係数の積の累積値が等しい上記第1及び第2の光ファイバ上の2点の各々における光パワー及び非線形係数の積と波長分散との比が実質的に一致するシステム。
  22. 位相共役光を発生するための非線形光学媒質を有する装置を製造するための方法であって、
    (a)  光ファイバを切断して複数の区間に分割するステップと、
    (b)  上記非線形光学媒質を用いた非縮退四光波混合における変換帯域が最大になるように上記複数の区間を並べ替えて繋ぎ合わせることにより上記非線形光学媒質を得るステップとを含む方法。
  23. 請求項22に記載の方法であって、
    上記ステップ(b)は上記複数の区間の各々の分散値を測定するステップを含み、
    上記非線形光学媒質にポンプ光を入力するときの入力端に近い側に比較的分散値の小さい区間が配置されるように上記複数の区間が並べ替えられる方法。
  24. 請求項22に記載の方法であって、
    上記複数の区間の少なくとも一部は分散値の正負が交互になるように繋ぎ合わされる方法。
  25. 請求項22に記載の方法により製造された装置。
  26. 位相共役光を発生するための非線形光学媒質を有する装置を製造するための方法であって、
    (a)  光ファイバを切断して複数の区間に分割するステップと、
    (b)  上記複数の区間の各々の分散値を測定するステップと、
    (c)  上記非線形光学媒質を用いた非縮退四光波混合における所要の変換帯域を得るのに十分小さい分散値を有する区間だけを選んで繋ぎ合わせることにより上記非線形光学媒質を得るステップとを含む方法。
  27. 請求項26に記載の方法により製造された装置。
  28. 位相共役光を発生するための非線形光学媒質を有する装置を製造するための方法であって、
    (a)  光ファイバの零分散波長の偏差を測定するステップと、
    (b)  上記偏差が予め定められた範囲を超えている場合に上記光ファイバを切断して切断された各ファイバの零分散波長の偏差が上記範囲内に入るようにするステップと、
    (c)  ポンプ光の波長に実質的に等しい零分散波長を有する上記光ファイバ又は上記切断されたファイバを選んで繋ぎ合わせることにより上記非線形光学媒質を得るステップとを備えた方法。
  29. 請求項28に記載の方法により製造された装置。
  30. 異なる波長を有する複数の光信号を波長分割多重(WDM)してなるWDM信号光のための複数の光ファイバネットワークと、
    該複数の光ファイバネットワークを結ぶための少なくとも1つの変換器とを備え、
    該変換器は上記複数の光信号の波長変換及び位相共役変換を一括に行う手段を含む光ファイバ通信システム。
  31. 請求項30に記載のシステムであって、
    上記光信号のための光アッド/ドロップ装置を更に備え、
    該光アッド/ドロップ装置は上記光信号の波形歪みが最も小さくなる位置に設けられるシステム。
  32. 請求項30に記載のシステムであって、
    上記波長変換はエルビウムドープファイバ増幅器によって提供される利得帯域に含まれる任意の帯域間で行われるシステム。
  33. 請求項32に記載のシステムであって、
    上記任意の帯域は1.55μm帯及び1.53μm帯であるシステム。
  34. 位相共役光を発生させるための装置であって、
    第1乃至第4のポートを有し、該第1及び第2のポート間並びに該第3及び第4のポート間は第1の偏波面により結合され、該第1及び第3のポート間並びに該第2及び第4のポート間は第1の偏波面に垂直な第2の偏波面により結合される偏波ビームスプリッタと、
    上記第2及び第3のポート間に動作的に接続される非線形光学媒質と、
    ポンプ光を出力するポンプ光源と、
    信号光及び上記ポンプ光を上記偏波ビームスプリッタの上記第1のポートに供給するためのカップリング手段とを備え、
    該カップリング手段は、上記信号光及び上記ポンプ光をそれぞれ受ける第1及び第2の入力ポート並びに出力ポートを有する光カプラと、該出力ポート及び上記第1のポート間に動作的に接続される偏波保持ファイバとを含む装置。
  35. 請求項34に記載の装置あって、
    上記偏波保持ファイバは上記第1のポートにおける上記ポンプ光の偏波面が上記第1及び第2の偏波面に対して実質的に45°傾斜するように設定される主軸を有している装置。
  36. 請求項35に記載の装置あって、
    上記偏波保持ファイバはスプライス接続された第1及び第2の偏波保持ファイバからなり、該第1及び第2の偏波保持ファイバは互いに直交する第1及び第2の主軸を有している装置。
