JP2004004322A - Heat-developable photosensitive material - Google Patents

Heat-developable photosensitive material Download PDF

Info

Publication number
JP2004004322A
JP2004004322A JP2002160017A JP2002160017A JP2004004322A JP 2004004322 A JP2004004322 A JP 2004004322A JP 2002160017 A JP2002160017 A JP 2002160017A JP 2002160017 A JP2002160017 A JP 2002160017A JP 2004004322 A JP2004004322 A JP 2004004322A
Authority
JP
Japan
Prior art keywords
group
silver
dispersion
carbon atoms
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002160017A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yoshioka
吉岡 康弘
Terukazu Yanagi
柳 輝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002160017A priority Critical patent/JP2004004322A/en
Publication of JP2004004322A publication Critical patent/JP2004004322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-developable photosensitive material which is improved in a coated surface state by using a specific fluorine compound in particular and is reduced in staining of the photosensitive material by adhesion of fingerprints when the material is touched by hands by forming a transparent film of low haze. <P>SOLUTION: The heat-developable photosensitive material contains a photosensitive silver halide, a non-photosensitive organic silver salt and a reducing agent and binder for heat development and contains a fluorine compound having an alkyl fluoride group of ≥2 carbon atomic numbers and ≤12 fluorine atomic numbers and having a cationizable hydrophilic group. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は熱現像感光材料に関するもので、特に特定のフッ素系化合物を使用することで塗布面状を改善することによりヘイズの低い透明な皮膜が形成され、かつ手で触れたときの指紋の付着による感光材料の汚れを低減した熱現像感光材料に関するものである。
【0002】
【従来の技術】
近年、医療分野において環境保全、省スペースの観点から処理廃液の減量が強く望まれている。そこで、レーザー・イメージセッターまたはレーザー・イメージャーにより効率的に露光させることができ、高解像度および鮮鋭さを有する鮮明な黒色画像を形成することができる医療診断用および写真技術用途の光感光性熱現像写真材料に関する技術が必要とされている。これら光感光性熱現像写真材料では、溶液系処理化学薬品の使用をなくし、より簡単で環境を損なわない熱現像処理システムを顧客に対して供給することができる。
【0003】
一般画像形成材料の分野でも同様の要求はあるが、医療用画像は微細な描写が要求されるため鮮鋭性、粒状性に優れる高画質が必要であるうえ、診断のし易さの観点から冷黒調の画像が好まれる特徴がある。現在、インクジェットプリンター、電子写真など顔料、染料を利用した各種ハードコピーシステムが一般画像形成システムとして流通しているが、医療用画像の出力システムとしては満足し難い。
【0004】
一方、有機銀塩を利用した熱画像形成システムが、例えば、米国特許3152904号、同3457075号の各明細書およびB.シェリー(Shely)による「熱によって処理される銀システム(Thermally Processed Silver Systems)」(イメージング・プロセッシーズ・アンド・マテリアルズ(Imaging Processes and Materials)Neblette第8版、スタージ(Sturge)、V.ウオールワース(Walworth)、A.シェップ(Shepp)編集、第2頁、1996年)に記載されている。特に、熱現像感光材料は、一般に、触媒活性量の光触媒(例、ハロゲン化銀)、還元剤、還元可能な銀塩(例、有機銀塩)、必要により銀の色調を制御する色調剤を、バインダーのマトリックス中に分散した感光性層を有している。熱現像感光材料は、画像露光後、高温(例えば80℃以上)に加熱し、ハロゲン化銀あるいは還元可能な銀塩(酸化剤として機能する)と還元剤との間の酸化還元反応により、黒色の銀画像を形成する。酸化還元反応は、露光で発生したハロゲン化銀の潜像の触媒作用により促進される。そのため、黒色の銀画像は、露光領域に形成される。米国特許2910377号、特公昭43−4924号をはじめとする多くの文献に開示され、そして熱現像感光材料による医療用画像形成システムとして富士メディカルドライイメージャーFM−DPLが発売された。
【0005】
熱現像感光材料は上記のような特徴から市場で好評を以って受け入れられており、使用領域、使用場所が拡大されてきている。それに伴い、更なる性能の改良が望まれている。塗布工程においても、ゼラチンを主たるバインダーとして使用した従来の感光材料に比べ熱現像感光材料の塗布は難しいことから、塗布性を改善し生産性を高めることは大きな課題であった。
ここで熱現像感光材料の塗布溶媒として有機溶剤を用いた場合、表面がブラッシングにより白濁したり、バーナードセル現象によって、ゆず肌状の面状になったりというトラブルが起きやすい。そのため、塗布乾燥速度を上げつつ塗布面状を安定化する改良手段が熱望されていた。
一方、塗布溶媒として水系溶媒を用いた場合、これらの問題は軽減されるが、問題の解決とはいえず、塗布性能についての更なる改良が求められていた。
これらの問題について研究開発の結果、特願2000−206560号、特願2001−203462号、特願2001−242357号および特願2001−264110号等に記載のフッ素系界面活性剤の使用が有効であることが明らかとなり、帯電調整能力、塗布面状の安定性およびスベリ性が改良された。しかし、その改良効果は充分とは言い難く、更なる改良が必要であった。
また、熱現像感光材料特有の問題として、汗や油でしめった手で触れたときに指紋が付着し、経時で変色してしまうという問題も存在していた。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、前記の従来技術の欠点を克服し、塗布性を改善することにより、ヘイズの低い透明な皮膜が形成され、また、汗や油でしめった手で触れたときに発生する汚れを低減した熱現像感光材料を提供することにある。
【0007】
【課題を解決するための手段】
本発明の目的は、以下の熱現像感光材料によって達成された。
(1)感光性ハロゲン化銀と、非感光性有機銀塩と、熱現像のための還元剤及びバインダーとを含有する熱現像感光材料であって、炭素原子数が2以上でフッ素原子数が12以下のフッ化アルキル基を有しかつカチオン性の親水性基を有するフッ素化合物を含有することを特徴とする熱現像感光材料。
(2) 前記のフッ化アルキル基が下記一般式(A)で表されることを特徴とする(1)に記載の熱現像感光材料。
一般式(A) −Rc−Re−W
式中、Rcは炭素数1ないし4のアルキレン基を表し、Reは炭素数2ないし6のパーフルオロアルキレン基を表し、Wは水素原子、フッ素原子またはアルキル基を表す。
(3)該還元剤がビスフェノール系還元剤であることを特徴とする(1)ないし(2)に記載の熱現像感光材料。
(4) 下記一般式(D)で表される化合物を含有する(1)ないし(3)に記載の熱現像感光材料。
一般式(D)
【化1】

Figure 2004004322
一般式(D)においてR21ないしR23は各々独立にアルキル基、アリール基、アルコキシ基、アリールオキシ基、アミノ基またはヘテロ環基を表す。
(5) 下記一般式(B)で表されるポリハロゲン化合物を含有する(1)ないし(4)に記載の熱現像感光材料。
一般式(B)
Q−(Y)n−C(Z)(Z)X
Qはアルキル基、アリール基またはヘテロ環基を表し、Yは2価の連結基を表し、nは0または1を表し、ZおよびZはハロゲン原子を表し、Xは水素原子または電子求引性基を表す。
(6) 熱現像剤に対して熱現像促進効果を有する現像促進剤を含有することを特徴とする(1)ないし(5)のいずれかに記載の熱現像感光材料。
(7) 該現像促進剤がヒドラジン系またはナフトール系の化合物であることを特徴とする(6)に記載の熱現像感光材料。
(8) 前記非感光性有機銀塩の80ないし99モル%がベヘン酸銀であることを特徴とする上記(1)ないし(7)のいずれかに記載された熱現像感光材料。
(9) 前記非感光性有機銀塩の50ないし85モル%がベヘン酸銀であることを特徴とする上記(1)ないし(7)のいずれかに記載された熱現像感光材料。
(10) アニオン性またはノニオン性の親水基を有する界面活性剤をさらに含有することを特徴とする(1)ないし(9)に記載の熱現像感光材料。
【0008】
(11)前記カチオン性の親水性基を有するフッ素化合物が、下記一般式(1)で表されることを特徴とする(1)に記載の熱現像感光材料。
【化2】
Figure 2004004322
(式中、RおよびRはそれぞれ置換または無置換のアルキル基を表すが、RおよびRの少なくとも1つは炭素原子数が2以上でフッ素原子数が12以下のフッ化アルキル基または上記一般式(A)で表されるフッ化アルキル基を表す。R、RおよびRはそれぞれ独立に水素原子または置換基を表し、X、XおよびZはそれぞれ独立に2価の連結基または単結合を表し、Mはカチオン性の置換基を表す。Yは対アニオンを表すが、分子内で荷電が0になる場合にはYはなくてもよい。mは0または1である。)
(12)前記一般式(1)で表される化合物が下記一般式(1−a)で表されこことを特徴とする(1)に記載の熱現像感光材料。
【化3】
Figure 2004004322
式中、R11およびR21はそれぞれ置換または無置換のアルキル基を表すが、R11およびR21の少なくとも1つは炭素原子数が2以上でフッ素原子数が12以下のフッ化アルキル基または上記一般式(A)で表されるフッ化アルキル基を表し、R11とR21の炭素数の総計は19以下である。R13、R14およびR15はそれぞれ独立に置換または無置換のアルキル基を表し、互いに結合して環を形成していてもよい。X11およびX21はそれぞれ独立に−O−、−S−または−NR31−を表し、R31は水素原子または置換基を表し、Zは2価の連結基または単結合を表す。Yは対アニオンを表すが、分子内で荷電が0になる場合にはYはなくてもよい。mは0または1である。
【0009】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0010】
1.カチオン性の親水基を有するフッ素化合物の説明
本発明の熱現像感光材料は、炭素原子数が2以上でフッ素原子数が12以下のフッ化アルキル基を1つ以上有し、かつカチオン性の親水性基を有するフッ素化合物を含有する。本発明のフッ素化合物は、界面活性剤として用いることができる。
本発明で用いるフッ素化合物は、上記フッ化アルキル基(以下、フッ素原子で置換されたアルキル基を「Rf」という)1つ以上と、カチオン性の親水性基有していれば、あとはいかなる構造であってもよい。
【0011】
Rfの具体例としては、以下の基が挙げることができるが、これらに限定されるものではない。
−C基、−C基、−C基、−C11基、−CH−C基、
−C−H基、−C−C基、−C−C基、
−C12−C基、−C16−C基、−C−C基、
−C−C基、−C−C11基、−C16−C基、
−C−C−H基、−C−C−H基、−C12−C−H基
−C12−C−H基、−C16−C−H基、
−C12−C−CH基、−C−C基、−C−C11基、−C−CF(CF基、−CHCF基、
−C−CH(C基、−C−CH(CF基、
−C−C(CF基、―CH−C−H基、―CH−C12−H基。
【0012】
Rfは、フッ素原子数が12以下であるが、好ましくは3〜11の範囲で、より好ましくは5〜9の範囲である。また、炭素原子数は2以上であるが、好ましくは4〜16、より好ましくは5〜12の範囲である。
【0013】
Rfは、炭素原子数が2以上でフッ素原子数が12以下であれば、とくに構造は限定されないが、好ましくは下記一般式(A)で表される基である。
【0014】
一般式(A)
−Rc―Re−W
【0015】
一般式(A)においてRcは、炭素数1から4のアルキレン基を表すが、好ましくは炭素数1〜3の範囲で、より好ましくは1〜2の範囲である。
Rcで表されるアルキレン基は、直鎖状であっても、分岐鎖状であってもよい。
Reは炭素数2〜6パーフルオロアルキレン基を表し、好ましくは炭素数2〜4のパーフルオロアルキレン基である。ここでパーフルオロアルキレン基とはアルキレン基のすべての水素原子がフッ素原子で置き換えられたアルキレン基をいう。前記パーフルオロアルキレン基は、直鎖状であっても、分岐鎖状であってもよく、また環状構造を有していてもよい。
Wは水素原子、フッ素原子またはアルキル基を表し、好ましくは水素原子またはフッ素原子である。特に好ましいのは、フッ素原子である。
【0016】
カチオン性の親水性基とは、水に溶解したときに、陽イオンとなるものを言う。具体的には、第四級アンモニウム、アルキルピリジウム、アルキルイミダゾリニウム、第一級〜第三級脂肪族アミンなどが挙げられる。
カチオンとして好ましくは、有機のカチオン性置換基であり、より好ましくは窒素または燐原子を含む有機カチオン性基である。さらに好ましくはピリジニウムカチオンまたはアンモニウムカチオンである。
塩類を形成するアニオン種は、無機アニオンでも有機アニオンでもかまわない。無機アニオンとして好ましくは、ヨードイオン、臭素イオン、塩素イオン、過塩素酸イオン、PF イオン等が挙げられ、有機アニオンとして好ましくは、p−トルエンスルホン酸イオン、ベンゼンスルホン酸イオン、メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等が挙げられる。
【0017】
本発明において好ましいカチオン性フッ素化合物は下記一般式(1)で表される。
一般式(1)
【0018】
【化4】
Figure 2004004322
【0019】
式中、RおよびRはそれぞれ置換または無置換のアルキル基を表すが、RおよびRの少なくとも1つは前述のフッ化アルキル基(Rf)である。好ましいのは、RおよびRの双方がRfの場合である。R、RおよびRはそれぞれ独立に水素原子または置換基を表し、X、XおよびZはそれぞれ独立に2価の連結基または単結合を表し、Mはカチオン性の置換基を表す。Yは対アニオンを表すが、分子内で荷電が0になる場合にはYはなくてもよい。mは0または1である。
【0020】
前記一般式(1)中、RおよびRはそれぞれRf以外の置換または無置換のアルキル基を表す場合、前記アルキル基は、炭素数1以上であって、直鎖状、分岐鎖状および環状のいずれであってもよい。前記置換基としては、ハロゲン原子、アルケニル基、アリール基、アルコキシル基、フッ素以外のハロゲン原子、カルボン酸エステル基、カルボンアミド基、カルバモイル基、オキシカルボニル基、燐酸エステル基等が挙げられる。
【0021】
またはRがRf以外のアルキル基、即ち、フッ素原子で置換されていないアルキル基を表す場合、該アルキル基としては、炭素数1〜24の置換または無置換のアルキル基、より好ましくは炭素数6〜24の置換または無置換のアルキル基である。炭素数6〜24の無置換アルキル基の好ましい例としては、n−ヘキシル基、n−ヘプチル基、n−オクチル基、tert−オクチル基、2−エチルヘキシル基、n−ノニル基、1,1,3−トリメチルヘキシル基、n−デシル基、n−ドデシル基、セチル基、ヘキサデシル基、2−ヘキシルデシル基、オクタデシル基、エイコシル基、2−オクチルドデシル基、ドコシル基、テトラコシル基、2−デシルテトラデシル基、トリコシル基、シクロヘキシル基、シクロヘプチル基等が挙げられる。また、置換基を有する総炭素数が6〜24のアルキル基の好ましい例としては、2−ヘキセニル基、オレイル基、リノレイル基、リノレニル基、ベンジル基、β−フェネチル基、2−メトキシエチル基、4−フェニルブチル基、4−アセトキシエチル基、6−フェノキシヘキシル基、12−フェニルドデシル基、18−フェニルオクタデシル基、12−(p−クロロフェニル)ドデシル基、2−(燐酸ジフェニル)エチル基等を挙げることができる。
【0022】
およびRでそれぞれ表されるRf以外のアルキル基としては、更に好ましくは炭素数6〜18の置換または無置換のアルキル基である。炭素数6〜18の無置換のアルキル基の好ましい例としては、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、n−ノニル基、1,1,3−トリメチルヘキシル基、n−デシル基、n−ドデシル基、セチル基、ヘキサデシル基、2−ヘキシルデシル基、オクタデシル基、4−tert−ブチルシクロヘキシル基等が挙げられる。また、置換基を有する総炭素数が6〜18の置換アルキル基の好ましい例としては、フェネチル基、6−フェノキシヘキシル基、12−フェニルドデシル基、オレイル基、リノレイル基、リノレニル基等が挙げられる。
【0023】
およびRでそれぞれ表されるRf以外のアルキル基としては、特に好ましくは、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、n−ノニル基、1,1,3−トリメチルヘキシル基、n−デシル基、n−ドデシル基、セチル基、ヘキサデシル基、2−ヘキシルデシル基、オクタデシル基、オレイル基、リノレイル基、リノレニル基であり、最も好ましくは炭素数8〜16の直鎖状、環状または分岐状の無置換アルキル基である。
【0024】
前記一般式(1)中、R、RおよびRはそれぞれ独立して水素原子または置換基を表す。該置換基としては、例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる)、
【0025】
アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12のアリールオキシ基であり、例えば、フェニルオキシ基、2−ナフチルオキシ基などが挙げられる)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12アシル基であり、例えば、アセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10のアリールオキシカルボニル基であり、例えば、フェニルオキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)、
【0026】
アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
【0027】
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)などが挙げられる。これらの置換基は更に置換されていてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
【0028】
、RおよびRとしては、好ましくはアルキル基または水素原子であり、更に好ましくは水素原子である。
【0029】
前記式中、XおよびXはそれぞれ2価の連結基または単結合を表す。前記2価の連結基については特に制約はないが、好ましくはアリーレン基、−O−、−S−または−NR31−(R31は水素原子または置換基を表し、置換基としてはR、RおよびRがそれぞれ表す置換基の例と同様であり、−R31として好ましくは、アルキル基、前述のRfまたは水素原子であり、更に好ましくは水素原子である)を単独またはそれらを組合せて得られる基であり、より好ましくは−O−、−S−または−NR31である。XおよびXとしてより好ましくは、−O−または−NR31−であり、更に好ましくは−O−または−NH−であり、特に好ましくは−O−である。
【0030】
前記式中Zは2価の連結基または単結合を表す。前記2価の連結基については特に制約はないが、好ましくはアルキレン基、アリーレン基、−C(=O)−、−O−、−S−、−S(=O)−、−S(=O)−または−NR32−(R32は水素原子または置換基を表し、置換基としてはR、RおよびRが表す置換基の例と同様であり、R32として好ましくはアルキル基または水素原子であり、更に好ましくは水素原子である)を単独またはそれらを組合せて得られる基であり、より好ましくは炭素数1〜12のアルキレン基、炭素数6〜12のアリーレン基、−C(=O)−、−O−、−S−、−S(=O)−、−S(=O)−または−NR32−を単独またはそれらを組合せて得られる基である。Zとして更に好ましくは、炭素数1〜8のアルキレン基、−C(=O)−、−O−、−S−、−S(=O)−、−S(=O)−または−NR32−を単独またはそれらを組合せて得られる基であり、例えば、
【0031】
【化5】
Figure 2004004322
等が挙げられる。
【0032】
前記式中、Mはカチオン性の置換基を表し、Mとして好ましくは、有機のカチオン性置換基であり、より好ましくは窒素または燐原子を含む有機カチオン性基である。さらに好ましくはピリジニウムカチオンまたはアンモニウムカチオンであり、より好ましくは下記一般式(2)で表されるトリアルキルアンモニウムカチオンである。
【0033】
【化6】
Figure 2004004322
【0034】
前記式中、R13、R14およびR15はそれぞれ独立に置換または無置換のアルキル基を表す。該置換基としては前記R、RおよびRの置換基として挙げたものが適用できる。また、R13、R14およびR15は可能な場合にはお互いが結合して環を形成してもよい。R13、R14およびR15として好ましくは、炭素数1〜12のアルキル基であり、より好ましくは炭素数1〜6のアルキル基であり、更に好ましくはメチル基、エチル基、メチルカルボキシル基であり、特に好ましくはメチル基である。
【0035】
前記式中、Yは対アニオンを表し、無機アニオンでも有機アニオンでもよい。また、分子内で荷電が0になる場合にはYはなくてもよい。無機アニオンとして好ましくは、ヨードイオン、臭素イオン、塩素イオン等が挙げられ、有機アニオンとして好ましくは、p−トルエンスルホン酸イオン、ベンゼンスルホン酸イオン、メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等が挙げられる。Yとしてより好ましくは、ヨードイオン、p−トルエンスルホン酸イオン、ベンゼンスルホン酸イオンであり、更に好ましくはp−トルエンスルホン酸である。
【0036】
前記式中、mは0または1を表し、好ましくは0である。
【0037】
上記一般式(1)で表される化合物の中でも、下記一般式(1−a)で表される化合物が好ましい。
【0038】
【化7】
Figure 2004004322
【0039】
式中、R11およびR21はそれぞれ置換または無置換のアルキル基を表すが、RおよびRの少なくとも1つは前述のRfを表し、R11とR21の炭素数の総計は19以下である。R13、R14およびR15はそれぞれ独立に置換または無置換のアルキル基を表し、互いに結合して環を形成していてもよい。X11およびX21はそれぞれ独立に−O−、−S−または−NR31−を表し、R31は水素原子または置換基を表し、Zは2価の連結基または単結合を表す。Yは対アニオンを表すが、分子内で荷電が0になる場合にはYはなくてもよい。
mは0または1である。式中、ZおよびYはそれぞれ上記一般式(1)におけ
るそれらと同義であり、好ましい範囲も同様である。R13、R14、R15およびmについては、それぞれ上記一般式(1)におけるそれらと同義であり、好ましい範囲も同様である。
【0040】
式中、X11およびX12はそれぞれ−O−、−S−または−NR31−(R31は水素原子または置換基を表し、該置換基としては前記R、RおよびRの置換基として挙げたものが適用できる。R31として好ましくはアルキル基、前述のRf、または水素原子であり、更に好ましくは水素原子である)である。X11およびX21としてより好ましくは−O−、−NH−であり、更に好ましくは−O−である。
【0041】
前記式中、R11およびR21はそれぞれ一般式(1)におけるRおよびRと同義であり、好ましい範囲も同様である。ただし、R11およびR21の炭素数の総計は19以下である。mは0または1である。
【0042】
上記一般式(1)で表される化合物の具体例を挙げるが、本発明は、以下の具体例によってなんら制限されるものではない。なお、下記例示化合物の構造表記の中で特に断りのない限り、アルキル基、パーフルアロアルキル基は直鎖の構造を意味する。また、表記中の略号の内2EHは、2−ethylhexylを意味する。
【0043】
【化8】
Figure 2004004322
【0044】
【化9】
Figure 2004004322
【0045】
【化10】
Figure 2004004322
【0046】
【化11】
Figure 2004004322
【0047】
【化12】
Figure 2004004322
【0048】
【化13】
Figure 2004004322
【0049】
【化14】
Figure 2004004322
【0050】
【化15】
Figure 2004004322
【0051】
【化16】
Figure 2004004322
【0052】
【化17】
Figure 2004004322
【0053】
【化18】
Figure 2004004322
【0054】
【化19】
Figure 2004004322
【0055】
【化20】
Figure 2004004322
【0056】
【化21】
Figure 2004004322
【0057】
次に、本発明の上記一般式(1)、(1−a)で表される化合物の一般的な合成法の一例を示すが、本発明はこれらに限定されるものではない。
【0058】
(合成例:F−52の合成)
(1) 2−(2−(N,N−ジメチルアミノ)エチルアミノ)コハク酸1、4−ジ(3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル)の合成
コハク酸1、4−ジ(3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル)の500g(0.82mol)、N,N−ジメチルアミノエチルアミンの79.5g(0.90mol)、および炭酸カリウムの11.3g(0.08mol)をアセトニトリル500mLに溶解し、45分加熱還流した。その後、分液ロートに反応液を移し、酢酸エチルを2L加えて、塩化ナトリウム水溶液(1.5L)で有機相を洗浄した後、有機層を回収し、有機溶媒を減圧留去し、淡黄色のオイルとして目的化合物を453g(収率79%)得た。
【0059】
(2)F−52の合成
上記化合物380g(0.55mol),p−トルエンスルホン酸メチルの101.6g(0.55mmol)、酢酸エチルの1500mLを加え2時間加熱還流した後、不溶解物を濾別し、濾液を攪拌しながら氷浴中で冷却した。しばらくすると濾液から結晶が析出した。得られた結晶を濾過回収し、酢酸エチルで洗浄し、80℃、2時間減圧乾燥した。無色透明の固体として、目的化合物を300g(収率62%)得た。
得られた化合物のH−NMRのデータは以下の通りである。
 1H−NMR(DMSO−d):δ2.50(s,3H)、2.61−2.73(br,8H)、3.07(s,9H)3.33(m,2H)、3.66(m,1H)、4.30−4.40(m,4H)、7.11(d,2H)7.48(d,2H)
【0060】
上記本発明で用いる特定のフッ化アルキル基を有する化合物は、界面活性剤として、ハロゲン化銀写真感光材料を構成している層(特に、保護層や下塗り層、バック層など)を形成するための塗布組成物に好ましく用いられている。本発明のフッ素化合物を使用することにより、塗布性を改善しヘイズを改良することができるためである。なかでも、写真感光材料の最上層の形成に用いると汗や油でしめった手で触れたときに発生する汚れを低減させることができる。この効果を得るためには本発明のフッ素化合物を乳剤面あるいはバック面の最外層に使用することが好ましい。また、支持体下塗り層に使用しても同様の効果が得られる。
【0061】
本発明における上記特定のフッ素化合物の使用量については特に制約はなく、用いるフッ素化合物の構造や用いる場所、組成物中に含まれる他の素材の種類や量等に応じて、その使用量を任意に決定することができる。例えば、熱現像感光材料の最上層用塗布液として用いる場合、フッ素化合物の塗布組成物中の塗布量としては、0.1〜100mg/mであることが好ましく、0.5〜20mg/mであることがより好ましい。
【0062】
本発明においては、上記特定のフッ素化合物の1種類を単独で用いてもよいし、また2種類以上を混合して用いてもよい。
【0063】
2.有機銀塩の説明
本発明に用いることのできる有機銀塩は、光に対して比較的安定であるが、露光された感光性ハロゲン化銀及び還元剤の存在下で、80℃或いはそれ以上に加熱された場合に銀イオン供給体として機能し、銀画像を形成せしめる。
ベヘン酸銀以外にも有機銀塩として、還元剤により還元されうる銀イオンを供給できる任意の有機物質を含んでもよい。このような非感光性の有機銀塩については、特開平10−62899号の段落番号0048〜0049、欧州特許公開第0803764A1号の第18ページ第24行〜第19ページ第37行、欧州特許公開第0962812A1号、特開平11−349591号、特開2000−7683号、同2000−72711号等に記載されている。なかでも、有機酸の銀塩、特に(炭素数が10〜30、好ましくは15〜28の)長鎖脂肪族カルボン酸の銀塩が好ましい。脂肪酸銀塩の好ましい例としては、リグノセリン酸、ベヘン酸銀、アラキジン酸銀、ステアリン酸銀、オレイン酸銀、ラウリン酸銀、カプロン酸銀、ミリスチン酸銀、パルミチン酸銀、エルカ酸銀およびこれらの混合物などを含む。
本発明においては、ベヘン酸銀含有率が40モル%以上99モル%以下の範囲である有機銀塩が用いられると画像保存性、熱現像活性および迅速性についての特性が良好である。好ましくは50モル%以上95モル%以下、より好ましくは60モル%以上90モル%以下、さらに好ましくは65モル%以上85モル%以下である。特に画像保存性を重視した設計では、ベヘン酸銀含有率70モル%以上99モル%以下が好ましく、80モル%以上99モル%以下がより好ましい。また、熱現像活性、迅速性を重視した設計では、ベヘン酸銀含有率50モル%以上85モル%以下が好ましく、55モル%以上80モル%以下がより好ましい。更に、エルカ酸銀含有率が2モル%以下、より好ましくは1モル%以下、更に好ましくは0.1モル%以下で用いられることが好ましい。
【0064】
本発明に用いることができる有機銀塩の形状としては特に制限はなく、針状、棒状、平板状、りん片状いずれでもよい。
本発明においてはりん片状の有機銀塩が好ましい。また、長軸と単軸の長さの比が5以下の短針状、直方体、立方体またはジャガイモ状の不定形粒子も好ましく用いられる。これらの有機銀粒子は長軸と単軸の長さの比が5以上の長針状粒子に比べて熱現像時のカブリが少ないという特徴を有している。特に、長軸と単軸の比が3以下の粒子は塗布膜の機械的安定性が向上し好ましい。本明細書において、りん片状の有機銀塩とは、次のようにして定義する。有機酸銀塩を電子顕微鏡で観察し、有機酸銀塩粒子の形状を直方体と近似し、この直方体の辺を一番短かい方からa、b、cとした(cはbと同じであってもよい)とき、短い方の数値a、bで計算し、次のようにしてxを求める。
x=b/a
【0065】
このようにして200個程度の粒子についてxを求め、その平均値x(平均)としたとき、x(平均)≧1.5の関係を満たすものをりん片状とする。好ましくは30≧x(平均)≧1.5、より好ましくは15≧x(平均)≧1.5である。因みに針状とは1≦x(平均)<1.5である。
【0066】
りん片状粒子において、aはbとcを辺とする面を主平面とした平板状粒子の厚さとみることができる。aの平均は0.01μm以上0.30μmが好ましく0.1μm以上0.23μm以下がより好ましい。c/bの平均は好ましくは1以上6以下、より好ましくは1以上4以下、さらに好ましくは1以上3以下、特に好ましくは1以上2以下である。
【0067】
有機銀塩の粒子サイズ分布は単分散であることが好ましい。単分散とは、短軸、長軸それぞれの長さの標準偏差を短軸、長軸それぞれで割った値の100分率が好ましくは100%以下、より好ましくは80%以下、更に好ましくは50%以下であることを指す。有機銀塩の形状の測定方法としては有機銀塩分散物の透過型電子顕微鏡像より求めることができる。単分散性を測定する別の方法として、有機銀塩の体積加重平均直径の標準偏差を求める方法があり、体積加重平均直径で割った値の百分率(変動係数)が好ましくは100%以下、より好ましくは80%以下、更に好ましくは50%以下である。測定方法としては市販で得られるレーザー光散乱型粒子サイズ測定装置を用いることができる。この測定方法は、以下に記載する他の粒子サイズ測定にも用いることができる。
【0068】
本発明に用いられる有機酸銀の製造及びその分散法は、公知の方法等を適用することができる。例えば上記の特開平10−62899号、欧州特許公開第0803763A1号、欧州特許公開第0962812A1号、特開平11−349591号、特開2000−7683号、同2000−72711号、特願平11−348228〜30号、同11−203413号、特願2000−90093号、同2000−195621号、同2000−191226号、同2000−213813号、同2000−214155号、同2000−191226号等を参考にすることができる。
【0069】
本発明の有機銀塩は所望の量で使用できるが、銀量として0.1〜5g/mが好ましく、さらに好ましくは1〜3g/mである。特に好ましく1.2〜2.5g/mである。
【0070】
3.還元剤の説明
本発明の熱現像感光材料は、有機銀塩のための還元剤を含む。該還元剤は、銀イオンを金属銀に還元できる任意の物質(好ましくは有機物)でよい。該還元剤の例は、特開平11―65021号、段落番号0043〜0045や、欧州特許0803764号、p.7、34行〜p.18、12行に記載されている。
【0071】
本発明においては、フェノール性水酸基のオルト位に置換基を有するいわゆるヒンダードフェノール系還元剤、あるいはビスフェノール系還元剤が好ましく、ビスフェノール系還元剤がより好ましい。特に次の一般式(R)で表される化合物が好ましい。
【0072】
一般式(R)
【化22】
Figure 2004004322
【0073】
一般式(R)においては、R11およびR11’は各々独立に炭素数1〜20のアルキル基を表す。R12およびR12’は各々独立に水素原子またはベンゼン環に置換可能な置換基を表す。Lは−S−基または−CHR13−基を表す。R13は水素原子または炭素数1〜20のアルキル基を表す。XおよびX’は各々独立に水素原子またはベンゼン環に置換可能な基を表す。
【0074】
各置換基について詳細に説明する。
1)R11およびR11
11およびR11’は各々独立に置換または無置換の炭素数1〜20のアルキル基であり、アルキル基の置換基は特に限定されることはないが、好ましくは、アリール基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アシルアミノ基、スルホンアミド基、スルホニル基、ホスホリル基、アシル基、カルバモイル基、エステル基、ハロゲン原子等があげられる。
【0075】
2)R12およびR12’、XおよびX
12およびR12’は各々独立に水素原子またはベンゼン環に置換可能な基を表す。
およびX’は、各々独立に水素原子またはベンゼン環に置換可能な基を表す。それぞれベンゼン環に置換可能な基としては、好ましくはアルキル基、アリール基、ハロゲン原子、アルコキシ基、アシルアミノ基があげられる。
【0076】
3)L
Lは−S−基または−CHR13−基を表す。R13は水素原子または炭素数1〜20のアルキル基を表し、アルキル基は置換基を有していてもよい。
13の無置換のアルキル基の具体例はメチル基、エチル基、プロピル基、ブチル基、ヘプチル基、ウンデシル基、イソプロピル基、1−エチルペンチル基、2,4,4−トリメチルペンチル基などがあげられる。
【0077】
アルキル基の置換基の例はR11の置換基と同様で、ハロゲン原子、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、アシルアミノ基、スルホンアミド基、スルホニル基、ホスホリル基、オキシカルボニル基、カルバモイル基、スルファモイル基などがあげられる。
【0078】
4)好ましい置換基
11およびR11’として好ましくは炭素数3〜15の2級または3級のアルキル基であり、具体的にはイソプロピル基、イソブチル基、t−ブチル基、t−アミル基、t−オクチル基、シクロヘキシル基、シクロペンチル基、1−メチルシクロヘキシル基、1−メチルシクロプロピル基などがあげられる。R11およびR11’としてより好ましくは炭素数4〜12の3級アルキル基で、その中でもt−ブチル基、t−アミル基、1−メチルシクロヘキシル基が更に好ましく、t−ブチル基が最も好ましい。
【0079】
12およびR12’として好ましくは炭素数1〜20のアルキル基であり、具体的にはメチル基、エチル基、プロピル基、ブチル基、イソプロピル基、t−ブチル基、t−アミル基、シクロヘキシル基、1−メチルシクロヘキシル基、ベンジル基、メトキシメチル基、メトキシエチル基などがあげられる。より好ましくはメチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基である。
【0080】
およびX’は、好ましくは水素原子、ハロゲン原子、アルキル基で、より好ましくは水素原子である。
【0081】
Lは好ましくは−CHR13−基である。
【0082】
13として好ましくは水素原子または炭素数1〜15のアルキル基であり、アルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、2,4,4−トリメチルペンチル基が好ましい。R13として特に好ましいのは水素原子、メチル基、プロピル基またはイソプロピル基である。
【0083】
13が水素原子である場合、R12およびR12’は好ましくは炭素数2〜5のアルキル基であり、エチル基、プロピル基がより好ましく、エチル基が最も好ましい。
【0084】
13が炭素数1〜8の1級または2級のアルキル基である場合、R12およびR12’はメチル基が好ましい。R13の炭素数1〜8の1級または2級のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基がより好ましく、メチル基、エチル基、プロピル基が更に好ましい。
【0085】
11、R11’およびR12、R12’とがいずれもメチル基である場合、R13は2級のアルキル基であることが好ましい。この場合、R13の2級アルキル基としてはイソプロピル基、イソブチル基、1−エチルペンチル基が好ましく、イソプロピル基がより好ましい。
【0086】
上記還元剤は、R11、R11’およびR12およびR12’、およびR13の組合せにより、種々の熱現像性能が異なる。2種以上の還元剤を種々の混合比率で併用することによってこれらの熱現像性能を調整することができるので、目的によっては還元剤を2種類以上組み合わせて使用することが好ましい。
【0087】
以下に本発明の一般式(R)で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。
【0088】
【化23】
Figure 2004004322
【0089】
【化24】
Figure 2004004322
【0090】
【化25】
Figure 2004004322
【0091】
特に(I−1)〜(I−20)に示すような化合物であることが好ましい。
【0092】
本発明において還元剤の添加量は0.01〜5.0g/mであることが好ましく、0.1〜3.0g/mであることがより好ましく、画像形成層を有する面の銀1モルに対しては5〜50%モル含まれることが好ましく、10〜40モル%で含まれることがさらに好ましい。
【0093】
本発明の還元剤は、有機銀塩、および感光性ハロゲン化銀を含む画像形成層、およびその隣接層に添加することができるが、画像形成層に含有させることがより好ましい。
【0094】
本発明の還元剤は溶液形態、乳化分散形態、固体微粒子分散物形態など、いかなる方法で塗布液に含有せしめ、感光材料に含有させてもよい。
【0095】
よく知られている乳化分散法としては、ジブチルフタレート、トリクレジルフォスフェート、グリセリルトリアセテートあるいはジエチルフタレートなどのオイル、酢酸エチルやシクロヘキサノンなどの補助溶媒を用いて溶解し、機械的に乳化分散物を作製する方法が挙げられる。
【0096】
また、固体微粒子分散法としては、還元剤を水等の適当な溶媒中にボールミル、コロイドミル、振動ボールミル、サンドミル、ジェットミル、ローラーミルあるいは超音波によって分散し、固体分散物を作成する方法が挙げられる。好ましくは、サンドミルを使った分散方法である。尚、その際に保護コロイド(例えば、ポリビニルアルコール)、界面活性剤(例えばトリイソプロピルナフタレンスルホン酸ナトリウム(3つのイソプロピル基の置換位置が異なるものの混合物)などのアニオン性界面活性剤)を用いてもよい。水分散物には防腐剤(例えばベンゾイソチアゾリノンナトリウム塩)を含有させることができる。
【0097】
特に好ましいのは、還元剤の固体粒子分散法であり、数平均粒子サイズ0.01μm〜10μm、好ましくは0.05μm〜5μm、より好ましくは0.1μm〜1μmの微粒子にして添加するのが好ましい。本願においては他の固体分散物もこの範囲の粒子サイズに分散して用いるのが好ましい。
【0098】
4.現像促進剤の説明