  37. 位相共役光を発生させるための装置であって、
    第1端及び第2端を有し該第1端には信号光が供給される非線形光学媒質と、上記第1端及び第2端の少なくとも何れかからポンプ光を上記非線形光学媒質に供給するためのポンプ光源と、
    上記非線形光学媒質の上記第2端に動作的に接続され上記ポンプ光の波長を含む阻止帯域を有する光帯域阻止フィルタとを備えた装置。
  38. 請求項37に記載の装置あって、
    上記光帯域阻止フィルタに動作的に接続され上記非線形光学媒質内で発生する位相共役光の波長を含む通過帯域を有する光帯域通過フィルタを更に備えた装置。
  39. 請求項37に記載の装置あって、
    上記非線形光学媒質の上記第1端に動作的に接続され上記非線形光学媒質内で発生する位相共役光の波長を含む阻止帯域を有する第2の光帯域阻止フィルタを更に備えた装置。
  40. 請求項37に記載の装置あって、
    上記非線形光学媒質は光ファイバを含む装置。
  41. 請求項40に記載の装置あって、
    上記光ファイバは上記ポンプ光の波長に実質的に等しい零分散波長を有している装置。
  42. 請求項40に記載の装置あって、
    上記光ファイバは、該光ファイバが偏波面保持能力を有する程度に該光ファイバの長さを短くするのに十分大きな非線形係数を有している装置。
  43. 請求項42に記載の装置あって、
    上記光ファイバは、GeOがドープされたコアとフッ素がドープされたクラッドとを含む装置。
  44. 請求項42に記載の装置あって、
    上記光ファイバは、シングルモードファイバからなり、該シングルモードファイバは伝送路として使用されるシングルモードファイバのモードフィールド径よりも小さなモードフィールド径を有している装置。
  45. 光ファイバ伝送路の入力端に接続された光送信装置において、
    入力端と出力端とを有し、前記光ファイバ伝送路の中間点と入力端との間の波長分散量と実質的に等しい波長分散量を有する第1の光ファイバと、
    前記第1の光ファイバの入力端に光信号を入力する光信号出力手段と、
    前記第1の光ファイバの出力端からの光信号を、この光信号と位相共役の関係にある位相共役光に変換して、この位相共役光を前記光伝送路の入力端から入力する位相共役器とを備えたことを特徴とする光送信装置。
  46. 光信号を伝送する光ファイバ伝送路の出力端に接続された光受信装置において、
    入力端と出力端とを有し、前記光ファイバ伝送路の中間点と出力端との間の波長分散量と実質的に等しい波長分散量を有する第2の光ファイバと、
    前記光ファイバ伝送路から受信した光信号を、この光信号と位相共役の関係にある位相共役光に変換して、この位相共役光を前記第2の光ファイバの入力端に入力する位相共役器と、
    前記第2の光ファイバの出力端からの位相共役光を受信する受信器とを備えたことを特徴とする光送信装置。
JP2003155404A 1996-08-22 2003-05-30 光位相共役を用いた光ファイバ通信システム並びに該システムに適用可能な装置及びその製造方法 Expired - Fee Related JP4056933B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003155404A JP4056933B2 (ja) 1996-08-22 2003-05-30 光位相共役を用いた光ファイバ通信システム並びに該システムに適用可能な装置及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22127496 1996-08-22
JP2003155404A JP4056933B2 (ja) 1996-08-22 2003-05-30 光位相共役を用いた光ファイバ通信システム並びに該システムに適用可能な装置及びその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50782498A Division JP3494661B2 (ja) 1996-08-22 1997-08-22 光位相共役を用いた光ファイバ通信システム並びに該システムに適用可能な装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2004004870A true JP2004004870A (ja) 2004-01-08
JP4056933B2 JP4056933B2 (ja) 2008-03-05