本発明の熱現像感光材料では、現像促進剤として特開2000−267222号や特開2000−330234号等に記載の一般式(A)で表されるスルホンアミドフェノール系の化合物、特開平2001−92075号に記載の一般式(II)で表されるヒンダードフェノール系の化合物、特開平10−62895号や特開平11−15116号等に記載の一般式(I)、特願2001−074278号に記載の一般式(1)で表されるヒドラジン系の化合物、特開2001−264929号に記載されている一般式(2)で表されるフェノール系またはナフトール系の化合物が好ましく用いられる。これらの現像促進剤は還元剤に対して0.1〜20モル%の範囲で使用され、好ましくは0.5〜10モル%の範囲で、より好ましくは1〜5モル%の範囲である。感材への導入方法は還元剤と同様の方法があげられるが、特に固体分散物または乳化分散物として添加することが好ましい。乳化分散物として添加する場合、常温で固体である高沸点溶剤と低沸点の補助溶剤を使用して分散した乳化分散物として添加するか、もしくは高沸点溶剤を使用しない所謂オイルレス乳化分散物として添加することが好ましい。
本発明においては上記現像促進剤の中でも、特願2001−074278号に記載の一般式(1)で表されるヒドラジン系の化合物および特開2001−264929号に記載されている一般式(2)で表されるナフトール系の化合物が特に好ましい。
以下、本発明の現像促進剤の好ましい具体例を挙げる。本発明はこれらに限定されるものではない。
【0099】
【化26】
Figure 2004004322
【0100】
5.水素結合性化合物の説明
本発明では、還元剤基の芳香族性の水酸基(−OH)と反応し、水素結合を形成することが可能な基を有する非還元性の化合物を併用することが好ましい。水酸基と水素結合を形成する基としては、ホスホリル基、スルホキシド基、スルホニル基、カルボニル基、アミド基、エステル基、ウレタン基、ウレイド基、3級アミノ基、含窒素芳香族基などが挙げられる。その中でも好ましいのはホスホリル基、スルホキシド基、アミド基(但し、>N−H基を持たず、>N−Ra(RaはH以外の置換基)のようにブロックされている。)、ウレタン基(但し、>N−H基を持たず、>N−Ra(RaはH以外の置換基)のようにブロックされている。)、ウレイド基(但し、>N−H基を持たず、>N−Ra(RaはH以外の置換基)のようにブロックされている。)を有する化合物である。
本発明で、特に好ましい水素結合性の化合物は下記一般式(D)で表される化合物である。
一般式(D)
【0101】
【化27】
Figure 2004004322
【0102】
一般式(D)においてR21ないしR23は各々独立にアルキル基、アリール基、アルコキシ基、アリールオキシ基、アミノ基またはヘテロ環基を表し、これらの基は無置換であっても置換基を有していてもよい。R21ないしR23が置換基を有する場合の置換基としてはハロゲン原子、アルキル基、アリール基、アルコキシ基、アミノ基、アシル基、アシルアミノ基、アルキルチオ基、アリールチオ基、スルホンアミド基、アシルオキシ基、オキシカルボニル基、カルバモイル基、スルファモイル基、スルホニル基、ホスホリル基などがあげられ、置換基として好ましいのはアルキル基またはアリール基でたとえばメチル基、エチル基、イソプロピル基、t−ブチル基、t−オクチル基、フェニル基、4−アルコキシフェニル基、4−アシルオキシフェニル基などがあげられる。
21ないしR23のアルキル基としては具体的にはメチル基、エチル基、ブチル基、オクチル基、ドデシル基、イソプロピル基、t−ブチル基、t−アミル基、t−オクチル基、シクロヘキシル基、1−メチルシクロヘキシル基、ベンジル基、フェネチル基、2−フェノキシプロピル基などがあげられる。アリール基としてはフェニル基、クレジル基、キシリル基、ナフチル基、4−t−ブチルフェニル基、4−t−オクチルフェニル基、4−アニシジル基、3,5−ジクロロフェニル基などが挙げられる。アルコキシ基としてはメトキシ基、エトキシ基、ブトキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、3,5,5−トリメチルヘキシルオキシ基、ドデシルオキシ基、シクロヘキシルオキシ基、4−メチルシクロヘキシルオキシ基、ベンジルオキシ基等が挙げられる。アリールオキシ基としてはフェノキシ基、クレジルオキシ基、イソプロピルフェノキシ基、4−t−ブチルフェノキシ基、ナフトキシ基、ビフェニルオキシ基等が挙げられる。アミノ基としてはジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、ジオクチルアミノ基、N−メチル−N−ヘキシルアミノ基、ジシクロヘキシルアミノ基、ジフェニルアミノ基、N−メチル−N−フェニルアミノ基等が挙げられる。
【0103】
21ないしR23としてはアルキル基、アリール基、アルコキシ基、アリールオキシ基が好ましい。本発明の効果の点ではR21ないしR23のうち少なくとも一つ以上がアルキル基またはアリール基であることが好ましく、二つ以上がアルキル基またはアリール基であることがより好ましい。また、安価に入手する事ができるという点ではR21ないしR23が同一の基である場合が好ましい。
以下に本発明における一般式(D)で表される化合物をはじめとする水素結合性化合物の具体例を示すが、本発明はこれらに限定されるものではない。
【0104】
【化28】
Figure 2004004322
【0105】
【化29】
Figure 2004004322
【0106】
水素結合性化合物の具体例は上述の他に欧州特許1096310号、特願2000−270498号、同2001−124796号に記載のものがあげられる。
本発明で用いられる一般式(D)で表される化合物は、還元剤と同様に溶液形態、乳化分散形態、固体分散微粒子分散物形態で塗布液に含有せしめ、感光材料中で使用することができるが、固体分散物として使用することが好ましい。この一般式(D)で表される化合物は、溶液状態でフェノール性水酸基を有する化合物と水素結合性の錯体を形成しており、還元剤と一般式(D)で表される化合物との組み合わせによっては錯体として結晶状態で単離することができる。このようにして単離した結晶粉体を固体分散微粒子分散物として使用することは安定した性能を得る上で特に好ましい。また、還元剤と一般式(D)で表される化合物を粉体で混合し、適当な分散剤を使って、サンドグラインダーミル等で分散時に錯形成させる方法も好ましく用いることができる。
この一般式(D)で表される化合物は還元剤に対して、1〜200モル%の範囲で使用することが好ましく、より好ましくは10〜150モル%の範囲で、さらに好ましくは20〜100モル%の範囲である。
【0107】
6.ハロゲン化銀の説明
1)ハロゲン組成
本発明に用いられる感光性ハロゲン化銀は、ハロゲン組成として特に制限はなく、塩化銀、塩臭化銀、臭化銀、ヨウ臭化銀、ヨウ塩臭化銀、ヨウ化銀またはチオシアン酸銀や燐酸銀などの有機銀塩を用いることができる。その中でも臭化銀、ヨウ臭化銀およびヨウ化銀が好ましい。
【0108】
粒子内におけるハロゲン組成の分布は均一であってもよく、ハロゲン組成がステップ状に変化したものでもよく、或いは連続的に変化したものでもよい。また、コア/シェル構造を有するハロゲン化銀粒子も好ましく用いることができる。構造として好ましいものは2〜5重構造であり、より好ましくは2〜4重構造のコア/シェル粒子を用いることができる。コア部のヨウ化銀含有率が高いコア高ヨウ化銀構造、またはシェル部のヨウ化銀含有率が高いシェル高ヨウ化銀構造も好ましく用いることができる。また、粒子の表面にエピタキシャル部分とした塩化銀や臭化銀を局在させる技術も好ましく用いることができる。
【0109】
2)粒子サイズ
本発明に用いる感光性ハロゲン化銀の粒子サイズは、現像形成後の白濁を低く押さえる目的のために小さいことが好ましく、具体的には、5nm以上0.20μm以下、より好ましくは5nm以上0.15μm以下、さらに好ましくは10nm以上0.12μm以下である。ここでいう粒子サイズとは、電子顕微鏡により観察した投影面積と同面積の円像に換算したときの直径の平均をいう。
【0110】
3)塗布量
この様なハロゲン化銀粒子の塗布量は、後述する非感光性有機銀塩の銀1モルに対して1モル%以上30モル%以下、好ましくは2モル%以上20モル%以下であることがさらに好ましい。3モル%以上15モル%以下であることがより好ましく、特に好ましくは5モル%以上10モル%以下である。
【0111】
4)粒子形成方法
感光性ハロゲン化銀の形成方法は当業界ではよく知られており、例えば、リサーチディスクロージャー1978年6月の第17029号、および米国特許第3,700,458号に記載されている方法を用いることができるが、具体的にはゼラチンあるいは他のポリマー溶液中に銀供給化合物及びハロゲン供給化合物を添加することにより感光性ハロゲン化銀を調製し、その後で有機銀塩と混合する方法を用いる。また、特開平11−119374号公報の段落番号0217〜0224に記載されている方法、特開平11−352627号、特願2000−42336号記載の方法も好ましい。
【0112】
5)粒子形状
ハロゲン化銀粒子の形状としては立方体粒子、八面体粒子、14面体粒子、12面体粒子、平板状粒子、球状粒子、棒状粒子、ジャガイモ状粒子等を挙げることができる。とくに、12面体粒子、14面体粒子、と平板状粒子が好ましい。ヨウ化銀含有率の高い組成のハロゲン化銀は複雑な形態を取り得るが、好ましい形態は例えば、R.L.JENKINS etal.J of Phot. Sci. Vol.28 (1980)のp164−Fig1に示されているような接合粒子が挙げられる。同Fig.1に示されているような平板上粒子も好ましく用いられる。ハロゲン化銀粒子のコーナーが丸まった粒子も好ましく用いることができる。感光性ハロゲン化銀粒子の外表面の面指数(ミラー指数)については特に制限はないが、分光増感色素が吸着した場合の分光増感効率が高い[100]面の占める割合が高いことが好ましい。その割合としては50%以上が好ましく、65%以上がより好ましく、80%以上が更に好ましい。ミラー指数[100]面の比率は増感色素の吸着における[111]面と[100]面との吸着依存性を利用したT.Tani;J.Imaging Sci.,29、165(1985年)に記載の方法により求めることができる。
【0113】
6)重金属
本発明の感光性ハロゲン化銀粒子は、周期律表(第1〜18族までを示す)の第8族〜第10族の金属または金属錯体を含有することができる。周期律表の第8族〜第10族の金属または金属錯体の中心金属として好ましくは、ロジウム、ルテニウム、イリジウムである。これら金属錯体は1種類でもよいし、同種金属及び異種金属の錯体を2種以上併用してもよい。好ましい含有率は銀1モルに対し1×10−9モルから1×10−3モルの範囲が好ましい。これらの重金属や金属錯体及びそれらの添加法については特開平7−225449号、特開平11−65021号段落番号0018〜0024、特開平11−119374号段落番号0227〜0240に記載されている。
【0114】
本発明においては、六シアノ金属錯体を粒子最表面に存在させたハロゲン化銀粒子が好ましい。六シアノ金属錯体としては、[Fe(CN)4−、[Fe(CN)3−、[Ru(CN)4−、[Os(CN)4−、[Co(CN)3−、[Rh(CN)3−、[Ir (CN)3−、[Cr(CN)3−、[Re(CN)3−などが挙げられる。本発明においては六シアノFe錯体が好ましい。
【0115】
六シアノ金属錯体は、水溶液中でイオンの形で存在するので対陽イオンは重要ではないが、水と混和しやすく、ハロゲン化銀乳剤の沈澱操作に適合しているナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオンおよびリチウムイオン等のアルカリ金属イオン、アンモニウムイオン、アルキルアンモニウムイオン(例えばテトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラプロピルアンモニウムイオン、テトラ(n−ブチル)アンモニウムイオン)を用いることが好ましい。
【0116】
六シアノ金属錯体は、水の他に水と混和しうる適当な有機溶媒(例えば、アルコール類、エーテル類、グリコール類、ケトン類、エステル類、アミド類等)との混合溶媒やゼラチンと混和して添加することができる。
【0117】
六シアノ金属錯体の添加量は、銀1モル当たり1×10−5モル以上1×10−2モル以下が好ましく、より好ましくは1×10−4モル以上1×10−3モル以下である。
【0118】
六シアノ金属錯体をハロゲン化銀粒子最表面に存在させるには、六シアノ金属錯体を、粒子形成に使用する硝酸銀水溶液を添加終了した後、硫黄増感、セレン増感およびテルル増感のカルコゲン増感や金増感等の貴金属増感を行う化学増感工程の前までの仕込工程終了前、水洗工程中、分散工程中、または化学増感工程前に直接添加する。ハロゲン化銀微粒子を成長させないためには、粒子形成後速やかに六シアノ金属錯体を添加することが好ましく、仕込工程終了前に添加することが好ましい。
【0119】
尚、六シアノ金属錯体の添加は、粒子形成をするために添加する硝酸銀の総量の96質量%を添加した後から開始してもよく、98質量%添加した後から開始するのがより好ましく、99質量%添加した後が特に好ましい。
これら六シアノ金属錯体を粒子形成の完了する直前の硝酸銀水溶液を添加した後に添加すると、ハロゲン化銀粒子最表面に吸着することができ、そのほとんどが粒子表面の銀イオンと難溶性の塩を形成する。この六シアノ鉄(II)の銀塩は、AgIよりも難溶性の塩であるため、微粒子による再溶解を防ぐことができ、粒子サイズが小さいハロゲン化銀微粒子を製造することが可能となった。
【0120】
さらに本発明に用いられるハロゲン化銀粒子に含有することのできる金属原子、ハロゲン化銀乳剤の脱塩法や化学増感法については特開平11−84574号段落番号0046〜0050、特開平11−65021号段落番号0025〜0031、特開平11−119374号段落番号0242〜0250に記載されている。
【0121】
7)ゼラチン
本発明に用いる感光性ハロゲン化銀乳剤に含有されるゼラチンとしては、種々のゼラチンが使用することができる。感光性ハロゲン化銀乳剤の有機銀塩含有塗布液中での分散状態を良好に維持するために、分子量は、500〜60,000の低分子量ゼラチンを使用することが好ましい。ここでの分子量とはゲルパーミエーションクロマトグラフィー(GPC)のスチレン換算により算出した数平均分子量をいう。これらの低分子量ゼラチンは粒子形成時あるいは脱塩処理後の分散時に使用してもよいが、脱塩処理後の分散時に使用することが好ましい。
【0122】
8)化学増感
本発明に用いられる感光性ハロゲン化銀は、未化学増感でもよいが、カルコゲン増感法、金増感法、還元増感法の少なくとも1つの方法で化学増感されるのが好ましい。カルコゲン増感法としては、硫黄増感法、セレン増感法およびテルル増感法が挙げられる。
【0123】
硫黄増感においては、不安定硫黄化合物を用い、P.Grafkides著、Chimie et Physique Photographique(Paul Momtel社刊、1987年、第5版)、Research Disclosure誌307巻307105号などに記載されている不安定硫黄化合物を用いる事が出来る。
具体的には、チオ硫酸塩(例えばハイポ)、チオ尿素類(例えば、ジフェニルチオ尿素、トリエチルチオ尿素、NーエチルーN´ー(4ーメチルー2ーチアゾリル)チオ尿素、カルボキシメチルトリメチルチオ尿素)、チオアミド類(例えば、チオアセトアミド)、ローダニン類(例えば、ジエチルローダニン、5ーベンジリデン−N−エチルローダニン)、フォスフィンスルフィド類(例えば、トリメチルフォスフィンスルフィド)、チオヒダントイン類、4ーオキソーオキサゾリジンー2ーチオン類、ジスルフィド類またはポリスルフィド類(例えば、ジモルフォリンジスルフィド、シスチン、ヘキサチオカンーチオン)、ポリチオン酸塩、元素状硫黄などの公知の硫黄化合物および活性ゼラチンなども用いることができる。特にチオ硫酸塩、チオ尿素類とローダニン類が好ましい。
【0124】
セレン増感においては、不安定セレン化合物を用い、特公昭43ー13489号、同44ー15748号、特開平4ー25832号、同4ー109340号、同4ー271341号、同5ー40324号、同5ー11385号、特願平4ー202415号、同4ー330495号、同4ー333030号、同5ー4203号、同5ー4204号、同5ー106977号、同5ー236538号、同5ー241642号、同5ー286916号などに記載されているセレン化合物を用いる事が出来る。
【0125】
具体的には、コロイド状金属セレン、セレノ尿素類(例えば、N,Nージメチルセレノ尿素、トリフルオルメチルカルボニルートリメチルセレノ尿素、アセチルートリメチルセレノ尿素)、セレノアミド類(例えば、セレノアミド,N,Nージエチルフェニルセレノアミド)、フォスフィンセレニド類(例えば、トリフェニルフォスフィンセレニド、ペンタフルオロフェニルートリフェニルフォスフィンセレニド)、セレノフォスフェート類(例えば、トリーp−トリルセレノフォスフェート、トリ−n−ブチルセレノフォスフェート)、セレノケトン類(例えば、セレノベンゾフェノン)、イソセレノシアネート類、セレノカルボン酸類、セレノエステル類、ジアシルセレニド類などを用いればよい。またさらに、特公昭46ー4553号、同52ー34492号などに記載の非不安定セレン化合物、例えば亜セレン酸、セレノシアン酸塩、セレナゾール類、セレニド類なども用いる事が出来る。特に、フォスフィンセレニド類、セレノ尿素類とセレノシアン酸塩が好ましい。
【0126】
テルル増感においては、不安定テルル化合物を用い、特開平4ー224595号、同4ー271341号、同4ー333043号、同5ー303157号、同6−27573号、同6−175258号、同6−180478号、同6−208186号、同6−208184号、同6−317867号、同7−140579号、同7−301879号、同7−301880号などに記載されている不安定テルル化合物を用いる事が出来る。
【0127】
具体的には、フォスフィンテルリド類(例えば、ブチルージイソプロピルフォスフィンテルリド、トリブチルフォスフィンテルリド、トリブトキシフォスフィンテルリド、エトキシージフェニルフォスフィンテルリド)、ジアシル(ジ)テルリド類(例えば、ビス(ジフェニルカルバモイル)ジテルリド、ビス(N−フェニルーN−メチルカルバモイル)ジテルリド、ビス(N−フェニルーNーメチルカルバモイル)テルリド、ビス(N−フェニルーNーベンジルカルバモイル)テルリド、ビス(エトキシカルボニル)テルリド)、テルロ尿素類(例えば、N,N´ージメチルエチレンテルロ尿素、N,N´ージフェニルエチレンテルロ尿素)テルロアミド類、テルロエステル類などを用いれば良い。特に、ジアシル(ジ)テルリド類とフォスフィンテルリド類が好ましく、特に特開平11−65021号段落番号0030に記載の文献に記載の化合物、特開平5−313284号中の一般式(II),(III),(IV)で示される化合物がより好ましい。
【0128】
特に本発明のカルコゲン増感においてはセレン増感とテルル増感が好ましく、特にテルル増感が好ましい。
【0129】
金増感においては、P.Grafkides著、Chimie et Physique Photographique(Paul Momtel社刊、1987年、第5版)、Research Disclosure誌307巻307105号に記載されている金増感剤を用いることができる。具体的には、塩化金酸、カリウムクロロオーレート、カリウムオーリチオシアネート、硫化金、金セレニドなどでありこれらにくわえて、米国特許第2642361号、同5049484号、同5049485号、同5169751号、同5252455号、ベルギー特許第691857などに記載の金化合物も用いることが出来る。またP.Grafkides著、Chimie et Physique Photographique(Paul Momtel社刊、1987年、第5版)、Research Disclosure誌307巻307105号に記載されている金以外の、白金、パラジュウム、イリジュウムなどの貴金属塩を用いる事も出来る。
【0130】
金増感は単独で用いることもできるが、前記のカルコゲン増感と組み合わせて用いることが好ましい。具体的には金硫黄増感、金セレン増感、金テルル増感、金硫黄セレン増感、金硫黄テルル増感、金セレンテルル増感、金硫黄セレンテルル増感である。
【0131】
本発明においては、化学増感は粒子形成後で塗布前であればいかなる時期でも可能であり、脱塩後、(1)分光増感前、(2)分光増感と同時、(3)分光増感後、(4)塗布直前等があり得る。
【0132】
本発明で用いられるカルコゲン増感剤の使用量は、使用するハロゲン化銀粒子、化学熟成条件等によって変わるが、ハロゲン化銀1モル当たり10−8〜10−1モル、好ましくは10−7〜10−2モル程度を用いる。
同様に、本発明で用いられる金増感剤の添加量は種々の条件により異なるが、目安としてはハロゲン化銀1モル当たり10−7モル〜10−2モル、より好ましくは10−6モル〜5×10−3モルである。この乳剤を化学増感する環境条件としてはいかなる条件でも選択可能ではあるが、pAgとしては8以下、好ましくは7.0以下より6.5以下、とくに6.0以下、およびpAgが1.5以上、好ましくは2.0以上、特に好ましくは2.5以上の条件であり、pHとしては3〜10、好ましくは4〜9、温度としては20〜95℃、好ましくは25〜80℃程度である。
【0133】
本発明においてカルコゲン増感や金増感に加えて、さらに還元増感も併用することができる。とくにカルコゲン増感と併用するのが好ましい。
還元増感法の具体的な化合物としてはアスコルビン酸、二酸化チオ尿素、ジメチルアミンボランが好ましく、その他に塩化第一スズ、アミノイミノメタンスルフィン酸、ヒドラジン誘導体、ボラン化合物、シラン化合物、ポリアミン化合物等を用いることが好ましい。還元増感剤の添加は、結晶成長から塗布直前の調製工程までの感光乳剤製造工程のどの過程でもよい。また、乳剤のpHを8以上またはpAgを4以下に保持して熟成することにより還元増感することも好ましく、粒子形成中に銀イオンのシングルアディション部分を導入することにより還元増感することも好ましい。
還元増感剤の添加量としては、同様に種々の条件により異なるが、目安としてはハロゲン化銀1モル当たり10−7モル〜10−1モル、より好ましくは10−6モル〜5×10−2モルである。
【0134】
本発明で用いるハロゲン化銀乳剤には、欧州特許公開第293,917号公報に示される方法により、チオスルフォン酸化合物を添加してもよい。
本発明における感光性ハロゲン化銀粒子は未化学増感でもよいが、金増感、カルコゲン増感、の少なくとも1つの方法で化学増感されていることが高感度の熱現像感光材料を設計する点から好ましい。
【0135】
9)増感色素
本発明に適用できる増感色素としてはハロゲン化銀粒子に吸着した際、所望の波長領域でハロゲン化銀粒子を分光増感できるもので、露光光源の分光特性に適した分光感度を有する増感色素を有利に選択することができる。増感色素及び添加法については、特開平11−65021号の段落番号0103〜0109、特開平10−186572号一般式(II)で表される化合物、特開平11−119374号の一般式(I)で表される色素及び段落番号0106、米国特許第5,510,236号、同第3,871,887号実施例5に記載の色素、特開平2−96131号、特開昭59−48753号に開示されている色素、欧州特許公開第0803764A1号の第19ページ第38行〜第20ページ第35行、特願2000−86865号、特願2000−102560号、特願2000−205399号等に記載されている。これらの増感色素は単独で用いてもよく、2種以上組合せて用いてもよい。本発明において増感色素をハロゲン化銀乳剤中に添加する時期は、脱塩工程後、塗布までの時期が好ましく、より好ましくは脱塩後から化学熟成の終了前までの時期である。
【0136】
本発明における増感色素の添加量は、感度やカブリの性能に合わせて所望の量にすることができるが、感光性層のハロゲン化銀1モル当たり10−6〜1モルが好ましく、さらに好ましくは10−4〜10−1モルである。
【0137】
本発明は分光増感効率を向上させるため、強色増感剤を用いることができる。本発明に用いる強色増感剤としては、欧州特許公開第587,338号、米国特許第3,877,943号、同第4,873,184号、特開平5−341432号、同11−109547号、同10−111543号等に記載の化合物が挙げられる。
【0138】
10)ハロゲン化銀の併用
本発明に用いられる熱現像感光材料中の感光性ハロゲン化銀乳剤は、一種だけでもよいし、二種以上(例えば、平均粒子サイズの異なるもの、ハロゲン組成の異なるもの、晶癖の異なるもの、化学増感の条件の異なるもの)併用してもよい。感度の異なる感光性ハロゲン化銀を複数種用いることで階調を調節することができる。これらに関する技術としては特開昭57−119341号、同53−106125号、同47−3929号、同48−55730号、同46−5187号、同50−73627号、同57−150841号などが挙げられる。感度差としてはそれぞれの乳剤で0.2logE以上の差を持たせることが好ましい。
【0139】
11)ハロゲン化銀と有機銀塩の混合
本発明の感光性ハロゲン化銀の粒子は、非感光性有機銀塩の存在しないところで形成され、化学増感されることが特に好ましい。有機銀塩に対してハロゲン化剤を添加することによってハロゲン化銀を形成する方法では十分な感度が達成できない場合があるからである。
ハロゲン化銀と有機銀塩を混合する方法としては、別々に調製した感光性ハロゲン化銀と有機銀塩を高速撹拌機やボールミル、サンドミル、コロイドミル、振動ミル、ホモジナイザー等で混合する方法や、あるいは有機銀塩の調製中のいずれかのタイミングで調製終了した感光性ハロゲン化銀を混合して有機銀塩を調製する方法等があげられる。いずれの方法でも本発明の効果を好ましく得ることができる。
【0140】
12)ハロゲン化銀の塗布液への混合
本発明のハロゲン化銀の画像形成層塗布液中への好ましい添加時期は、塗布する180分前から直前、好ましくは60分前から10秒前であるが、混合方法及び混合条件については本発明の効果が十分に現れる限りにおいては特に制限はない。具体的な混合方法としては添加流量とコーターへの送液量から計算した平均滞留時間を所望の時間となるようにしたタンクでの混合する方法やN.Harnby、M.F.Edwards、A.W.Nienow著、高橋幸司訳”液体混合技術”(日刊工業新聞社刊、1989年)の第8章等に記載されているスタチックミキサーなどを使用する方法がある。
【0141】
7.界面活性剤の説明
本発明のフッ素化合物とともに他の界面活性剤を併用してもよい。併用可能な界面活性剤としては、アニオン性、カチオン性、またはノニオン性の親水基を有する各種界面活性剤を挙げることができる。また併用する界面活性剤は、上記特定のフッ素化合物以外のフッ素系界面活性剤であってもよい。併用する界面活性剤としては、アニオン性もしくはノニオン性の界面活性剤がより好ましい。
【0142】
併用可能な界面活性剤としては、例えば特開昭62−215272号(649〜706頁)、リサーチ・ディスクロージャ(RD)Item17643,26〜27頁(1978年12月)、同18716,650頁(1979年11月),同307105,875〜876頁(1989年11月)等に記載の界面活性剤が挙げられる。
【0143】
カチオン性の親水基については、前述した本発明のフッ素化合物の場合と同様である。
【0144】
アニオン性の親水性基とは、pKaが7以下の酸性基およびそのアルカリ金属塩またはアンモニウム塩を言う。具体的には、スルホ基、カルボキシル基、ホスホン酸基、カルバモイルスルファモイル基、スルファモイルスルファモイル基、アシルスルファモイル基およびこれらの塩類などが挙げられる。このうち、好ましくはスルホ基、カルボキシル基、ホスホン酸基およびその塩類で、より好ましくはスルホ基およびその塩類である。塩類を形成するカチオン種としては、リチウム、ナトリウム、カリウム、セシウム、アンモニウム、テトラメチルアンモニウム、テトラブチルアンモニウム、メチルピリジニウムなどが挙げられるが、好ましくはリチウム、ナトリウム、カリウム、アンモニウムである。
【0145】
ノニオン性の親水性基とは、イオンに解離することなく水に溶解する基をいう。具体的には、ポリ(オキシエチレン)アルキルエーテルや多価アルコールなどが挙げられるが、これらに限定されない。
【0146】
併用するアニオン性の親水基を有するフッ素系界面活性剤としては、一般式(F)の化合物が挙げられるが、これに限定されない。
一般式(F)
【化30】
Figure 2004004322
(式中、RおよびRは置換または無置換のアルキル基を表し、少なくとも一方は炭素原子数2以上でフッ素原子数13以下のフッ化アルキル基を表す。RおよびRはそれぞれ水素原子またはアルキル基を表す。Aは−L−SOMを表し、Mは水素原子またはカチオンを表す。Lは、単結合または置換もしくは無置換のアルキレン基を表す。)
アニオン性親水基を有するフッ素系界面活性剤として、具体的には以下の化合物が挙げられるが、これに限定されない。
【0147】
【化31】
Figure 2004004322
【0148】
【化32】
Figure 2004004322
【0149】
【化33】
Figure 2004004322
【0150】
【化34】
Figure 2004004322
【0151】
アニオン性親水基を有する非フッ素系界面活性剤として、具体的には以下の化合物が挙げられるが、これに限定されない。
【0152】
【化35】
Figure 2004004322
【0153】
また、併用するノニオン性の親水基を有する界面活性剤としては、以下のものが挙げられるが、これらに限定されない。
【0154】
【化36】
Figure 2004004322
【0155】
【化37】
Figure 2004004322
【0156】
本発明に併用する界面活性剤の添加量は、0.1〜100mg/mであり、好ましくは、0.2〜50mg/mで、より好ましくは0.5〜10mg/mである。
【0157】
以下に併用するアニオン性またはノニオン性の界面活性剤について合成例を示すが、これらに限定されない。
(合成例1:F−17の合成)
(1) マレイン酸ジ(3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル)の合成
無水マレイン酸90.5g(0.924mol)、3,3,4,4,5,5,6,6,6−ノナフルオロヘキサノール500g(1.89mol)、p−トルエンスルホン酸一水和物17.5g(0.09mol)をトルエン1000L中、生成する水を留去しながら20時間加熱還流した。その後、室温まで冷却し、トルエンを追加し、水で有機相を洗浄し、溶媒を減圧留去して透明の液体として目的物を484g(収率86%)得た。
【0158】
(2) F−17の合成
マレイン酸ジ(3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル)514g(0.845mol)、亜硫酸水素ナトリウム91.0g(0.875mol)、水−エタノール(1/1 v/v)250mLを加え、6時間加熱還流した後、酢酸エチル500mL、飽和塩化ナトリウム水溶液120mLを加え、抽出操作を行った。有機相を回収し、硫酸ナトリウムを添加し、脱水操作を行った。硫酸ナトリウムを濾過で除き、濾液を濃縮した後、アセトン2.5Lを加え、加熱した。不溶解物を濾過で除いた後、0℃まで冷却し、ゆっくりとアセトニトリル2.5Lを添加した。析出した固体を濾過回収し、得られた結晶を80℃で減圧乾燥し、白色の結晶として目的化合物を478g(収率79%)得た。
得られた化合物のH−NMRデータは以下の通りである。
 1H−NMR(DMSO−d):δ2.49−2.62(s,4H)、2.85−2.99(m,2H)、3.68(dd,1H)、4.23−4.35(m,4H)
【0159】
8.バインダーの説明
本発明の感光材料における画像形成層のバインダーはいかなるポリマーを使用してもよく、好適なバインダーは透明又は半透明で、一般に無色であり、天然樹脂やポリマー及びコポリマー、合成樹脂やポリマー及びコポリマー、その他フィルムを形成する媒体、例えば、ゼラチン類、ゴム類、ポリ(ビニルアルコール)類、ヒドロキシエチルセルロース類、セルロースアセテート類、セルロースアセテートブチレート類、ポリ(ビニルピロリドン)類、カゼイン、デンプン、ポリ(アクリル酸)類、ポリ(メチルメタクリル酸)類、ポリ(塩化ビニル)類、ポリ(メタクリル酸)類、スチレン−無水マレイン酸共重合体類、スチレン−アクリロニトリル共重合体類、スチレン−ブタジエン共重合体類、ポリ(ビニルアセタール)類(例えば、ポリ(ビニルホルマール)及びポリ(ビニルブチラール))、ポリ(エステル)類、ポリ(ウレタン)類、フェノキシ樹脂、ポリ(塩化ビニリデン)類、ポリ(エポキシド)類、ポリ(カーボネート)類、ポリ(酢酸ビニル)類、ポリ(オレフィン)類、セルロースエステル類、ポリ(アミド)類がある。バインダーは水又は有機溶媒またはエマルションから被覆形成してもよい。
【0160】
バインダーは必要に応じて2種以上を併用しても良い。この場合、ガラス転移温度(以下Tgと記載する)が異なるポリマーを2種以上ブレンドして使用しても良い。
【0161】
なお、本明細書においてTgは下記の式で計算した。
1/Tg=Σ(Xi/Tgi)
ここでは、ポリマーはi=1からnまでのn個のモノマー成分が共重合しているとする。Xiはi番目のモノマーの重量分率(ΣXi=1)、 Tgiはi番目のモノマーの単独重合体のガラス転移温度(絶対温度)である。ただしΣはi=1からnまでの和をとる。尚、各モノマーの単独重合体ガラス転移温度の値(Tgi)はPolymer Handbook(3rd Edition)(J.Brandrup, E.H.Immergut著(Wiley−Interscience、1989))の値を採用した。
【0162】
塗布溶媒として有機溶剤を使用する場合には、バインダーはポリビニルアセタール、ポリビニルクロリド、ポリビニルアセテート、セルロースアセテート、ポリオレフィン、ポリエステル、ポリスチレン、ポリアクリロニトリル、ポリカーボネート、ポリビニルブチラール、ブチルエチルセルロース、メタクリレートコポリマー、無水マレイン酸エステルコポリマー、ポリスチレン及びブタジエン―スチレンコポリマーなどから任意のものを使用することができる。特に、画像形成層では、バインダーとしてポリビニルブチラールを含むことが好ましく、具体的にはバインダーとしてポリビニルブチラールを画像形成層のバインダー全組成分に対して50質量%以上使用するものである。当然ながら、コポリマー及びターポリマーも含まれる。ポリビニルブチラールの好ましい総量は、画像形成層のバインダー全組成分に対して50質量%以上100質量%以下であり、さらに好ましくは70質量%以上100質量%以下である。バインダーのTgは40〜90℃の範囲が好ましく、さらに好ましくは50〜80℃である。Tgの異なるポリマーを2種以上ブレンドして使用する場合には、その重量平均Tgが上記の範囲にはいることが好ましい。
【0163】
バインダー総量は、例えば、画像形成層の成分をその層中に保持するのに十分な量で使用される。すなわち、バインダーとして機能するのに効果的な範囲で使用される。効果的な範囲は、当業者が適切に決定することができる。少なくとも有機銀塩を保持する場合の目安として、バインダーと有機銀塩との割合は質量比で15:1〜1:3、特に8:1〜1:2の範囲が好ましい。
【0164】
塗布溶媒として水系溶剤を使用する場合には、バインダーとして使用するポリマーは含水率の低いものが好ましい。したがって、溶媒の30質量%以上が水である塗布液を用いて画像形成層が形成される場合には、25℃60%RHでの平衡含水率が2質量%以下のポリマーのラテックスを使用することが好ましい。最も好ましい形態は、イオン伝導度が2.5mS/cm以下になるように調製されたものであり、このような調製法としてポリマー合成後分離機能膜を用いて精製処理する方法が挙げられる。水系溶剤におけるバインダーのTgは―20℃以上80℃以下であることが好ましく、0℃〜70℃であることがより好ましく、10℃以上60℃以下であることが更に好ましい。塗布溶媒として有機溶剤を使用した場合と同様に、水系溶媒においてもTgの異なるポリマーを2種以上ブレンドして使用する場合には、その重量平均Tgが上記の範囲にはいることが好ましい。
【0165】
ここで、前記ポリマーが可溶または分散可能であるような水系溶媒とは、水または水に70質量%以下の水混和性の有機溶媒を混合したものをいう。水混和性の有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルコール系、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ系、酢酸エチル、ジメチルホルミアミドなどを挙げることができる。
【0166】
また「25℃60%RHにおける平衡含水率」とは、25℃60%RHの雰囲気下で調湿平衡にあるポリマーの重量W1と25℃で絶乾状態にあるポリマーの重量W0を用いて以下のように表すことができる。
25℃60%RHにおける平衡含水率=[(W1−W0)/W0]×100(質量%)
【0167】
含水率の定義と測定法については、例えば高分子工学講座14、高分子材料試験法(高分子学会編、地人書館)を参考にすることができる。
【0168】
本発明のバインダーポリマーの25℃60%RHにおける平衡含水率は2質量%以下であることが好ましいが、より好ましくは0.01質量%以上1.5質量%以下、さらに好ましくは0.02質量%以上1質量%以下が望ましい。
【0169】
分散状態の例としては、水不溶な疎水性ポリマーの微粒子が分散しているラテックスやポリマー分子が分子状態またはミセルを形成して分散しているものなどいずれでもよいが、ラテックス分散した粒子がより好ましい。分散粒子の数平均粒径は1〜50000nm、好ましくは5〜1000nmの範囲で、より好ましくは10〜500nmの範囲、さらに好ましくは50〜200nmの範囲である。分散粒子の粒径分布に関しては特に制限は無く、広い粒径分布を持つものでも単分散の粒径分布を持つものでもよい。単分散の粒径分布を持つものを2種以上混合して使用することも塗布液の物性を制御する上で好ましい使用法である。
【0170】
本発明において水系溶媒に分散可能なポリマーの好ましい態様としては、アクリル系ポリマー、ポリ(エステル)類、ゴム類(例えばSBR樹脂)、ポリ(ウレタン)類、ポリ(塩化ビニル)類、ポリ(酢酸ビニル)類、ポリ(塩化ビニリデン)類、ポリ(オレフィン)類等の疎水性ポリマーを好ましく用いることができる。これらポリマーとしては直鎖のポリマーでも枝分かれしたポリマーでもまた架橋されたポリマーでもよいし、単一のモノマーが重合したいわゆるホモポリマーでもよいし、2種類以上のモノマーが重合したコポリマーでもよい。コポリマーの場合はランダムコポリマーでも、ブロックコポリマーでもよい。これらポリマーの分子量は数平均分子量で5000〜1000000、好ましくは10000〜200000がよい。分子量が小さすぎるものは乳剤層の力学強度が不十分であり、大きすぎるものは成膜性が悪く好ましくない。また、架橋性のポリマーラッテクスは特に好ましく使用される。
【0171】
水系溶媒に分散可能なポリマーの具体例で好ましいものとしては以下のものを挙げることができるが、本発明はこれらに限定されるものではない。以下では原料モノマーを用いて表し、括弧内の数値は質量%、分子量は数平均分子量である。多官能モノマーを使用した場合は架橋構造を作るため分子量の概念が適用できないので架橋性と記載し、分子量の記載を省略した。
【0172】
P−1;−MMA(70)−EA(27)−MAA(3)−のラテックス(分子量37000、Tg61℃)
P−2;−MMA(70)−2EHA(20)−St(5)−AA(5)−のラテックス(分子量40000、Tg59℃)
P−3;−St(50)−Bu(47)−MAA(3)−のラテックス(架橋性、Tg−17℃)
P−4;−St(68)−Bu(29)−AA(3)−のラテックス(架橋性、Tg17℃)
P−5;−St(71)−Bu(26)−AA(3)−のラテックス(架橋性,Tg24℃)
P−6;−St(70)−Bu(27)−IA(3)−のラテックス(架橋性)
P−7;−St(75)−Bu(24)−AA(1)−のラテックス(架橋性、Tg29℃)
P−8;−St(60)−Bu(35)−DVB(3)−MAA(2)−のラテックス(架橋性)
P−9;−St(70)−Bu(25)−DVB(2)−AA(3)−のラテックス(架橋性)
P−10;−VC(50)−MMA(20)−EA(20)−AN(5)−AA(5)−のラテックス(分子量80000)
P−11;−VDC(85)−MMA(5)−EA(5)−MAA(5)−のラテックス(分子量67000)
P−12;−Et(90)−MAA(10)−のラテックス(分子量12000)
P−13;−St(70)−2EHA(27)−AA(3)のラテックス(分子量130000、Tg43℃)
P−14;−MMA(63)−EA(35)− AA(2)のラテックス(分子量33000、Tg47℃)
P−15;−St(70.5)−Bu(26.5)−AA(3)−のラテックス(架橋性,Tg23℃)
P−16;−St(69.5)−Bu(27.5)−AA(3)−のラテックス(架橋性,Tg20.5℃)
【0173】
上記構造の略号は以下のモノマーを表す。MMA;メチルメタクリレート,EA;エチルアクリレート、MAA;メタクリル酸,2EHA;2−エチルヘキシルアクリレート,St;スチレン,Bu;ブタジエン,AA;アクリル酸,DVB;ジビニルベンゼン,VC;塩化ビニル,AN;アクリロニトリル,VDC;塩化ビニリデン,Et;エチレン,IA;イタコン酸。
【0174】
以上に記載したポリマーラテックスは市販もされていて、以下のようなポリマーが利用できる。アクリル系ポリマーの例としては、セビアンA−4635,4718,4601(以上ダイセル化学工業(株)製)、Nipol Lx811、814、821、820、857(以上日本ゼオン(株)製)など、ポリ(エステル)類の例としては、FINETEX ES650、611、675、850(以上大日本インキ化学(株)製)、WD−size、WMS(以上イーストマンケミカル製)など、ポリ(ウレタン)類の例としては、HYDRAN AP10、20、30、40(以上大日本インキ化学(株)製)など、ゴム類の例としては、LACSTAR 7310K、3307B、4700H、7132C(以上大日本インキ化学(株)製)、Nipol Lx416、410、438C、2507(以上日本ゼオン(株)製)など、ポリ(塩化ビニル)類の例としては、G351、G576(以上日本ゼオン(株)製)など、ポリ(塩化ビニリデン)類の例としては、L502、L513(以上旭化成工業(株)製)など、ポリ(オレフィン)類の例としては、ケミパールS120、SA100(以上三井石油化学(株)製)などを挙げることができる。
【0175】
これらのポリマーラテックスは単独で用いてもよいし、必要に応じて2種以上ブレンドしてもよい。
【0176】
水系溶媒に分散可能なポリマーとしては、特に、スチレン−ブタジエン共重合体のラテックスが好ましい。スチレン−ブタジエン共重合体におけるスチレンのモノマー単位とブタジエンのモノマー単位との重量比は40:60〜95:5であることが好ましい。また、スチレンのモノマー単位とブタジエンのモノマー単位との共重合体に占める割合は60〜99質量%であることが好ましい。また、本発明のポリマーラッテクスはアクリル酸またはメタクリル酸をスチレンとブタジエンの和に対して1〜6質量%含有することが好ましく、より好ましくは2〜5質量%含有する。本発明のポリマーラテックスはアクリル酸を含有することが好ましい。
【0177】
本発明に用いることが好ましいスチレン−ブタジエン−アクリル酸または−メタクリル酸共重合体のラテックスとしては、前記のP−3〜P−8,15、市販品であるLACSTAR−3307B、7132C、Nipol Lx416等が挙げられる。
【0178】
本発明の感光材料の画像形成層には必要に応じてゼラチン、ポリビニルアルコール、メチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロースなどの親水性ポリマーを添加してもよい。これらの親水性ポリマーの添加量は画像形成層の全バインダーの30質量%以下、より好ましくは20質量%以下が好ましい。
【0179】
水系溶媒で形成される画像形成層では、ポリマーラテックスを用いたものが好ましい。画像形成層のバインダーの量は、全バインダー/有機銀塩の重量比が1/10〜10/1、より好ましくは1/3〜5/1の範囲、さらに好ましくは1/1〜3/1の範囲である。
【0180】
また、このような画像形成層は、通常、感光性銀塩である感光性ハロゲン化銀が含有された感光性層(乳剤層)でもあり、このような場合の、全バインダー/ハロゲン化銀の重量比は400〜5、より好ましくは200〜10の範囲である。
【0181】
本発明の画像形成層の全バインダー量は好ましくは0.2〜30g/m、より好ましくは1〜15g/m、さらに好ましくは2〜10g/mの範囲である。本発明の画像形成層には架橋のための架橋剤、塗布性改良のための界面活性剤などを添加してもよい。
【0182】
9.かぶり防止剤の説明
本発明はカブリ防止剤として下記一般式(B)で表される有機ポリハロゲン化合物を含有するのが好ましい。
一般式(B)
【0183】
Q−(Y)n−C(Z)(Z)X
【0184】
一般式(B)において、Qはアルキル基、アリール基またはヘテロ環基を表し、Yは2価の連結基を表し、nは0または1を表し、ZおよびZはハロゲン原子を表し、Xは水素原子または電子求引性基を表す。
【0185】
Qは好ましくはハメットの置換基定数σpが正の値をとる電子求引性基で置換されたフェニル基を表す。ハメットの置換基定数に関しては、Journal of Medicinal Chemistry,1973,Vol.16,No.11,1207−1216等を参考にすることができる。
【0186】
このような電子求引性基としては、例えばハロゲン原子(フッ素原子(σp値:0.06)、塩素原子(σp値:0.23)、臭素原子(σp値:0.23)、ヨウ素原子(σp値:0.18))、トリハロメチル基(トリブロモメチル(σp値:0.29)、トリクロロメチル(σp値:0.33)、トリフルオロメチル(σp値:0.54))、シアノ基(σp値:0.66)、ニトロ基(σp値:0.78)、脂肪族・アリールもしくは複素環スルホニル基(例えば、メタンスルホニル(σp値:0.72))、脂肪族・アリールもしくは複素環アシル基(例えば、アセチル(σp値:0.50)、ベンゾイル(σp値:0.43))、アルキニル基(例えば、C≡CH(σp値:0.23))、脂肪族・アリールもしくは複素環オキシカルボニル基(例えば、メトキシカルボニル(σp値:0.45)、フェノキシカルボニル(σp値:0.44))、カルバモイル基(σp値:0.36)、スルファモイル基(σp値:0.57)、スルホキシド基、ヘテロ環基、ホスホリル基等があげられる。
σp値としては好ましくは0.2〜2.0の範囲で、より好ましくは0.4から1.0の範囲である。
【0187】
電子求引性基として好ましいのは、カルバモイル基、アルコキシカルボニル基、アルキルスルホニル基、アルキルホスホリル基、カルボキシル基、アルキルまたはアリールカルボニル基、およびアリールスルホニル基であり、特に好ましくはカルバモイル基、アルコキシカルボニル基、アルキルスルホニル基、アルキルホスホリル基であり、カルバモイル基が最も好ましい。
【0188】
Xは、好ましくは電子求引性基であり、より好ましくはハロゲン原子、脂肪族・アリールもしくは複素環スルホニル基、脂肪族・アリールもしくは複素環アシル基、脂肪族・アリールもしくは複素環オキシカルボニル基、カルバモイル基、スルファモイル基であり、特に好ましくはハロゲン原子である。
ハロゲン原子の中でも、好ましくは塩素原子、臭素原子、ヨウ素原子であり、更に好ましくは塩素原子、臭素原子であり、特に好ましくは臭素原子である。
【0189】
Yは好ましくは−C(=O)−、−SO−または−SO−を表し、より好ましくは−C(=O)−、−SO−であり、特に好ましくは−SO−である。nは、0または1を表し、好ましくは1である。
【0190】
以下に本発明の一般式(B)の化合物の具体例を示すが、本発明はこれらに限定されるものではない。
【0191】
【化38】
Figure 2004004322
【0192】
【化39】
Figure 2004004322
【0193】
本発明の一般式(B)で表される化合物は画像形成層の非感光性銀塩1モル当たり、10−4〜1モルの範囲で使用することが好ましく、より好ましくは10−3〜0.5モルの範囲で、さらに好ましくは5×10−3〜0.2モルの範囲で使用することが好ましい。
【0194】
本発明において、一般式(B)で表される化合物を感光材料に含有せしめる方法としては、前記還元剤の含有方法に記載の方法が挙げられる。
【0195】
一般式(B)で表される化合物の融点は200℃以下であることが好ましく、さらに好ましくは170℃以下がよい。
【0196】
本発明に用いられるその他の有機ポリハロゲン化物として、特開平11−65021号の段落番号0111〜0112に記載の特許に開示されているものが挙げられる。特に特願平11−87297号の式(P)で表される有機ハロゲン化合物、特開平10−339934で表される有機ポリハロゲン化合物、特願平11−205330号に記載の有機ポリハロゲン化合物が好ましい。
【0197】
その他のカブリ防止剤としては特開平11−65021号段落番号0113の水銀(II)塩、同号段落番号0114の安息香酸類、特開2000−206642号のサリチル酸誘導体、特開2000−221634号の式(S)で表されるホルマリンスカベンジャー化合物、特開平11−352624号の請求項9に係るトリアジン化合物、特開平6−11791号の一般式(III)で表される化合物、4−ヒドロキシ−6−メチル−1,3,3a,7−テトラザインデン等が挙げられる。
【0198】
本発明に用いることのできるカブリ防止剤、安定剤および安定剤前駆体特開平10−62899号の段落番号0070、欧州特許0803764A1号の第20頁第57行〜第21頁第7行に記載の特許のもの、特開平9−281637号、同9−329864号記載の化合物が挙げられる。
【0199】
本発明における熱現像感光材料はカブリ防止を目的としてアゾリウム塩を含有しても良い。アゾリウム塩としては、特開昭59−193447号記載の一般式(XI)で表される化合物、特公昭55−12581号記載の化合物、特開昭60−153039号記載の一般式(II)で表される化合物が挙げられる。アゾリウム塩は感光材料のいかなる部位に添加しても良いが、添加層としては感光性層を有する面の層に添加することが好ましく、画像形成層に添加することがさらに好ましい。
【0200】
アゾリウム塩の添加時期としては塗布液調製のいかなる工程で行っても良く、画像形成層に添加する場合は有機銀塩調製時から塗布液調製時のいかなる工程でも良いが有機銀塩調製後から塗布直前が好ましい。アゾリウム塩の添加法としては粉末、溶液、微粒子分散物などいかなる方法で行っても良い。また、増感色素、還元剤、色調剤など他の添加物と混合した溶液として添加しても良い。
【0201】
本発明においてアゾリウム塩の添加量としてはいかなる量でも良いが、銀1モル当たり1×10−6モル以上2モル以下が好ましく、1×10−3モル以上0.5モル以下がさらに好ましい。
【0202】
10.色調剤の説明
本発明の熱現像感光材料では色調剤の添加が好ましく、色調剤については、特開平10−62899号の段落番号0054〜0055、欧州特許0803764A1号のp.21,23行〜48行、特開2000−356317号や特願2000−187298号に記載されており、特に、フタラジノン類(フタラジノン、フタラジノン誘導体もしくは金属塩;例えば4−(1−ナフチル)フタラジノン、6−クロロフタラジノン、5,7−ジメトキシフタラジノンおよび2,3−ジヒドロー1,4−フタラジンジオン);フタラジノン類とフタル酸類(例えば、フタル酸、4−メチルフタル酸、4−ニトロフタル酸、フタル酸二アンモニウム、フタル酸ナトリウム、フタル酸カリウムおよびテトラクロロ無水フタル酸)の組み合わせ;フタラジン類(フタラジン、フタラジン誘導体もしくは金属塩;例えば4−(1−ナフチル)フタラジン、6−イソプロピルフタラジン、6−t−ブチルフタラジン、6−クロロフタラジン、5.7−ジメトキシフタラジン、および2,3−ジヒドロフタラジン)が好ましく、特に、ヨウ化銀含有率の高い組成のハロゲン化銀との組み合わせにおいては、フタラジン類とフタル酸類の組み合わせが好ましい。
【0203】
好ましいフタラジン類の添加量としては、有機銀塩1モル当たり0.01モル〜0.3モルであり、さらに好ましくは0.02〜0.2モル、特に好ましくは0.02〜0.1モルである。
【0204】
11.その他の添加剤
本発明では、現像を抑制あるいは促進させ現像を制御するため、分光増感効率を向上させるため、現像前後の保存性を向上させるためなどにメルカプト化合物、ジスルフィド化合物、チオン化合物を含有させることができ、特開平10−62899号の段落番号0067〜0069、特開平10−186572号の一般式(I)で表される化合物及びその具体例として段落番号0033〜0052、欧州特許公開第0803764A1号の第20ページ第36〜56行に記載されている。その中でも特開平9−297367号、特開平9−304875号、特開2001−100358号、特願2001−104213号、特願2001−104214等に記載されているメルカプト置換複素芳香族化合物が好ましい。
【0205】
本発明の感光性層に用いることのできる可塑剤および潤滑剤については特開平11−65021号段落番号0117に記載されている。滑り剤については特開平11−84573号段落番号0061〜0064や特願平11−106881号段落番号0049〜0062記載されている。
【0206】
本発明の感光性層には色調改良、レーザー露光時の干渉縞発生防止、イラジエーション防止の観点から各種染料や顔料(例えばC.I.Pigment Blue 60、C.I.Pigment Blue 64、C.I.Pigment Blue 15:6)を用いることができる。これらについてはWO98/36322号、特開平10−268465号、同11−338098号等に詳細に記載されている。
【0207】
印刷製版用途に適した超硬調画像形成のためには、画像形成層に超硬調化剤を添加することが好ましい。超硬調化剤やその添加方法及び添加量については、同号公報段落番号0118、特開平11−223898号公報段落番号0136〜0193、特願平11−87297号明細書の式(H)、式(1)〜(3)、式(A)、(B)の化合物、特願平11−91652号明細書記載の一般式(III)〜(V)の化合物(具体的化合物:化21〜化24)、硬調化促進剤については特開平11−65021号公報段落番号0102、特開平11−223898号公報段落番号0194〜0195に記載されている。
【0208】
蟻酸や蟻酸塩を強いかぶらせ物質として用いるには、感光性ハロゲン化銀を含有する画像形成層を有する側に銀1モル当たり5ミリモル以下、さらには1ミリモル以下で含有させることが好ましい。
本発明の熱現像感光材料で超硬調化剤を用いる場合には五酸化二リンが水和してできる酸またはその塩を併用して用いることが好ましい。五酸化二リンが水和してできる酸またはその塩としては、メタリン酸(塩)、ピロリン酸(塩)、オルトリン酸(塩)、三リン酸(塩)、四リン酸(塩)、ヘキサメタリン酸(塩)などを挙げることができる。特に好ましく用いられる五酸化二リンが水和してできる酸またはその塩としては、オルトリン酸(塩)、ヘキサメタリン酸(塩)を挙げることができる。具体的な塩としてはオルトリン酸ナトリウム、オルトリン酸二水素ナトリウム、ヘキサメタリン酸ナトリウム、ヘキサメタリン酸アンモニウムなどが挙げられる。
五酸化二リンが水和してできる酸またはその塩の使用量(感光材料1mあたりの塗布量)は感度やカブリなどの性能に合わせて所望の量でよいが、0.1〜500mg/mが好ましく、0.5〜100mg/mがより好ましい。
【0209】
12.層構成の説明およびその他の構成成分の説明
本発明の熱現像感光材料は、画像形成層に加えて非感光性層を有することができる。非感光性層は、その配置から(a)画像形成層の上(支持体よりも遠い側)に設けられる表面保護層、(b)複数の画像形成層の間や画像形成層と保護層の間に設けられる中間層、(c)画像形成層と支持体との間に設けられる下塗り層、(d)画像形成層の反対側に設けられるバック層に分類できる。
【0210】
また、光学フィルターとして作用する層を設けることができるが、(a)または(b)の層として設けられる。アンチハレーション層は、(c)または(d)の層として感光材料に設けられる。
【0211】
本発明の感光材料の画像形成層塗布液の調製温度は30℃以上65℃以下がよく、さらに好ましい温度は35℃以上60℃未満、より好ましい温度は35℃以上55℃以下である。また、ポリマーラテックス添加直後の画像形成層塗布液の温度が30℃以上65℃以下で維持されることが好ましい。
【0212】
1)表面保護層
本発明における熱現像感光材料は画像形成層の付着防止などの目的で表面保護層を設けることができる。表面保護層は単層でもよいし、複数層であってもよい。表面保護層については、特開平11−65021号段落番号0119〜0120、特願2000−171936号に記載されている。
【0213】
本発明の表面保護層のバインダーとしてはゼラチンが好ましいがポリビニルアルコール(PVA)を用いる若しくは併用することも好ましい。ゼラチンとしてはイナートゼラチン(例えば新田ゼラチン750)、フタル化ゼラチン(例えば新田ゼラチン801)など使用することができる。
【0214】
PVAとしては、特開2000−171936号の段落番号0009〜0020に記載のものがあげられ、完全けん化物のPVA−105、部分けん化物のPVA−205,PVA−335、変性ポリビニルアルコールのMP−203(以上、クラレ(株)製の商品名)などが好ましく挙げられる。
【0215】
保護層(1層当たり)のポリビニルアルコール塗布量(支持体1m当たり)としては0.3〜4.0g/mが好ましく、0.3〜2.0g/mがより好ましい。
【0216】
表面保護層(1層当たり)の全バインダー(水溶性ポリマー及びラテックスポリマーを含む)塗布量(支持体1m当たり)としては0.3〜5.0g/mが好ましく、0.3〜2.0g/mがより好ましい。
【0217】
2)アンチハレーション層
本発明の熱現像感光材料においては、アンチハレーション層を感光性層に対して露光光源から遠い側に設けることができる。アンチハレーション層については特開平11−65021号段落番号0123〜0124、特開平11−223898号、同9−230531号、同10−36695号、同10−104779号、同11−231457号、同11−352625号、同11−352626号等に記載されている。
【0218】
アンチハレーション層には、露光波長に吸収を有するアンチハレーション染料を含有する。露光波長が赤外域にある場合には赤外線吸収染料を用いればよく、その場合には可視域に吸収を有しない染料が好ましい。
【0219】
可視域に吸収を有する染料を用いてハレーション防止を行う場合には、画像形成後には染料の色が実質的に残らないようにすることが好ましく、熱現像の熱により消色する手段を用いることが好ましく、特に非感光性層に熱消色染料と塩基プレカーサーとを添加してアンチハレーション層として機能させることが好ましい。これらの技術については特開平11−231457号等に記載されている。
【0220】
消色染料の添加量は、染料の用途により決定する。一般には、目的とする波長で測定したときの光学濃度(吸光度)が0.1を越える量で使用する。光学濃度は、0.2〜2であることが好ましい。このような光学濃度を得るための染料の使用量は、一般に0.001〜1g/m程度である。
【0221】
なお、このように染料を消色すると、熱現像後の光学濃度を0.1以下に低下させることができる。二種類以上の消色染料を、熱消色型記録材料や熱現像感光材料において併用してもよい。同様に、二種類以上の塩基プレカーサーを併用してもよい。
【0222】
このような消色染料と塩基プレカーサーを用いる熱消色においては、特開平11−352626号に記載のような塩基プレカーサーと混合すると融点を3℃以上降下させる物質(例えば、ジフェニルスルホン、4−クロロフェニル(フェニル)スルホン)を併用することが熱消色性等の点で好ましい。
【0223】
3)バック層
本発明に適用することのできるバック層については特開平11−65021号段落番号0128〜0130に記載されている。
【0224】
本発明においては、銀色調、画像の経時変化を改良する目的で300〜450nmに吸収極大を有する着色剤を添加することができる。このような着色剤は、特開昭62−210458号、同63−104046号、同63−103235号、同63−208846号、同63−306436号、同63−314535号、特開平01−61745号、特願平11−276751号などに記載されている。このような着色剤は、通常、0.1mg/m〜1g/mの範囲で添加され、添加する層としては感光性層の反対側に設けられるバック層が好ましい。
【0225】
4)マット剤
本発明において、搬送性改良のためにマット剤を表面保護層、およびバック層に添加することが好ましい。マット剤については、特開平11−65021号段落番号0126〜0127に記載されている。
マット剤は感光材料1m当たりの塗布量で示した場合、好ましくは1〜400mg/m、より好ましくは5〜300mg/mである。
【0226】
また、乳剤面のマット度は、画像部に小さな白抜けが生じ、光漏れが発生するいわゆる星屑故障が生じなければいかようでも良いが、ベック平滑度が30秒以上2000秒以下が好ましく、特に40秒以上1500秒以下が好ましい。ベック平滑度は、日本工業規格(JIS)P8119「紙および板紙のベック試験器による平滑度試験方法」およびTAPPI標準法T479により容易に求めることができる。
【0227】
本発明においてバック層のマット度としてはベック平滑度が1200秒以下10秒以上が好ましく、800秒以下20秒以上が好ましく、さらに好ましくは500秒以下40秒以上である。
【0228】
本発明において、マット剤は感光材料の最外表面層もしくは最外表面層として機能する層、あるいは外表面に近い層に含有されるのが好ましく、またいわゆる保護層として作用する層に含有されることが好ましい。
【0229】
5)ポリマーラテックス
本発明の表面保護層やバック層にポリマーラテックスを添加することができる。
このようなポリマーラテックスについては「合成樹脂エマルジョン(奥田平、稲垣寛編集、高分子刊行会発行(1978))」、「合成ラテックスの応用(杉村孝明、片岡靖男、鈴木聡一、笠原啓司編集、高分子刊行会発行(1993))」、「合成ラテックスの化学(室井宗一著、高分子刊行会発行(1970))」などにも記載され、具体的にはメチルメタクリレート(33.5質量%)/エチルアクリレート(50質量%)/メタクリル酸(16.5質量%)コポリマーのラテックス、メチルメタクリレート(47.5質量%)/ブタジエン(47.5質量%)/イタコン酸(5質量%)コポリマーのラテックス、エチルアクリレート/メタクリル酸のコポリマーのラテックス、メチルメタクリレート(58.9質量%)/2−エチルヘキシルアクリレート(25.4質量%)/スチレン(8.6質量%)/2−ヒドロキシエチルメタクリレート(5.1質量%)/アクリル酸(2.0質量%)コポリマーのラテックス、メチルメタクリレート(64.0質量%)/スチレン(9.0質量%)/ブチルアクリレート(20.0質量%)/2−ヒドロキシエチルメタクリレート(5.0質量%)/アクリル酸(2.0質量%)コポリマーのラテックスなどが挙げられる。
【0230】
ポリマーラテックスは、表面保護層、あるいはバック層の全バインダー(水溶性ポリマーおよびラテックスポリマーを含む)の10質量%〜90質量%用いるのが好ましく、特に20質量%〜80質量%が好ましい。
【0231】
6)膜面pH
本発明の熱現像感光材料は、熱現像処理前の膜面pHが7.0以下であることが好ましく、さらに好ましくは6.6以下である。その下限には特に制限はないが、3程度である。最も好ましいpH範囲は4〜6.2の範囲である。
【0232】
膜面pHの調節はフタル酸誘導体などの有機酸や硫酸などの不揮発性の酸、アンモニアなどの揮発性の塩基を用いることが、膜面pHを低減させるという観点から好ましい。特にアンモニアは揮発しやすく、塗布する工程や熱現像される前に除去できることから低膜面pHを達成する上で好ましい。
また、水酸化ナトリウムや水酸化カリウム、水酸化リチウム等の不揮発性の塩基とアンモニアを併用することも好ましく用いられる。なお、膜面pHの測定方法は、特願平11−87297号明細書の段落番号0123に記載されている。
【0233】
7)硬膜剤
本発明の感光性層、保護層、バック層など各層には硬膜剤を用いても良い。
硬膜剤の例としてはT.H.James著”THE THEORY OF THE PHOTOGRAPHIC PROCESS FOURTH EDITION”(Macmillan Publishing Co., Inc.刊、1977年刊)77頁から87頁に記載の各方法があり、クロムみょうばん、2,4−ジクロロ−6−ヒドロキシ−s−トリアジンナトリウム塩、N,N−エチレンビス(ビニルスルフォンアセトアミド)、N,N−プロピレンビス(ビニルスルフォンアセトアミド)の他、同書78頁など記載の多価金属イオン、米国特許4,281,060号、特開平6−208193号などのポリイソシアネート類、米国特許4,791,042号などのエポキシ化合物類、特開昭62−89048号などのビニルスルホン系化合物類が好ましく用いられる。特に、ビニルスルホン系化合物が好ましく、耐拡散化したビニルスルホン系化合物がより好ましい。
【0234】
硬膜剤は溶液として添加され、この溶液の保護層塗布液中への添加時期は、塗布する180分前から直前、好ましくは60分前から10秒前であるが、混合方法及び混合条件については本発明の効果が十分に現れる限りにおいては特に制限はない。
【0235】
具体的な混合方法としては添加流量とコーターへの送液量から計算した平均滞留時間を所望の時間となるようにしたタンクでの混合する方法やN.Harnby、M.F.Edwards、A.W.Nienow著、高橋幸司訳”液体混合技術”(日刊工業新聞社刊、1989年)の第8章等に記載されているスタチックミキサーなどを使用する方法がある。
【0236】
8)帯電防止剤
また、本発明では、公知の種々の金属酸化物あるいは導電性ポリマーなどを含む帯電防止層を有しても良い。帯電防止層は前述の下塗り層、バック層表面保護層などと兼ねても良く、また別途設けてもよい。帯電防止層については、特開平11−65021号段落番号0135、特開昭56−143430号、同56−143431号、同58−62646号、同56−120519号、特開平11−84573号の段落番号0040〜0051、米国特許第5,575,957号、特開平11−223898号の段落番号0078〜0084に記載の技術を適用することができる。
【0237】
9)支持体
透明支持体は二軸延伸時にフィルム中に残存する内部歪みを緩和させ、熱現像処理中に発生する熱収縮歪みをなくすために、130〜185℃の温度範囲で熱処理を施したポリエステル、特にポリエチレンテレフタレートが好ましく用いられる。
【0238】
医療用の熱現像感光材料の場合、透明支持体は青色染料(例えば、特開平8−240877号実施例記載の染料−1)で着色されていてもよいし、無着色でもよい。具体的な支持体の例は、特開平11−65021同号段落番号0134に記載されている。
【0239】
支持体には、特開平11−84574号の水溶性ポリエステル、同10−186565号のスチレンブタジエン共重合体、特開2000−39684号や特願平11−106881号段落番号0063〜0080の塩化ビニリデン共重合体などの下塗り技術を適用することが好ましい。
【0240】
10)その他の添加剤
熱現像感光材料には、各層に応じて、さらに酸化防止剤、安定化剤、可塑剤、紫外線吸収剤あるいは被覆助剤を添加してもよい。特開平11−65021号段落番号0133の記載の溶剤を添加しても良い。各種の添加剤は、感光性層あるいは非感光性層のいずれかに添加する。それらについてWO98/36322号、EP803764A1号、特開平10−186567号、同10−18568号等を参考にすることができる。
【0241】
11)塗布方式
本発明における熱現像感光材料はいかなる方法で塗布されても良い。具体的には、エクストルージョンコーティング、スライドコーティング、カーテンコーティング、浸漬コーティング、ナイフコーティング、フローコーティング、または米国特許第2,681,294号に記載の種類のホッパーを用いる押出コーティングを含む種々のコーティング操作が用いられ、Stephen F. Kistler、Petert M. Schweizer著”LIQUID FILM COATING”(CHAPMAN & HALL社刊、1997年)399頁から536頁記載のエクストルージョンコーティング、またはスライドコーティング好ましく用いられ、特に好ましくはスライドコーティングが用いられる。
【0242】
スライドコーティングに使用されるスライドコーターの形状の例は同書427頁のFigure 11b.1にある。また、所望により同書399頁から536頁記載の方法、米国特許第2,761,791号および英国特許第837,095号に記載の方法により2層またはそれ以上の層を同時に被覆することができる。
【0243】
本発明における画像形成層塗布液は、いわゆるチキソトロピー流体であることが好ましい。この技術については特開平11−52509号を参考にすることができる。本発明における画像形成層塗布液は剪断速度0.1S−1における粘度は400mPa・s以上100,000mPa・s以下が好ましく、さらに好ましくは500mPa・s以上20,000mPa・s以下である。
また、剪断速度1000S−1においては1mPa・s以上200mPa・s以下が好まく、さらに好ましくは5mPa・s以上80mPa・s以下である。
【0244】
本発明の熱現像感光材料は、成膜性を向上させるために塗布、乾燥直後に加熱処理をすることが好ましい。加熱処理の温度は膜面温度で60℃〜100℃の範囲が好ましく、加熱時間は1秒〜60秒の範囲が好ましい。より好ましい範囲は膜面温度が70〜90℃、加熱時間が2〜10秒の範囲である。本発明の好ましい加熱処理の方法は特開平2002−107872号に記載されている。
【0245】
12)包装材料
本発明の熱現像感光材料は、使用される前の保存時に写真性能の変質を防ぐため、あるいはロール状態の製品形態の場合にはカールしたり巻き癖が付くのを防ぐために、酸素透過率および/または水分透過率の低い包装材料で密閉包装するのが好ましい。酸素透過率は、25℃で50ml/atm/m・day以下であることが好ましく、より好ましくは10ml/atm/m・day以下であり、さらに好ましくは1.0ml/atm/m・day以下である。水分透過率は、10g/atm/m・day以下であることが好ましく、より好ましくは5g/atm/m・day以下であり、さらに好ましくは1g/atm/m・day以下である。酸素透過率および/または水分透過率の低い包装材料の具体例としては、例えば特開平8−254793号、特開2000−206653号に記載されているものを利用することができる。
【0246】
13)その他の利用できる技術
本発明の熱現像感光材料に用いることのできる技術としては、EP803764A1号、EP883022A1号、WO98/36322号、特開昭56−62648号、同58−62644号、特開平9−43766、同9−281637、同9−297367号、同9−304869号、同9−311405号、同9−329865号、同10−10669号、同10−62899号、同10−69023号、同10−186568号、同10−90823号、同10−171063号、同10−186565号、同10−186567号、同10−186569号〜同10−186572号、同10−197974号、同10−197982号、同10−197983号、同10−197985号〜同10−197987号、同10−207001号、同10−207004号、同10−221807号、同10−282601号、同10−288823号、同10−288824号、同10−307365号、同10−312038号、同10−339934号、同11−7100号、同11−15105号、同11−24200号、同11−24201号、同11−30832号、同11−84574号、同11−65021号、同11−109547号、同11−125880号、同11−129629号、同11−133536号〜同11−133539号、同11−133542号、同11−133543号、同11−223898号、同11−352627号、同11−305377号、同11−305378号、同11−305384号、同11−305380号、同11−316435号、同11−327076号、同11−338096号、同11−338098号、同11−338099号、同11−343420号、特願2000−187298号、同2000−10229号、同2000−47345号、同2000−206642号、同2000−98530号、同2000−98531号、同2000−112059号、同2000−112060号、同2000−112104号、同2000−112064号、同2000−171936号も挙げられる。
【0247】
14)カラー画像形成
多色カラー熱現像感光材料の構成は、各色についてこれらの二層の組合せを含んでよく、また、米国特許第4,708,928号に記載されているように単一層内に全ての成分を含んでいてもよい。
多色カラー熱現像感光材料の場合、各乳剤層は、一般に、米国特許第4,460,681号に記載されているように、各感光性層の間に官能性もしくは非官能性のバリアー層を使用することにより、互いに区別されて保持される。
【0248】
13.画像形成方法の説明
1)露光
本発明の感光材料はいかなる方法で露光されても良いが、露光光源としてレーザー光が好ましい。
【0249】
特に最高濃度(Dmax)を出すような露光量を与える場合、感光材料表面の好ましい光量は0.1W/mm〜100W/mmである。より好ましくは0.5W/mm〜50W/mmであり、最も好ましくは1W/mm〜50W/mmである。
【0250】
本発明によるレーザー光としては、ガスレーザー(Ar,He−Ne,He−Cd)、YAGレーザー、色素レーザー、半導体レーザーなどが好ましい。また、半導体レーザーと第2高調波発生素子などを用いることもできる。好ましく用いられるレーザーは、熱現像感光材料の分光増感色素などの光吸収ピーク波長に対応して決まるが、赤〜赤外発光のHe−Neレーザー、赤色半導体レーザー、あるいは青〜緑発光のAr,He−Ne,He−Cdレーザー、青色半導体レーザーである。 近年、特に、SHG(Second Hermonic Generator)素子と半導体レーザーを一体化したモジュールや青色半導体レーザーが開発されてきて、短波長領域のレーザー出力装置がクローズアップされてきた。青色半導体レーザーは、高精細の画像記録が可能であること、記録密度の増大、かつ長寿命で安定した出力が得られることから、今後需要が拡大していくことが期待されている。
【0251】
レーザー光は、高周波重畳などの方法によって縦マルチに発振していることも好ましく用いられる。
【0252】
2)熱現像
本発明の熱現像感光材料は通常イメージワイズに露光した熱現像感光材料を昇温して現像されるが、その熱現像の方法はいかなる方法であっても良い。好ましい現像温度としては80〜250℃であり、好ましくは100〜140℃、さらに好ましくは110〜130℃である。現像時間としては1〜60秒が好ましく、より好ましくは3〜30秒、さらに好ましくは5〜25秒、7〜15秒が特に好ましい。
【0253】
熱現像の方式としてはドラム型ヒーター、プレート型ヒーターのいずれを使用してもよいが、プレートヒーター方式がより好ましい。プレートヒーター方式による熱現像方式とは特開平11−133572号に記載の方法が好ましく、潜像を形成した熱現像感光材料を熱現像部にて加熱手段に接触させることにより可視像を得る熱現像装置であって、前記加熱手段がプレートヒーターからなり、かつ前記プレートヒーターの一方の面に沿って複数個の押えローラーが対向配設され、前記押えローラーと前記プレートヒーターとの間に前記熱現像感光材料を通過させて熱現像を行うことを特徴とする熱現像装置である。プレートヒーターを2〜6段に分けて先端部については1〜10℃程度温度を下げることが好ましい。例えば、独立に温度制御できる4組のプレートヒーターを使用し、それぞれ112℃、119℃、121℃、120℃になるように制御する例が挙げられる。このような方法は特開昭54−30032号にも記載されており、熱現像感光材料に含有している水分や有機溶媒を系外に除外させることができ、また、急激に熱現像感光材料が加熱されることでの熱現像感光材料の支持体形状の変化を抑えることもできる。
【0254】
14.システム
露光部及び熱現像部を備えた医療用のレーザーイメージャーとしては富士メディカルドライレーザーイメージャーFM−DPLを挙げることができる。FM−DP Lに関しては、Fuji Medical Review No.8,page 39〜55に記載されており、それらの技術は本発明の熱現像感光材料のレーザーイメージャーとして適用することは言うまでもない。また、DICOM規格に適応したネットワークシステムとして富士メディカルシステムが提案した「ADnetwork」の中でのレーザーイメージャー用の熱現像感光材料としても適用することができる。
【0255】
15.本発明の用途
本発明の熱現像感光材料は、銀画像による黒白画像を形成し、医療診断用の熱現像感光材料、工業写真用熱現像感光材料、印刷用熱現像感光材料、COM用の熱現像感光材料として使用されることが好ましい。
【0256】
【実施例】
以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。
【0257】
1.支持体の作成
1−1.製膜
テレフタル酸とエチレングリコールを用い、常法に従い固有粘度IV=0.66(フェノール/テトラクロルエタン=6/4(重量比)中25℃で測定)のPETを得た。これをペレット化した後130℃で4時間乾燥し、300℃で溶融後T型ダイから押し出して急冷し、熱固定後の膜厚が175μmになるような厚みの未延伸フィルムを作成した。
【0258】
これを、周速の異なるロールを用い3.3倍に縦延伸、ついでテンターで4.5倍に横延伸を実施した。この時の温度はそれぞれ、110℃、130℃であった。この後、240℃で20秒間熱固定後これと同じ温度で横方向に4%緩和した。この後テンターのチャック部をスリットした後、両端にナール加工を行い、4kg/cmで巻き取り、厚み175μmのロールを得た。
【0259】
1−2.表面コロナ放電処理
ピラー社製ソリッドステートコロナ放電処理機6KVAモデルを用い、支持体の両面を室温下において20m/分で処理した。この時の電流、電圧の読み取り値から、支持体には0.375kV・A・分/mの処理がなされていることがわかった。この時の処理周波数は9.6kHz、電極と誘電体ロ−ルのギャップクリアランスは1.6mmであった。
【0260】
1−3.下塗り
1)下塗層塗布液の調製
処方▲1▼(感光層側下塗り層用)
高松油脂(株)製ペスレジンA−520(30質量%溶液)                  59g
ポリエチレングリコールモノノニルフェニルエーテル
(平均エチレンオキシド数=8.5) 10質量%溶液       5.4g
綜研化学(株)製 MP−1000(ポリマー微粒子、平均粒径0.4μm)    0.91g
蒸留水                           935ml
【0261】
処方▲2▼(バック面第1層用)
スチレン−ブタジエン共重合体ラテックス            158g
(固形分40質量%、スチレン/ブタジエン重量比=68/32)
2,4−ジクロロ−6−ヒドロキシ−S−
トリアジンナトリウム塩 8質量%水溶液            20g
ラウリルベンゼンスルホン酸ナトリウムの1質量%水溶液      10ml
蒸留水                            854ml
【0262】
処方▲3▼(バック面側第2層用)
SnO/SbO (9/1質量比、平均粒径0.038μm、17質量%分散物)   84g
ゼラチン(10質量%水溶液)                                      89.2g
信越化学(株)製 メトローズTC−5(2質量%水溶液)                  8.6g
綜研化学(株)製 MP−1000                                      0.01g
ドデシルベンゼンスルホン酸ナトリウムの1質量%水溶液     10ml
NaOH(1質量%)                           6ml
プロキセル(ICI社製)                    1ml
蒸留水                            805ml
【0263】
2)塗布
上記厚さ175μmの2軸延伸ポリエチレンテレフタレート支持体の両面それぞれに、上記コロナ放電処理を施した後、片面(感光性層面)に上記下塗り塗布液処方▲1▼をワイヤーバーでウエット塗布量が6.6ml/m(片面当たり)になるように塗布して180℃で5分間乾燥し、ついでこの裏面(バック面)に上記下塗り塗布液処方▲2▼をワイヤーバーでウエット塗布量が5.7ml/mになるように塗布して180℃で5分間乾燥し、更に裏面(バック面)に上記下塗り塗布液処方▲3▼をワイヤーバーでウエット塗布量が7.7ml/mになるように塗布して180℃で6分間乾燥して下塗り支持体を作製した。
【0264】
2.バック層の作成
2−1.バック面塗布液の調製
1)塩基プレカーサーの固体微粒子分散液(a)の調製
塩基プレカーサー化合物1を、1.5kg、および界面活性剤(商品名:デモールN、花王(株)製)225g、ジフェニルスルホン937.5g、パラヒドロキシ安息香酸ブチルエステル(商品名メッキンス:上野製薬製)15gおよび蒸留水を加えて総量を5.0kgに合わせて混合し、混合液を横型サンドミル(UVM−2:アイメックス(株)製)を用いてビーズ分散した。分散方法は、混合液をを平均直径0.5mmのジルコニアビーズを充填したUVM−2にダイアフラムポンプで送液し、内圧50hPa以上の状態で、所望の平均粒径が得られるまで分散した。
分散物は、分光吸収測定を行って該分散物の分光吸収における450nmにおける吸光度と650nmにおける吸光度の比(D450/D650)が2.2以上であるところまで分散した。得られた分散物は、塩基プレカーサーの濃度で20重量%となるように蒸留水で希釈し、ごみ取りのためにろ過(平均細孔径:3μmのポリプロピレン製フィルター)を行って実用に供した。
【0265】
2)染料固体微粒子分散液の調製
シアニン染料化合物−1(後記に構造式を示した)を6.0kgおよびp−ドデシルベンゼンスルホン酸ナトリウム3.0kg、花王(株)製界面活性剤デモールSNB  0.6kg、および消泡剤(商品名:サーフィノール104E、日信化学(株)製)0.15kgを蒸留水と混合して、総液量を60kgとした。混合液を横型サンドミル(UVM−2:アイメックス(株)製)を用いて、0.5mmのジルコニアビーズで分散した。
分散物は、分光吸収測定を行って該分散物の分光吸収における650nmにおける吸光度と750nmにおける吸光度の比(D650/D750)が5.0以上であるところまで分散した。得られた分散物は、シアニン染料の濃度で6質量%となるように蒸留水で希釈し、ごみ取りのためにフィルターろ過(平均細孔径:1μm)を行って実用に供した。
【0266】
3)ハレーション防止層塗布液の調製
ゼラチン30g、ポリアクリルアミド24.5g、1mol/lの苛性2.2g、単分散ポリメチルメタクリレート微粒子(平均粒子サイズ8μm、粒径標準偏差0.4)2.4g、ベンゾイソチアゾリノン0.08g、上記染料固体微粒子分散液35.9g、上記塩基プレカーサーの固体微粒子分散液(a)を74.2g、ポリエチレンスルホン酸ナトリウム0.6g、青色染料化合物−1(後記に構造式を示した)を0.21g、黄色染料化合物−1(後記に構造式を示した)を0.15g、アクリル酸/エチルアクリレート共重合ラテックス(共重合比5/95)8.3gを混合し、水にて全体を818mlとし、ハレーション防止層塗布液を調製した。
【0267】
4)バック面保護層塗布液の調製
容器を40℃に保温し、ゼラチン40g、流動パラフィン乳化物を流動パラフィンとして1.5g、ベンゾイソチアゾリノン35mg、1mol/lの苛性6.8g、 t−オクチルフェノキシエトキシエタンスルホン酸ナトリウム0.5g、ポリスチレンスルホン酸ナトリウム0.27g、フッ素系界面活性剤(SF−1:後記に構造式を示した)1%水溶液を10.8ml、アクリル酸/エチルアクリレート共重合体(共重合重量比5/95)6.0g、 N,N−エチレンビス(ビニルスルホンアセトアミド) 2.0gを混合し、水で1000mlとしてバック面保護層塗布液とした。
【0268】
2−2.バック層の塗布
上記下塗り支持体のバック面側に、ハレーション防止層塗布液を固体微粒子染料の固形分塗布量が0.04g/mとなるように、またバック面保護層塗布液をゼラチン塗布量が1.7g/mとなるように同時重層塗布し、乾燥し、バック層を作成した。
【0269】
3.画像形成層、中間層及び表面保護層の作成
本実施例に示す熱現像感光材料は、支持体のバック層とは反対側に画像形成層、中間層及び表面保護層を有する。
3−1.塗布用材料の準備
1)ハロゲン化銀乳剤の調製
《ハロゲン化銀乳剤1の調製》
蒸留水1421mlに1質量%臭化カリウム溶液3.1mlを加え、さらに0.5mol/L濃度の硫酸を3.5ml、フタル化ゼラチン31.7gを添加した液をステンレス製反応壺中で攪拌しながら、30℃に液温を保ち、硝酸銀22.22gに蒸留水を加え95.4mlに希釈した溶液Aと臭化カリウム15.3gとヨウ化カリウム0.8gを蒸留水にて容量97.4mlに希釈した溶液Bを一定流量で45秒間かけて全量添加した。その後、3.5質量%の過酸化水素水溶液を10ml添加し、さらにベンゾイミダゾールの10質量%水溶液を10.8ml添加した。さらに、硝酸銀51.86gに蒸留水を加えて317.5mlに希釈した溶液Cと臭化カリウム44.2gとヨウ化カリウム2.2gを蒸留水にて容量400mlに希釈した溶液Dを、溶液Cは一定流量で20分間かけて全量添加し、溶液DはpAgを8.1に維持しながらコントロールドダブルジェット法で添加した。銀1モル当たり1×10−4モルになるよう六塩化イリジウム(III)酸カリウム塩を溶液Cおよび溶液Dを添加しはじめてから10分後に全量添加した。また、溶液Cの添加終了の5秒後に六シアン化鉄(II)カリウム水溶液を銀1モル当たり3×10−4モル全量添加した。0.5mol/L濃度の硫酸を用いてpHを3.8に調製し、攪拌を止め、沈降/脱塩/水洗工程をおこなった。1mol/L濃度の水酸化ナトリウムを用いてpH5.9に調製し、pAg8.0のハロゲン化銀分散物を作成した。
【0270】
上記ハロゲン化銀分散物を攪拌しながら38℃に維持して、0.34質量%の1,2−ベンゾイソチアゾリン−3−オンのメタノール溶液を5ml加え、40分後に47℃に昇温した。昇温の20分後にベンゼンチオスルホン酸ナトリウムをメタノール溶液で銀1モルに対して7.6×10−5モル加え、さらに5分後にテルル増感剤C(後記に構造式を示した)をメタノール溶液で銀1モル当たり2.9×10−4モル加えて91分間熟成した。その後、分光増感色素A(後記に構造式を示した)と分光増感色素B(後記に構造式を示した)のモル比で3:1のメタノール溶液を銀1モル当たり増感色素AとBの合計として1.2×10−3モル加え、1分後にN,N’−ジヒドロキシ−N”−ジエチルメラミンの0.8質量%メタノール溶液1.3mlを加え、さらに4分後に、5−メチル−2−メルカプトベンゾイミダゾールをメタノール溶液で銀1モル当たり4.8×10−3モル、1−フェニル−2−ヘプチル−5−メルカプト−1,3,4−トリアゾールをメタノール溶液で銀1モルに対して5.4×10−3モルおよび1−(3−メチルウレイド)−5−メルカプトテトラゾールナトリウム塩を水溶液で銀1モルに対して8.5×10−3モル添加して、ハロゲン化銀乳剤1を作成した。
【0271】
調製できたハロゲン化銀乳剤中の粒子は、平均球相当径0.042μm、球相当径の変動係数20%のヨウドを均一に3.5モル%含むヨウ臭化銀粒子であった。粒子サイズ等は、電子顕微鏡を用い1000個の粒子の平均から求めた。この粒子の[100]面比率は、クベルカムンク法を用いて80%と求められた。
【0272】
《ハロゲン化銀乳剤2の調製》
ハロゲン化銀乳剤1の調製において、粒子形成時の液温30℃を47℃に変更し、溶液Bは臭化カリウム15.9gを蒸留水にて容量97.4mlに希釈することに変更し、溶液Dは臭化カリウム45.8gを蒸留水にて容量400mlに希釈することに変更し、溶液Cの添加時間を30分にして、六シアノ鉄(II)カリウムを除去した以外は同様にして、ハロゲン化銀乳剤2の調製を行った。ハロゲン化銀乳剤1と同様に沈殿/脱塩/水洗/分散を行った。更に、テルル増感剤Cの添加量を銀1モル当たり1.1×10−4モル、分光増感色素Aと分光増感色素Bのモル比で3:1のメタノール溶液の添加量を銀1モル当たり増感色素Aと増感色素Bの合計として7.0×10−4モル、1−フェニル−2−ヘプチル−5−メルカプト−1,3,4−トリアゾールを銀1モルに対して3.3×10−3モルおよび1−(3−メチルウレイド)−5−メルカプトテトラゾールナトリウム塩を銀1モルに対して4.7×10−3モル添加に変えた以外は乳剤1と同様にして分光増感、化学増感及び5−メチル−2−メルカプトベンゾイミダゾール、1−フェニル−2−ヘプチル−5−メルカプト−1,3,4−トリアゾールの添加を行い、ハロゲン化銀乳剤2を得た。ハロゲン化銀乳剤2の乳剤粒子は、平均球相当径0.080μm、球相当径の変動係数20%の純臭化銀立方体粒子であった。
【0273】
《ハロゲン化銀乳剤3の調製》
ハロゲン化銀乳剤1の調製において、粒子形成時の液温30℃を27℃に変更する以外は同様にして、ハロゲン化銀乳剤3の調製を行った。また、ハロゲン化銀乳剤1と同様に沈殿/脱塩/水洗/分散を行った。分光増感色素Aと分光増感色素Bのモル比で1:1を固体分散物(ゼラチン水溶液)として添加量を銀1モル当たり増感色素Aと増感色素Bの合計として6×10−3モル、テルル増感剤Cの添加量を銀1モル当たり5.2×10−4モルに変え、テルル増感剤Cの添加3分後に臭化金酸を銀1モル当たり5×10−4モルとチオシアン酸カリウムを銀1モルあたり2×10−3モルを添加したこと以外は乳剤1と同様にして、ハロゲン化銀乳剤3を得た。ハロゲン化銀乳剤3の乳剤粒子は、平均球相当径0.034μm、球相当径の変動係数20%のヨウドを均一に3.5モル%含むヨウ臭化銀粒子であった。
【0274】
《塗布液用混合乳剤Aの調製》
ハロゲン化銀乳剤1を70質量%、ハロゲン化銀乳剤2を15質量%、ハロゲン化銀乳剤3を15質量%溶解し、ベンゾチアゾリウムヨーダイドを1質量%水溶液にて銀1モル当たり7×10−3モル添加した。さらに塗布液用混合乳剤1kgあたりハロゲン化銀の含有量が銀として38.2gとなるように加水し、塗布液用混合乳剤1kgあたり0.34gとなるように1−(3−メチルウレイド)−5−メルカプトテトラゾールナトリウム塩を添加した。
【0275】
2)脂肪酸銀分散物の調整
《脂肪酸銀分散物Aの調製》
ヘンケル社製ベヘン酸(製品名Edenor C22−85R)ベヘン酸含有率90モル%、リグノセリン酸2モル%、アラキジン酸6モル%、ステアリン酸1.6モル%、エルカ酸0.4モル%)87.6kg、蒸留水423L、5mol/L濃度のNaOH水溶液49.2L、t−ブチルアルコール120Lを混合し、75℃にて1時間攪拌し反応させ、ベヘン酸ナトリウム溶液Aを得た。別に、硝酸銀40.4kgの水溶液206.2L(pH4.0)を用意し、10℃にて保温した。635Lの蒸留水と30Lのt−ブチルアルコールを入れた反応容器を30℃に保温し、十分に撹拌しながら先のベヘン酸ナトリウム溶液Aの全量と硝酸銀水溶液の全量を流量一定でそれぞれ93分15秒と90分かけて添加した。このとき、硝酸銀水溶液添加開始後11分間は硝酸銀水溶液のみが添加されるようにし、そのあとベヘン酸ナトリウム溶液Aを添加開始し、硝酸銀水溶液の添加終了後14分15秒間はベヘン酸ナトリウム溶液Aのみが添加されるようにした。このとき、反応容器内の温度は30℃とし、液温度が一定になるように外温コントロールした。また、ベヘン酸ナトリウム溶液Aの添加系の配管は、2重管の外側に温水を循環させる事により保温し、添加ノズル先端の出口の液温度が75℃になるよう調製した。また、硝酸銀水溶液の添加系の配管は、2重管の外側に冷水を循環させることにより保温した。ベヘン酸ナトリウム溶液Aの添加位置と硝酸銀水溶液の添加位置は撹拌軸を中心として対称的な配置とし、また反応液に接触しないような高さに調製した。
【0276】
ベヘン酸ナトリウム溶液Aを添加終了後、そのままの温度で20分間撹拌放置し、30分かけて35℃に昇温し、その後210分熟成を行った。熟成終了後直ちに、遠心濾過で固形分を濾別し、固形分を濾過水の伝導度が30μS/cmになるまで水洗した。こうして脂肪酸銀塩を得た。得られた固形分は、乾燥させないでウエットケーキとして保管した。
【0277】
得られたベヘン酸銀粒子の形態を電子顕微鏡撮影により評価したところ、数平均値でa=0.14μm、b=0.4μm、c=0.6μm、平均アスペクト比5.2、平均球相当径0.52μm、球相当径の変動係数15%のりん片状の結晶であった。(a,b,cは前記の規定に従う)
【0278】
乾燥固形分260kg相当のウエットケーキに対し、ポリビニルアルコール(商品名:PVA−217)19.3kgおよび水を添加し、全体量を1000kgとしてからディゾルバー羽根でスラリー化し、更にパイプラインミキサー(みづほ工業製:PM−10型)で予備分散した。
【0279】
次に予備分散済みの原液を分散機(商品名:マイクロフルイダイザーM−610、マイクロフルイデックス・インターナショナル・コーポレーション製、Z型インタラクションチャンバー使用)の圧力を1260kg/cmに調節して、三回処理し、ベヘン酸銀分散物を得た。冷却操作は蛇管式熱交換器をインタラクションチャンバーの前後に各々装着し、冷媒の温度を調節することで18℃の分散温度に設定した。
【0280】
《脂肪酸銀分散物Bの調製》
<再結晶ベヘン酸の調製>
ヘンケル社製ベヘン酸(製品名Edenor C22−85R)100kgを、1200kgのイソプロピルアルコールにまぜ、50℃で溶解し、10μmのフィルターで濾過した後、30℃まで、冷却し、再結晶を行った。再結晶をする際の、冷却スピードは、3℃/時間にコントロールした。得られた結晶を遠心濾過し、100kgのイソプルピルアルコールでかけ洗いを実施した後、乾燥を行った。得られた結晶をエステル化してGC−FID測定をしたところ、ベヘン酸銀含有率は96モル%、それ以外にリグノセリン酸が2モル%、アラキジン酸が2モル%、エルカ酸0.001モル%含まれていた。
<脂肪酸銀分散物Bの調製>
再結晶ベヘン酸88kg、蒸留水422L、5mol/L濃度のNaOH水溶液49.2L、t−ブチルアルコール120Lを混合し、75℃にて1時間攪拌し反応させ、ベヘン酸ナトリウム溶液Bを得た。別に、硝酸銀40.4kgの水溶液206.2L(pH4.0)を用意し、10℃にて保温した。635Lの蒸留水と30Lのt−ブチルアルコールを入れた反応容器を30℃に保温し、十分に撹拌しながら先のベヘン酸ナトリウム溶液Bの全量と硝酸銀水溶液の全量を流量一定でそれぞれ93分15秒と90分かけて添加した。このとき、硝酸銀水溶液添加開始後11分間は硝酸銀水溶液のみが添加されるようにし、そのあとベヘン酸ナトリウム溶液Bを添加開始し、硝酸銀水溶液の添加終了後14分15秒間はベヘン酸ナトリウム溶液Bのみが添加されるようにした。このとき、反応容器内の温度は30℃とし、液温度が一定になるように外温コントロールした。また、ベヘン酸ナトリウム溶液Bの添加系の配管は、2重管の外側に温水を循環させる事により保温し、添加ノズル先端の出口の液温度が75℃になるよう調製した。また、硝酸銀水溶液の添加系の配管は、2重管の外側に冷水を循環させることにより保温した。ベヘン酸ナトリウム溶液Bの添加位置と硝酸銀水溶液の添加位置は撹拌軸を中心として対称的な配置とし、また反応液に接触しないような高さに調製した。
【0281】
ベヘン酸ナトリウム溶液Bを添加終了後、そのままの温度で20分間撹拌放置し、30分かけて35℃に昇温し、その後210分熟成を行った。熟成終了後直ちに、遠心濾過で固形分を濾別し、固形分を濾過水の伝導度が30μS/cmになるまで水洗した。こうして脂肪酸銀塩を得た。得られた固形分は、乾燥させないでウエットケーキとして保管した。
【0282】
得られたベヘン酸銀粒子の形態を電子顕微鏡撮影により評価したところ、平均値でa=0.21μm、b=0.4μm、c=0.4μm、平均アスペクト比2.1、球相当径の変動係数11%の結晶であった。(a,b,cは本文の規定)
【0283】
乾燥固形分260kg相当のウエットケーキに対し、ポリビニルアルコール(商品名:PVA−217)19.3kgおよび水を添加し、全体量を1000kgとしてからディゾルバー羽根でスラリー化し、更にパイプラインミキサー(みづほ工業製:PM−10型)で予備分散した。
【0284】
次に予備分散済みの原液を分散機(商品名:マイクロフルイダイザーM−610、マイクロフルイデックス・インターナショナル・コーポレーション製、Z型インタラクションチャンバー使用)の圧力を1150kg/cmに調節して、三回処理し、ベヘン酸銀分散物を得た。冷却操作は蛇管式熱交換器をインタラクションチャンバーの前後に各々装着し、冷媒の温度を調節することで18℃の分散温度に設定した。
【0285】
(脂肪酸銀分散物B−1〜B−2の調整)
再結晶ベヘン酸に所望の脂肪酸組成になるように、リグノセリン酸、アラキジン酸およびステアリン酸を追加して脂肪酸含有率を表1の組成に変更した他は、脂肪酸銀分散物Bと同様の方法で、B−1,B−2を調整した。
【0286】
3)還元剤分散物の調製
《還元剤錯体−1分散物の調製》
還元剤錯体―1(6,6’−ジ−t−ブチル−4,4’−ジメチル−2,2’−ブチリデンジフェノール)とトリフェニルホスフィンオキシドの1:1錯体)10kg、トリフェニルホスフィンオキシド0.12Kgおよび変性ポリビニルアルコール(クラレ(株)製、ポバールMP203)の10質量%水溶液16kgに、水10kgを添加して、良く混合してスラリーとした。このスラリーをダイアフラムポンプで送液し、平均直径0.5mmのジルコニアビーズを充填した横型サンドミル(UVM−2:アイメックス(株)製)にて4時間30分分散したのち、ベンゾイソチアゾリノンナトリウム塩0.2gと水を加えて還元剤錯体の濃度が22質量%になるように調製し、還元剤錯体―1分散物を得た。こうして得た還元剤錯体分散物に含まれる還元剤錯体粒子はメジアン径0.45μm、最大粒子径1.4μm以下であった。得られた還元剤錯体分散物は孔径3.0μmのポリプロピレン製フィルターにてろ過を行い、ゴミ等の異物を除去して収納した。
【0287】
《還元剤−2分散物の調製》
還元剤―2(6,6’−ジ−t−ブチル−4,4’−ジメチル−2,2’−ブチリデンジフェノール)10kgと変性ポリビニルアルコール(クラレ(株)製、ポバールMP203)の10質量%水溶液16kgに、水10kgを添加して、良く混合してスラリーとした。このスラリーをダイアフラムポンプで送液し、平均直径0.5mmのジルコニアビーズを充填した横型サンドミル(UVM−2:アイメックス(株)製)にて3時間30分分散したのち、ベンゾイソチアゾリノンナトリウム塩0.2gと水を加えて還元剤の濃度が25質量%になるように調製した。この分散液を60℃で5時間加熱処理し、還元剤―2分散物を得た。こうして得た還元剤分散物に含まれる還元剤粒子はメジアン径0.40μm、最大粒子径1.5μm以下であった。得られた還元剤分散物は孔径3.0μmのポリプロピレン製フィルターにてろ過を行い、ゴミ等の異物を除去して収納した。
【0288】
4)水素結合性化合物−1分散物の調製
水素結合性化合物−1(トリ(4−t−ブチルフェニル)ホスフィンオキシド)10kgと変性ポリビニルアルコール(クラレ(株)製、ポバールMP203)の10質量%水溶液16kgに、水10kgを添加して、良く混合してスラリーとした。このスラリーをダイアフラムポンプで送液し、平均直径0.5mmのジルコニアビーズを充填した横型サンドミル(UVM−2:アイメックス(株)製)にて3時間30分分散したのち、ベンゾイソチアゾリノンナトリウム塩0.2gと水を加えて水素結合性化合物の濃度が25質量%になるように調製した。この分散液を80℃で1時間加温し、水素結合性化合物―1分散物を得た。こうして得た水素結合性化合物分散物に含まれる水素結合性化合物粒子はメジアン径0.35μm、最大粒子径1.5μm以下であった。得られた水素結合性化合物分散物は孔径3.0μmのポリプロピレン製フィルターにてろ過を行い、ゴミ等の異物を除去して収納した。
【0289】
5)現像促進剤−1分散物の調製
現像促進剤−1(後記に構造式を示した)を10kgと変性ポリビニルアルコール(クラレ(株)製、ポバールMP203)の10質量%水溶液20kgに、水10kgを添加して、良く混合してスラリーとした。このスラリーをダイアフラムポンプで送液し、平均直径0.5mmのジルコニアビーズを充填した横型サンドミル(UVM−2:アイメックス(株)製)にて3時間30分分散したのち、ベンゾイソチアゾリノンナトリウム塩0.2gと水を加えて現像促進剤の濃度が20質量%になるように調製し、現像促進剤−1分散物を得た。こうして得た現像促進剤分散物に含まれる現像促進剤粒子はメジアン径0.48μm、最大粒子径1.4μm以下であった。得られた現像促進剤分散物は孔径3.0μmのポリプロピレン製フィルターにてろ過を行い、ゴミ等の異物を除去して収納した。
【0290】
6)現像促進剤−2および色調調整剤−1の調整
現像促進剤−2および色調調整剤−1(後記にそれぞれの一般式を示した)の固体分散物についても現像促進剤−1と同様の方法により分散し、20質量%の分散液を得た。
【0291】
7)ポリハロゲン化合物の調製
《有機ポリハロゲン化合物−1分散物の調製》
有機ポリハロゲン化合物―1(トリブロモメタンスルホニルベンゼン)10kgと変性ポリビニルアルコール(クラレ(株)製ポバールMP203)の20質量%水溶液10kgと、トリイソプロピルナフタレンスルホン酸ナトリウムの20質量%水溶液0.4kgと、水14kgを添加して、良く混合してスラリーとした。このスラリーをダイアフラムポンプで送液し、平均直径0.5mmのジルコニアビーズを充填した横型サンドミル(UVM−2:アイメックス(株)製)にて5時間分散したのち、ベンゾイソチアゾリノンナトリウム塩0.2gと水を加えて有機ポリハロゲン化合物の濃度が26質量%になるように調製し、有機ポリハロゲン化合物―1分散物を得た。こうして得たポリハロゲン化合物分散物に含まれる有機ポリハロゲン化合物粒子はメジアン径0.41μm、最大粒子径2.0μm以下であった。得られた有機ポリハロゲン化合物分散物は孔径10.0μmのポリプロピレン製フィルターにてろ過を行い、ゴミ等の異物を除去して収納した。
【0292】
《有機ポリハロゲン化合物−2分散物の調製》
有機ポリハロゲン化合物―2(N−ブチル−3−トリブロモメタンスルホニルベンズアミド)10kgと変性ポリビニルアルコール(クラレ(株)製ポバールMP203)の10質量%水溶液20kgと、トリイソプロピルナフタレンスルホン酸ナトリウムの20質量%水溶液0.4kgを添加して、良く混合してスラリーとした。このスラリーをダイアフラムポンプで送液し、平均直径0.5mmのジルコニアビーズを充填した横型サンドミル(UVM−2:アイメックス(株)製)にて5時間分散したのち、ベンゾイソチアゾリノンナトリウム塩0.2gと水を加えて有機ポリハロゲン化合物の濃度が30質量%になるように調製した。この分散液を40℃で5時間加温し、有機ポリハロゲン化合物―2分散物を得た。こうして得たポリハロゲン化合物分散物に含まれる有機ポリハロゲン化合物粒子はメジアン径0.40μm、最大粒子径1.3μm以下であった。得られた有機ポリハロゲン化合物分散物は孔径3.0μmのポリプロピレン製フィルターにてろ過を行い、ゴミ等の異物を除去して収納した。
【0293】
8)フタラジン化合物−1溶液の調製
8kgのクラレ(株)製変性ポリビニルアルコールMP203を水174.57kgに溶解し、次いでトリイソプロピルナフタレンスルホン酸ナトリウムの20質量%水溶液3.15kgとフタラジン化合物―1(6−イソプロピルフタラジン)の70質量%水溶液14.28kgを添加し、フタラジン化合物―1の5質量%溶液を調製した。
【0294】
9)メルカプト化合物の調製
《メルカプト化合物−1水溶液の調製》
メルカプト化合物―1(1−(3−スルホフェニル)−5−メルカプトテトラゾールナトリウム塩)7gを水993gに溶解し、0.7質量%の水溶液とした。
【0295】
《メルカプト化合物−2水溶液の調製》
メルカプト化合物―2(1−(3−メチルウレイド)−5−メルカプトテトラゾールナトリウム塩)20gを水980gに溶解し、2.0質量%の水溶液とした。
【0296】
10)顔料−1分散物の調製
C.I.Pigment Blue 60を64gと花王(株)製デモールNを6.4gに水250gを添加し良く混合してスラリーとした。平均直径0.5mmのジルコニアビーズ800gを用意してスラリーと一緒にベッセルに入れ、分散機(1/4Gサンドグラインダーミル:アイメックス(株)製)にて25時間分散し、水を加えて顔料の濃度が5質量%になるように調整して顔料−1分散物を得た。こうして得た顔料分散物に含まれる顔料粒子は平均粒径0.21μmであった。
【0297】
11)SBRラテックス液の調製
SBRラテックスは以下により調製した。
ガスモノマー反応装置(耐圧硝子工業(株)製TAS−2J型)の重合釜に、蒸留水287g、界面活性剤(パイオニンA−43−S(竹本油脂(株)製):固形分48.5%)7.73g、1mol/リットルNaOH14.06ml、エチレンジアミン4酢酸4ナトリウム塩0.15g、スチレン255g、アクリル酸11.25g、tert−ドデシルメルカプタン3.0gを入れ、反応容器を密閉し撹拌速度200rpmで撹拌した。真空ポンプで脱気し窒素ガス置換を数回繰返した後に、1,3−ブタジエン108.75gを圧入して内温60℃まで昇温した。ここに過硫酸アンモニウム1.875gを水50mlに溶解した液を添加し、そのまま5時間撹拌した。さらに90℃に昇温して3時間撹拌し、反応終了後内温が室温になるまで下げた後、1mol/リットルのNaOHとNHOHを用いてNaイオン:NH イオン=1:5.3(モル比)になるように添加処理し、pH8.4に調製した。その後、孔径1.0μmのポリプロピレン製フィルターにてろ過を行い、ゴミ等の異物を除去して収納し、SBRラテックスを774.7g得た。イオンクロマトグラフィーによりハロゲンイオンを測定したところ、塩化物イオン濃度3ppmであった。高速液体クロマトグラフィーによりキレート剤の濃度を測定した結果、145ppmであった。
【0298】
上記ラテックスは、数平均粒径90nm、Tg=17℃、固形分濃度44質量%、25℃60%RHにおける平衡含水率0.6質量%、イオン伝導度4.80mS/cm(イオン伝導度の測定は東亜電波工業(株)製伝導度計CM−30S使用し、ラテックス原液(44質量%)を25℃にて測定)、pH8.4であった。
【0299】
3−2.塗布液の調整
1)画像形成層
《画像形成層塗布液−1の調製》
上記で得た脂肪酸銀分散物A1000g、水276ml、顔料−1分散物33g、有機ポリハロゲン化合物−1分散物21g、有機ポリハロゲン化合物−2分散物58g、フタラジン化合物―1溶液173g、SBRラテックス(Tg:17℃)液1082g、還元剤錯体−1分散物299g、現像促進剤−1分散物5.7g、メルカプト化合物−1水溶液9ml、メルカプト化合物−2水溶液27mlを順次添加し、塗布直前にハロゲン化銀混合乳剤A117gを添加して良く混合した乳剤層塗布液をそのままコーティングダイへ送液し、塗布した。
【0300】
上記乳剤層塗布液の粘度は東京計器のB型粘度計で測定して、40℃(No.1ローター、60rpm)で25[mPa・s]であった。
レオメトリックスファーイースト株式会社製RFSフルードスペクトロメーターを使用した25℃での塗布液の粘度は剪断速度が0.1、1、10、100、1000[1/秒]においてそれぞれ230、60、46、24、18[mPa・s]であった。
【0301】
塗布液中のジルコニウム量は銀1gあたり0.38mgであった。
【0302】
《画像形成層塗布液−2の調製》
上記で得た脂肪酸銀分散物B1000g、水276ml、顔料−1分散物35g、有機ポリハロゲン化合物−1分散物32g、有機ポリハロゲン化合物−2分散物46g、フタラジン化合物―1溶液173g、SBRラテックス(Tg:17℃)液1082g、還元剤−2分散物153g、水素結合性化合物−1分散物55g、現像促進剤−1分散物4.8g、現像促進剤−2分散物5.2g、色調調整剤−1分散物2.1g、メルカプト化合物−2水溶液8mlを順次添加し、塗布直前にハロゲン化銀混合乳剤A140gを添加して良く混合した乳剤層塗布液をそのままコーティングダイへ送液し、塗布した。
上記乳剤層塗布液の粘度は東京計器のB型粘度計で測定して、40℃(No.1ローター、60rpm)で40[mPa・s]であった。
レオメトリックスファーイースト株式会社製RFSフルードスペクトロメーターを使用した25℃での塗布液の粘度は剪断速度が0.1、1、10、100、1000[1/秒]においてそれぞれ530、144、96、51、28[mPa・s]であった。
【0303】
塗布液中のジルコニウム量は銀1gあたり0.25mgであった。
【0304】
2)中間層塗布液の調製
ポリビニルアルコールPVA−205(クラレ(株)製)1000g、顔料の5質量%分散物272g、メチルメタクリレート/スチレン/ブチルアクリレート/ヒドロキシエチルメタクリレート/アクリル酸共重合体(共重合重量比64/9/20/5/2)ラテックス19質量%液4200mlにエアロゾールOT(アメリカンサイアナミド社製)の5質量%水溶液を27ml、フタル酸二アンモニウム塩の20質量%水溶液を135ml、総量10000gになるように水を加え、pHが7.5になるようにNaOHで調製して中間層塗布液とし、9.1ml/mになるようにコーティングダイへ送液した。
塗布液の粘度はB型粘度計40℃(No.1ローター、60rpm)で58[mPa・s]であった。
【0305】
3)表面保護層第1層塗布液の調製
イナートゼラチン64gを水に溶解し、メチルメタクリレート/スチレン/ブチルアクリレート/ヒドロキシエチルメタクリレート/アクリル酸共重合体(共重合重量比64/9/20/5/2)ラテックス19.0質量%液112g、フタル酸の15質量%メタノール溶液を30ml、4−メチルフタル酸の10質量%水溶液23ml、0.5mol/L濃度の硫酸を28ml、エアロゾールOT(アメリカンサイアナミド社製)の5質量%水溶液を5ml、フェノキシエタノール0.5g、ベンゾイソチアゾリノン0.1gを加え、総量750gになるように水を加えて塗布液とし、4質量%のクロムみょうばん26mlを塗布直前にスタチックミキサーで混合したものを18.6ml/mになるようにコーティングダイへ送液した。
塗布液の粘度はB型粘度計40℃(No.1ローター、60rpm)で20[mPa・s]であった。
【0306】
4)表面保護層第2層塗布液の調製
イナートゼラチン80gを水に溶解し、メチルメタクリレート/スチレン/ブチルアクリレート/ヒドロキシエチルメタクリレート/アクリル酸共重合体(共重合重量比64/9/20/5/2)ラテックス27.5質量%液102g、フッ素系界面活性剤(SF−1;大日本インク社製)1質量%のメタノール/水(90:10)溶液を5.4ml、エアロゾールOT(アメリカンサイアナミド社製)の5質量%溶液を23ml、ポリメチルメタクリレート微粒子(平均粒径0.7μm)4g、ポリメチルメタクリレート微粒子(平均粒径4.5μm)21g、4−メチルフタル酸1.6g、フタル酸4.8g、0.5mol/L濃度の硫酸44ml、ベンゾイソチアゾリノン10mgに総量650gとなるよう水を添加して、4質量%のクロムみょうばんと0.67質量%のフタル酸を含有する水溶液445mlを塗布直前にスタチックミキサーで混合したものを表面保護層塗布液とし、8.3ml/mになるようにコーティングダイへ送液した。
塗布液の粘度はB型粘度計40℃(No.1ローター,60rpm)で19[mPa・s]であった。
【0307】
3−3.塗布サンプルの作成
《熱現像感光材料−001の作成》
バック面と反対の面に下塗り面から乳剤層、中間層、保護層第1層、保護層第2層の順番でスライドビード塗布方式にて同時重層塗布し、熱現像感光材料の試料を作成した。このとき、乳剤層と中間層は31℃に、保護層第一層は36℃に、保護層第一層は37℃に温度調整した。
乳剤層の各化合物の塗布量(g/m)は以下の通りである。
【0308】
ベヘン酸銀                        5.58
顔料(C.I.Pigment Blue 60)         0.036
ポリハロゲン化合物−1            0.12
ポリハロゲン化合物−2            0.37
フタラジン化合物−1              0.19
SBRラテックス                  9.98
還元剤錯体−1                    1.41
現像促進剤−1                    0.025
メルカプト化合物−1              0.002
メルカプト化合物−2              0.012
ハロゲン化銀(Agとして)        0.091
【0309】
塗布乾燥条件は以下のとおりである。
塗布はスピード160m/minで行い、コーティングダイ先端と支持体との間隙を0.10〜0.30mmとし、減圧室の圧力を大気圧に対して196〜882Pa低く設定した。支持体は塗布前にイオン風にて除電した。
引き続くチリングゾーンにて、乾球温度10〜20℃の風にて塗布液を冷却した後、無接触型搬送して、つるまき式無接触型乾燥装置にて、乾球温度23〜45℃、湿球温度15〜21℃の乾燥風で乾燥させた。
乾燥後、25℃で湿度40〜60%RHで調湿した後、膜面を70〜90℃になるように加熱した。加熱後、膜面を25℃まで冷却した。
【0310】
作製された熱現像感光材料のマット度はベック平滑度で感光性層面側が550秒、バック面が130秒であった。また、感光層面側の膜面のpHを測定したところ6.0であった。
【0311】
以下に上記実施例で用いた化合物の構造式を示す。
【0312】
【化40】
Figure 2004004322
【0313】
【化41】
Figure 2004004322
【0314】
【化42】
Figure 2004004322
【0315】
【化43】
Figure 2004004322
【0316】
SF−1   C17SONa
SF−2   C17SON(C)CHCOOK
SF−3  C17SONH(CHO(CH(CH3  PTS
【0317】
実施例1
熱現像感光材料−001に対して有機銀塩を表2に示したものに置き換え、
フッ素化合物SF−1を表2に示したものに同重量で変更して加えた他は熱現像感光材料−001とまったく同様にして熱現像感光材料−002〜020を作製した。
【0318】
【表1】
Figure 2004004322
【0319】
【表2】
Figure 2004004322
【0320】
(写真性能の評価)
得られた試料は半切サイズに切断し、25℃40%の環境下で以下の包装材料に包装し、2週間常温下で保管した後、以下の評価を行った。
(包装材料)
PET 10μ/PE 12μ/アルミ箔9μ/Ny 15μ/カーボン3%を含むポリエチレン50μ
酸素透過率:0.02ml/atm・m・25℃・day、水分透過率:0.10g/atm・m・25℃・day
【0321】
試料は富士メディカルドライレーザーイメージャーFM−DPL(最大60mW(IIIB)出力の660nm半導体レーザー搭載)にて露光・現像(112℃−119℃−121℃−121℃に設定した4枚のパネルヒータで試料001〜012は合計24秒、試料013〜020は合計14秒)し、得られた画像を濃度計により評価した。
各試料には濃度1.5になるように均一な露光、および胸部の実技画像を焼き付け、所定時間の熱現像を行った。
【0322】
(ヘイズの測定方法)
次に、未露光かつ未現像の試料(生感材)および未露光のまま熱現像を行った試料(素現)についてヘイズ測定を行った。
得られた試料をNIPPONDENSHOKU(株)社製ヘイズ測定装置MODEL1001DPを用いてヘイズを測定した。ヘイズとは、透明性の指標であり、感材中の微粒子や界面の乱れによる光散乱の大きさと関係する。散乱光の割合を%で表し、数値が低いほど透明性が高く好ましいことを示す。
【0323】
(指跡試験)
画像保存性の1つの尺度である指跡試験を次のように行った。
室温25℃、相対湿度80%に空調した部屋で10人の人にサンプルを素手でさわってもらい、その後シャーカステン上で3時間光を照射した後、指紋による汚れをシャーカステンで評価した。評価は以下の評点で示した。
◎ 汚れがほとんど気にならない。
○ 一人から二人の指紋の跡が観察されるが程度は軽微。
△ 3人以上の指紋の跡が観察され、程度も悪い。
× 5人以上の指紋の跡が観察され、程度も極めて悪い。
以上のようにして測定されたヘイズ及び指跡試験の結果を表2に示した。
ここで、生感材とは未露光かつ未現像の試料をいい、素現部とは未露光で熱現像した試料をいう。
【0324】
表2より、本発明のフッ素化合物を使用することで、生感材および素現部のいずれにおいてもヘイズが改善され、指跡試験の結果も良好であることがわかる。特に、有機銀塩中のベヘン酸銀が80〜99モル%の範囲である熱現像感光材料に本発明のフッ素化合物を使用すると、ヘイズが改善された上、指跡試験で示される画像保存性も思いがけず改良され、きわめて良好な画像安定性が得られた。また、有機銀塩中にベヘン酸銀を55〜85モル%含有する熱現像材料に本発明のフッ素化合物を使用すると、熱現像活性および迅速性を損なうことなく、ヘイズが改良され、指跡試験の結果も良好であった。
【0325】
実施例2
熱現像感光材料−001に対して、ハレーション防止層から黄色染料化合物15を除き、 有機銀塩を表3に示したものに置き換え、フッ素化合物を表3に示したものに同重量で変更して加えた他は熱現像感光材料−001とまったく同様にして熱現像感光材料−101〜112を作製した。
このときの乳剤層の各化合物の塗布量(g/m)は以下の通りである。
【0326】
ベヘン酸銀                        5.27
顔料(C.I.Pigment Blue 60)         0.036
ポリハロゲン化合物−1            0.17
ポリハロゲン化合物−2            0.28
フタラジン化合物−1              0.18
SBRラテックス                  9.43
還元剤−2                        0.77
水素結合性化合物−1              0.28
現像促進剤−1                    0.019
現像促進剤−2                    0.020
色調調整剤−1                    0.008
メルカプト化合物−2              0.003
ハロゲン化銀(Agとして)        0.091
【0327】
また、現像時間については試料101〜112では合計14秒である。
【0328】
【表3】
Figure 2004004322
【0329】
これらの感光材料についても実施例1と同様の評価を行った。
この場合にも本発明のフッ素化合物を使用することにより、ヘイズが改良され、指跡試験の結果も良好であった。
【0330】
実施例3
前記熱現像感光材料−101に対して、還元剤−2を還元剤I−5に変更し、乳剤保護層−2とバック面保護層の両層に添加するフッ素化合物をSF−3に変更した他は熱現像感光材料−101と同様にして熱現像感光材料−201を作製した。熱現像感光材料−201に対して、還元剤およびカブリ防止剤を表4に示したように変更し、熱現像感光材料−202〜220を作成した。さらに熱現像感光材料−201〜208にはアニオン性界面活性剤A−3を2mg/m、熱現像感光材料−209〜220にはノニオン性界面活性剤N−1を5mg/m添加した。
ただし、I−1、I−2を使用した熱現像感光材料の還元剤塗布量はそれぞれ熱現像感光材料−101に対してモル換算で1.35倍、1.25倍とした。
また、現像時間については試料201〜204では合計24秒、試料205〜220では合計14秒である。
【0331】
【表4】
Figure 2004004322
【0332】
これらの感光材料についても実施例2と同様の評価を行った。
【0333】
この場合にも本発明のフッ素化合物を使用することにより、還元剤及びカブリ防止剤を置き換えて使用しても、ヘイズが改良され、指跡試験の結果も良好であった。特に、ビスフェノール系還元剤および前記一般式(B)で表されるポリハロゲン化合物であるカブリ防止剤を使用すると、画質の向上が図られ、かつヘイズが改良され、指跡試験の結果も良好であった。
【0334】
【発明の効果】
本発明により、塗布性を改善することでヘイズを改良することができ、また、汗や油でしめった手で触れたときに発生する汚れを低減した熱現像感光材料を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photothermographic material, and in particular, by using a specific fluorine-based compound, a coating film having a low haze is formed by improving the coating surface shape, and fingerprint adhesion when touched by hand The present invention relates to a photothermographic material in which contamination of the photosensitive material due to the above is reduced.
[0002]
[Prior art]
In recent years, in the medical field, reduction of waste processing liquid has been strongly desired from the viewpoint of environmental protection and space saving. Therefore, photosensitive heat for medical diagnosis and photographic technology that can be efficiently exposed by a laser image setter or laser imager and can form a clear black image having high resolution and sharpness. There is a need for techniques relating to developed photographic materials. These photosensitive photothermographic materials can eliminate the use of solution processing chemicals and supply customers with a simpler heat development processing system that does not damage the environment.
[0003]
Although there is a similar requirement in the field of general image forming materials, medical images are required to have high image quality with excellent sharpness and graininess because they are required to be finely drawn, and are cooled from the viewpoint of ease of diagnosis. There is a feature that a black tone image is preferred. At present, various hard copy systems using pigments and dyes such as inkjet printers and electrophotography are distributed as general image forming systems, but it is difficult to satisfy as a medical image output system.
[0004]
On the other hand, thermal imaging systems using organic silver salts are disclosed in, for example, the specifications of U.S. Pat. “Thermal Processed Silver Systems” (Imaging Processes and Materials) Nebelte 8th Edition, Sturge V. by Shely. (Walworth), A. Shepp, 2nd page, 1996). In particular, the photothermographic material generally contains a catalytically active amount of a photocatalyst (eg, silver halide), a reducing agent, a reducible silver salt (eg, an organic silver salt), and a color tone that controls the color tone of silver if necessary. And a photosensitive layer dispersed in a binder matrix. The photothermographic material is heated to a high temperature (for example, 80 ° C. or higher) after image exposure, and is blackened by an oxidation-reduction reaction between silver halide or a reducible silver salt (functioning as an oxidizing agent) and a reducing agent. Form a silver image. The oxidation-reduction reaction is promoted by the catalytic action of the latent image of silver halide generated by exposure. Therefore, a black silver image is formed in the exposure area. Fuji Medical Dry Imager FM-DPL has been put on the market as a medical image forming system using a photothermographic material.
[0005]
The photothermographic material has been well received in the market due to the above-described characteristics, and the use area and use place have been expanded. Accordingly, further performance improvement is desired. Also in the coating process, since it is difficult to apply a photothermographic material as compared with a conventional photosensitive material using gelatin as a main binder, it has been a big problem to improve the coating property and increase the productivity.
Here, when an organic solvent is used as a coating solvent for the photothermographic material, troubles such as the surface becoming clouded due to brushing or becoming a skin-like surface due to the Bernard cell phenomenon are likely to occur. Therefore, an improvement means for stabilizing the coated surface state while increasing the coating / drying speed has been eagerly desired.
On the other hand, when an aqueous solvent is used as a coating solvent, these problems are reduced, but it cannot be said that the problem is solved, and further improvement in coating performance has been demanded.
As a result of research and development on these problems, it is effective to use the fluorosurfactants described in Japanese Patent Application Nos. 2000-206560, 2001-203462, 2001-242357, and 2001-264110. As a result, the charge adjustment ability, the stability of the coated surface and the smoothness were improved. However, the improvement effect is not sufficient, and further improvement is necessary.
Further, as a problem peculiar to a photothermographic material, there is a problem that a fingerprint is attached when touched with a hand dampened with sweat or oil and discolors with time.
[0006]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to overcome the above-mentioned drawbacks of the prior art and improve the coating property, thereby forming a transparent film with low haze, and when touching with a hand dampened with sweat or oil. It is an object of the present invention to provide a photothermographic material in which generated stain is reduced.
[0007]
[Means for Solving the Problems]
The object of the present invention has been achieved by the following photothermographic materials.
(1) A photothermographic material containing a photosensitive silver halide, a non-photosensitive organic silver salt, a reducing agent for heat development and a binder, wherein the number of carbon atoms is 2 or more and the number of fluorine atoms is A photothermographic material comprising a fluorine compound having 12 or less fluorinated alkyl groups and a cationic hydrophilic group.
(2) The photothermographic material according to (1), wherein the fluorinated alkyl group is represented by the following general formula (A).
General formula (A) -Rc-Re-W
In the formula, Rc represents an alkylene group having 1 to 4 carbon atoms, Re represents a perfluoroalkylene group having 2 to 6 carbon atoms, and W represents a hydrogen atom, a fluorine atom or an alkyl group.
(3) The photothermographic material according to (1) or (2), wherein the reducing agent is a bisphenol-based reducing agent.
(4) The photothermographic material according to (1) to (3), which contains a compound represented by the following general formula (D).
Formula (D)
[Chemical 1]
Figure 2004004322
R in general formula (D)21Or R23Each independently represents an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group or a heterocyclic group.
(5) The photothermographic material according to (1) to (4), which contains a polyhalogen compound represented by the following general formula (B).
General formula (B)
Q- (Y) n-C (Z1) (Z2) X
Q represents an alkyl group, an aryl group or a heterocyclic group, Y represents a divalent linking group, n represents 0 or 1, Z1And Z2Represents a halogen atom, and X represents a hydrogen atom or an electron withdrawing group.
(6) The photothermographic material according to any one of (1) to (5), which contains a development accelerator having a thermal development accelerating effect with respect to the thermal developer.
(7) The photothermographic material according to (6), wherein the development accelerator is a hydrazine-based or naphthol-based compound.
(8) The photothermographic material according to any one of (1) to (7) above, wherein 80 to 99 mol% of the non-photosensitive organic silver salt is silver behenate.
(9) The photothermographic material according to any one of (1) to (7) above, wherein 50 to 85 mol% of the non-photosensitive organic silver salt is silver behenate.
(10) The photothermographic material according to any one of (1) to (9), further comprising a surfactant having an anionic or nonionic hydrophilic group.
[0008]
(11) The photothermographic material according to (1), wherein the fluorine compound having a cationic hydrophilic group is represented by the following general formula (1).
[Chemical 2]
Figure 2004004322
(Wherein R1And R2Each represents a substituted or unsubstituted alkyl group, R1And R2At least one represents a fluorinated alkyl group having 2 or more carbon atoms and 12 or less fluorine atoms, or a fluorinated alkyl group represented by the general formula (A). R3, R4And R5Each independently represents a hydrogen atom or a substituent;1, X2And Z each independently represents a divalent linking group or a single bond;+Represents a cationic substituent. YRepresents a counter anion, but when the charge is zero in the molecule, YIs not necessary. m is 0 or 1. )
(12) The photothermographic material according to (1), wherein the compound represented by the general formula (1) is represented by the following general formula (1-a).
[Chemical 3]
Figure 2004004322
Where R11And R21Each represents a substituted or unsubstituted alkyl group, R11And R21At least one of these represents a fluorinated alkyl group having 2 or more carbon atoms and 12 or less fluorine atoms or a fluorinated alkyl group represented by the above general formula (A), and R11And R21The total number of carbon atoms is 19 or less. R13, R14And R15Each independently represents a substituted or unsubstituted alkyl group, which may be bonded to each other to form a ring. X11And X21Are each independently -O-, -S- or -NR.31-Represents R31Represents a hydrogen atom or a substituent, and Z represents a divalent linking group or a single bond. YRepresents a counter anion, but when the charge is zero in the molecule, YIs not necessary. m is 0 or 1.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0010]
1. Description of fluorine compounds having cationic hydrophilic groups
The photothermographic material of the invention contains a fluorine compound having one or more fluorinated alkyl groups having 2 or more carbon atoms and 12 or less fluorine atoms, and having a cationic hydrophilic group. The fluorine compound of the present invention can be used as a surfactant.
As long as the fluorine compound used in the present invention has one or more of the above fluorinated alkyl groups (hereinafter, the alkyl group substituted with a fluorine atom is referred to as “Rf”) and a cationic hydrophilic group, any fluorine compounds can be used. It may be a structure.
[0011]
Specific examples of Rf include the following groups, but are not limited thereto.
-C2F5Group, -C3F7Group, -C4F9Group, -C5F11Group, -CH2-C4F9Group,
-C4F8-H group, -C2H4-C4F9Group, -C4H8-C4F9Group,
-C6H12-C4F9Group, -C8H16-C4F9Group, -C4H8-C2F5Group,
-C4H8-C3F7Group, -C4H8-C5F11Group, -C8H16-C2F5Group,
-C2H4-C4F8-H group, -C4H8-C4F8-H group, -C6H12-C4F8-H group
-C6H12-C2F4-H group, -C8H16-C2F4-H group,
-C6H12-C4F8-CH3Group, -C2H4-C3F7Group, -C2H4-C5F11Group, -C4H8-CF (CF3)2Group, -CH2CF3Group,
-C4H8-CH (C2F5)2Group, -C4H8-CH (CF3)2Group,
-C4H8-C (CF3)3Group, -CH2-C4F8-H group, -CH2-C6F12-H group.
[0012]
Rf has 12 or less fluorine atoms, preferably in the range of 3-11, more preferably in the range of 5-9. The number of carbon atoms is 2 or more, preferably 4 to 16, more preferably 5 to 12.
[0013]
Rf is not particularly limited as long as it has 2 or more carbon atoms and 12 or less fluorine atoms, but is preferably a group represented by the following general formula (A).
[0014]
Formula (A)
-Rc-Re-W
[0015]
In the general formula (A), Rc represents an alkylene group having 1 to 4 carbon atoms, preferably in the range of 1 to 3 carbon atoms, more preferably in the range of 1 to 2.
The alkylene group represented by Rc may be linear or branched.
Re represents a C 2-6 perfluoroalkylene group, preferably a C 2-4 perfluoroalkylene group. Here, the perfluoroalkylene group refers to an alkylene group in which all hydrogen atoms of the alkylene group are replaced with fluorine atoms. The perfluoroalkylene group may be linear or branched, and may have a cyclic structure.
W represents a hydrogen atom, a fluorine atom or an alkyl group, preferably a hydrogen atom or a fluorine atom. Particularly preferred is a fluorine atom.
[0016]
The cationic hydrophilic group is a group that becomes a cation when dissolved in water. Specific examples include quaternary ammonium, alkyl pyridium, alkyl imidazolinium, and primary to tertiary aliphatic amines.
The cation is preferably an organic cationic substituent, and more preferably an organic cationic group containing a nitrogen or phosphorus atom. More preferred is a pyridinium cation or an ammonium cation.
The anion species forming the salt may be an inorganic anion or an organic anion. As the inorganic anion, iodo ion, bromine ion, chlorine ion, perchlorate ion, PF6 Examples of the organic anion include p-toluenesulfonate ion, benzenesulfonate ion, methanesulfonate ion, and trifluoromethanesulfonate ion.
[0017]
A preferred cationic fluorine compound in the present invention is represented by the following general formula (1).
General formula (1)
[0018]
[Formula 4]
Figure 2004004322
[0019]
Where R1And R2Each represents a substituted or unsubstituted alkyl group, R1And R2At least one of the above is the aforementioned fluorinated alkyl group (Rf). Preferred is R1And R2Both are Rf. R3, R4And R5Each independently represents a hydrogen atom or a substituent;1, X2And Z each independently represents a divalent linking group or a single bond;+Represents a cationic substituent. YRepresents a counter anion, but when the charge is zero in the molecule, YIs not necessary. m is 0 or 1.
[0020]
In the general formula (1), R1And R2When each represents a substituted or unsubstituted alkyl group other than Rf, the alkyl group may have 1 or more carbon atoms, and may be linear, branched, or cyclic. Examples of the substituent include a halogen atom, an alkenyl group, an aryl group, an alkoxyl group, a halogen atom other than fluorine, a carboxylic acid ester group, a carbonamido group, a carbamoyl group, an oxycarbonyl group, and a phosphoric acid ester group.
[0021]
R1Or R2Represents an alkyl group other than Rf, that is, an alkyl group not substituted with a fluorine atom, the alkyl group is a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, more preferably 6 to 24 carbon atoms. A substituted or unsubstituted alkyl group. Preferred examples of the unsubstituted alkyl group having 6 to 24 carbon atoms include n-hexyl group, n-heptyl group, n-octyl group, tert-octyl group, 2-ethylhexyl group, n-nonyl group, 1,1, 3-trimethylhexyl group, n-decyl group, n-dodecyl group, cetyl group, hexadecyl group, 2-hexyldecyl group, octadecyl group, eicosyl group, 2-octyldodecyl group, docosyl group, tetracosyl group, 2-decyltetra A decyl group, a tricosyl group, a cyclohexyl group, a cycloheptyl group, etc. are mentioned. Preferred examples of the alkyl group having 6 to 24 carbon atoms having a substituent include 2-hexenyl group, oleyl group, linoleyl group, linolenyl group, benzyl group, β-phenethyl group, 2-methoxyethyl group, 4-phenylbutyl group, 4-acetoxyethyl group, 6-phenoxyhexyl group, 12-phenyldodecyl group, 18-phenyloctadecyl group, 12- (p-chlorophenyl) dodecyl group, 2- (diphenyl phosphate) ethyl group, etc. Can be mentioned.
[0022]
R1And R2The alkyl group other than Rf represented by each is more preferably a substituted or unsubstituted alkyl group having 6 to 18 carbon atoms. Preferred examples of the unsubstituted alkyl group having 6 to 18 carbon atoms include n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, 1,1,3 -Trimethylhexyl group, n-decyl group, n-dodecyl group, cetyl group, hexadecyl group, 2-hexyldecyl group, octadecyl group, 4-tert-butylcyclohexyl group and the like can be mentioned. Preferable examples of the substituted alkyl group having 6 to 18 carbon atoms having a substituent include phenethyl group, 6-phenoxyhexyl group, 12-phenyldodecyl group, oleyl group, linoleyl group, and linolenyl group. .
[0023]
R1And R2As the alkyl group other than Rf represented by each of these, particularly preferred are n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, 1,1,3 A trimethylhexyl group, an n-decyl group, an n-dodecyl group, a cetyl group, a hexadecyl group, a 2-hexyldecyl group, an octadecyl group, an oleyl group, a linoleyl group, and a linolenyl group, most preferably 8 to 16 carbon atoms. It is a linear, cyclic or branched unsubstituted alkyl group.
[0024]
In the general formula (1), R3, R4And R5Each independently represents a hydrogen atom or a substituent. Examples of the substituent include an alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms, such as a methyl group, an ethyl group, and isopropyl. Group, tert-butyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like, alkenyl group (preferably having 2 to 20 carbon atoms, more preferably). Is an alkenyl group having 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, and examples thereof include a vinyl group, an allyl group, a 2-butenyl group, and a 3-pentenyl group, and an alkynyl group (preferably a carbon atom). An alkynyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, such as a propargyl group, 3 A pentynyl group), an aryl group (preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms, such as a phenyl group and p-methyl group). A phenyl group, a naphthyl group, etc.), a substituted or unsubstituted amino group (preferably a carbon number of 0-20, more preferably a carbon number of 0-10, particularly preferably a carbon number of 0-6, For example, an unsubstituted amino group, a methylamino group, a dimethylamino group, a diethylamino group, a dibenzylamino group, etc.)
[0025]
An alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, and a butoxy group). An aryloxy group (preferably an aryloxy group having 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include a phenyloxy group and a 2-naphthyloxy group. An acyl group (preferably having a carbon number of 1-20, more preferably a carbon number of 1-16, particularly preferably a carbon number of 1-12, such as an acetyl group, a benzoyl group, a formyl group, a pivaloyl group, etc. An alkoxycarbonyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 2 carbon atoms). 2 alkoxycarbonyl groups, for example, methoxycarbonyl group, ethoxycarbonyl group and the like, and aryloxycarbonyl groups (preferably having 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, and particularly preferably carbon numbers). An aryloxycarbonyl group having 7 to 10 carbon atoms, such as a phenyloxycarbonyl group, an acyloxy group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 2 carbon atoms). 10 acyloxy groups such as an acetoxy group and a benzoyloxy group)
[0026]
An acylamino group (preferably an acylamino group having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as an acetylamino group and a benzoylamino group), alkoxycarbonyl An amino group (preferably an alkoxycarbonylamino group having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as a methoxycarbonylamino group), aryloxy Carbonylamino group (preferably an aryloxycarbonylamino group having 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as a phenyloxycarbonylamino group) Sulfonylamino group (preferably having 1 to 20 carbon atoms, more preferred Or a sulfonylamino group having 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include a methanesulfonylamino group and a benzenesulfonylamino group, and a sulfamoyl group (preferably having a carbon number of 0 to 20). More preferably, it is a sulfamoyl group having 0 to 16 carbon atoms, particularly preferably 0 to 12 carbon atoms, and examples thereof include a sulfamoyl group, a methylsulfamoyl group, a dimethylsulfamoyl group, and a phenylsulfamoyl group. ), A carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms. For example, an unsubstituted carbamoyl group, a methylcarbamoyl group, diethylcarbamoyl group Group, phenylcarbamoyl group, etc.),
[0027]
An alkylthio group (preferably an alkylthio group having 1 to 20 carbon atoms, more preferably an alkylthio group having 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as a methylthio group and an ethylthio group), an arylthio group ( Preferably it is C6-C20, More preferably, it is C6-C16, Most preferably, it is C6-C12 arylthio group, for example, a phenylthio group etc. are mentioned, A sulfonyl group (preferably C1-C1). 20, more preferably a sulfonyl group having 1 to 16 carbon atoms, particularly preferably a sulfonyl group having 1 to 12 carbon atoms, such as a mesyl group and a tosyl group, and a sulfinyl group (preferably having a carbon number of 1 to 20, more A sulfinyl group having 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms is preferable. Zensulfinyl group and the like), ureido group (preferably a ureido group having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, for example, an unsubstituted ureido group , Methylureido group, phenylureido group, etc.), phosphoric acid amide group (preferably having 1 to 20 carbon atoms, more preferably having 1 to 16 carbon atoms, particularly preferably having 1 to 12 carbon atoms). Yes, for example, diethyl phosphoric acid amide group, phenyl phosphoric acid amide group, etc.), hydroxy group, mercapto group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, Carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group (preferably having a carbon number of 1 to 0, more preferably a heterocyclic group of 1 to 12, for example, a heterocyclic group having a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, such as an imidazolyl group, a pyridyl group, a quinolyl group, a furyl group , Piperidyl group, morpholino group, benzoxazolyl group, benzimidazolyl group, benzthiazolyl group, etc.), silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably A silyl group having 3 to 24 carbon atoms, and examples thereof include a trimethylsilyl group and a triphenylsilyl group). These substituents may be further substituted. Moreover, when there are two or more substituents, they may be the same or different. If possible, they may be bonded to each other to form a ring.
[0028]
R3, R4And R5Is preferably an alkyl group or a hydrogen atom, more preferably a hydrogen atom.
[0029]
In the above formula, X1And X2Each represents a divalent linking group or a single bond. The divalent linking group is not particularly limited, but is preferably an arylene group, -O-, -S-, or -NR.31-(R31Represents a hydrogen atom or a substituent, and the substituent is R3, R4And R5Are the same as the examples of the substituents represented by31As an alkyl group, the aforementioned Rf or hydrogen atom, more preferably a hydrogen atom), or a group obtained by combining them alone, more preferably —O—, —S—, or —NR.31It is. X1And X2More preferably, -O- or -NR31-, More preferably -O- or -NH-, and particularly preferably -O-.
[0030]
In the above formula, Z represents a divalent linking group or a single bond. The divalent linking group is not particularly limited, but is preferably an alkylene group, an arylene group, -C (= O)-, -O-, -S-, -S (= O)-, -S (= O)2-Or -NR32-(R32Represents a hydrogen atom or a substituent, and the substituent is R3, R4And R5Is the same as the example of the substituent represented by R32As an alkyl group or a hydrogen atom, more preferably a hydrogen atom), or a group obtained by combining them alone, more preferably an alkylene group having 1 to 12 carbon atoms, or a group having 6 to 12 carbon atoms. Arylene group, -C (= O)-, -O-, -S-, -S (= O)-, -S (= O)2-Or -NR32-Is a group obtained alone or in combination thereof. More preferably, Z is an alkylene group having 1 to 8 carbon atoms, -C (= O)-, -O-, -S-, -S (= O)-, -S (= O).2-Or -NR32-Is a group obtained alone or in combination thereof, for example,
[0031]
[Chemical formula 5]
Figure 2004004322
Etc.
[0032]
In the above formula, M+Represents a cationic substituent, and M+As preferred, it is an organic cationic substituent, and more preferred is an organic cationic group containing a nitrogen or phosphorus atom. More preferred is a pyridinium cation or an ammonium cation, and more preferred is a trialkylammonium cation represented by the following general formula (2).
[0033]
[Chemical 6]
Figure 2004004322
[0034]
In the above formula, R13, R14And R15Each independently represents a substituted or unsubstituted alkyl group. Examples of the substituent include R3, R4And R5What was mentioned as a substituent of can be applied. R13, R14And R15May combine with each other to form a ring if possible. R13, R14And R15Preferably, it is a C1-C12 alkyl group, More preferably, it is a C1-C6 alkyl group, More preferably, they are a methyl group, an ethyl group, and a methyl carboxyl group, Most preferably, it is a methyl group. is there.
[0035]
In the above formula, YRepresents a counter anion and may be an inorganic anion or an organic anion. If the charge is 0 in the molecule, YIs not necessary. Preferred examples of the inorganic anion include iodo ion, bromine ion, and chlorine ion. Preferred examples of the organic anion include p-toluenesulfonate ion, benzenesulfonate ion, methanesulfonate ion, and trifluoromethanesulfonate ion. It is done. YMore preferred are iodo ion, p-toluenesulfonic acid ion, and benzenesulfonic acid ion, and further preferred is p-toluenesulfonic acid.
[0036]
In the above formula, m represents 0 or 1, preferably 0.
[0037]
Among the compounds represented by the general formula (1), compounds represented by the following general formula (1-a) are preferable.
[0038]
[Chemical 7]
Figure 2004004322
[0039]
Where R11And R21Each represents a substituted or unsubstituted alkyl group, R1And R2At least one of the above represents Rf, and R11And R21The total number of carbon atoms is 19 or less. R13, R14And R15Each independently represents a substituted or unsubstituted alkyl group, which may be bonded to each other to form a ring. X11And X21Are each independently -O-, -S- or -NR.31-Represents R31Represents a hydrogen atom or a substituent, and Z represents a divalent linking group or a single bond. YRepresents a counter anion, but when the charge is zero in the molecule, YIs not necessary.
m is 0 or 1. Where Z and YRespectively in the above general formula (1)
The preferred range is also the same. R13, R14, R15And m have the same meanings as those in the general formula (1), and the preferred ranges are also the same.
[0040]
Where X11And X12Are —O—, —S— or —NR, respectively.31-(R31Represents a hydrogen atom or a substituent, and the substituent includes the R3, R4And R5What was mentioned as a substituent of can be applied. R31And preferably an alkyl group, the aforementioned Rf, or a hydrogen atom, and more preferably a hydrogen atom. X11And X21More preferably —O— and —NH—, and still more preferably —O—.
[0041]
In the above formula, R11And R21Are R in the general formula (1), respectively.1And R2The preferred range is also the same. However, R11And R21The total number of carbon atoms is 19 or less. m is 0 or 1.
[0042]
Although the specific example of a compound represented by the said General formula (1) is given, this invention is not restrict | limited at all by the following specific examples. In addition, unless otherwise indicated in the structure description of the following exemplary compounds, an alkyl group and a perfluroalkyl group mean a linear structure. Of the abbreviations in the notation, 2EH means 2-ethylhexyl.
[0043]
[Chemical 8]
Figure 2004004322
[0044]
[Chemical 9]
Figure 2004004322
[0045]
Embedded image
Figure 2004004322
[0046]
Embedded image
Figure 2004004322
[0047]
Embedded image
Figure 2004004322
[0048]
Embedded image
Figure 2004004322
[0049]
Embedded image
Figure 2004004322
[0050]
Embedded image
Figure 2004004322
[0051]
Embedded image
Figure 2004004322
[0052]
Embedded image
Figure 2004004322
[0053]
Embedded image
Figure 2004004322
[0054]
Embedded image
Figure 2004004322
[0055]
Embedded image
Figure 2004004322
[0056]
Embedded image
Figure 2004004322
[0057]
Next, although an example of the general synthesis | combining method of the compound represented by the said general formula (1) of this invention and (1-a) is shown, this invention is not limited to these.
[0058]
(Synthesis Example: Synthesis of F-52)
(1) 2- (2- (N, N-dimethylamino) ethylamino) succinic acid 1,4-di (3,3,4,4,5,5,6,6,6-nonafluorohexyl) Composition
500 g (0.82 mol) of succinic acid 1,4-di (3,3,4,4,5,5,6,6,6-nonafluorohexyl), 79.5 g of N, N-dimethylaminoethylamine ( 0.90 mol) and 11.3 g (0.08 mol) of potassium carbonate were dissolved in 500 mL of acetonitrile and heated to reflux for 45 minutes. Thereafter, the reaction solution was transferred to a separatory funnel, 2 L of ethyl acetate was added, the organic phase was washed with an aqueous sodium chloride solution (1.5 L), the organic layer was recovered, the organic solvent was distilled off under reduced pressure, and a pale yellow As a result, 453 g (yield 79%) of the target compound was obtained.
[0059]
(2) Synthesis of F-52
After adding 380 g (0.55 mol) of the above compound, 101.6 g (0.55 mmol) of methyl p-toluenesulfonate and 1500 mL of ethyl acetate and heating to reflux for 2 hours, the insoluble material was filtered off and the filtrate was stirred. While cooling in an ice bath. After a while, crystals precipitated from the filtrate. The obtained crystals were collected by filtration, washed with ethyl acetate, and dried under reduced pressure at 80 ° C. for 2 hours. As a colorless and transparent solid, 300 g (yield 62%) of the target compound was obtained.
Of the resulting compound1The data of H-NMR is as follows.
1H-NMR (DMSO-d6): Δ 2.50 (s, 3H), 2.61-2.73 (br, 8H), 3.07 (s, 9H) 3.33 (m, 2H), 3.66 (m, 1H), 4.30-4.40 (m, 4H), 7.11 (d, 2H) 7.48 (d, 2H)
[0060]
The compound having a specific fluorinated alkyl group used in the present invention forms a layer (in particular, a protective layer, an undercoat layer, a back layer, etc.) constituting a silver halide photographic light-sensitive material as a surfactant. It is preferably used for coating compositions. This is because by using the fluorine compound of the present invention, the coating property can be improved and the haze can be improved. In particular, when it is used to form the uppermost layer of a photographic light-sensitive material, it is possible to reduce stains that occur when touched with a hand that has been dampened with sweat or oil. In order to obtain this effect, the fluorine compound of the present invention is preferably used in the outermost layer of the emulsion surface or the back surface. Moreover, the same effect is acquired even if it uses it for a support body undercoat layer.
[0061]
The amount of the specific fluorine compound used in the present invention is not particularly limited, and the amount used is arbitrary depending on the structure and location of the fluorine compound used, the type and amount of other materials contained in the composition, and the like. Can be determined. For example, when used as a coating solution for the uppermost layer of the photothermographic material, the coating amount of the fluorine compound in the coating composition is 0.1 to 100 mg / m.2Preferably 0.5 to 20 mg / m2It is more preferable that
[0062]
In the present invention, one type of the above specific fluorine compound may be used alone, or two or more types may be mixed and used.
[0063]
2. Description of organic silver salt
The organic silver salt that can be used in the present invention is relatively stable to light, but when heated to 80 ° C. or higher in the presence of exposed photosensitive silver halide and a reducing agent. It functions as a silver ion supplier and forms a silver image.
In addition to silver behenate, any organic substance capable of supplying silver ions that can be reduced by a reducing agent may be included as an organic silver salt. As for such non-photosensitive organic silver salt, paragraph numbers 0048 to 0049 of JP-A-10-62899, page 18 line 24 to page 19 line 37 of European Patent Publication No. 0803764A1, European Patent Publication. No. 0968212A1, JP-A-11-349591, JP-A-2000-7683, JP-A-2000-72711, and the like. Of these, silver salts of organic acids, particularly silver salts of long-chain aliphatic carboxylic acids (having 10 to 30 carbon atoms, preferably 15 to 28 carbon atoms) are preferred. Preferred examples of the fatty acid silver salt include lignoceric acid, silver behenate, silver arachidate, silver stearate, silver oleate, silver laurate, silver caproate, silver myristate, silver palmitate, silver erucate and the like. Including mixtures.
In the present invention, when an organic silver salt having a silver behenate content of 40 mol% or more and 99 mol% or less is used, the characteristics regarding image storability, heat development activity and rapidity are good. Preferably they are 50 mol% or more and 95 mol% or less, More preferably, they are 60 mol% or more and 90 mol% or less, More preferably, they are 65 mol% or more and 85 mol% or less. In particular, in a design that emphasizes image storability, the silver behenate content is preferably 70 mol% or more and 99 mol% or less, and more preferably 80 mol% or more and 99 mol% or less. In a design that emphasizes heat development activity and rapidity, the silver behenate content is preferably 50 mol% or more and 85 mol% or less, and more preferably 55 mol% or more and 80 mol% or less. Further, the silver erucate content is preferably 2 mol% or less, more preferably 1 mol% or less, and still more preferably 0.1 mol% or less.
[0064]
The shape of the organic silver salt that can be used in the present invention is not particularly limited, and may be any of a needle shape, a rod shape, a flat plate shape, and a flake shape.
In the present invention, scaly organic silver salts are preferred. Also, short needle-shaped, rectangular parallelepiped, cubic or potato-shaped amorphous particles having a major axis / uniaxial length ratio of 5 or less are preferably used. These organic silver particles have a feature that there is less fog at the time of thermal development than long needle-like particles having a ratio of the major axis to the uniaxial length of 5 or more. In particular, particles having a major axis / uniaxial ratio of 3 or less are preferable because the mechanical stability of the coating film is improved. In the present specification, the scaly organic silver salt is defined as follows. The organic acid silver salt was observed with an electron microscope, the shape of the organic acid silver salt particle was approximated to a rectangular parallelepiped, and the sides of the rectangular parallelepiped were designated a, b, and c from the shortest side (c was the same as b). May be calculated with the shorter numerical values a and b, and x is obtained as follows.
x = b / a
[0065]
In this way, x is obtained for about 200 particles, and when the average value x (average) is obtained, particles satisfying the relationship of x (average) ≧ 1.5 are defined as flakes. Preferably, 30 ≧ x (average) ≧ 1.5, more preferably 15 ≧ x (average) ≧ 1.5. Incidentally, the needle shape is 1 ≦ x (average) <1.5.
[0066]
In the flake shaped particle, a can be regarded as a thickness of a tabular particle having a main plane with b and c as sides. The average of a is preferably 0.01 μm or more and 0.30 μm, and more preferably 0.1 μm or more and 0.23 μm or less. The average of c / b is preferably 1 or more and 6 or less, more preferably 1 or more and 4 or less, still more preferably 1 or more and 3 or less, and particularly preferably 1 or more and 2 or less.
[0067]
The particle size distribution of the organic silver salt is preferably monodispersed. The monodispersion is preferably 100% or less, more preferably 80% or less, and still more preferably 50% of the value obtained by dividing the standard deviation of the lengths of the short axis and the long axis by the short axis and the long axis, respectively. % Or less. The method for measuring the shape of the organic silver salt can be determined from a transmission electron microscope image of the organic silver salt dispersion. As another method for measuring monodispersity, there is a method for obtaining the standard deviation of the volume weighted average diameter of the organic silver salt, and the percentage (variation coefficient) of the value divided by the volume weighted average diameter is preferably 100% or less, more Preferably it is 80% or less, More preferably, it is 50% or less. As a measuring method, a commercially available laser light scattering type particle size measuring device can be used. This measurement method can also be used for other particle size measurements described below.
[0068]
Known methods and the like can be applied to the production and dispersion method of the organic acid silver used in the present invention. For example, Japanese Patent Application Laid-Open No. 10-62899, European Patent Publication No. 0803763A1, European Patent Publication No. 0968212A1, Japanese Patent Application Laid-Open No. 11-349591, Japanese Patent Application Laid-Open No. 2000-7683, Japanese Patent Application No. 2000-72711, Japanese Patent Application No. 11-348228. -30, 11-203413, Japanese Patent Application 2000-90093, 2000-195621, 2000-191226, 2000-213813, 2000-214155, 2000-191226, etc. can do.
[0069]
The organic silver salt of the present invention can be used in a desired amount, but the amount of silver is 0.1 to 5 g / m.2Is more preferable, and more preferably 1 to 3 g / m.2It is. Particularly preferably 1.2 to 2.5 g / m2It is.
[0070]
3. Description of reducing agent
The photothermographic material of the present invention contains a reducing agent for organic silver salt. The reducing agent may be any substance (preferably an organic substance) that can reduce silver ions to metallic silver. Examples of the reducing agent are disclosed in JP-A No. 11-65021, paragraph numbers 0043 to 0045, European Patent No. 0803764, p. 7, lines 34-p. 18th and 12th lines.
[0071]
In the present invention, a so-called hindered phenol reducing agent having a substituent at the ortho position of the phenolic hydroxyl group or a bisphenol reducing agent is preferable, and a bisphenol reducing agent is more preferable. Particularly preferred are compounds represented by the following general formula (R).
[0072]
General formula (R)
Embedded image
Figure 2004004322
[0073]
In general formula (R), R11And R11Each independently represents an alkyl group having 1 to 20 carbon atoms. R12And R12Each independently represents a hydrogen atom or a substituent that can be substituted on the benzene ring. L is a -S- group or -CHR.13-Represents a group. R13Represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. X1And X1Each independently represents a hydrogen atom or a group capable of substituting for a benzene ring.
[0074]
Each substituent will be described in detail.
1) R11And R11
R11And R11Each independently represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, and the substituent of the alkyl group is not particularly limited, but is preferably an aryl group, a hydroxy group, an alkoxy group, an aryloxy group. Group, alkylthio group, arylthio group, acylamino group, sulfonamido group, sulfonyl group, phosphoryl group, acyl group, carbamoyl group, ester group, halogen atom and the like.
[0075]
2) R12And R12', X1And X1
R12And R12Each independently represents a hydrogen atom or a group capable of substituting for a benzene ring.
X1And X1Each independently represents a hydrogen atom or a group capable of substituting for a benzene ring. Preferred examples of each group that can be substituted on the benzene ring include an alkyl group, an aryl group, a halogen atom, an alkoxy group, and an acylamino group.
[0076]
3) L
L is a -S- group or -CHR.13-Represents a group. R13Represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and the alkyl group may have a substituent.
R13Specific examples of the unsubstituted alkyl group include methyl group, ethyl group, propyl group, butyl group, heptyl group, undecyl group, isopropyl group, 1-ethylpentyl group, 2,4,4-trimethylpentyl group and the like. .
[0077]
Examples of substituents for alkyl groups are R11In the same manner as the above substituent, a halogen atom, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, an acylamino group, a sulfonamide group, a sulfonyl group, a phosphoryl group, an oxycarbonyl group, a carbamoyl group, a sulfamoyl group and the like can be mentioned.
[0078]
4) Preferred substituents
R11And R11'Is preferably a secondary or tertiary alkyl group having 3 to 15 carbon atoms, specifically, isopropyl group, isobutyl group, t-butyl group, t-amyl group, t-octyl group, cyclohexyl group, cyclopentyl. Group, 1-methylcyclohexyl group, 1-methylcyclopropyl group and the like. R11And R11'Is more preferably a tertiary alkyl group having 4 to 12 carbon atoms, among which a t-butyl group, a t-amyl group, and a 1-methylcyclohexyl group are more preferable, and a t-butyl group is most preferable.
[0079]
R12And R12'Is preferably an alkyl group having 1 to 20 carbon atoms, specifically, methyl group, ethyl group, propyl group, butyl group, isopropyl group, t-butyl group, t-amyl group, cyclohexyl group, 1-methyl group. Examples include cyclohexyl group, benzyl group, methoxymethyl group, methoxyethyl group and the like. More preferred are methyl group, ethyl group, propyl group, isopropyl group and t-butyl group.
[0080]
X1And X1'Is preferably a hydrogen atom, a halogen atom or an alkyl group, more preferably a hydrogen atom.
[0081]
L is preferably -CHR13-Group.
[0082]
R13Is preferably a hydrogen atom or an alkyl group having 1 to 15 carbon atoms, and the alkyl group is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, or a 2,4,4-trimethylpentyl group. R13Particularly preferred is a hydrogen atom, a methyl group, a propyl group or an isopropyl group.
[0083]
R13R is a hydrogen atom, R12And R12'Is preferably an alkyl group having 2 to 5 carbon atoms, more preferably an ethyl group or a propyl group, and most preferably an ethyl group.
[0084]
R13Is a primary or secondary alkyl group having 1 to 8 carbon atoms, R12And R12'Is preferably a methyl group. R13The primary or secondary alkyl group having 1 to 8 carbon atoms is preferably a methyl group, an ethyl group, a propyl group or an isopropyl group, more preferably a methyl group, an ethyl group or a propyl group.
[0085]
R11, R11'And R12, R12When both are methyl groups,13Is preferably a secondary alkyl group. In this case, R13As the secondary alkyl group, isopropyl group, isobutyl group, and 1-ethylpentyl group are preferable, and isopropyl group is more preferable.
[0086]
The reducing agent is R11, R11'And R12And R12'And R13Depending on the combination, various heat development performances differ. Since these heat development performances can be adjusted by using two or more reducing agents in combination at various mixing ratios, it is preferable to use two or more reducing agents in combination depending on the purpose.
[0087]
Specific examples of the compound represented by the general formula (R) of the present invention are shown below, but the present invention is not limited thereto.
[0088]
Embedded image
Figure 2004004322
[0089]
Embedded image
Figure 2004004322
[0090]
Embedded image
Figure 2004004322
[0091]
Particularly preferred are compounds as shown in (I-1) to (I-20).
[0092]
In the present invention, the reducing agent is added in an amount of 0.01 to 5.0 g / m.2Is preferably 0.1 to 3.0 g / m.2More preferably, it is contained in an amount of 5 to 50% by mole, more preferably 10 to 40% by mole based on 1 mole of silver on the surface having the image forming layer.
[0093]
The reducing agent of the present invention can be added to an image forming layer containing an organic silver salt and a photosensitive silver halide and its adjacent layer, but it is more preferably contained in the image forming layer.
[0094]
The reducing agent of the present invention may be contained in the coating solution by any method such as a solution form, an emulsified dispersion form, or a solid fine particle dispersion form, and may be contained in the photosensitive material.
[0095]
Well-known emulsifying dispersion methods include dissolving oil using an oil such as dibutyl phthalate, tricresyl phosphate, glyceryl triacetate or diethyl phthalate, or an auxiliary solvent such as ethyl acetate or cyclohexanone, and mechanically emulsifying the dispersion. The method of producing is mentioned.
[0096]
The solid fine particle dispersion method includes a method in which a reducing agent is dispersed in an appropriate solvent such as water by a ball mill, a colloid mill, a vibration ball mill, a sand mill, a jet mill, a roller mill, or an ultrasonic wave to create a solid dispersion. Can be mentioned. A dispersion method using a sand mill is preferable. In this case, a protective colloid (for example, polyvinyl alcohol) or a surfactant (for example, an anionic surfactant such as sodium triisopropylnaphthalenesulfonate (a mixture of three isopropyl groups having different substitution positions)) may be used. Good. The aqueous dispersion can contain a preservative (eg, benzoisothiazolinone sodium salt).
[0097]
Particularly preferred is a solid particle dispersion method of a reducing agent, which is preferably added as fine particles having a number average particle size of 0.01 μm to 10 μm, preferably 0.05 μm to 5 μm, more preferably 0.1 μm to 1 μm. . In the present application, it is preferable to use other solid dispersions dispersed in a particle size within this range.
[0098]
4). Description of development accelerator
In the photothermographic material of the present invention, a sulfonamide phenol compound represented by the general formula (A) described in JP-A No. 2000-267222, JP-A No. 2000-330234, or the like is used as a development accelerator. Hindered phenol compounds represented by general formula (II) described in No. 92075, general formula (I) described in JP-A Nos. 10-62895 and 11-15116, and Japanese Patent Application No. 2001-074278 A hydrazine-based compound represented by the general formula (1) described in the above, and a phenol-based or naphthol-based compound represented by the general formula (2) described in JP-A No. 2001-264929 are preferably used. These development accelerators are used in the range of 0.1 to 20 mol% with respect to the reducing agent, preferably in the range of 0.5 to 10 mol%, more preferably in the range of 1 to 5 mol%. The introduction method to the light-sensitive material may be the same method as the reducing agent, but it is particularly preferable to add as a solid dispersion or an emulsified dispersion. When added as an emulsified dispersion, it is added as an emulsified dispersion dispersed using a high-boiling solvent that is solid at room temperature and a low-boiling auxiliary solvent, or as a so-called oilless emulsified dispersion that does not use a high-boiling solvent. It is preferable to add.
In the present invention, among the above development accelerators, a hydrazine-based compound represented by the general formula (1) described in Japanese Patent Application No. 2001-074278 and a general formula (2) described in Japanese Patent Application Laid-Open No. 2001-264929. A naphthol compound represented by the formula is particularly preferred.
Hereinafter, preferred specific examples of the development accelerator of the present invention will be given. The present invention is not limited to these.
[0099]
Embedded image
Figure 2004004322
[0100]
5). Description of hydrogen bonding compounds
In the present invention, it is preferable to use a non-reducing compound having a group capable of reacting with an aromatic hydroxyl group (—OH) of the reducing agent group to form a hydrogen bond. Examples of the group that forms a hydrogen bond with a hydroxyl group include a phosphoryl group, a sulfoxide group, a sulfonyl group, a carbonyl group, an amide group, an ester group, a urethane group, a ureido group, a tertiary amino group, and a nitrogen-containing aromatic group. Among them, preferred are a phosphoryl group, a sulfoxide group, an amide group (however, it has no> N—H group and is blocked like> N—Ra (Ra is a substituent other than H)), a urethane group. (However, it has no> N—H group and is blocked like> N—Ra (Ra is a substituent other than H)), a ureido group (however, it has no> N—H group,> N-Ra (Ra is a substituent other than H).)
In the present invention, a particularly preferred hydrogen bonding compound is a compound represented by the following general formula (D).
Formula (D)
[0101]
Embedded image
Figure 2004004322
[0102]
R in general formula (D)21Or R23Each independently represents an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group or a heterocyclic group, and these groups may be unsubstituted or may have a substituent. R21Or R23In the case where has a substituent, the substituent is a halogen atom, alkyl group, aryl group, alkoxy group, amino group, acyl group, acylamino group, alkylthio group, arylthio group, sulfonamido group, acyloxy group, oxycarbonyl group, carbamoyl Group, sulfamoyl group, sulfonyl group, phosphoryl group and the like. Preferred as substituents are alkyl groups or aryl groups such as methyl group, ethyl group, isopropyl group, t-butyl group, t-octyl group, phenyl group, 4-alkoxyphenyl group, 4-acyloxyphenyl group and the like can be mentioned.
R21Or R23Specific examples of the alkyl group include methyl group, ethyl group, butyl group, octyl group, dodecyl group, isopropyl group, t-butyl group, t-amyl group, t-octyl group, cyclohexyl group, and 1-methylcyclohexyl group. Benzyl group, phenethyl group, 2-phenoxypropyl group, and the like. Examples of the aryl group include phenyl group, cresyl group, xylyl group, naphthyl group, 4-t-butylphenyl group, 4-t-octylphenyl group, 4-anisidyl group, and 3,5-dichlorophenyl group. Alkoxy groups include methoxy, ethoxy, butoxy, octyloxy, 2-ethylhexyloxy, 3,5,5-trimethylhexyloxy, dodecyloxy, cyclohexyloxy, 4-methylcyclohexyloxy, benzyl An oxy group etc. are mentioned. Examples of the aryloxy group include a phenoxy group, a cresyloxy group, an isopropylphenoxy group, a 4-t-butylphenoxy group, a naphthoxy group, and a biphenyloxy group. Examples of the amino group include a dimethylamino group, a diethylamino group, a dibutylamino group, a dioctylamino group, an N-methyl-N-hexylamino group, a dicyclohexylamino group, a diphenylamino group, and an N-methyl-N-phenylamino group. .
[0103]
R21Or R23Are preferably an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. In terms of the effect of the present invention, R21Or R23Of these, at least one is preferably an alkyl group or an aryl group, and more preferably two or more are an alkyl group or an aryl group. In addition, R can be obtained at low cost.21Or R23Are preferably the same group.
Specific examples of the hydrogen bonding compound including the compound represented by the general formula (D) in the present invention are shown below, but the present invention is not limited thereto.
[0104]
Embedded image
Figure 2004004322
[0105]
Embedded image
Figure 2004004322
[0106]
Specific examples of the hydrogen bonding compound include those described in European Patent No. 1096310, Japanese Patent Application Nos. 2000-270498 and 2001-1224796 in addition to the above.
The compound represented by the general formula (D) used in the present invention can be used in a light-sensitive material after being contained in a coating solution in the form of a solution, an emulsified dispersion, or a solid dispersed fine particle dispersion in the same manner as the reducing agent. Although it can be used, it is preferably used as a solid dispersion. The compound represented by the general formula (D) forms a hydrogen bonding complex with a compound having a phenolic hydroxyl group in a solution state, and is a combination of a reducing agent and the compound represented by the general formula (D). Can be isolated in the crystalline state as a complex. The use of the crystal powder isolated in this way as a solid dispersed fine particle dispersion is particularly preferable for obtaining stable performance. Further, a method in which the reducing agent and the compound represented by the general formula (D) are mixed as powder and complexed at the time of dispersion with a sand grinder mill or the like using an appropriate dispersant can be preferably used.
The compound represented by the general formula (D) is preferably used in the range of 1 to 200 mol%, more preferably in the range of 10 to 150 mol%, still more preferably 20 to 100, based on the reducing agent. It is in the range of mol%.
[0107]
6). Description of silver halide
1) Halogen composition
The photosensitive silver halide used in the present invention is not particularly limited as a halogen composition, and is silver chloride, silver chlorobromide, silver bromide, silver iodobromide, silver iodochlorobromide, silver iodide or silver thiocyanate. Organic silver salts such as silver phosphate can be used. Of these, silver bromide, silver iodobromide and silver iodide are preferred.
[0108]
The distribution of the halogen composition in the grains may be uniform, the halogen composition may be changed stepwise, or may be continuously changed. Further, silver halide grains having a core / shell structure can also be preferably used. A preferable structure is a 2- to 5-fold structure, more preferably 2- to 4-fold core / shell particles. A core high silver iodide structure having a high silver iodide content in the core part or a shell high silver iodide structure having a high silver iodide content in the shell part can also be preferably used. Further, a technique of localizing silver chloride or silver bromide as an epitaxial portion on the surface of the grain can be preferably used.
[0109]
2) Particle size
The grain size of the photosensitive silver halide used in the present invention is preferably small for the purpose of keeping the white turbidity after development formation low, specifically 5 nm or more and 0.20 μm or less, more preferably 5 nm or more and 0.00. It is 15 μm or less, more preferably 10 nm or more and 0.12 μm or less. The term “particle size” as used herein means an average diameter when converted into a circular image having the same area as the projected area observed with an electron microscope.
[0110]
3) Application amount
The coating amount of such silver halide grains is 1 mol% or more and 30 mol% or less, preferably 2 mol% or more and 20 mol% or less with respect to 1 mol of silver of the non-photosensitive organic silver salt described later. Further preferred. It is more preferably 3 mol% or more and 15 mol% or less, and particularly preferably 5 mol% or more and 10 mol% or less.
[0111]
4) Particle formation method
Methods for forming photosensitive silver halide are well known in the art, for example using the methods described in Research Disclosure No. 17029, June 1978, and US Pat. No. 3,700,458. Specifically, there is used a method in which a photosensitive silver halide is prepared by adding a silver supply compound and a halogen supply compound to gelatin or another polymer solution, and then mixed with an organic silver salt. Further, the method described in paragraph Nos. 0217 to 0224 of JP-A No. 11-119374, and the method described in JP-A No. 11-352627 and Japanese Patent Application No. 2000-42336 are also preferable.
[0112]
5) Particle shape
Examples of the shape of the silver halide grains include cubic grains, octahedral grains, tetrahedral grains, dodecahedron grains, tabular grains, spherical grains, rod-shaped grains, and potato-like grains. In particular, dodecahedral grains, tetrahedral grains, and tabular grains are preferable. A silver halide having a high silver iodide content can take a complicated form, but a preferred form is, for example, R.I. L. JENKINS et al. J of Photo. Sci. Vol. 28 (1980), p164-FIG1. FIG. Tabular grains as shown in Fig. 1 are also preferably used. Grains with rounded corners of silver halide grains can also be preferably used. The surface index (Miller index) of the outer surface of the photosensitive silver halide grain is not particularly limited, but the ratio of the [100] plane having high spectral sensitization efficiency when the spectral sensitizing dye is adsorbed is high. preferable. The ratio is preferably 50% or more, more preferably 65% or more, and still more preferably 80% or more. The ratio of the Miller index [100] plane is determined by T.T. Tani; Imaging Sci. 29, 165 (1985).
[0113]
6) Heavy metal
The photosensitive silver halide grain of the present invention can contain a metal or metal complex of Group 8 to Group 10 of the Periodic Table (showing Groups 1 to 18). As the central metal of the group 8 to group 10 metal or metal complex of the periodic table, rhodium, ruthenium and iridium are preferable. One kind of these metal complexes may be used, or two or more kinds of complexes of the same metal and different metals may be used in combination. The preferred content is 1 x 10 per mole of silver.-9From mole to 1 × 10-3A molar range is preferred. These heavy metals and metal complexes and methods for adding them are described in JP-A-7-225449, JP-A-11-65021, paragraphs 0018 to 0024, and JP-A-11-119374, paragraphs 0227 to 0240.
[0114]
In the present invention, silver halide grains in which a hexacyano metal complex is present on the outermost surface of the grains are preferred. As the hexacyano metal complex, [Fe (CN)6]4-, [Fe (CN)6]3-, [Ru (CN)6]4-, [Os (CN)6]4-, [Co (CN)6]3-, [Rh (CN)6]3-, [Ir (CN)6]3-, [Cr (CN)6]3-, [Re (CN)6]3-Etc. In the present invention, a hexacyano Fe complex is preferred.
[0115]
The hexacyano metal complex is present in the form of ions in aqueous solution, so the counter cation is not important, but it is easy to mix with water and is suitable for precipitation of silver halide emulsions. Sodium ion, potassium ion, rubidium It is preferable to use alkali metal ions such as ions, cesium ions, and lithium ions, ammonium ions, and alkylammonium ions (for example, tetramethylammonium ions, tetraethylammonium ions, tetrapropylammonium ions, tetra (n-butyl) ammonium ions).
[0116]
In addition to water, the hexacyano metal complex is miscible with a mixed solvent or gelatin with an appropriate organic solvent miscible with water (for example, alcohols, ethers, glycols, ketones, esters, amides, etc.). Can be added.
[0117]
The amount of hexacyano metal complex added is 1 × 10 5 per mole of silver.-51 x 10 moles or more-2Or less, more preferably 1 × 10-41 x 10 moles or more-3It is below the mole.
[0118]
In order for the hexacyano metal complex to be present on the outermost surface of the silver halide grain, the chalcogen sensitization of sulfur sensitization, selenium sensitization and tellurium sensitization is completed after the addition of the aqueous silver nitrate solution used for grain formation. It is added directly before the completion of the preparation step before the chemical sensitization step for performing noble metal sensitization such as sensitization and gold sensitization, during the washing step, during the dispersion step, or before the chemical sensitization step. In order to prevent the silver halide fine grains from growing, it is preferable to add the hexacyano metal complex immediately after the grain formation, and it is preferable to add it before the completion of the preparation step.
[0119]
The addition of the hexacyano metal complex may be started after adding 96% by mass of the total amount of silver nitrate to be added to form grains, more preferably starting after adding 98% by mass, The addition of 99% by mass is particularly preferable.
When these hexacyanometal complexes are added after the addition of the aqueous silver nitrate solution just before the completion of grain formation, they can be adsorbed on the outermost surface of the silver halide grains, and most of them form slightly soluble salts with silver ions on the grain surface. To do. This silver salt of hexacyanoiron (II) is a less soluble salt than AgI, so that re-dissolution by fine particles can be prevented and silver halide fine particles having a small particle size can be produced. .
[0120]
Furthermore, regarding the metal atoms that can be contained in the silver halide grains used in the present invention, and methods for desalting and chemically sensitizing silver halide emulsions, paragraph numbers 0046 to 0050 of JP-A No. 11-84574, No. 65021, paragraph numbers 0025 to 0031 and JP-A No. 11-119374, paragraph numbers 0242 to 0250.
[0121]
7) Gelatin
Various gelatins can be used as the gelatin contained in the photosensitive silver halide emulsion used in the present invention. In order to satisfactorily maintain the dispersion state of the photosensitive silver halide emulsion in the organic silver salt-containing coating solution, it is preferable to use low molecular weight gelatin having a molecular weight of 500 to 60,000. The molecular weight here refers to the number average molecular weight calculated by gel permeation chromatography (GPC) in terms of styrene. These low molecular weight gelatins may be used at the time of particle formation or dispersion after desalting, but are preferably used at the time of dispersion after desalting.
[0122]
8) Chemical sensitization
The photosensitive silver halide used in the present invention may be non-chemically sensitized, but is preferably chemically sensitized by at least one of a chalcogen sensitizing method, a gold sensitizing method, and a reduction sensitizing method. Examples of the chalcogen sensitizing method include a sulfur sensitizing method, a selenium sensitizing method, and a tellurium sensitizing method.
[0123]
In sulfur sensitization, unstable sulfur compounds are used. The unstable sulfur compounds described in Grafkides, Chimie et Physique Photographic (published by Paul Momtel, 1987, 5th edition), Research Disclosure 307, 307105, and the like can be used.
Specifically, thiosulfate (for example, hypo), thioureas (for example, diphenylthiourea, triethylthiourea, N-ethyl-N ′-(4-methyl-2-thiazolyl) thiourea, carboxymethyltrimethylthiourea), thioamides (Eg, thioacetamide), rhodanines (eg, diethyl rhodanine, 5-benzylidene-N-ethyl rhodanine), phosphine sulfides (eg, trimethylphosphine sulfide), thiohydantoins, 4-oxo-oxazolidin-2 Known sulfur compounds such as -thiones, disulfides or polysulfides (for example, dimorpholine disulfide, cystine, hexathiocanthion), polythionate, elemental sulfur, and active gelatin can also be used. Particularly preferred are thiosulfates, thioureas and rhodanines.
[0124]
In selenium sensitization, unstable selenium compounds are used, and Japanese Patent Publication Nos. 43-13489, 44-15748, JP-A-4-25832, JP-A-4-109340, JP-A-4-271341, and JP-A-5-40324. No. 5-11385, Japanese Patent Application No. Hei 4-202415, No. 4-330495, No. 4-333030, No. 5-4203, No. 5-4204, No. 5-106977, No. 5-236538. Selenium compounds described in JP-A-5-241642 and JP-A-5-286916 can be used.
[0125]
Specifically, colloidal metal selenium, selenoureas (eg, N, N-dimethylselenourea, trifluoromethylcarbonyl-trimethylselenourea, acetyl-trimethylselenourea), selenoamides (eg, selenoamide, N, N-diethyl) Phenylselenoamide), phosphine selenides (eg, triphenylphosphine selenide, pentafluorophenyl-triphenylphosphine selenide), selenophosphates (eg, tri-p-tolylselenophosphate, tri-n) -Butylselenophosphate), selenoketones (for example, selenobenzophenone), isoselenocyanates, selenocarboxylic acids, selenoesters, diacyl selenides and the like may be used. Furthermore, non-labile selenium compounds described in JP-B Nos. 46-4553 and 52-34492, such as selenite, selenocyanate, selenazoles, and selenides can also be used. In particular, phosphine selenides, selenoureas and selenocyanates are preferred.
[0126]
In tellurium sensitization, an unstable tellurium compound is used, and JP-A-4-224595, JP-A-4-271341, JP-A-4-3333043, JP-A-5-303157, JP-A-6-27573, JP-A-6-175258, The unstable tellurium described in JP-A-6-180478, JP-A-6-208186, JP-A-6-208184, JP-A-6-317867, JP-A-7-140579, JP-A-7-301879, JP-A-7-301880, etc. A compound can be used.
[0127]
Specifically, phosphine tellurides (for example, butyl-diisopropylphosphine telluride, tributylphosphine telluride, tributoxyphosphine telluride, ethoxydiphenylphosphine telluride), diacyl (di) tellurides ( For example, bis (diphenylcarbamoyl) ditelluride, bis (N-phenyl-N-methylcarbamoyl) ditelluride, bis (N-phenyl-N-methylcarbamoyl) telluride, bis (N-phenyl-N-benzylcarbamoyl) telluride, bis (ethoxycarbonyl) Telluride), telluroureas (for example, N, N′-dimethylethylenetellurourea, N, N′-diphenylethylenetellurourea) telluramides, telluroesters and the like may be used. In particular, diacyl (di) tellurides and phosphine tellurides are preferable. Particularly, compounds described in literatures described in paragraph No. 0030 of JP-A-11-65021, general formula (II) in JP-A-5-313284, Compounds represented by (III) and (IV) are more preferred.
[0128]
Particularly, in the chalcogen sensitization of the present invention, selenium sensitization and tellurium sensitization are preferable, and tellurium sensitization is particularly preferable.
[0129]
In gold sensitization, P.I. Gold sensitizers described by Grafkides, Chimie et Physique Photographic (published by Paul Momtel, 1987, 5th edition), Research Disclosure 307, No. 307105 can be used. Specifically, chloroauric acid, potassium chloroaurate, potassium aurithiocyanate, gold sulfide, gold selenide and the like, in addition to these, U.S. Pat. Nos. 2,642,361, 5,049,484, 5,049,485, 5,169,751, Gold compounds described in 5252455, Belgian Patent No. 691857 and the like can also be used. P. Other than gold, such as platinum, palladium, and iridium salts described in Grafkides, Chimie et Physique, Photographic (Paul Momtel, published in 1987, 5th edition), Research Disclosure 307, 307105 I can do it.
[0130]
Although gold sensitization can be used alone, it is preferably used in combination with the chalcogen sensitization described above. Specifically, gold sulfur sensitization, gold selenium sensitization, gold tellurium sensitization, gold sulfur selenium sensitization, gold sulfur tellurium sensitization, gold selenium tellurium sensitization, and gold sulfur selenium tellurium sensitization.
[0131]
In the present invention, chemical sensitization can be performed at any time after particle formation and before coating. After desalting, (1) before spectral sensitization, (2) simultaneously with spectral sensitization, (3) spectral After sensitization, there may be (4) immediately before application.
[0132]
The amount of chalcogen sensitizer used in the present invention varies depending on the silver halide grains used, chemical ripening conditions, etc., but is 10 per mole of silver halide.-8-10-1Moles, preferably 10-7-10-2Use about moles.
Similarly, the amount of the gold sensitizer used in the present invention varies depending on various conditions, but as a guideline, it is 10 per silver halide.-7Mol-10-2Mole, more preferably 10-6Mol ~ 5 × 10-3Is a mole. The environmental conditions for chemically sensitizing this emulsion can be selected under any conditions, but the pAg is 8 or less, preferably 7.0 or less to 6.5 or less, particularly 6.0 or less, and the pAg is 1.5 or less. Above, preferably 2.0 or more, particularly preferably 2.5 or more, pH is 3 to 10, preferably 4 to 9, temperature is 20 to 95 ° C., preferably about 25 to 80 ° C. is there.
[0133]
In the present invention, reduction sensitization can be used in combination with chalcogen sensitization or gold sensitization. In particular, it is preferably used in combination with chalcogen sensitization.
As specific compounds for reduction sensitization, ascorbic acid, thiourea dioxide, and dimethylamine borane are preferable. In addition, stannous chloride, aminoiminomethanesulfinic acid, hydrazine derivatives, borane compounds, silane compounds, polyamine compounds, etc. It is preferable to use it. The reduction sensitizer may be added at any stage in the photosensitive emulsion production process from crystal growth to the preparation process immediately before coating. Further, reduction sensitization is also preferable by ripening while maintaining the pH of the emulsion at 8 or more or pAg at 4 or less, and reduction sensitization is performed by introducing a single addition portion of silver ions during grain formation. Is also preferable.
The amount of reduction sensitizer added varies depending on various conditions, but as a guideline it is 10 per silver halide.-7Mol-10-1Mole, more preferably 10-6Mol ~ 5 × 10-2Is a mole.
[0134]
A thiosulfonic acid compound may be added to the silver halide emulsion used in the present invention by the method shown in European Patent Publication No. 293,917.
The photosensitive silver halide grains in the present invention may be non-chemically sensitized, but a photothermographic material having high sensitivity is designed to be chemically sensitized by at least one of gold sensitization and chalcogen sensitization. It is preferable from the point.
[0135]
9) Sensitizing dye
As a sensitizing dye that can be applied to the present invention, it can spectrally sensitize silver halide grains in a desired wavelength region when adsorbed on silver halide grains, and has a spectral sensitivity suitable for the spectral characteristics of the exposure light source. The dye can be advantageously selected. Regarding the sensitizing dye and the addition method, paragraphs 0103 to 0109 of JP-A No. 11-65021, compounds represented by the general formula (II) of JP-A No. 10-186572, and general formulas (I of JP-A No. 11-119374) ) And the dye described in Example 5 of U.S. Pat. Nos. 5,510,236 and 3,871,887, JP-A-2-96131, JP-A-59-48753. Dyes disclosed in Japanese Patent No. 2000-83865, Japanese Patent Application No. 2000-86865, Japanese Patent Application No. 2000-102560, Japanese Patent Application No. 2000-205399, etc. It is described in. These sensitizing dyes may be used alone or in combination of two or more. In the present invention, the time when the sensitizing dye is added to the silver halide emulsion is preferably the time from the desalting step to the coating, more preferably from the desalting to the end of chemical ripening.
[0136]
The addition amount of the sensitizing dye in the present invention can be set to a desired amount in accordance with the sensitivity and the fogging performance, but is 10 per mol of silver halide in the photosensitive layer.-6~ 1 mol is preferred, more preferably 10-4-10-1Is a mole.
[0137]
In the present invention, a supersensitizer can be used to improve spectral sensitization efficiency. As the supersensitizer used in the present invention, European Patent Publication No. 587,338, US Pat. Nos. 3,877,943, 4,873,184, JP-A-5-341432, 11- 109547, 10-111543, etc. are mentioned.
[0138]
10) Combined use of silver halide
The photosensitive silver halide emulsion in the photothermographic material used in the present invention may be one kind or two or more kinds (for example, those having different average grain sizes, those having different halogen compositions, those having different crystal habits, Those having different chemical sensitization conditions) may be used in combination. The gradation can be adjusted by using a plurality of types of photosensitive silver halides having different sensitivities. Examples of these technologies include JP-A-57-119341, 53-106125, 47-3929, 48-55730, 46-5187, 50-73627, 57-150841 and the like. Can be mentioned. The sensitivity difference is preferably 0.2 log E or more for each emulsion.
[0139]
11) Mixing of silver halide and organic silver salt
It is particularly preferred that the photosensitive silver halide grains of the present invention are formed in the absence of non-photosensitive organic silver salt and chemically sensitized. This is because sufficient sensitivity may not be achieved by the method of forming silver halide by adding a halogenating agent to the organic silver salt.
As a method of mixing silver halide and organic silver salt, a method of mixing separately prepared photosensitive silver halide and organic silver salt with a high speed stirrer, ball mill, sand mill, colloid mill, vibration mill, homogenizer, etc. Alternatively, there may be mentioned a method of preparing an organic silver salt by mixing photosensitive silver halide which has been prepared at any timing during the preparation of the organic silver salt. In any method, the effects of the present invention can be preferably obtained.
[0140]
12) Mixing silver halide into coating solution
The preferred addition timing of the silver halide of the present invention to the image forming layer coating solution is from 180 minutes before coating to immediately before, preferably from 60 minutes to 10 seconds before coating. There is no particular limitation as long as the effect is sufficiently exhibited. Specific mixing methods include mixing in a tank in which the average residence time calculated from the addition flow rate and the amount of liquid fed to the coater is a desired time, and N.I. Harnby, M.M. F. Edwards, A.D. W. There is a method using a static mixer described in Chapter 8 of Nienow's Koji Takahashi "Liquid Mixing Technology" (published by Nikkan Kogyo Shimbun, 1989).
[0141]
7). Description of surfactant
Other surfactants may be used in combination with the fluorine compound of the present invention. Examples of the surfactant that can be used in combination include various surfactants having an anionic, cationic, or nonionic hydrophilic group. The surfactant used in combination may be a fluorine-based surfactant other than the specific fluorine compound. As the surfactant used in combination, an anionic or nonionic surfactant is more preferable.
[0142]
Examples of surfactants that can be used in combination include JP-A-62-215272 (pages 649 to 706), Research Disclosure (RD) Item 17643, pages 26 to 27 (December 1978), and pages 18716 and 650 (1979). November), 307105, pages 875-876 (November 1989), and the like.
[0143]
The cationic hydrophilic group is the same as that of the fluorine compound of the present invention described above.
[0144]
An anionic hydrophilic group means an acidic group having a pKa of 7 or less and an alkali metal salt or ammonium salt thereof. Specific examples include a sulfo group, a carboxyl group, a phosphonic acid group, a carbamoylsulfamoyl group, a sulfamoylsulfamoyl group, an acylsulfamoyl group, and salts thereof. Of these, a sulfo group, a carboxyl group, a phosphonic acid group and salts thereof are preferable, and a sulfo group and salts thereof are more preferable. Examples of the cationic species that form salts include lithium, sodium, potassium, cesium, ammonium, tetramethylammonium, tetrabutylammonium, and methylpyridinium, and lithium, sodium, potassium, and ammonium are preferable.
[0145]
The nonionic hydrophilic group means a group that dissolves in water without dissociating into ions. Specific examples include poly (oxyethylene) alkyl ethers and polyhydric alcohols, but are not limited thereto.
[0146]
Examples of the fluorine-based surfactant having an anionic hydrophilic group used in combination include, but are not limited to, compounds of the general formula (F).
Formula (F)
Embedded image
Figure 2004004322
(Wherein R1And R2Represents a substituted or unsubstituted alkyl group, and at least one represents a fluorinated alkyl group having 2 or more carbon atoms and 13 or less fluorine atoms. R3And R4Each represents a hydrogen atom or an alkyl group. A is -Lb-SO3M is represented, and M represents a hydrogen atom or a cation. LbRepresents a single bond or a substituted or unsubstituted alkylene group. )
Specific examples of the fluorine-based surfactant having an anionic hydrophilic group include, but are not limited to, the following compounds.
[0147]
Embedded image
Figure 2004004322
[0148]
Embedded image
Figure 2004004322
[0149]
Embedded image
Figure 2004004322
[0150]
Embedded image
Figure 2004004322
[0151]
Specific examples of the non-fluorinated surfactant having an anionic hydrophilic group include, but are not limited to, the following compounds.
[0152]
Embedded image
Figure 2004004322
[0153]
Examples of the surfactant having a nonionic hydrophilic group used in combination include, but are not limited to, the following.
[0154]
Embedded image
Figure 2004004322
[0155]
Embedded image
Figure 2004004322
[0156]
The addition amount of the surfactant used in combination with the present invention is 0.1-100 mg / m.2Preferably 0.2 to 50 mg / m2And more preferably 0.5 to 10 mg / m2It is.
[0157]
Although the synthesis example is shown about the anionic or nonionic surfactant used together below, it is not limited to these.
(Synthesis Example 1: Synthesis of F-17)
(1) Synthesis of di (3,3,4,4,5,5,6,6,6-nonafluorohexyl) maleate
Maleic anhydride 90.5 g (0.924 mol), 3,3,4,4,5,5,6,6,6-nonafluorohexanol 500 g (1.89 mol), p-toluenesulfonic acid monohydrate 17 0.5 g (0.09 mol) was heated to reflux for 20 hours in 1000 L of toluene while distilling off the water produced. Thereafter, the mixture was cooled to room temperature, toluene was added, the organic phase was washed with water, and the solvent was distilled off under reduced pressure to obtain 484 g (yield 86%) of the desired product as a transparent liquid.
[0158]
(2) Synthesis of F-17
514 g (0.845 mol) of di (3,3,4,4,5,5,6,6,6-nonafluorohexyl) maleate, 91.0 g (0.875 mol) of sodium hydrogen sulfite, water-ethanol (1 / 1 v / v) After adding 250 mL and heating and refluxing for 6 hours, 500 mL of ethyl acetate and 120 mL of a saturated sodium chloride aqueous solution were added, and extraction operation was performed. The organic phase was recovered, sodium sulfate was added, and dehydration was performed. After removing sodium sulfate by filtration and concentrating the filtrate, 2.5 L of acetone was added and heated. The insoluble material was removed by filtration, and then cooled to 0 ° C., and 2.5 L of acetonitrile was slowly added. The precipitated solid was collected by filtration, and the obtained crystals were dried under reduced pressure at 80 ° C. to obtain 478 g (yield 79%) of the target compound as white crystals.
Of the resulting compound1The H-NMR data is as follows.
1H-NMR (DMSO-d6): Δ 2.49-2.62 (s, 4H), 2.85-2.99 (m, 2H), 3.68 (dd, 1H), 4.23-4.35 (m, 4H)
[0159]
8). Explanation of binder
As the binder for the image forming layer in the light-sensitive material of the present invention, any polymer may be used. Suitable binders are transparent or translucent and generally colorless. Natural resins and polymers and copolymers, synthetic resins and polymers and copolymers, Other film forming media such as gelatins, rubbers, poly (vinyl alcohol) s, hydroxyethyl celluloses, cellulose acetates, cellulose acetate butyrates, poly (vinyl pyrrolidone) s, casein, starch, poly (acrylic) Acid) s, poly (methyl methacrylic acid) s, poly (vinyl chloride) s, poly (methacrylic acid) s, styrene-maleic anhydride copolymers, styrene-acrylonitrile copolymers, styrene-butadiene copolymers , Poly (vinyl acetal) s (e.g., (Vinyl formal) and poly (vinyl butyral)), poly (esters), poly (urethanes), phenoxy resins, poly (vinylidene chloride) s, poly (epoxides), poly (carbonates), poly (acetic acid) Vinyl), poly (olefin), cellulose ester, and poly (amide). The binder may be coated from water or an organic solvent or emulsion.
[0160]
Two or more binders may be used in combination as required. In this case, two or more polymers having different glass transition temperatures (hereinafter referred to as Tg) may be blended and used.
[0161]
In this specification, Tg was calculated by the following formula.
1 / Tg = Σ (Xi / Tgi)
Here, it is assumed that n monomer components from i = 1 to n are copolymerized in the polymer. Xi is the weight fraction of the i-th monomer (ΣXi = 1), and Tgi is the glass transition temperature (absolute temperature) of the homopolymer of the i-th monomer. However, Σ is the sum from i = 1 to n. The homopolymer glass transition temperature value (Tgi) of each monomer was the value of Polymer Handbook (3rd Edition) (by J. Brandrup, EH Immergut (Wiley-Interscience, 1989)).
[0162]
When an organic solvent is used as a coating solvent, the binder is polyvinyl acetal, polyvinyl chloride, polyvinyl acetate, cellulose acetate, polyolefin, polyester, polystyrene, polyacrylonitrile, polycarbonate, polyvinyl butyral, butyl ethyl cellulose, methacrylate copolymer, maleic anhydride ester. Any of copolymers, polystyrene and butadiene-styrene copolymers can be used. In particular, the image forming layer preferably contains polyvinyl butyral as a binder, and specifically, polyvinyl butyral is used as a binder in an amount of 50% by mass or more based on the total binder composition of the image forming layer. Of course, copolymers and terpolymers are also included. The preferable total amount of polyvinyl butyral is 50% by mass or more and 100% by mass or less, and more preferably 70% by mass or more and 100% by mass or less, based on the total composition of the binder in the image forming layer. The Tg of the binder is preferably in the range of 40 to 90 ° C, more preferably 50 to 80 ° C. When two or more kinds of polymers having different Tg are blended, the weight average Tg is preferably within the above range.
[0163]
The total amount of the binder is used, for example, in an amount sufficient to keep the components of the image forming layer in the layer. That is, it is used in an effective range to function as a binder. The effective range can be appropriately determined by those skilled in the art. As a guide when at least the organic silver salt is retained, the ratio of the binder to the organic silver salt is preferably in the range of 15: 1 to 1: 3, particularly 8: 1 to 1: 2, by mass ratio.
[0164]
When an aqueous solvent is used as the coating solvent, the polymer used as the binder preferably has a low water content. Accordingly, when an image forming layer is formed using a coating solution in which 30% by mass or more of the solvent is water, a latex of a polymer having an equilibrium moisture content of 2% by mass or less at 25 ° C. and 60% RH is used. It is preferable. The most preferable form is one prepared so that the ionic conductivity is 2.5 mS / cm or less, and as such a preparation method, there is a method of performing purification treatment using a separation functional membrane after polymer synthesis. The Tg of the binder in the aqueous solvent is preferably from −20 ° C. to 80 ° C., more preferably from 0 ° C. to 70 ° C., and still more preferably from 10 ° C. to 60 ° C. Similarly to the case where an organic solvent is used as the coating solvent, when two or more polymers having different Tg are blended in an aqueous solvent, the weight average Tg is preferably within the above range.
[0165]
Here, the aqueous solvent in which the polymer is soluble or dispersible refers to water or water mixed with 70% by mass or less of a water-miscible organic solvent. Examples of the water-miscible organic solvent include alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol, cellosolves such as methyl cellosolve, ethyl cellosolve and butyl cellosolve, ethyl acetate and dimethylformamide.
[0166]
The “equilibrium moisture content at 25 ° C. and 60% RH” is the following using the weight W1 of the polymer in the humidity-controlled equilibrium under the atmosphere of 25 ° C. and 60% RH and the weight W0 of the polymer in the absolutely dry state at 25 ° C. It can be expressed as
Equilibrium moisture content at 25 ° C. and 60% RH = [(W1-W0) / W0] × 100 (mass%)
[0167]
For the definition and measurement method of moisture content, for example, Polymer Engineering Course 14, Polymer Material Testing Method (Edited by Society of Polymer Sciences, Jinshokan) can be referred to.
[0168]
The equilibrium moisture content at 25 ° C. and 60% RH of the binder polymer of the present invention is preferably 2% by mass or less, more preferably 0.01% by mass or more and 1.5% by mass or less, and further preferably 0.02% by mass. % To 1% by mass is desirable.
[0169]
Examples of the dispersed state may be either latex in which fine particles of a water-insoluble hydrophobic polymer are dispersed or polymer molecules dispersed in a molecular state or a micelle form. preferable. The number average particle diameter of the dispersed particles is 1 to 50000 nm, preferably 5 to 1000 nm, more preferably 10 to 500 nm, and still more preferably 50 to 200 nm. The particle size distribution of the dispersed particles is not particularly limited, and may have a wide particle size distribution or a monodispersed particle size distribution. Mixing two or more types having a monodispersed particle size distribution is also a preferable method for controlling the physical properties of the coating solution.
[0170]
In the present invention, preferred embodiments of the polymer that can be dispersed in an aqueous solvent include acrylic polymers, poly (esters), rubbers (eg, SBR resin), poly (urethanes), poly (vinyl chloride) s, poly (acetic acid). Hydrophobic polymers such as vinyl), poly (vinylidene chloride) and poly (olefin) can be preferably used. These polymers may be linear polymers, branched polymers, crosslinked polymers, so-called homopolymers obtained by polymerizing a single monomer, or copolymers obtained by polymerizing two or more types of monomers. In the case of a copolymer, it may be a random copolymer or a block copolymer. These polymers have a number average molecular weight of 5,000 to 1,000,000, preferably 10,000 to 200,000. When the molecular weight is too small, the mechanical strength of the emulsion layer is insufficient, and when the molecular weight is too large, the film formability is poor, which is not preferable. A crosslinkable polymer latex is particularly preferably used.
[0171]
Specific examples of the polymer dispersible in the aqueous solvent include the following, but the present invention is not limited thereto. Below, it represents using a raw material monomer, the numerical value in a parenthesis is the mass%, and molecular weight is a number average molecular weight. When a polyfunctional monomer was used, the concept of molecular weight was not applicable because a crosslinked structure was formed, so it was described as crosslinkability, and the description of molecular weight was omitted.
[0172]
Latex of P-1; -MMA (70) -EA (27) -MAA (3)-(molecular weight 37000, Tg 61 ° C.)
Latex of P-2; -MMA (70) -2EHA (20) -St (5) -AA (5)-(molecular weight 40000, Tg 59 ° C.)
P-3; latex of -St (50) -Bu (47) -MAA (3)-(crosslinkability, Tg-17 ° C)
Latex of P-4; -St (68) -Bu (29) -AA (3)-(crosslinkability, Tg 17 ° C.)
Latex of P-5; -St (71) -Bu (26) -AA (3)-(crosslinkability, Tg 24 ° C.)
Latex of P-6; -St (70) -Bu (27) -IA (3)-(crosslinkability)
Latex of P-7; -St (75) -Bu (24) -AA (1)-(crosslinkability, Tg 29 ° C.)
Latex (crosslinkability) of P-8; -St (60) -Bu (35) -DVB (3) -MAA (2)-
Latex (crosslinkability) of P-9; -St (70) -Bu (25) -DVB (2) -AA (3)-
P-10; latex of VC (50) -MMA (20) -EA (20) -AN (5) -AA (5)-(molecular weight 80000)
P-11; latex of VDC (85) -MMA (5) -EA (5) -MAA (5)-(molecular weight 67000)
Latex of P-12; -Et (90) -MAA (10)-(molecular weight 12000)
P-13; Latex of -St (70) -2EHA (27) -AA (3) (molecular weight 130000, Tg 43 ° C)
P-14; latex of MMA (63) -EA (35) -AA (2) (molecular weight 33000, Tg 47 ° C.)
Latex of P-15; -St (70.5) -Bu (26.5) -AA (3)-(crosslinkability, Tg 23 ° C.)
Latex of P-16; -St (69.5) -Bu (27.5) -AA (3)-(crosslinkability, Tg 20.5 ° C)
[0173]
The abbreviations for the above structures represent the following monomers. MMA; methyl methacrylate, EA; ethyl acrylate, MAA; methacrylic acid, 2EHA; 2-ethylhexyl acrylate, St; styrene, Bu; butadiene, AA; acrylic acid, DVB; divinylbenzene, VC; vinyl chloride, AN; Vinylidene chloride, Et; ethylene, IA; itaconic acid.
[0174]
The polymer latex described above is also commercially available, and the following polymers can be used. Examples of acrylic polymers include Sebian A-4635, 4718, 4601 (manufactured by Daicel Chemical Industries, Ltd.), Nipol Lx811, 814, 821, 820, 857 (manufactured by Nippon Zeon Co., Ltd.), poly ( Examples of esters) include: FINETEX ES650, 611, 675, 850 (manufactured by Dainippon Ink & Chemicals, Inc.), WD-size, WMS (manufactured by Eastman Chemical), and other examples of poly (urethanes). Examples of rubbers such as HYDRAN AP10, 20, 30, 40 (above Dainippon Ink Chemical Co., Ltd.) include LACSTAR 7310K, 3307B, 4700H, 7132C (above Dainippon Ink Chemical Co., Ltd.), Nipol Lx416, 410, 438C, 2507 (above ZEON CORPORATION) Examples of poly (vinyl chloride) are G351 and G576 (manufactured by Nippon Zeon Co., Ltd.), and examples of poly (vinylidene chloride) are L502 and L513 (manufactured by Asahi Kasei Kogyo Co., Ltd.). Examples of poly (olefin) s include Chemipearl S120, SA100 (manufactured by Mitsui Petrochemical Co., Ltd.).
[0175]
These polymer latexes may be used alone or in combination of two or more as required.
[0176]
As a polymer dispersible in an aqueous solvent, a latex of a styrene-butadiene copolymer is particularly preferable. The weight ratio of the styrene monomer unit to the butadiene monomer unit in the styrene-butadiene copolymer is preferably 40:60 to 95: 5. The proportion of the styrene monomer unit and the butadiene monomer unit in the copolymer is preferably 60 to 99% by mass. Moreover, it is preferable that the polymer latex of this invention contains 1-6 mass% of acrylic acid or methacrylic acid with respect to the sum of styrene and butadiene, More preferably, it contains 2-5 mass%. The polymer latex of the present invention preferably contains acrylic acid.
[0177]
Examples of latexes of styrene-butadiene-acrylic acid or methacrylic acid copolymer that are preferably used in the present invention include the aforementioned P-3 to P-8,15, commercially available LACSTAR-3307B, 7132C, Nipol Lx416, and the like. Is mentioned.
[0178]
If necessary, a hydrophilic polymer such as gelatin, polyvinyl alcohol, methylcellulose, hydroxypropylcellulose, carboxymethylcellulose may be added to the image forming layer of the light-sensitive material of the present invention. The amount of these hydrophilic polymers added is preferably 30% by mass or less, more preferably 20% by mass or less, based on the total binder of the image forming layer.
[0179]
The image forming layer formed with an aqueous solvent preferably uses a polymer latex. The amount of binder in the image forming layer is such that the weight ratio of total binder / organic silver salt is 1/10 to 10/1, more preferably 1/3 to 5/1, and still more preferably 1/1 to 3/1. Range.
[0180]
In addition, such an image forming layer is usually a photosensitive layer (emulsion layer) containing a photosensitive silver halide which is a photosensitive silver salt. In such a case, the total binder / silver halide The weight ratio is in the range of 400-5, more preferably 200-10.
[0181]
The total binder amount of the image forming layer of the present invention is preferably 0.2 to 30 g / m.2, More preferably 1-15 g / m2More preferably, 2 to 10 g / m2Range. The image forming layer of the present invention may contain a crosslinking agent for crosslinking, a surfactant for improving coating properties, and the like.
[0182]
9. Explanation of anti-fogging agent
The present invention preferably contains an organic polyhalogen compound represented by the following general formula (B) as an antifoggant.
General formula (B)
[0183]
Q- (Y) n-C (Z1) (Z2) X
[0184]
In the general formula (B), Q represents an alkyl group, an aryl group or a heterocyclic group, Y represents a divalent linking group, n represents 0 or 1, Z1And Z2Represents a halogen atom, and X represents a hydrogen atom or an electron withdrawing group.
[0185]
Q preferably represents a phenyl group substituted with an electron-withdrawing group in which Hammett's substituent constant σp takes a positive value. Regarding Hammett's substituent constants, Journal of Medicinal Chemistry, 1973, Vol. 16, no. 11, 1207-1216 etc. can be referred to.
[0186]
Examples of such an electron withdrawing group include a halogen atom (fluorine atom (σp value: 0.06), chlorine atom (σp value: 0.23), bromine atom (σp value: 0.23), iodine atom. (Σp value: 0.18)), trihalomethyl group (tribromomethyl (σp value: 0.29), trichloromethyl (σp value: 0.33), trifluoromethyl (σp value: 0.54)), Cyano group (σp value: 0.66), nitro group (σp value: 0.78), aliphatic aryl, or heterocyclic sulfonyl group (for example, methanesulfonyl (σp value: 0.72)), aliphatic aryl Or a heterocyclic acyl group (for example, acetyl (σp value: 0.50), benzoyl (σp value: 0.43)), alkynyl group (for example, C≡CH (σp value: 0.23)), aliphatic Aryl or heterocyclic oxycarbo Group (for example, methoxycarbonyl (σp value: 0.45), phenoxycarbonyl (σp value: 0.44)), carbamoyl group (σp value: 0.36), sulfamoyl group (σp value: 0.57), Examples thereof include a sulfoxide group, a heterocyclic group, and a phosphoryl group.
The σp value is preferably in the range of 0.2 to 2.0, more preferably in the range of 0.4 to 1.0.
[0187]
Preferred as the electron withdrawing group are a carbamoyl group, an alkoxycarbonyl group, an alkylsulfonyl group, an alkylphosphoryl group, a carboxyl group, an alkyl or arylcarbonyl group, and an arylsulfonyl group, and particularly preferably a carbamoyl group and an alkoxycarbonyl group. , An alkylsulfonyl group and an alkylphosphoryl group, and a carbamoyl group is most preferred.
[0188]
X is preferably an electron-withdrawing group, more preferably a halogen atom, aliphatic / aryl or heterocyclic sulfonyl group, aliphatic / aryl or heterocyclic acyl group, aliphatic / aryl or heterocyclic oxycarbonyl group, A carbamoyl group and a sulfamoyl group, particularly preferably a halogen atom.
Among the halogen atoms, a chlorine atom, a bromine atom and an iodine atom are preferable, a chlorine atom and a bromine atom are more preferable, and a bromine atom is particularly preferable.
[0189]
Y is preferably -C (= O)-, -SO- or -SO.2-, More preferably -C (= O)-, -SO2-, Particularly preferably -SO2-. n represents 0 or 1, and is preferably 1.
[0190]
Specific examples of the compound of the general formula (B) of the present invention are shown below, but the present invention is not limited thereto.
[0191]
Embedded image
Figure 2004004322
[0192]
Embedded image
Figure 2004004322
[0193]
The compound represented by the general formula (B) of the present invention is 10 per mol of the non-photosensitive silver salt of the image forming layer.-4It is preferably used in the range of ˜1 mol, more preferably 10-3In the range of ~ 0.5 mol, more preferably 5 × 10-3It is preferable to use in the range of ~ 0.2 mol.
[0194]
In the present invention, examples of the method for incorporating the compound represented by formula (B) into the photosensitive material include the methods described in the method for containing a reducing agent.
[0195]
The melting point of the compound represented by the general formula (B) is preferably 200 ° C. or lower, more preferably 170 ° C. or lower.
[0196]
Other organic polyhalides used in the present invention include those disclosed in the patents described in paragraph Nos. 0111 to 0112 of JP-A No. 11-65021. In particular, organic halogen compounds represented by formula (P) of Japanese Patent Application No. 11-87297, organic polyhalogen compounds represented by Japanese Patent Application Laid-Open No. 10-339934, and organic polyhalogen compounds described in Japanese Patent Application No. 11-205330 preferable.
[0197]
Examples of other antifoggants include mercury (II) salts described in paragraph No. 0113 of JP-A No. 11-65021, benzoic acids of paragraph No. 0114 of the same, salicylic acid derivatives disclosed in JP-A No. 2000-206642, and formulas described in JP-A No. 2000-221634. A formalin scavenger compound represented by (S), a triazine compound according to claim 9 of JP-A-11-352624, a compound represented by formula (III) of JP-A-6-11791, 4-hydroxy-6-6 And methyl-1,3,3a, 7-tetrazaindene and the like.
[0198]
Antifoggant, stabilizer and stabilizer precursor that can be used in the present invention described in paragraph No. 0070 of JP-A-10-62899, page 20, line 57 to page 21, line 7 of European Patent No. 0803764A1 Patented compounds and compounds described in JP-A Nos. 9-281737 and 9-329864 can be mentioned.
[0199]
The photothermographic material in the invention may contain an azolium salt for the purpose of fog prevention. Examples of the azolium salt include compounds represented by general formula (XI) described in JP-A-59-193447, compounds described in JP-B-55-12581, and general formula (II) described in JP-A-60-153039. And the compounds represented. The azolium salt may be added to any part of the photosensitive material, but the added layer is preferably added to the layer having the photosensitive layer, and more preferably added to the image forming layer.
[0200]
The azolium salt may be added at any step during the preparation of the coating solution, and when added to the image forming layer, any step from the preparation of the organic silver salt to the preparation of the coating solution may be used. Immediately before is preferable. The azolium salt may be added by any method such as powder, solution, fine particle dispersion. Moreover, you may add as a solution mixed with other additives, such as a sensitizing dye, a reducing agent, and a color toning agent.
[0201]
In the present invention, any amount of the azolium salt may be added, but 1 × 10 10 per silver mole.-6Preferred is 1 mol or more and 2 mol or less.-3More preferably, it is more than mol and less than 0.5 mol.
[0202]
10. Explanation of color preparation
In the photothermographic material of the present invention, it is preferable to add a color toning agent. For the color toning agent, paragraph numbers 0054 to 0055 of JP-A No. 10-62899, p. Lines 21, 23 to 48, JP-A No. 2000-356317 and Japanese Patent Application No. 2000-187298, in particular, phthalazinones (phthalazinone, phthalazinone derivatives or metal salts; for example, 4- (1-naphthyl) phthalazinone, 6-chlorophthalazinone, 5,7-dimethoxyphthalazinone and 2,3-dihydro-1,4-phthalazinedione); phthalazinones and phthalic acids (eg, phthalic acid, 4-methylphthalic acid, 4-nitrophthalic acid, A combination of diammonium phthalate, sodium phthalate, potassium phthalate and tetrachlorophthalic anhydride); phthalazines (phthalazine, phthalazine derivatives or metal salts; for example, 4- (1-naphthyl) phthalazine, 6-isopropylphthalazine, 6 -T-butylphthalazine, 6-chloro (Talazine, 5.7-dimethoxyphthalazine, and 2,3-dihydrophthalazine) are preferable. In particular, in the combination with silver halide having a high silver iodide content, the combination of phthalazine and phthalic acid is preferable.
[0203]
The amount of phthalazine added is preferably 0.01 to 0.3 mol, more preferably 0.02 to 0.2 mol, particularly preferably 0.02 to 0.1 mol, per mol of the organic silver salt. It is.
[0204]
11. Other additives
In the present invention, a mercapto compound, a disulfide compound, and a thione compound can be contained in order to suppress or promote development and control development, to improve spectral sensitization efficiency, and to improve storage stability before and after development. JP-A-10-62899, paragraphs 0067 to 0069, JP-A-10-186572, the compound represented by the general formula (I) and specific examples thereof include paragraphs 0033 to 0052, EP 080376A1, No. 20 pages, lines 36-56. Of these, mercapto-substituted heteroaromatic compounds described in JP-A-9-297367, JP-A-9-304875, JP-A-2001-100388, JP-A-2001-104213, JP-A-2001-104214, and the like are preferable.
[0205]
The plasticizer and lubricant that can be used in the photosensitive layer of the present invention are described in paragraph No. 0117 of JP-A No. 11-65021. The slip agent is described in JP-A No. 11-84573, paragraph numbers 0061 to 0064 and Japanese Patent Application No. 11-106881, paragraph numbers 0049 to 0062.
[0206]
The photosensitive layer of the present invention has various dyes and pigments (for example, CI Pigment Blue 60, CI Pigment Blue 64, C.I.) from the viewpoints of improving color tone, preventing interference fringes during laser exposure, and preventing irradiation. I. Pigment Blue 15: 6) can be used. These are described in detail in WO98 / 36322, JP-A-10-268465, JP-A-11-338098 and the like.
[0207]
In order to form an ultrahigh contrast image suitable for printing plate making applications, it is preferable to add an ultrahigh contrast agent to the image forming layer. As for the super-high contrast agent and its addition method and addition amount, the formula (H) and formulas of paragraph No. 0118 of the same publication, paragraph Nos. 0136 to 0193 of JP-A No. 11-223898, and Japanese Patent Application No. 11-87297 are disclosed. (1) to (3), compounds of formulas (A) and (B), compounds of general formulas (III) to (V) described in Japanese Patent Application No. 11-91652 (specific compounds: embedded image 24), the contrast enhancement accelerator is described in paragraph No. 0102 of JP-A No. 11-65021 and paragraph Nos. 0194 to 0195 of JP-A No. 11-223898.
[0208]
In order to use formic acid or formate as a strong fogging substance, it is preferably contained at 5 mmol or less, more preferably 1 mmol or less, per mol of silver on the side having the image forming layer containing photosensitive silver halide.
When the ultrahigh contrast agent is used in the photothermographic material of the present invention, it is preferable to use an acid formed by hydrating diphosphorus pentoxide or a salt thereof in combination. Acids or salts thereof formed by hydration of diphosphorus pentoxide include metaphosphoric acid (salt), pyrophosphoric acid (salt), orthophosphoric acid (salt), triphosphoric acid (salt), tetraphosphoric acid (salt), hexametalin An acid (salt) etc. can be mentioned. Examples of the acid or salt thereof formed by hydrating diphosphorus pentoxide particularly preferably include orthophosphoric acid (salt) and hexametaphosphoric acid (salt). Specific examples of the salt include sodium orthophosphate, sodium dihydrogen orthophosphate, sodium hexametaphosphate, ammonium hexametaphosphate and the like.
Amount of acid or salt thereof formed by hydration of diphosphorus pentoxide (1m photosensitive material)2The coating amount per unit) may be a desired amount according to the performance such as sensitivity and fog, but 0.1 to 500 mg / m2Is preferably 0.5 to 100 mg / m2Is more preferable.
[0209]
12 Explanation of layer structure and other components
The photothermographic material of the present invention can have a non-photosensitive layer in addition to the image forming layer. The non-photosensitive layer includes (a) a surface protective layer provided on the image forming layer (on the side farther than the support), (b) between the plurality of image forming layers and between the image forming layer and the protective layer. It can be classified into an intermediate layer provided therebetween, (c) an undercoat layer provided between the image forming layer and the support, and (d) a back layer provided on the opposite side of the image forming layer.
[0210]
In addition, although a layer acting as an optical filter can be provided, it is provided as the layer (a) or (b). The antihalation layer is provided on the photosensitive material as the layer (c) or (d).
[0211]
The preparation temperature of the image forming layer coating solution for the light-sensitive material of the present invention is preferably from 30 ° C. to 65 ° C., more preferably from 35 ° C. to less than 60 ° C., and more preferably from 35 ° C. to 55 ° C. Moreover, it is preferable that the temperature of the image forming layer coating liquid immediately after the addition of the polymer latex is maintained at 30 ° C. or higher and 65 ° C. or lower.
[0212]
1) Surface protective layer
In the photothermographic material of the invention, a surface protective layer can be provided for the purpose of preventing adhesion of the image forming layer. The surface protective layer may be a single layer or a plurality of layers. The surface protective layer is described in JP-A No. 11-65021, paragraph numbers 0119 to 0120 and Japanese Patent Application No. 2000-171936.
[0213]
As the binder for the surface protective layer of the present invention, gelatin is preferable, but it is also preferable to use polyvinyl alcohol (PVA) or a combination thereof. As gelatin, inert gelatin (for example, Nitta gelatin 750), phthalated gelatin (for example, Nitta gelatin 801), and the like can be used.
[0214]
Examples of PVA include those described in paragraph Nos. 0009 to 0020 of JP-A No. 2000-171936. Completely saponified PVA-105, partially saponified PVA-205, PVA-335, and modified polyvinyl alcohol MP- Preferred is 203 (trade name, manufactured by Kuraray Co., Ltd.).
[0215]
Polyvinyl alcohol coating amount of protective layer (per layer) (support 1m2Per unit) as 0.3 to 4.0 g / m2Is preferable, 0.3 to 2.0 g / m2Is more preferable.
[0216]
Total binder (including water-soluble polymer and latex polymer) coating amount of surface protective layer (per layer) (support 1m)2As per) 0.3 to 5.0 g / m2Is preferable, 0.3 to 2.0 g / m2Is more preferable.
[0217]
2) Antihalation layer
In the photothermographic material of the present invention, the antihalation layer can be provided on the side far from the exposure light source with respect to the photosensitive layer. As for the antihalation layer, paragraphs 0123 to 0124 of JP-A-11-65021, JP-A-11-223898, 9-230531, 10-36695, 10-104779, 11-231457, 11 -352625, 11-352626 and the like.
[0218]
The antihalation layer contains an antihalation dye having absorption at the exposure wavelength. When the exposure wavelength is in the infrared region, an infrared absorbing dye may be used, and in that case, a dye having no absorption in the visible region is preferable.
[0219]
When antihalation is performed using a dye having absorption in the visible range, it is preferable that the dye color does not substantially remain after image formation, and a means for decoloring by the heat of heat development is used. In particular, it is preferable to add a thermally decolorable dye and a base precursor to the non-photosensitive layer to function as an antihalation layer. These techniques are described in JP-A-11-231457 and the like.
[0220]
The amount of decoloring dye added is determined by the use of the dye. In general, the optical density (absorbance) measured at the target wavelength is used in an amount exceeding 0.1. The optical density is preferably 0.2-2. The amount of dye used to obtain such an optical density is generally 0.001 to 1 g / m.2Degree.
[0221]
When the dye is decolored in this way, the optical density after heat development can be reduced to 0.1 or less. Two or more kinds of decoloring dyes may be used in combination in a heat decoloring type recording material or a photothermographic material. Similarly, two or more kinds of base precursors may be used in combination.
[0222]
In the thermal decoloration using such decoloring dye and base precursor, substances that lower the melting point by 3 ° C. or more when mixed with a base precursor as described in JP-A-11-352626 (for example, diphenylsulfone, 4-chlorophenyl, etc.) (Phenyl) sulfone) is preferably used in view of thermal decoloring properties.
[0223]
3) Back layer
The back layer applicable to the present invention is described in paragraph Nos. 0128 to 0130 of JP-A No. 11-65021.
[0224]
In the present invention, a colorant having an absorption maximum at 300 to 450 nm can be added for the purpose of improving the silver color tone and the temporal change of the image. Such colorants are disclosed in JP-A-62-210458, JP-A-63-104046, JP-A-63-103235, JP-A-63-208846, JP-A-63-306436, JP-A-63-314535, and JP-A-01-61745. And Japanese Patent Application No. 11-276751. Such colorants are typically 0.1 mg / m2~ 1g / m2The back layer provided on the opposite side of the photosensitive layer is preferable as the layer to be added in the range of.
[0225]
4) Matting agent
In the present invention, it is preferable to add a matting agent to the surface protective layer and the back layer in order to improve transportability. Matting agents are described in JP-A No. 11-65021, paragraph numbers 0126 to 0127.
Matting agent is photosensitive material 1m2When expressed in a coating amount per unit, preferably 1 to 400 mg / m2, More preferably 5 to 300 mg / m2It is.
[0226]
Further, the matte degree of the emulsion surface may be any as long as a so-called stardust failure in which small white spots occur in the image area and light leakage occurs, but the Beck smoothness is preferably 30 seconds or more and 2000 seconds or less. It is preferably 40 seconds or more and 1500 seconds or less. The Beck smoothness can be easily determined by Japanese Industrial Standard (JIS) P8119 "Smoothness test method using Beck tester for paper and paperboard" and TAPPI standard method T479.
[0227]
In the present invention, the matte degree of the back layer is preferably a Beck smoothness of 1200 seconds or less and 10 seconds or more, preferably 800 seconds or less and 20 seconds or more, and more preferably 500 seconds or less and 40 seconds or more.
[0228]
In the present invention, the matting agent is preferably contained in the outermost surface layer of the photosensitive material, the layer functioning as the outermost surface layer, or a layer close to the outer surface, and is contained in a layer acting as a so-called protective layer. It is preferable.
[0229]
5) Polymer latex
A polymer latex can be added to the surface protective layer or the back layer of the present invention.
For such polymer latex, “Synthetic resin emulsion (Hiraku Okuda, Hiroshi Inagaki, published by Kobunshi Publishing (1978))”, “Application of synthetic latex (Takaaki Sugimura, Ikuo Kataoka, Junichi Suzuki, Keiji Kasahara, Takashi "Molecular Publications (1993))" and "Synthetic Latex Chemistry (Muroichi Muroi, published by High Polymers Publication (1970))", specifically, methyl methacrylate (33.5% by mass) / Ethyl acrylate (50 wt%) / methacrylic acid (16.5 wt%) copolymer latex, methyl methacrylate (47.5 wt%) / butadiene (47.5 wt%) / itaconic acid (5 wt%) copolymer Latex, latex of ethyl acrylate / methacrylic acid copolymer, methyl methacrylate (58.9% by mass) / 2-ethyl A latex of xyl acrylate (25.4% by weight) / styrene (8.6% by weight) / 2-hydroxyethyl methacrylate (5.1% by weight) / acrylic acid (2.0% by weight) copolymer, methyl methacrylate (64. 0 mass%) / styrene (9.0 mass%) / butyl acrylate (20.0 mass%) / 2-hydroxyethyl methacrylate (5.0 mass%) / acrylic acid (2.0 mass%) copolymer latex, etc. Is mentioned.
[0230]
The polymer latex is preferably used in an amount of 10% by mass to 90% by mass, particularly preferably 20% by mass to 80% by mass, based on the total binder (including the water-soluble polymer and latex polymer) of the surface protective layer or the back layer.
[0231]
6) Membrane pH
The photothermographic material of the present invention preferably has a film surface pH of 7.0 or less, more preferably 6.6 or less before heat development. The lower limit is not particularly limited, but is about 3. The most preferred pH range is in the range of 4 to 6.2.
[0232]
The film surface pH is preferably adjusted using an organic acid such as a phthalic acid derivative, a non-volatile acid such as sulfuric acid, or a volatile base such as ammonia from the viewpoint of reducing the film surface pH. In particular, ammonia is volatile and is preferable for achieving a low film surface pH because it can be removed before the coating process or heat development.
In addition, it is also preferable to use ammonia in combination with a nonvolatile base such as sodium hydroxide, potassium hydroxide, or lithium hydroxide. The method for measuring the film surface pH is described in paragraph No. 0123 of Japanese Patent Application No. 11-87297.
[0233]
7) Hardener
A hardener may be used for each layer such as the photosensitive layer, protective layer, and back layer of the present invention.
Examples of hardeners include T.W. H. There are various methods described in "The THEY OF OF THE PHOTOGRAPHIC PROCESS FOURTH EDITION" by James (published by Macmillan Publishing Co., Inc., published in 1977), pages 77 to 87. -S-triazine sodium salt, N, N-ethylenebis (vinylsulfonacetamide), N, N-propylenebis (vinylsulfonacetamide), polyvalent metal ions described on page 78 thereof, U.S. Pat. No. 4,281, Polyisocyanates such as 060 and JP-A-6-208193, epoxy compounds such as US Pat. No. 4,791,042, and vinyl sulfone compounds such as JP-A 62-89048 are preferred. Used. In particular, a vinyl sulfone compound is preferable, and a non-diffusible vinyl sulfone compound is more preferable.
[0234]
The hardening agent is added as a solution, and the addition time of this solution into the protective layer coating solution is from 180 minutes before to immediately before application, preferably from 60 minutes to 10 seconds before application. As long as the effects of the present invention are sufficiently exhibited, there is no particular limitation.
[0235]
Specific mixing methods include mixing in a tank in which the average residence time calculated from the addition flow rate and the amount of liquid fed to the coater is a desired time, and N.I. Harnby, M.M. F. Edwards, A.D. W. There is a method using a static mixer described in Chapter 8 of Nienow's Koji Takahashi "Liquid Mixing Technology" (published by Nikkan Kogyo Shimbun, 1989).
[0236]
8) Antistatic agent
In the present invention, an antistatic layer containing various known metal oxides or conductive polymers may be provided. The antistatic layer may also serve as the above-described undercoat layer, back layer surface protective layer, or the like, or may be provided separately. Regarding the antistatic layer, paragraph No. 0135 of JP-A No. 11-65021, paragraphs of JP-A Nos. 56-143430, 56-143431, 58-62646, No. 56-120519, and paragraphs of JP-A No. 11-84573. The techniques described in Paragraph Nos. 0078 to 0084 of Nos. 0040 to 0051, US Pat. No. 5,575,957 and JP-A-11-223898 can be applied.
[0237]
9) Support
The transparent support is a polyester, particularly polyethylene, which has been heat-treated in a temperature range of 130 to 185 ° C. in order to relieve internal strain remaining in the film during biaxial stretching and to eliminate thermal shrinkage strain generated during heat development. Terephthalate is preferably used.
[0238]
In the case of a photothermographic material for medical use, the transparent support may be colored with a blue dye (for example, dye-1 described in Examples of JP-A-8-240877) or may be uncolored. Specific examples of the support are described in paragraph No. 0134 of JP-A No. 11-65021.
[0239]
Examples of the support include water-soluble polyesters disclosed in JP-A-11-84574, styrene-butadiene copolymers described in JP-A-10-186565, and vinylidene chloride described in JP-A-2000-39684 and Japanese Patent Application No. 11-106881, paragraph numbers 0063 to 0080. It is preferable to apply an undercoating technique such as a copolymer.
[0240]
10) Other additives
The photothermographic material may further contain an antioxidant, a stabilizer, a plasticizer, an ultraviolet absorber or a coating aid depending on each layer. A solvent described in paragraph No. 0133 of JP-A No. 11-65021 may be added. Various additives are added to either the photosensitive layer or the non-photosensitive layer. With respect to these, WO 98/36322, EP 803764A1, JP-A-10-186567, 10-18568 and the like can be referred to.
[0241]
11) Application method
The photothermographic material in the invention may be applied by any method. Specifically, various coating operations including extrusion coating, slide coating, curtain coating, dip coating, knife coating, flow coating, or extrusion coating using a hopper of the type described in US Pat. No. 2,681,294. Is used, and Stephen F. Kistler, Peter M. Extrusion coating or slide coating described in pages 399 to 536 of “LIQUID FILM COATING” (CHAPMAN & HALL, 1997) by Schweizer is preferably used, and slide coating is particularly preferably used.
[0242]
An example of the shape of a slide coater used for slide coating is shown in FIG. 11b. 1 If desired, two or more layers can be simultaneously coated by the method described on pages 399 to 536 of the same document, the method described in US Pat. No. 2,761,791 and British Patent No. 837,095. .
[0243]
The image forming layer coating solution in the present invention is preferably a so-called thixotropic fluid. Regarding this technique, JP-A-11-52509 can be referred to. In the present invention, the image forming layer coating solution has a shear rate of 0.1 S.-1The viscosity is preferably 400 mPa · s or more and 100,000 mPa · s or less, and more preferably 500 mPa · s or more and 20,000 mPa · s or less.
Also, shear rate 1000S-1Is preferably 1 mPa · s or more and 200 mPa · s or less, more preferably 5 mPa · s or more and 80 mPa · s or less.
[0244]
The photothermographic material of the present invention is preferably subjected to a heat treatment immediately after coating and drying in order to improve film formability. The temperature of the heat treatment is preferably in the range of 60 ° C. to 100 ° C. as the film surface temperature, and the heating time is preferably in the range of 1 second to 60 seconds. A more preferable range is a film surface temperature of 70 to 90 ° C. and a heating time of 2 to 10 seconds. A preferred heat treatment method of the present invention is described in JP-A No. 2002-107872.
[0245]
12) Packaging materials
The photothermographic material of the present invention has an oxygen transmission rate and a photosensitivity in order to prevent deterioration of photographic performance during storage before use, or to prevent curling or wrinkling in the case of a rolled product form. It is preferable to hermetically package with a packaging material having a low moisture permeability. Oxygen permeability is 50 ml / atm / m at 25 ° C2-Day or less is preferable, more preferably 10 ml / atm / m2-Day or less, more preferably 1.0 ml / atm / m2-Day or less. Moisture permeability is 10 g / atm / m2-Day or less is preferable, more preferably 5 g / atm / m2-Day or less, more preferably 1 g / atm / m2-Day or less. As specific examples of the packaging material having low oxygen permeability and / or moisture permeability, those described in, for example, JP-A-8-254793 and JP-A-2000-206653 can be used.
[0246]
13) Other available technologies
Techniques that can be used for the photothermographic material of the present invention include EP80364A1, EP883022A1, WO98 / 36322, JP56-62648, 58-62644, JP9-43766, and 9-. 281637, 9-297367, 9-304869, 9-311405, 9-329865, 10-10669, 10-62899, 10-69023, 10-186568, 10-90823, 10-171106, 10-186565, 10-186567, 10-186567 to 10-186572, 10-197974, 10-197982, 10 -197983, 10-197985 to 10-197987, 10- 07001, 10-207004, 10-221807, 10-282601, 10-288823, 10-288824, 10-307365, 10-312038, 10-339934 11-7100, 11-15105, 11-24200, 11-24201, 11-30201, 11-30832, 11-84574, 11-65021, 11-109547, 11-125880, 11-129629, 11-133536 to 11-133539, 11-133542, 11-133543, 11-223898, 11-352627, 11- 305377, 11-305378, 11-305384, 11-30538 11-316435, 11-327076, 11-338096, 11-338098, 11-338099, 11-343420, Japanese Patent Application 2000-187298, 2000-10229 2000-47345, 2000-206642, 2000-98530, 2000-98531, 2000-112059, 2000-112060, 2000-112104, 2000-112604, No. 2000-171936 is also mentioned.
[0247]
14) Color image formation
The construction of a multicolor color photothermographic material may include a combination of these two layers for each color and contains all the components in a single layer as described in US Pat. No. 4,708,928. May be included.
In the case of a multicolor color photothermographic material, each emulsion layer is generally a functional or non-functional barrier layer between each photosensitive layer as described in U.S. Pat. No. 4,460,681. Are used to keep them distinguished from each other.
[0248]
13. Explanation of image forming method
1) Exposure
The light-sensitive material of the present invention may be exposed by any method, but laser light is preferred as the exposure light source.
[0249]
In particular, when an exposure amount giving the maximum density (Dmax) is given, the preferable light amount on the surface of the photosensitive material is 0.1 W / mm.2~ 100W / mm2It is. More preferably 0.5 W / mm2~ 50W / mm2And most preferably 1 W / mm2~ 50W / mm2It is.
[0250]
As the laser light according to the present invention, a gas laser (Ar+, He—Ne, He—Cd), YAG laser, dye laser, semiconductor laser and the like are preferable. A semiconductor laser and a second harmonic generation element can also be used. The laser preferably used is determined according to the light absorption peak wavelength of the photosensitizing material such as a spectral sensitizing dye, but it is a red to infrared emitting He-Ne laser, a red semiconductor laser, or a blue to green emitting Ar.+, He—Ne, He—Cd laser, blue semiconductor laser. In recent years, in particular, modules and blue semiconductor lasers, in which SHG (Second Hermonic Generator) elements and semiconductor lasers are integrated, have been developed, and laser output devices in the short wavelength region have been highlighted. The blue semiconductor laser is expected to increase in demand in the future because high-definition image recording is possible, the recording density is increased, and a stable output is obtained with a long lifetime.
[0251]
It is also preferable that the laser light is oscillated in a vertical multi by a method such as high frequency superposition.
[0252]
2) Thermal development
The photothermographic material of the present invention is usually developed by raising the temperature of the photothermographic material exposed imagewise, and any method for the heat development may be used. A preferred development temperature is 80 to 250 ° C, preferably 100 to 140 ° C, more preferably 110 to 130 ° C. The development time is preferably 1 to 60 seconds, more preferably 3 to 30 seconds, still more preferably 5 to 25 seconds, and 7 to 15 seconds.
[0253]
As a thermal development system, either a drum type heater or a plate type heater may be used, but a plate heater system is more preferable. The heat development method using the plate heater method is preferably a method described in JP-A-11-133572. The heat development photosensitive material on which a latent image is formed is brought into contact with a heating means in a heat development part, and heat for obtaining a visible image. In the developing device, the heating unit includes a plate heater, and a plurality of press rollers are disposed to face each other along one surface of the plate heater, and the heat is interposed between the press roller and the plate heater. A thermal development apparatus that performs thermal development by passing a development photosensitive material. It is preferable to divide the plate heater into 2 to 6 stages and lower the temperature about 1 to 10 ° C. at the tip. For example, there are examples in which four sets of plate heaters that can be independently controlled are used and controlled so as to be 112 ° C., 119 ° C., 121 ° C., and 120 ° C. Such a method is also described in JP-A-54-30032, which can exclude moisture and organic solvents contained in the photothermographic material out of the system, and rapidly develop the photothermographic material. It is also possible to suppress a change in the shape of the support of the photothermographic material due to the heating.
[0254]
14 system
As a medical laser imager provided with an exposure part and a heat development part, Fuji Medical Dry Laser Imager FM-DPL can be mentioned. For FM-DP L, Fuji Medical Review No. 8, pages 39 to 55, and it goes without saying that these techniques are applied as a laser imager of the photothermographic material of the present invention. Further, it can also be applied as a photothermographic material for a laser imager in “ADnetwork” proposed by Fuji Medical System as a network system adapted to the DICOM standard.
[0255]
15. Application of the present invention
The photothermographic material of the present invention forms a black and white image by a silver image, and is used as a photothermographic material for medical diagnosis, a photothermographic material for industrial photography, a photothermographic material for printing, and a photothermographic material for COM. It is preferably used.
[0256]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[0257]
1. Create support
1-1. Film formation
PET having an intrinsic viscosity of IV = 0.66 (measured in phenol / tetrachloroethane = 6/4 (weight ratio) at 25 ° C.) was obtained using terephthalic acid and ethylene glycol according to a conventional method. This was pelletized, dried at 130 ° C. for 4 hours, melted at 300 ° C., extruded from a T-die and quenched, and an unstretched film having a thickness of 175 μm after heat setting was prepared.
[0258]
This was longitudinally stretched 3.3 times using rolls having different peripheral speeds and then stretched 4.5 times with a tenter. The temperatures at this time were 110 ° C. and 130 ° C., respectively. Thereafter, the film was heat-fixed at 240 ° C. for 20 seconds and relaxed by 4% in the lateral direction at the same temperature. After this, after slitting the chuck part of the tenter, knurling is performed on both ends and 4 kg / cm.2And a roll having a thickness of 175 μm was obtained.
[0259]
1-2. Surface corona discharge treatment
Using a solid state corona discharge treatment machine 6KVA model manufactured by Pillar, both surfaces of the support were treated at room temperature at 20 m / min. From the current and voltage readings at this time, the support is 0.375 kV · A · min / m.2It was found that the process was done. The treatment frequency at this time was 9.6 kHz, and the gap clearance between the electrode and the dielectric roll was 1.6 mm.
[0260]
1-3. undercoat
1) Preparation of undercoat layer coating solution
Formulation (1) (for the undercoat layer on the photosensitive layer side)
Pesresin A-520 (30% by mass solution) manufactured by Takamatsu Yushi Co., Ltd. 59 g
Polyethylene glycol monononyl phenyl ether
(Average number of ethylene oxide = 8.5) 10% by mass solution 5.4 g
MP-1000 (polymer fine particles, average particle size 0.4 μm) manufactured by Soken Chemical Co., Ltd. 0.91 g
Distilled water 935 ml distilled water
[0261]
Formulation (2) (for back layer 1st layer)
Styrene-butadiene copolymer latex 158 g
(Solid content 40% by mass, styrene / butadiene weight ratio = 68/32)
2,4-dichloro-6-hydroxy-S-
Triazine sodium salt 8% by mass aqueous solution 20g
1% by weight aqueous solution of sodium laurylbenzenesulfonate 10 ml
Distilled water 854 ml of distilled water
[0262]
Formula (3) (Back side 2nd layer)
SnO2/ SbO (9/1 mass ratio, average particle size 0.038 μm, 17 mass% dispersion) 84 g
Gelatin (10% by weight aqueous solution) 89.2 g of the service space 89.2 g
Metroise TC-5 (2 mass% aqueous solution) manufactured by Shin-Etsu Chemical Co., Ltd. 8.6 g
MP-1000, Soken Chemicals Co., Ltd., 0.01g, 0.01g
1% aqueous solution of sodium dodecylbenzenesulfonate 10ml
NaOH (1% by mass), 6 ml of water
Proxel (made by ICI), 1 ml
Distilled water 805 ml distilled water
[0263]
2) Application
After both surfaces of the biaxially stretched polyethylene terephthalate support having a thickness of 175 μm are subjected to the corona discharge treatment, the undercoat coating solution formulation {circle around (1)} is applied to one surface (photosensitive layer surface) with a wire bar. .6ml / m2(Per side) and dried at 180 ° C. for 5 minutes, and then the undercoat coating liquid formulation (2) is applied to the back side (back side) with a wire bar at a wet coating amount of 5.7 ml / m.2And then dried at 180 ° C. for 5 minutes. Further, the undercoat coating liquid formulation (3) is applied to the back surface (back surface) with a wire bar so that the wet coating amount is 7.7 ml / m.2And then dried at 180 ° C. for 6 minutes to prepare an undercoat support.
[0264]
2. Creating a back layer
2-1. Preparation of back surface coating solution
1) Preparation of solid precursor dispersion (a) of base precursor
1.5 kg of the base precursor compound 1, and 225 g of a surfactant (trade name: Demol N, manufactured by Kao Corporation), 937.5 g of diphenyl sulfone, butyl ester of parahydroxybenzoic acid (trade name: Plating, manufactured by Ueno Pharmaceutical) 15 g and distilled water were added and the total amount was adjusted to 5.0 kg and mixed, and the mixed solution was dispersed with beads using a horizontal sand mill (UVM-2: manufactured by Imex Corp.). In the dispersion method, the mixed solution was fed to UVM-2 filled with zirconia beads having an average diameter of 0.5 mm by a diaphragm pump, and dispersed at an internal pressure of 50 hPa or more until a desired average particle size was obtained.
The dispersion was subjected to spectral absorption measurement and dispersed until the ratio of the absorbance at 450 nm to the absorbance at 650 nm (D450 / D650) in the spectral absorption of the dispersion was 2.2 or more. The obtained dispersion was diluted with distilled water so that the concentration of the base precursor was 20% by weight, and filtered for removing dust (filter made of polypropylene having an average pore size: 3 μm) and put to practical use.
[0265]
2) Preparation of dye solid fine particle dispersion
6.0 kg of cyanine dye compound-1 (structural formula shown below) and 3.0 kg of sodium p-dodecylbenzenesulfonate, 0.6 kg of surfactant Demol SNB manufactured by Kao Corporation, and antifoaming agent (product) Name: Surfynol 104E, manufactured by Nissin Chemical Co., Ltd.) 0.15 kg was mixed with distilled water to make a total liquid volume of 60 kg. The mixed solution was dispersed with 0.5 mm zirconia beads using a horizontal sand mill (UVM-2: manufactured by Imex Corporation).
The dispersion was subjected to spectral absorption measurement and dispersed until the ratio of the absorbance at 650 nm to the absorbance at 750 nm (D650 / D750) in the spectral absorption of the dispersion was 5.0 or more. The obtained dispersion was diluted with distilled water so that the concentration of the cyanine dye was 6% by mass, and subjected to filter filtration (average pore size: 1 μm) for removing dust.
[0266]
3) Preparation of antihalation layer coating solution
30 g of gelatin, 24.5 g of polyacrylamide, 2.2 g of 1 mol / l caustic, 2.4 g of monodisperse polymethyl methacrylate fine particles (average particle size 8 μm, particle size standard deviation 0.4), benzoisothiazolinone 0.08 g, 35.9 g of the above-mentioned dye solid fine particle dispersion, 74.2 g of the solid fine particle dispersion (a) of the above base precursor, 0.6 g of sodium polyethylene sulfonate, and 0 of blue dye compound-1 (the structural formula is shown below) .21 g, 0.15 g of yellow dye compound-1 (the structural formula was shown later) and 8.3 g of acrylic acid / ethyl acrylate copolymer latex (copolymerization ratio 5/95) were mixed, and the whole was mixed with water. The antihalation layer coating solution was prepared to 818 ml.
[0267]
4) Preparation of back surface protective layer coating solution
The container was kept at 40 ° C., 40 g of gelatin, 1.5 g of liquid paraffin emulsion as liquid paraffin, benzoisothiazolinone 35 mg, 1 mol / l caustic 6.8 g, sodium t-octylphenoxyethoxyethanesulfonate 0.5 g , 0.27 g of sodium polystyrene sulfonate, 10.8 ml of 1% aqueous solution of fluorosurfactant (SF-1: structural formula shown below), acrylic acid / ethyl acrylate copolymer (copolymer weight ratio 5 / 95) 6.0 g and 2.0 g of N, N-ethylenebis (vinylsulfone acetamide) were mixed and made up to 1000 ml with water to obtain a back surface protective layer coating solution.
[0268]
2-2. Back layer application
An antihalation layer coating solution is applied to the back surface side of the undercoat support so that the solid content of the solid fine particle dye is 0.04 g / m.2In addition, the back surface protective layer coating solution has a gelatin coating amount of 1.7 g / m.2A multi-layer coating was applied and dried to form a back layer.
[0269]
3. Creation of image forming layer, intermediate layer and surface protective layer
The photothermographic material shown in the present embodiment has an image forming layer, an intermediate layer and a surface protective layer on the side of the support opposite to the back layer.
3-1. Preparation of coating materials
1) Preparation of silver halide emulsion
<< Preparation of silver halide emulsion 1 >>
To a solution of 1421 ml of distilled water, 3.1 ml of a 1% by mass potassium bromide solution was added, and a solution containing 3.5 ml of 0.5 mol / L sulfuric acid and 31.7 g of phthalated gelatin was stirred in a stainless steel reaction vessel. While maintaining the liquid temperature at 30 ° C., the solution A diluted with 95.4 ml of distilled water added to 22.22 g of silver nitrate, 15.3 g of potassium bromide and 0.8 g of potassium iodide in a distilled water volume of 97.4 ml. The whole amount of the solution B diluted to 1 was added at a constant flow rate over 45 seconds. Thereafter, 10 ml of a 3.5% by mass aqueous hydrogen peroxide solution was added, and 10.8 ml of a 10% by mass aqueous solution of benzimidazole was further added. Further, a solution C in which distilled water was added to 51.86 g of silver nitrate to be diluted to 317.5 ml, a solution D in which 44.2 g of potassium bromide and 2.2 g of potassium iodide were diluted with distilled water to a volume of 400 ml was added to solution C. Was added at a constant flow rate over 20 minutes, and solution D was added by the controlled double jet method while maintaining pAg at 8.1. 1 x 10 per mole of silver-4The total amount of potassium hexachloroiridate (III) was added 10 minutes after the start of the addition of Solution C and Solution D so as to have a molar ratio. In addition, 5 seconds after completion of the addition of the solution C, an aqueous solution of potassium iron (II) hexacyanide was added at 3 × 10 5 per mol of silver.-4The whole molar amount was added. The pH was adjusted to 3.8 using sulfuric acid having a concentration of 0.5 mol / L, stirring was stopped, and precipitation / desalting / water washing steps were performed. The pH was adjusted to 5.9 with 1 mol / L sodium hydroxide to prepare a silver halide dispersion having a pAg of 8.0.
[0270]
The silver halide dispersion was maintained at 38 ° C. with stirring, 5 ml of a 0.34 mass% 1,2-benzisothiazolin-3-one methanol solution was added, and the temperature was raised to 47 ° C. after 40 minutes. 20 minutes after the temperature rise, sodium benzenethiosulfonate was 7.6 × 10 6 in 1 mol of silver with a methanol solution.-55 minutes later, tellurium sensitizer C (the structural formula shown below) was added in a methanol solution to give 2.9 × 10 6 per mole of silver.-4Mole was added and aged for 91 minutes. Thereafter, a 3: 1 methanol solution of a spectral sensitizing dye A (shown in the structural formula below) and spectral sensitizing dye B (shown in the following structural formula) in a molar ratio was added to the sensitizing dye A per mole of silver. And B total 1.2 × 10-3After 1 minute, 1.3 ml of a 0.8% by weight methanol solution of N, N′-dihydroxy-N ″ -diethylmelamine was added, and after 4 minutes, 5-methyl-2-mercaptobenzimidazole was added with a methanol solution. 4.8 x 10 per mole of silver-3Mole, 1-phenyl-2-heptyl-5-mercapto-1,3,4-triazole in a methanol solution to 5.4 × 10 5 per mole of silver-3Mole and 1- (3-methylureido) -5-mercaptotetrazole sodium salt in aqueous solution at 8.5 × 10 5 per mole of silver-3A silver halide emulsion 1 was prepared by adding a molar amount.
[0271]
The grains in the prepared silver halide emulsion were silver iodobromide grains containing 3.5 mol% of iodine having an average sphere equivalent diameter of 0.042 μm and a sphere equivalent diameter variation coefficient of 20%. The particle size and the like were determined from an average of 1000 particles using an electron microscope. The [100] face ratio of the particles was determined to be 80% using the Kubelka-Munk method.
[0272]
<< Preparation of silver halide emulsion 2 >>
In the preparation of silver halide emulsion 1, the liquid temperature at the time of grain formation was changed from 30 ° C. to 47 ° C., and solution B was changed to diluting 15.9 g of potassium bromide with distilled water to a volume of 97.4 ml, Solution D was changed to diluting 45.8 g of potassium bromide with distilled water to a volume of 400 ml, and the addition time of solution C was changed to 30 minutes to remove potassium hexacyanoiron (II) in the same manner. A silver halide emulsion 2 was prepared. Precipitation / desalting / washing / dispersion was carried out in the same manner as silver halide emulsion 1. Furthermore, the amount of tellurium sensitizer C added was 1.1 × 10 5 per silver mole.-4Mole, the addition amount of a 3: 1 methanol solution in the molar ratio of spectral sensitizing dye A and spectral sensitizing dye B is 7.0 × 10 as the sum of sensitizing dye A and sensitizing dye B per mole of silver.-4Mole, 1-phenyl-2-heptyl-5-mercapto-1,3,4-triazole, 3.3 × 10 3 per mole of silver-3Mole and 1- (3-Methylureido) -5-mercaptotetrazole sodium salt is 4.7 × 10 5 per mol of silver.-3Spectral sensitization, chemical sensitization and 5-methyl-2-mercaptobenzimidazole, 1-phenyl-2-heptyl-5-mercapto-1,3,4-triazole in the same manner as Emulsion 1 except that the molar addition was changed. Was added to obtain a silver halide emulsion 2. The emulsion grains of the silver halide emulsion 2 were pure silver bromide cubic grains having an average sphere equivalent diameter of 0.080 μm and a sphere equivalent diameter variation coefficient of 20%.
[0273]
<< Preparation of silver halide emulsion 3 >>
In the preparation of silver halide emulsion 1, silver halide emulsion 3 was prepared in the same manner except that the liquid temperature at the time of grain formation was changed from 30 ° C. to 27 ° C. Further, precipitation / desalting / washing / dispersion was performed in the same manner as silver halide emulsion 1. The molar ratio of spectral sensitizing dye A and spectral sensitizing dye B is 1: 1 as a solid dispersion (gelatin aqueous solution), and the addition amount is 6 × 10 as the total of sensitizing dye A and sensitizing dye B per mole of silver.-3Mol, tellurium sensitizer C is added in an amount of 5.2 × 10 5 per mol of silver.-43 minutes after the addition of tellurium sensitizer C, 5 × 10 5 of silver bromide is added per mole of silver.-4Moles and potassium thiocyanate 2 x 10 per mole of silver-3A silver halide emulsion 3 was obtained in the same manner as Emulsion 1 except that a mole was added. The emulsion grains of the silver halide emulsion 3 were silver iodobromide grains containing 3.5 mol% of iodine having an average sphere equivalent diameter of 0.034 μm and a sphere equivalent diameter variation coefficient of 20%.
[0274]
<< Preparation of mixed emulsion A for coating solution >>
70% by weight of silver halide emulsion 1, 15% by weight of silver halide emulsion 2 and 15% by weight of silver halide emulsion 3 were dissolved, and 7% by mole of silver in a 1% by weight aqueous solution of benzothiazolium iodide. × 10-3Mole was added. Further, 1- (3-methylureido)-was added so that the silver halide content per kg of the mixed emulsion for coating solution was 38.2 g as silver, and 0.34 g per kg of the mixed emulsion for coating solution. 5-mercaptotetrazole sodium salt was added.
[0275]
2) Preparation of fatty acid silver dispersion
<< Preparation of fatty acid silver dispersion A >>
Behenic acid (product name Edenor C22-85R) behenic acid content 90 mol%, lignoceric acid 2 mol%, arachidic acid 6 mol%, stearic acid 1.6 mol%, erucic acid 0.4 mol%) 87 .6 kg, distilled water 423 L, 5 mol / L NaOH aqueous solution 49.2 L and t-butyl alcohol 120 L were mixed and stirred at 75 ° C. for 1 hour to react to obtain sodium behenate solution A. Separately, 206.2 L (pH 4.0) of an aqueous solution containing 40.4 kg of silver nitrate was prepared and kept warm at 10 ° C. A reaction vessel containing 635 L of distilled water and 30 L of t-butyl alcohol was kept at 30 ° C., and with sufficient stirring, the total amount of the previous sodium behenate solution A and the total amount of silver nitrate aqueous solution were kept at a constant flow rate for 93 minutes 15 Added over seconds and 90 minutes. At this time, only the aqueous silver nitrate solution is added for 11 minutes after the start of the addition of the aqueous silver nitrate solution, and then the addition of the sodium behenate solution A is started. Was added. At this time, the temperature in the reaction vessel was 30 ° C., and the external temperature was controlled so that the liquid temperature was constant. The pipe of the addition system for the sodium behenate solution A was prepared by keeping warm by circulating hot water outside the double pipe so that the liquid temperature at the outlet at the tip of the addition nozzle was 75 ° C. Moreover, the piping of the addition system of the silver nitrate aqueous solution was kept warm by circulating cold water outside the double pipe. The addition position of the sodium behenate solution A and the addition position of the aqueous silver nitrate solution were arranged symmetrically around the stirring axis, and were adjusted so as not to contact the reaction solution.
[0276]
After completion of the addition of sodium behenate solution A, the mixture was left stirring for 20 minutes at the same temperature, heated to 35 ° C. over 30 minutes, and then aged for 210 minutes. Immediately after completion of aging, the solid content was separated by centrifugal filtration, and the solid content was washed with water until the conductivity of filtered water reached 30 μS / cm. Thus, a fatty acid silver salt was obtained. The obtained solid content was stored as a wet cake without drying.
[0277]
When the morphology of the obtained silver behenate particles was evaluated by electron microscopic photography, a = 0.14 μm, b = 0.4 μm, c = 0.6 μm, average aspect ratio of 5.2, and average sphere equivalent in terms of number average values It was a scaly crystal having a diameter of 0.52 μm and a variation coefficient of 15% of the equivalent sphere diameter. (A, b, c follow the above rules)
[0278]
19.3 kg of polyvinyl alcohol (trade name: PVA-217) and water are added to a wet cake corresponding to a dry solid content of 260 kg to make a total amount of 1000 kg, and then slurried with a dissolver blade. : PM-10 type).
[0279]
Next, the pre-dispersed stock solution is subjected to a pressure of 1260 kg / cm of a disperser (trade name: Microfluidizer M-610, manufactured by Microfluidics International Corporation, using a Z-type interaction chamber).2And was treated three times to obtain a silver behenate dispersion. The cooling operation was carried out by installing a serpentine heat exchanger before and after the interaction chamber, and adjusting the temperature of the refrigerant to a dispersion temperature of 18 ° C.
[0280]
<< Preparation of fatty acid silver dispersion B >>
<Preparation of recrystallized behenic acid>
100 kg of behenic acid (product name Edenor C22-85R) manufactured by Henkel was mixed in 1200 kg of isopropyl alcohol, dissolved at 50 ° C., filtered through a 10 μm filter, cooled to 30 ° C., and recrystallized. The cooling speed during recrystallization was controlled at 3 ° C./hour. The obtained crystals were centrifugally filtered, washed with 100 kg of isopropyl alcohol, and then dried. When the obtained crystals were esterified and subjected to GC-FID measurement, the silver behenate content was 96 mol%, in addition to that, lignoceric acid was 2 mol%, arachidic acid was 2 mol%, and erucic acid was 0.001 mol%. It was included.
<Preparation of fatty acid silver dispersion B>
Recrystallized behenic acid 88 kg, distilled water 422 L, 5 mol / L NaOH aqueous solution 49.2 L and t-butyl alcohol 120 L were mixed and stirred at 75 ° C. for 1 hour to react to obtain sodium behenate solution B. Separately, 206.2 L (pH 4.0) of an aqueous solution containing 40.4 kg of silver nitrate was prepared and kept warm at 10 ° C. A reaction vessel containing 635 L of distilled water and 30 L of t-butyl alcohol was kept at 30 ° C., and with sufficient stirring, the total amount of the previous sodium behenate solution B and the total amount of silver nitrate aqueous solution were kept at a constant flow rate for 93 minutes 15 Added over seconds and 90 minutes. At this time, only the silver nitrate aqueous solution is added for 11 minutes after the start of the addition of the silver nitrate aqueous solution, and then the addition of the sodium behenate solution B is started. After the addition of the silver nitrate aqueous solution, only the sodium behenate solution B is added for 14 minutes and 15 seconds Was added. At this time, the temperature in the reaction vessel was 30 ° C., and the external temperature was controlled so that the liquid temperature was constant. The pipe of the addition system for the sodium behenate solution B was kept warm by circulating hot water outside the double pipe so that the liquid temperature at the outlet at the tip of the addition nozzle was 75 ° C. Moreover, the piping of the addition system of the silver nitrate aqueous solution was kept warm by circulating cold water outside the double pipe. The addition position of the sodium behenate solution B and the addition position of the silver nitrate aqueous solution were symmetrically arranged around the stirring axis, and were adjusted so as not to contact the reaction solution.
[0281]
After completion of the addition of the sodium behenate solution B, the mixture was left stirring for 20 minutes at the same temperature, heated to 35 ° C. over 30 minutes, and then aged for 210 minutes. Immediately after completion of aging, the solid content was separated by centrifugal filtration, and the solid content was washed with water until the conductivity of filtered water reached 30 μS / cm. Thus, a fatty acid silver salt was obtained. The obtained solid content was stored as a wet cake without drying.
[0282]
When the morphology of the obtained silver behenate particles was evaluated by electron microscope photography, the average values were a = 0.21 μm, b = 0.4 μm, c = 0.4 μm, average aspect ratio 2.1, and equivalent sphere diameter. The crystal had a coefficient of variation of 11%. (A, b, and c are the text provisions)
[0283]
19.3 kg of polyvinyl alcohol (trade name: PVA-217) and water are added to a wet cake corresponding to a dry solid content of 260 kg to make a total amount of 1000 kg, and then slurried with a dissolver blade. : PM-10 type).
[0284]
Next, the pre-dispersed stock solution is subjected to a pressure of 1150 kg / cm of a dispersing machine (trade name: Microfluidizer M-610, manufactured by Microfluidics International Corporation, using a Z-type interaction chamber).2And was treated three times to obtain a silver behenate dispersion. The cooling operation was carried out by installing a serpentine heat exchanger before and after the interaction chamber, and adjusting the temperature of the refrigerant to a dispersion temperature of 18 ° C.
[0285]
(Adjustment of fatty acid silver dispersions B-1 to B-2)
In the same manner as fatty acid silver dispersion B, except that lignoceric acid, arachidic acid and stearic acid were added to change the fatty acid content to the composition shown in Table 1 so that the desired fatty acid composition was obtained in recrystallized behenic acid. B-1, B-2 were adjusted.
[0286]
3) Preparation of reducing agent dispersion
<< Preparation of Reducing Agent Complex-1 Dispersion >>
Reducing agent complex-1 (1,6′-di-t-butyl-4,4′-dimethyl-2,2′-butylidenediphenol) and triphenylphosphine oxide 1: 1 complex) 10 kg, triphenylphosphine oxide 10 kg of water was added to 16 kg of 10 mass% aqueous solution of 0.12 kg and modified polyvinyl alcohol (Kuraray Co., Ltd., Poval MP203), and mixed well to obtain a slurry. This slurry was fed with a diaphragm pump and dispersed for 4 hours 30 minutes in a horizontal sand mill (UVM-2: manufactured by Imex Corporation) filled with zirconia beads having an average diameter of 0.5 mm, and then benzoisothiazolinone sodium salt 0.2 g and water were added to prepare a reducing agent complex concentration of 22% by mass to obtain a reducing agent complex-1 dispersion. The reducing agent complex particles contained in the thus obtained reducing agent complex dispersion had a median diameter of 0.45 μm and a maximum particle diameter of 1.4 μm or less. The obtained reducing agent complex dispersion was filtered through a polypropylene filter having a pore size of 3.0 μm to remove foreign matters such as dust and stored.
[0287]
<< Preparation of Reducing Agent-2 Dispersion >>
10 mass of reducing agent-2 (6,6′-di-t-butyl-4,4′-dimethyl-2,2′-butylidenediphenol) and modified polyvinyl alcohol (Kuraray Co., Ltd., Poval MP203) 10 kg of water was added to 16 kg of% aqueous solution and mixed well to obtain a slurry. This slurry was fed with a diaphragm pump and dispersed for 3 hours 30 minutes in a horizontal sand mill (UVM-2: manufactured by Imex Co., Ltd.) filled with zirconia beads having an average diameter of 0.5 mm, and then benzoisothiazolinone sodium salt 0.2 g and water were added to prepare a reducing agent concentration of 25% by mass. This dispersion was heat-treated at 60 ° C. for 5 hours to obtain a reducing agent-2 dispersion. The reducing agent particles contained in the reducing agent dispersion thus obtained had a median diameter of 0.40 μm and a maximum particle diameter of 1.5 μm or less. The obtained reducing agent dispersion was filtered through a polypropylene filter having a pore size of 3.0 μm to remove foreign substances such as dust and stored.
[0288]
4) Preparation of hydrogen bonding compound-1 dispersion
Add 10 kg of water to 10 kg of 10% aqueous solution of hydrogen bonding compound-1 (tri (4-t-butylphenyl) phosphine oxide) and modified polyvinyl alcohol (Kuraray Co., Ltd., Poval MP203). Mix to make a slurry. This slurry was fed with a diaphragm pump, dispersed in a horizontal sand mill (UVM-2: manufactured by Imex Co., Ltd.) filled with zirconia beads having an average diameter of 0.5 mm for 3 hours 30 minutes, and then benzoisothiazolinone sodium salt 0.2 g and water were added to prepare a hydrogen bonding compound concentration of 25% by mass. This dispersion was heated at 80 ° C. for 1 hour to obtain a hydrogen bonding compound-1 dispersion. The hydrogen bonding compound particles contained in the hydrogen bonding compound dispersion thus obtained had a median diameter of 0.35 μm and a maximum particle diameter of 1.5 μm or less. The obtained hydrogen bonding compound dispersion was filtered through a polypropylene filter having a pore size of 3.0 μm to remove foreign substances such as dust and stored.
[0289]
5) Preparation of development accelerator-1 dispersion
10 kg of water is added to 10 kg of a development accelerator-1 (which has a structural formula shown below) and 20 kg of a 10% by weight aqueous solution of modified polyvinyl alcohol (Kuraray Co., Ltd., Poval MP203), and mixed well to obtain a slurry. It was. This slurry was fed with a diaphragm pump and dispersed for 3 hours 30 minutes in a horizontal sand mill (UVM-2: manufactured by Imex Co., Ltd.) filled with zirconia beads having an average diameter of 0.5 mm, and then benzoisothiazolinone sodium salt 0.2 g and water were added to adjust the concentration of the development accelerator to 20% by mass to obtain a development accelerator-1 dispersion. The development accelerator particles contained in the development accelerator dispersion thus obtained had a median diameter of 0.48 μm and a maximum particle diameter of 1.4 μm or less. The obtained development accelerator dispersion was filtered through a polypropylene filter having a pore size of 3.0 μm to remove foreign substances such as dust and stored.
[0290]
6) Adjustment of development accelerator-2 and color tone modifier-1
The solid dispersion of the development accelerator-2 and the color tone adjusting agent-1 (respective general formulas shown below) were also dispersed by the same method as the development accelerator-1 to obtain a 20 mass% dispersion. .
[0291]
7) Preparation of polyhalogen compound
<< Preparation of organic polyhalogen compound-1 dispersion >>
10 kg of organic polyhalogen compound-1 (tribromomethanesulfonylbenzene), 10 kg of a 20% by weight aqueous solution of modified polyvinyl alcohol (Poval MP203 manufactured by Kuraray Co., Ltd.), 0.4 kg of a 20% by weight aqueous solution of sodium triisopropylnaphthalenesulfonate, Then, 14 kg of water was added and mixed well to obtain a slurry. This slurry was fed with a diaphragm pump and dispersed for 5 hours in a horizontal sand mill (UVM-2: manufactured by Imex Co., Ltd.) filled with zirconia beads having an average diameter of 0.5 mm. 2 g and water were added to prepare an organic polyhalogen compound concentration of 26% by mass to obtain an organic polyhalogen compound-1 dispersion. The organic polyhalogen compound particles contained in the polyhalogen compound dispersion thus obtained had a median diameter of 0.41 μm and a maximum particle diameter of 2.0 μm or less. The obtained organic polyhalogen compound dispersion was filtered through a polypropylene filter having a pore size of 10.0 μm to remove foreign substances such as dust and stored.
[0292]
<< Preparation of organic polyhalogen compound-2 dispersion >>
10 kg of an organic polyhalogen compound-2 (N-butyl-3-tribromomethanesulfonylbenzamide), 20 kg of a 10% by weight aqueous solution of modified polyvinyl alcohol (Poval MP203 manufactured by Kuraray Co., Ltd.), and 20 mass of sodium triisopropylnaphthalenesulfonate A 0.4% aqueous solution was added and mixed well to form a slurry. This slurry was fed with a diaphragm pump and dispersed for 5 hours in a horizontal sand mill (UVM-2: manufactured by Imex Co., Ltd.) filled with zirconia beads having an average diameter of 0.5 mm. 2 g and water were added to prepare an organic polyhalogen compound concentration of 30% by mass. This dispersion was heated at 40 ° C. for 5 hours to obtain an organic polyhalogen compound-2 dispersion. The organic polyhalogen compound particles contained in the polyhalogen compound dispersion thus obtained had a median diameter of 0.40 μm and a maximum particle diameter of 1.3 μm or less. The obtained organic polyhalogen compound dispersion was filtered through a polypropylene filter having a pore size of 3.0 μm to remove foreign substances such as dust and stored.
[0293]
8) Preparation of phthalazine compound-1 solution
8 kg of modified polyvinyl alcohol MP203 manufactured by Kuraray Co., Ltd. was dissolved in 174.57 kg of water, and then 3.15 kg of a 20 mass% aqueous solution of sodium triisopropylnaphthalenesulfonate and 70 mass of phthalazine compound-1 (6-isopropylphthalazine). 14.28 kg of a% aqueous solution was added to prepare a 5% by mass solution of phthalazine compound-1.
[0294]
9) Preparation of mercapto compound
<< Preparation of Mercapto Compound-1 Aqueous Solution >>
7 g of mercapto compound-1 (1- (3-sulfophenyl) -5-mercaptotetrazole sodium salt) was dissolved in 993 g of water to obtain a 0.7% by mass aqueous solution.
[0295]
<< Preparation of Mercapto Compound-2 Aqueous Solution >>
20 g of mercapto compound-2 (1- (3-methylureido) -5-mercaptotetrazole sodium salt) was dissolved in 980 g of water to obtain a 2.0 mass% aqueous solution.
[0296]
10) Preparation of pigment-1 dispersion
C. I. Pigment Blue 60 (64 g) and Kao Corp. demole N (6.4 g) were added to 250 g of water and mixed well to obtain a slurry. Prepare 800 g of zirconia beads having an average diameter of 0.5 mm, put them in a vessel together with the slurry, and disperse with a disperser (1/4 G sand grinder mill: manufactured by IMEX Co., Ltd.) for 25 hours. The pigment-1 dispersion was obtained by adjusting the concentration to 5% by mass. The pigment particles contained in the pigment dispersion thus obtained had an average particle size of 0.21 μm.
[0297]
11) Preparation of SBR latex solution
SBR latex was prepared as follows.
In a polymerization kettle of a gas monomer reactor (TAS-2J type manufactured by Pressure Glass Industrial Co., Ltd.), 287 g of distilled water and a surfactant (Pionin A-43-S (manufactured by Takemoto Yushi Co., Ltd.)): solid content 48.5 %) 7.73 g, 1 mol / liter NaOH 14.06 ml, ethylenediaminetetraacetic acid tetrasodium salt 0.15 g, styrene 255 g, acrylic acid 11.25 g, tert-dodecyl mercaptan 3.0 g, the reaction vessel was sealed and the stirring speed was 200 rpm. Stir with. After degassing with a vacuum pump and repeating nitrogen gas replacement several times, 108.75 g of 1,3-butadiene was injected to raise the internal temperature to 60 ° C. A solution obtained by dissolving 1.875 g of ammonium persulfate in 50 ml of water was added thereto, and the mixture was stirred as it was for 5 hours. The mixture was further heated to 90 ° C. and stirred for 3 hours. After the reaction was completed, the internal temperature was lowered to room temperature, and then 1 mol / liter NaOH and NH.4Na with OH+Ion: NH4 +Addition treatment was performed so that the ion was 1: 5.3 (molar ratio), and the pH was adjusted to 8.4. Thereafter, the mixture was filtered with a polypropylene filter having a pore size of 1.0 μm to remove foreign substances such as dust and stored, and 774.7 g of SBR latex was obtained. When the halogen ions were measured by ion chromatography, the chloride ion concentration was 3 ppm. As a result of measuring the concentration of the chelating agent by high performance liquid chromatography, it was 145 ppm.
[0298]
The latex has a number average particle size of 90 nm, Tg = 17 ° C., a solid content concentration of 44% by mass, an equilibrium water content of 0.6% by mass at 25 ° C. and 60% RH, an ionic conductivity of 4.80 mS / cm (of ionic conductivity). The measurement was conducted using a conductivity meter CM-30S manufactured by Toa Denpa Kogyo Co., Ltd., and a latex stock solution (44% by mass) was measured at 25 ° C.) and pH 8.4.
[0299]
3-2. Adjustment of coating solution
1) Image forming layer
<< Preparation of Image Forming Layer Coating Solution-1 >>
1000 g of fatty acid silver dispersion A obtained above, 276 ml of water, 33 g of pigment-1 dispersion, 21 g of organic polyhalogen compound-1 dispersion, 58 g of organic polyhalogen compound-2 dispersion, 173 g of phthalazine compound-1 solution, SBR latex ( (Tg: 17 ° C.) 1082 g of liquid, 299 g of reducing agent complex-1 dispersion, 5.7 g of development accelerator-1 dispersion, 9 ml of mercapto compound-1 aqueous solution, and 27 ml of mercapto compound-2 aqueous solution were sequentially added. The emulsion layer coating solution, to which 117 g of silver halide mixed emulsion A was added and mixed well, was fed to the coating die as it was and coated.
[0300]
The viscosity of the emulsion layer coating solution was 25 [mPa · s] at 40 ° C. (No. 1 rotor, 60 rpm) as measured with a B-type viscometer of Tokyo Keiki.
The viscosity of the coating solution at 25 ° C. using an RFS fluid spectrometer manufactured by Rheometrics Far East Co., Ltd. is 230, 60, 46, respectively at shear rates of 0.1, 1, 10, 100, and 1000 [1 / second]. 24 and 18 [mPa · s].
[0301]
The amount of zirconium in the coating solution was 0.38 mg per 1 g of silver.
[0302]
<< Preparation of Image Forming Layer Coating Solution-2 >>
1000 g of fatty acid silver dispersion B obtained above, 276 ml of water, 35 g of pigment-1 dispersion, 32 g of organic polyhalogen compound-1 dispersion, 46 g of organic polyhalogen compound-2 dispersion, 173 g of phthalazine compound-1 solution, SBR latex ( (Tg: 17 ° C.) Liquid 1082 g, reducing agent-2 dispersion 153 g, hydrogen bonding compound-1 dispersion 55 g, development accelerator-1 dispersion 4.8 g, development accelerator-2 dispersion 5.2 g, color tone adjustment 2.1 g of Agent-1 dispersion and 8 ml of mercapto compound-2 aqueous solution were added in order, and 140 g of silver halide mixed emulsion A was added immediately before coating, and the well mixed emulsion layer coating solution was fed to the coating die as it was and coated. did.
The viscosity of the emulsion layer coating solution was 40 [mPa · s] at 40 ° C. (No. 1 rotor, 60 rpm) as measured with a B-type viscometer of Tokyo Keiki.
The viscosity of the coating solution at 25 ° C. using an RFS fluid spectrometer manufactured by Rheometrics Far East Co., Ltd. is 530, 144, 96 at shear rates of 0.1, 1, 10, 100, and 1000 [1 / second], respectively. 51 and 28 [mPa · s].
[0303]
The amount of zirconium in the coating solution was 0.25 mg per 1 g of silver.
[0304]
2) Preparation of intermediate layer coating solution
Polyvinyl alcohol PVA-205 (manufactured by Kuraray Co., Ltd.) 1000 g, pigment 5 mass% dispersion 272 g, methyl methacrylate / styrene / butyl acrylate / hydroxyethyl methacrylate / acrylic acid copolymer (copolymerization weight ratio 64/9/20 / 5/2) 27% 5% aqueous solution of aerosol OT (manufactured by American Cyanamid Co., Ltd.) in 4200 ml of 19% by weight latex, 135 ml of 20% by weight aqueous solution of diammonium phthalate, total amount 10000g Add water and adjust the pH to 7.5 with NaOH to make the intermediate layer coating solution, 9.1 ml / m2Then, the solution was fed to the coating die.
The viscosity of the coating solution was 58 [mPa · s] at a B-type viscometer of 40 ° C. (No. 1 rotor, 60 rpm).
[0305]
3) Preparation of surface protective layer first layer coating solution
Inert gelatin (64 g) is dissolved in water, and methyl methacrylate / styrene / butyl acrylate / hydroxyethyl methacrylate / acrylic acid copolymer (copolymerization weight ratio 64/9/20/5/2) 19.0% by weight of latex 112 g, 30 ml of 15% by weight methanol solution of phthalic acid, 23 ml of 10% by weight aqueous solution of 4-methylphthalic acid, 28 ml of sulfuric acid having a concentration of 0.5 mol / L, and 5% by weight aqueous solution of Aerosol OT (American Cyanamid Co., Ltd.) Add 5 ml, 0.5 g phenoxyethanol, 0.1 g benzoisothiazolinone, add water to make a total amount of 750 g, and use 26 ml of 4% by weight chromium alum mixed with a static mixer just before coating. 18.6 ml / m2Then, the solution was fed to the coating die.
The viscosity of the coating solution was 20 [mPa · s] at a B-type viscometer of 40 ° C. (No. 1 rotor, 60 rpm).
[0306]
4) Preparation of surface protective layer second layer coating solution
Inert gelatin (80 g) is dissolved in water, and methyl methacrylate / styrene / butyl acrylate / hydroxyethyl methacrylate / acrylic acid copolymer (copolymerization weight ratio 64/9/20/5/2) 27.5% by weight latex (102 g), 5.4 ml of a 1% by mass methanol / water (90:10) solution of 1% by mass of a fluorosurfactant (SF-1; manufactured by Dainippon Ink and Co., Ltd.), a 5% by mass solution of aerosol OT (produced by American Cyanamid) 23 ml, polymethyl methacrylate fine particles (average particle size 0.7 μm) 4 g, polymethyl methacrylate fine particles (average particle size 4.5 μm) 21 g, 4-methylphthalic acid 1.6 g, phthalic acid 4.8 g, 0.5 mol / L Add water to 44 ml of sulfuric acid and 10 mg of benzoisothiazolinone so that the total amount is 650 g. A solution prepared by mixing 445 ml of an aqueous solution containing rom alum and 0.67% by mass of phthalic acid with a static mixer immediately before coating is used as a surface protective layer coating solution, and 8.3 ml / m.2Then, the solution was fed to the coating die.
The viscosity of the coating solution was 19 [mPa · s] at a B-type viscometer of 40 ° C. (No. 1 rotor, 60 rpm).
[0307]
3-3. Preparation of application sample
<< Preparation of photothermographic material-001 >>
A photothermographic material sample was prepared on the surface opposite to the back surface by simultaneous multilayer coating by the slide bead coating method in the order of the emulsion layer, the intermediate layer, the protective layer first layer, and the protective layer second layer from the undercoat surface. . At this time, the emulsion layer and the intermediate layer were adjusted to 31 ° C., the protective layer first layer was adjusted to 36 ° C., and the protective layer first layer was adjusted to 37 ° C.
Coating amount of each compound in the emulsion layer (g / m2) Is as follows.
[0308]
Silver behenate silver 5.58
Pigment (CI Pigment Blue 60) 0.036
Polyhalogen compound-1 0.12
Polyhalogen compound-2 0.37
Phthalazine Compound-1 0.19
SBR Latex 9.98
Reducing agent complex-1 1.41.41
Development Accelerator-1 0.025 0.025
Mercapto compound-1 0.002
Mercapto compound-2 0.012
Silver halide (as Ag) 0.091
[0309]
The coating and drying conditions are as follows.
The coating was performed at a speed of 160 m / min, the gap between the coating die tip and the support was set to 0.10 to 0.30 mm, and the pressure in the decompression chamber was set to be 196 to 882 Pa lower than the atmospheric pressure. The support was neutralized with an ion wind before coating.
In the subsequent chilling zone, after cooling the coating solution with wind at a dry bulb temperature of 10 to 20 ° C., the coating solution is transported in a non-contact manner, and dried at a dry bulb temperature of 23 to 45 ° C. It dried with the dry wind of the wet bulb temperature 15-21 degreeC.
After drying, the humidity was adjusted at 25 ° C. and humidity of 40 to 60% RH, and then the film surface was heated to 70 to 90 ° C. After heating, the film surface was cooled to 25 ° C.
[0310]
The photothermographic material thus prepared had a Beck smoothness of 550 seconds on the photosensitive layer surface side and 130 seconds on the back surface. Further, the pH of the film surface on the photosensitive layer surface side was measured and found to be 6.0.
[0311]
The structural formulas of the compounds used in the above examples are shown below.
[0312]
Embedded image
Figure 2004004322
[0313]
Embedded image
Figure 2004004322
[0314]
Embedded image
Figure 2004004322
[0315]
Embedded image
Figure 2004004322
[0316]
SF-1 C8F17SO3Na
SF-2 C8F17SO2N (C3H7) CH2COOK
SF-3 C8F17SO2NH (CH2)3O (CH2)2N+(CH3)3PTS
[0317]
Example 1
For the photothermographic material-001, the organic silver salt was replaced with the one shown in Table 2,
Photothermographic materials -002 to 020 were prepared in exactly the same manner as photothermographic material -001 except that fluorine compound SF-1 was added in the same weight as that shown in Table 2.
[0318]
[Table 1]
Figure 2004004322
[0319]
[Table 2]
Figure 2004004322
[0320]
(Evaluation of photographic performance)
The obtained sample was cut into half-cut sizes, packaged in the following packaging material in an environment of 25 ° C. and 40%, stored at room temperature for 2 weeks, and then evaluated as follows.
(Packaging material)
PET 10μ / PE 12μ / Aluminum foil 9μ / Ny 15μ / Polyethylene 50% containing 3% carbon
Oxygen permeability: 0.02 ml / atm · m2・ 25 ° C./day, moisture permeability: 0.10 g / atm · m2・ 25 ℃ ・ day
[0321]
The sample was exposed and developed with Fuji Medical Dry Laser Imager FM-DPL (with a 660 nm semiconductor laser with a maximum output of 60 mW (IIIB)) (four panel heaters set at 112 ° C-119 ° C-121 ° C-121 ° C). Samples 001 to 012 were 24 seconds in total, and samples 013 to 020 were 14 seconds in total), and the obtained images were evaluated with a densitometer.
Each sample was uniformly exposed to a density of 1.5, a practical image of the chest was printed, and heat development was performed for a predetermined time.
[0322]
(Measurement method of haze)
Next, haze measurement was performed on an unexposed and undeveloped sample (material sensitive material) and an unexposed sample that had been heat-developed (real).
The haze of the obtained sample was measured using a haze measuring device MODEL1001DP manufactured by NIPPONDENSHOKU Co., Ltd. The haze is an index of transparency, and is related to the size of light scattering due to fine particles in the light-sensitive material and disturbance of the interface. The ratio of scattered light is expressed in%, and the lower the value, the higher the transparency and the better.
[0323]
(Fingerprint test)
A finger print test, which is one measure of image storability, was performed as follows.
Ten people touched the sample with bare hands in a room air-conditioned at room temperature of 25 ° C. and relative humidity of 80%. After that, the sample was irradiated with light on the Schaukasten for 3 hours, and the stains due to fingerprints were evaluated with Schaukasten. The evaluation was shown by the following score.
◎ Dirty is hardly anxious.
○ Traces of fingerprints from one to two people are observed, but to a lesser extent.
Δ: Traces of fingerprints of 3 or more people are observed, and the level is not good.
× Traces of fingerprints of 5 or more people are observed, and the level is extremely bad.
Table 2 shows the results of the haze and finger print tests measured as described above.
Here, the biosensitive material means an unexposed and undeveloped sample, and the actual part means an unexposed and thermally developed sample.
[0324]
From Table 2, it can be seen that by using the fluorine compound of the present invention, the haze is improved in both the raw material and the actual part, and the result of the finger print test is also good. In particular, when the fluorine compound of the present invention is used in a photothermographic material in which the silver behenate in the organic silver salt is in the range of 80 to 99 mol%, the haze is improved and the image storability shown in the finger print test is improved. Was unexpectedly improved and very good image stability was obtained. In addition, when the fluorine compound of the present invention is used in a heat developing material containing 55 to 85 mol% of silver behenate in an organic silver salt, the haze is improved without impairing the heat developing activity and rapidity, and the finger test The results were also good.
[0325]
Example 2
For the photothermographic material-001, the yellow dye compound 15 was removed from the antihalation layer, the organic silver salt was replaced with the one shown in Table 3, and the fluorine compound was changed to the one shown in Table 3 with the same weight. Photothermographic materials-101 to 112 were prepared in exactly the same manner as photothermographic material-001 except for the addition.
The coating amount of each compound in the emulsion layer (g / m2) Is as follows.
[0326]
Silver behenate 5.27 5.27
Pigment (CI Pigment Blue 60) 0.036
Polyhalogen compound-1 0.17
Polyhalogen compound-2 0.28
Phthalazine Compound-1 0.18
SBR Latex 9.43
Reducing agent-2: 0.77 0.77
Hydrogen bonding compound-1 0.28
Development Accelerator-1: 0.019
Development accelerator-2 0.020
Color Toner-1-0.008
Mercapto compound-2 0.003
Silver halide (as Ag) 0.091
[0327]
The development time is 14 seconds in total for samples 101 to 112.
[0328]
[Table 3]
Figure 2004004322
[0329]
These photosensitive materials were also evaluated in the same manner as in Example 1.
Also in this case, the haze was improved by using the fluorine compound of the present invention, and the result of the finger print test was also good.
[0330]
Example 3
For the photothermographic material-101, reducing agent-2 was changed to reducing agent I-5, and the fluorine compound added to both the emulsion protective layer-2 and the back surface protective layer was changed to SF-3. Otherwise, the photothermographic material 201 was prepared in the same manner as the photothermographic material-101. With respect to the photothermographic material 201, the reducing agent and the antifoggant were changed as shown in Table 4 to prepare photothermographic materials -202 to 220. Further, the photothermographic material-201 to 208 contains 2 mg / m of anionic surfactant A-3.2Photothermographic material-209-220 contains 5 mg / m of nonionic surfactant N-1.2Added.
However, the reducing agent coating amounts of the photothermographic materials using I-1 and I-2 were 1.35 times and 1.25 times in terms of mole relative to the photothermographic material-101, respectively.
The development time is 24 seconds in total for samples 201 to 204, and 14 seconds in total for samples 205 to 220.
[0331]
[Table 4]
Figure 2004004322
[0332]
These photosensitive materials were also evaluated in the same manner as in Example 2.
[0333]
Also in this case, by using the fluorine compound of the present invention, even if the reducing agent and the antifoggant were replaced, the haze was improved and the result of the finger print test was also good. In particular, when a bisphenol-based reducing agent and an antifoggant which is a polyhalogen compound represented by the general formula (B) are used, the image quality is improved, the haze is improved, and the result of the finger print test is also good. there were.
[0334]
【The invention's effect】
According to the present invention, it is possible to provide a photothermographic material in which the haze can be improved by improving the coating property, and the stain generated when touched with a hand dampened with sweat or oil is reduced.

Claims (1)

感光性ハロゲン化銀と、非感光性有機銀塩と、熱現像のための還元剤及びバインダーとを含有する熱現像感光材料であって、炭素原子数が2以上でフッ素原子数が12以下のフッ化アルキル基を有しかつカチオン性の親水性基を有するフッ素化合物を含有することを特徴とする熱現像感光材料。A photothermographic material comprising a photosensitive silver halide, a non-photosensitive organic silver salt, a reducing agent for heat development and a binder, wherein the number of carbon atoms is 2 or more and the number of fluorine atoms is 12 or less. A photothermographic material comprising a fluorine compound having a fluorinated alkyl group and a cationic hydrophilic group.
JP2002160017A 2002-05-31 2002-05-31 Heat-developable photosensitive material Pending JP2004004322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002160017A JP2004004322A (en) 2002-05-31 2002-05-31 Heat-developable photosensitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002160017A JP2004004322A (en) 2002-05-31 2002-05-31 Heat-developable photosensitive material

Publications (1)

Publication Number Publication Date
JP2004004322A true JP2004004322A (en) 2004-01-08

Family

ID=30429568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002160017A Pending JP2004004322A (en) 2002-05-31 2002-05-31 Heat-developable photosensitive material

Country Status (1)

Country Link
JP (1) JP2004004322A (en)

Similar Documents

Publication Publication Date Title
JP4359581B2 (en) Black and white photothermographic material
JP4076795B2 (en) Photothermographic material
JP4064728B2 (en) Silver halide photographic emulsion and photothermographic material
JP2004020644A5 (en)
JP2004012587A (en) Heat developable photosensitive material and its processing method
JP4015448B2 (en) Photothermographic material
JP2003057780A (en) Thermally developable photosensitive material
JP4076790B2 (en) Photothermographic material
JP4082934B2 (en) Photothermographic material
JP3934977B2 (en) Photothermographic material
JP3977120B2 (en) Silver halide photographic emulsion and photothermographic material using the same.
JP4113416B2 (en) Photothermographic material
JP4391482B2 (en) Photothermographic material
JP4437942B2 (en) Photothermographic material
JP2004004322A (en) Heat-developable photosensitive material
JP4079650B2 (en) Photothermographic material
JP2006343597A (en) Heat developable photosensitive material and image forming method
JP2006154714A (en) Heat developable photosensitive material and image forming method
JP2007163705A (en) Heat developable photosensitive material
JP2005165173A (en) Image forming method with heat developable photosensitive material
JP2007163688A (en) Heat developable photosensitive material
JP2005091602A (en) Heat developable photosensitive material
JP2004004499A (en) Heat-developable photosensitive material
JP2004086141A (en) Heat developable photosensitive material
JP2004212941A (en) Heat developable photosensitive material