Family

ID=30445453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003155404A Expired - Fee Related JP4056933B2 (ja) 1996-08-22 2003-05-30 光位相共役を用いた光ファイバ通信システム並びに該システムに適用可能な装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP4056933B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543173A (ja) * 2005-05-26 2008-11-27 ルーセント テクノロジーズ インコーポレーテッド 光波長変換器におけるクロストークの減少
JP6058168B2 (ja) * 2014-01-31 2017-01-11 三菱電機株式会社 光伝送装置および光伝送方法
CN113852418A (zh) * 2020-06-28 2021-12-28 中兴通讯股份有限公司 一种中长距传输中光纤不对称时延的自动补偿方法及装置
CN114586293A (zh) * 2019-10-29 2022-06-03 湖北工业株式会社 倾斜增益均衡器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543173A (ja) * 2005-05-26 2008-11-27 ルーセント テクノロジーズ インコーポレーテッド 光波長変換器におけるクロストークの減少
US9054807B2 (en) 2005-05-26 2015-06-09 Alcatel Lucent Reducing crosstalk in optical wavelength converters
JP6058168B2 (ja) * 2014-01-31 2017-01-11 三菱電機株式会社 光伝送装置および光伝送方法
CN114586293A (zh) * 2019-10-29 2022-06-03 湖北工业株式会社 倾斜增益均衡器
CN114586293B (zh) * 2019-10-29 2024-06-11 湖北工业株式会社 倾斜增益均衡器
CN113852418A (zh) * 2020-06-28 2021-12-28 中兴通讯股份有限公司 一种中长距传输中光纤不对称时延的自动补偿方法及装置

Also Published As

Publication number Publication date
JP4056933B2 (ja) 2008-03-05

Similar Documents

Publication Publication Date Title
JP3494661B2 (ja) 光位相共役を用いた光ファイバ通信システム並びに該システムに適用可能な装置及びその製造方法
JP3566096B2 (ja) 位相共役変換及び波長変換のための装置
US7072549B2 (en) Optical gate device, manufacturing method for the device, and system including the device
EP0703680B1 (en) Apparatus and method for compensating chromatic dispersion produced in optical phase conjugation or other types of optical signal conversion
JP4040583B2 (ja) 光伝送システム
EP0708538B1 (en) Optical fiber communication system using optical phase conjugation
JP4056933B2 (ja) 光位相共役を用いた光ファイバ通信システム並びに該システムに適用可能な装置及びその製造方法
Aleksejeva et al. Performance investigation of dispersion compensation methods for WDM-PON transmission systems
US7218807B2 (en) Optical transmission system using an optical phase conjugation device
EP1576747B1 (en) Optical transmission system using an optical phase conjugation device
Kareem et al. Optical phase conjugation technique for fiber nonlinearity compensation in DWDM transmission systems
JP3913804B2 (ja) 光位相共役を用いた光ファイバ通信システム
Tran et al. A comparison for improving the performance of two-stage optical phase conjugation using the third-order nonlinearity
Rasheed et al. Novel approaches for suppression of four wave mixing in wdm system using concocted modulation techniques
EP1488550B1 (en) Optical transmission system using an optical phase conjugation device
JP4008484B2 (ja) 光位相共役を用いた光ファイバ通信システム
Tran et al. Efficiency of transmission distortion compensation using optical backpropagation
Weinert et al. High bit rate OTDM-transmission on standard fibre
Marciniak TRANSPARENCY LIMITS IN OPTICAL FIBRES AND NETWORKS
Wang Monitoring and utilization of dispersive and nonlinear effects in high-speed reconfigurable WDM optical fiber networks
Serena et al. INTERPLAY OF MODAL DISPERSION AND NONLINEAR INTERFERENCE IN FIBER OPTIC SYSTEMS
JP2006338048A (ja) 光位相共役を用いた光ファイバ通信システム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees