JP2004003767A - Combustion apparatus - Google Patents

Combustion apparatus Download PDF

Info

Publication number
JP2004003767A
JP2004003767A JP2002161191A JP2002161191A JP2004003767A JP 2004003767 A JP2004003767 A JP 2004003767A JP 2002161191 A JP2002161191 A JP 2002161191A JP 2002161191 A JP2002161191 A JP 2002161191A JP 2004003767 A JP2004003767 A JP 2004003767A
Authority
JP
Japan
Prior art keywords
flame
lean
rich
port
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002161191A
Other languages
Japanese (ja)
Inventor
Nobuhiko Fujiwara
藤原 宣彦
Fumitaka Kikutani
菊谷 文孝
Yoichi Kimura
木村 洋一
Hiroto Fukui
福井 浩人
Tomeo Higuchi
樋口 留夫
Yasuhiro Kondo
近藤 保広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002161191A priority Critical patent/JP2004003767A/en
Publication of JP2004003767A publication Critical patent/JP2004003767A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize low NOx, a wide input variable range, reduction of noise, and restraint of unburned components, for a low-NOx burner. <P>SOLUTION: Burner port divided plates 21a, 21b include wavy portions 22 whose cross section in the longitudinal direction is of wavy type respectively, and are formed with lean burner ports 25 which are sub-devided such that the vicinities of tops 23 of the wave portions 22 are made substantially circular arc-shaped, and the tops 22 are arranged so as to be in close contact with each other. The respective burner port divided plates 21a, 21b are prevented from being deformed, thus preventing generation of back fire at the time of small inputs and increasing the input variable range. A burner port area is maximized, while the lean burner ports 25 partitioned by the minimum number of burner port divided plates are being formed, therefore lean mixture jets at a low velocity, so that a short lean flame with a stable flame length is formed, thus achieving reduction of noise and restraint of the unburned components. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主として家庭用又は業務用の燃焼装置において特に低NOx化と同時に入力可変範囲の拡大化、低騒音化、未燃成分の抑制を図った燃焼装置に関するものである。
【0002】
【従来の技術】
従来のこの種の低NOx燃焼装置は特許2690447号公報に記載されている図14のようなものが一般的であった。この低NOx燃焼装置は希薄混合気が噴出する希薄炎口1と、希薄炎口1の両側に配置され濃混合気が噴出する濃炎口2を備えたバーナユニットを複数配置して構成されている。希薄炎口1は4枚の金属波板3と3枚の金属平板4を交互に重ねて、断面が台形状の小炎口としている。
【0003】
そして上記希薄炎口1から供給された希薄混合気は、燃焼室内で火炎温度が低く従って低NOxではあるが自身は不安定な希薄火炎を形成する。一方濃炎口2から供給された濃混合気は燃焼室内で火炎温度が高く従ってNOx濃度は高いが自身は安定な濃火炎を形成し、近接した希薄火炎に熱エネルギ−を供給して燃焼反応を促進させることにより全体として安定ないわゆる濃淡燃焼を実現する。そして淡バ−ナ2の燃料供給割合を濃バ−ナ4より大きく設定し、全体として低NOx化を図っていた。また希薄炎口を小さく分割された小炎口とすることにより希薄混合気を整流して燃焼騒音の抑制を図っていた。
【0004】
【発明が解決しようとする課題】
しかしながら上記従来の低NOx燃焼装置では、金属平板4の強度が不足しているため、小入力時おいて希薄火炎が希薄炎口1に接近して希薄炎口1の温度が上昇すると、金属平板4が変形して開口が大きくなる希薄炎口1が発生し、その結果希薄炎口1が赤熱して逆火を招く課題があった。また金属波板3と金属平板4を交互に重ねて希薄炎口1を形成しているため、重量が重くなる課題があった。また金属平板4があるため希薄炎口1の炎口面積を大きく設定できず、希薄混合気の流速が速くなるため、燃焼騒音の抑制が十分ではなく、また希薄火炎長が長くなることによりHC(炭化水素)、CO等の発生が多い課題があった。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するため、炎口分割板は長手方向の断面が波型である波型部を有し、前記波型部の頂部近傍を略円弧形状として前記頂部が互いに密着するように配置して小分割された希薄炎口を形成したものである。
【0006】
そして炎口分割板の変形を未然に防止して小入力時の逆火を防止でき、入力可変範囲を拡大できる。また最小限の枚数の炎口分割板で小分割された希薄炎口を形成しつつ炎口面積を最大限大きくできるため、乱れの抑制された低流速の希薄混合気が噴出して安定した火炎長の短い希薄火炎が形成され、低騒音化、未燃成分の抑制を実現できる。
【0007】
【発明の実施の形態】
請求項1に記載の発明は、複数枚の炎口分割板を内包し希薄炎口を形成する希薄バーナ形成板と、前記希薄炎口に近接配置された濃炎口とを備え、前記炎口分割板は長手方向の断面が波型である波型部を有するとともに前記波型部の頂部近傍を略円弧形状とし、複数の前記炎口分割板の前記頂部が互いに密着するように配置して小分割された希薄炎口を形成している。
【0008】
そして、全ての炎口分割板が波型断面を有しているため、機械的強度を大きくでき、小入力時における炎口分割板の変形を防止して逆火の発生を防止でき、入力可変範囲を拡大できる。また最小限の枚数の炎口分割板で小分割された炎口を形成できることにより、燃焼装置を軽量かつ安価に提供できる。さらに波型部の頂部が互いに密着するように配置していることにより板の重なり部を極小にしていることに加え、最小限の枚数の炎口分割板で小分割された炎口を形成していることにより、炎口面積を大きくすなわち希薄混合気の流速を小さく設定でき、その結果燃焼騒音を抑制できるとともに、希薄火炎長を短くできHC、CO等の未燃成分の発生を抑制できる。また希薄混合気の通路となる希薄炎口が、希薄混合気の乱れ成分の多い長手方向に小分割されているため、希薄混合気の長手方向の流速ベクトル成分が減衰して乱れが抑制されて安定な希薄火炎が形成され、燃焼騒音を抑制できるとともにいわゆる振動燃焼を抑制できる。
【0009】
請求項2に記載の発明は、希薄バーナ形成体の外側に接合して濃炎口を形成する濃バーナ形成板を備え、前記希薄バーナ形成板と前記濃バーナ形成板の下流近傍は長手方向の断面が波型である波型部を有し、前記波型部の頂部近傍を略円弧形状として前記希薄バーナ形成体および前記濃バーナ形成体の前記頂部が互いに密着するように配置して小分割された濃炎口を形成している。
【0010】
そして、希薄バーナ形成板、濃バーナ形成板が波型断面を有しているため、機械的強度を大きくでき、小入力時における両バーナ形成板の変形を防止し、逆火の発生を防止できる。また濃混合気の通路が長手方向に小分割されているため、整流された濃混合気が濃炎口から噴出して安定な濃火炎を形成して燃焼騒音をさらに抑制できる。
【0011】
請求項3に記載の発明は、複数枚の炎口分割板を内包し希薄炎口を形成する希薄バーナ形成板と、前記希薄炎口に近接配置された第一濃炎口と、前記第一濃炎口に近接配置された第二濃炎口とを備え、前記炎口分割板は長手方向の断面が波型である波型部を有するとともに前記波型部の頂部近傍を略円弧形状とし、複数の前記炎口分割板の前記頂部が互いに密着するように配置して小分割された希薄炎口を形成し、前記第一濃炎口より噴出する混合気濃度は前記第二濃炎口より噴出する混合気濃度よりも濃く設定している。
【0012】
そして、第二濃炎口から供給される第一濃炎口よりも薄い濃混合気により自身が安定な火炎を形成し、第一濃炎口から噴出される濃混合気の熱分解反応を促進する。そして第一濃炎口から供給される濃混合気はこの熱分解により化学的に活性な中間生成物を多量に発生し、この中間生成物が希薄炎口上に形成される希薄火炎の基部に拡散供給されて基部の微小空間に燃焼反応が活発に行われる「高温・高反応域」が形成され、希薄火炎自身が安定化される。従って希薄炎口への燃料入力比率と希薄混合気の濃度を小さくすることができるので、さらなる低NOx化と低騒音化を実現できるとともに、燃焼量可変幅の拡大や、空気の高速変動にも追従して安定燃焼を実現できる。
【0013】
請求項4記載の発明は、炎口分割板の混合気通流方向の長さを10mm以上40mm以下としている。
【0014】
そして、圧損が過大になることなく希薄混合気の乱れが十分抑制されるため、燃焼空気を供給するファンの動作回転数が低く抑えられると共に安定した希薄火炎が形成され、燃焼装置全体の騒音をさらに抑制できる。
【0015】
請求項5記載の発明は、炎口分割板の波周期を1mm以上4mm以下としている。
【0016】
そして、波型部の周期を過度に密にせず、埃等による炎口の閉塞やプレス加工時の材料切れを防止しつつ、希薄混合気の乱れを十分抑制して、燃焼騒音をさらに抑制できる。
【0017】
請求項6記載の発明は、炎口分割板は、混合気通流方向の上流部に長手方向の断面が直線である直線部を有し、前記炎口分割板を複数枚配置して波型部で小分割された小分割通路の上流に扁平通路を構成している。
【0018】
そして、希薄混合気が扁平通路を通流した後、小分割された通路に流入するので、希薄混合気の圧力低下が滑らかになって希薄混合気の乱れが十分抑制され、燃焼騒音をさらに抑制できる。
【0019】
請求項7記載の発明は、炎口分割板は、直線部と波型部の間に切り欠き部を有し、前記炎口分割板を複数枚配置して、扁平通路と小分割通路の間に空間部を構成している。
【0020】
そして、炎口分割板の圧損を大きくすることなく、炎口分割板の上流側先端が乱れの発生しやすい上流部まで届くため、希薄混合気の乱れが発生する前に希薄混合気が扁平通路に流入して乱れが十分抑制され、燃焼騒音をさらに抑制できる。
【0021】
請求項8記載の発明は、希薄炎口、第一濃炎口、第二濃炎口はそれぞれに混合気室を有すると共に、第二濃炎口の第二濃混合気室は連通手段を介して希薄炎口の希薄混合気室と連通させて希薄混合気と第一濃混合気の間の濃度の混合気を生成させる構成としている。
【0022】
そして、個別に燃料供給系を設ける場合よりも燃焼装置全体を小型で安価に製作することができる。
【0023】
請求項9記載の発明は、上流に希薄混合気室を有する希薄炎口と、前記希薄炎口に隣接し上流に第一濃混合気室を有する第一濃炎口と、前記第一濃炎口と隣接し上流に第二濃混合気室を有する第二濃炎口とを備え、前記第二濃混合気室は連通手段を介して希薄混合気室と連通させて希薄混合気と第一濃混合気の間の濃度の第二濃混合気を生成させるとともに、前記希薄混合気室の上流には希薄燃料・空気導入口を設け、かつ第一、第二濃混合気室の上流には当該第一、第二濃混合気室の両方に連通する一つの共通燃料・空気導入口を設けている。
【0024】
そして、希薄燃料・空気導入口と共通燃料・空気導入口へそれぞれ燃料を独立して供給する構成としているため、希薄混合気と濃混合気への燃料供給割合を調節して安定燃焼範囲を調節したり、供給する燃料の種類が異なった場合にはその燃料に最適の燃料分配比および各混合気の濃度を容易に再設定することができる。従って同一燃焼装置で各種の燃料を使用できる。
【0025】
請求項10記載の発明は、上部の希薄炎口と下部の希薄燃料・空気導入口を形成する希薄バーナ形成板と、前記希薄バーナ形成板に接合して第一濃炎口を形成する第一濃バーナ形成板と、前記第一濃バーナ形成板に接合して第二濃炎口を形成するとともに前記第一濃炎口と前記第二濃炎口に連通する共通燃料・空気導入口を形成する第二濃バーナ形成板を設けている。
【0026】
そして、希薄バーナ形成板は希薄炎口と第一濃炎口の形成を兼ね、一方第一濃バーナ形成板は第一濃炎口と第二濃炎口の形成を兼ねているため、バーナユニットを構成する板金等の材料を最小限にすることができ、燃焼装置全体を軽量で安価に製作できる。
【0027】
請求項11記載の発明は、第一濃バーナ形成板に内側への段押し部を設けて希薄バーナ形成板と密着させ、第二濃バーナ形成板に内側への段押し部を設けて前記第一濃バーナ形成板に密着させている。
【0028】
そして、組立時における溶接を最小限にしながらも各バーナ形成板の内側への湾曲を防ぎ、所望の炎口寸法を長期にわたり維持して初期の燃焼性能を維持できる。
【0029】
請求項12記載の発明は、請求項3、8〜11のいずれか1項記載の燃焼装置をバーナユニットとして構成し、前記バーナユニットの外側に突起を設けて前記バーナユニットを複数隣接配置し、前記突起を隣に配置されるバーナユニットと密着させている。
【0030】
そして、組立時における溶接を最小限にしながらもバーナユニットを形成する板の外側への湾曲を防ぎ、所望の炎口寸法を長期にわたり維持して初期の燃焼性能を維持できる。また単一のバーナユニットにて燃焼を完結でき、バーナユニット本数、配置間隔等を自由に選択でき、設計の自由度を高めることができる
請求項13記載の発明は、第一濃炎口から噴出する第一濃混合気は可燃限界外の過濃混合気としている。
【0031】
そして、希薄混合気と第一濃混合気の濃度勾配を大きくして、希薄火炎の基部への第一濃混合気の流入を促進させて「高温・高反応域」の形成を促進でき、希薄火炎を強固に安定化できる。
【0032】
請求項14記載の発明は、希薄炎口への燃料供給量を第一、第二濃炎口への燃料供給量より多く設定している。
【0033】
そして、NOxの少ない希薄火炎の割合を増し、超低NOxを実現できる。
【0034】
請求項15記載の発明は、希薄炎口からの混合気の噴出速度を第一、第二濃炎口からの混合気の噴出速度より速く設定している。
【0035】
そして、高速噴流に伴う巻き込み効果により第一濃混合気が希薄混合気に巻き込まれ、「高温・高反応域」の形成を促進できる。また希薄混合気の流速を速く設定しても希薄火炎が安定化されるため希薄炎口の面積を小さくすることができ、燃焼装置全体を小型で安価に製作することができる。
【0036】
請求項16記載の発明は、希薄炎口の炎口面積を第一、第二濃炎口の炎口面積より大きく設定している。
【0037】
そして、希薄混合気の噴出速度が極度に速くならず、安定した希薄火炎が形成されるとともに、燃焼用空気を供給するファンの負荷が低減され、燃焼装置全体の騒音を抑制することができる。
【0038】
請求項17記載の発明は、各炎口の燃料・空気導入口から各炎口までの通路長の内、希薄炎口の燃料・空気導入口から希薄炎口までの通路長を最も長く設定している。
【0039】
そして、希薄燃料・空気導入口から供給された多量の空気と大部分の燃料は長い通路を通過する間に十分混合され、また整流されて乱れが減衰して希薄炎口へ供給されるため、超NOx燃焼と燃焼騒音の低減を実現することができる。
【0040】
請求項18記載の発明は、希薄炎口の燃料・空気導入口の開口面積を第一、第二炎口の燃料・空気導入口より大きく設定している。
【0041】
そして、燃焼用空気は大きな圧損を受けることなく希薄炎口に多量に供給され、多量の希薄混合気を生成して超低NOxの希薄火炎を形成することができる。また燃焼用空気を供給するファンの負荷が低減され、燃焼装置全体の騒音を抑制することができる。
【0042】
請求項19記載の発明は、希薄炎口の燃料・空気導入口を第一、第二炎口の燃料・空気導入口より下部に位置させている。
【0043】
そして、ファンが供給する燃焼用空気は大きな圧損を受けることなく上流側に位置する希薄燃料・空気導入口から希薄炎口に導かれるため、ファンの負荷が低減され、燃焼装置全体の騒音を抑制することができる。
【0044】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0045】
(実施例1)
図1(a)および(b)は本発明の実施例1の燃焼装置を示す平面図および正面図、図2(a1)および(b1)は同燃焼装置の炎口分割板を示す平面図および正面図、図2(a2)および(b2)は同燃焼装置の炎口分割板を示す平面図および正面図、図3は同燃焼装置の炎口分割板の長さの影響を示す図、図4は同燃焼装置の炎口分割板の波周期の影響を示す図である。
【0046】
図1〜図2において、21a、bは炎口分割板であり、長手方向の断面が波型である波型部22を有し、波型部22の頂部23の近傍を略円弧形状としている。本実施例では4枚の炎口分割板を使用している。希薄バーナ形成板24が炎口分割板21a、bを内包し、頂部23が互いに密着するように炎口分割板21a、bを配置して小分割された希薄炎口25を形成するとともに小分割通路25aを形成している。また希薄バーナ形成体24は希薄燃料・空気導入口26、希薄混合管27、希薄抵抗部28を形成している。
【0047】
希薄バーナ形成板24の両側に濃バーナ形成板29を接合し、濃炎口30、濃燃料・空気導入口30、濃混合管32、濃抵抗部33を形成している。
【0048】
次に動作、作用について説明すると、希薄燃料・空気導入口26より多量の燃料と空気が流入し、希薄混合管27で混合し希薄混合気が形成される。均一な希薄混合気が希薄炎口25に供給されるよう希薄抵抗部28の通路厚みが調整されている。また濃燃料・空気導入口31より少量の燃料と空気が流入し、濃混合管32で混合し、濃混合気が形成される。均一な濃混合気が濃炎口30に供給されるよう濃抵抗部33の通路厚みが調整されている。
【0049】
濃炎口30から濃混合気が噴出し、濃火炎(図示せず)が形成される。希薄炎口25から希薄混合気が噴出し、希薄火炎(図示せず)が形成される。希薄火炎は濃火炎の熱的影響を受け、安定化される。火炎温度が低く、NOx発生の少ない希薄火炎への入力割合を多くして、全体として低NOx化を図っている。
【0050】
ここで炎口分割板21a、bが波型断面を有しているため、機械的強度を大きくでき、小入力時における炎口分割板の変形を防止し、逆火の発生を防止できる。また最小限の枚数の炎口分割板で小分割された希薄炎口25を形成できることにより、燃焼装置を軽量かつ安価に提供できる。さらに波型部22の頂部23が互いに密着するように配置していることにより板の重なり部を極小にしていることに加え、最小限の枚数の炎口分割板で小分割された希薄炎口25を形成していることにより、炎口面積を大きくすなわち希薄混合気の流速を小さく設定でき、その結果燃焼騒音を抑制できるとともに、希薄火炎長を短くできHC、CO等の未燃成分の発生を抑制できる。また小分割通路25aは希薄混合気の乱れ成分の多い長手方向に小分割されているため、希薄混合気の長手方向の流速成分が減衰して乱れが抑制されて安定な希薄火炎が形成され、燃焼騒音を抑制できるとともにいわゆる振動燃焼を抑制できる。
【0051】
図3において、炎口分割板21a、bの長さLが大きくなるほど、小分割通路25aの通路が長くなり、希薄混合気の乱れが小さくなる。Lが10mmより小さいと乱れが非常に大きくなり、燃焼騒音が非常に大きくなる。一方、Lが長くなるほど圧損が単調に増加し、燃焼空気を供給するファン(図示せず)の負荷が増し、ファン回転数を高く設定する必要がある。Lが40mmより大きいと希薄混合気の乱れ低下度合いは飽和するため、ファン回転数が大きくなることの影響を受け、燃焼装置の騒音は高くなる。よってLを10mm以上40mm以下とすることにより圧損が過大になることなく希薄混合気の乱れが十分抑制されるため、燃焼空気を供給するファンの動作回転数が低く抑えられると共に安定した希薄火炎が形成され、燃焼装置全体の騒音をさらに抑制できる。
【0052】
図4において、炎口分割板の波周期Pが長くなるほど、希薄炎口25が長手方向に大きくなり、希薄混合気の長手方向の流速成分が十分に減衰せず、乱れが大きくなる。Pが4mm以上では乱れが急激に大きくなり、燃焼騒音も急激に大きくなる。一方Pが小さくなりすぎると、開口が小さくなり埃等による炎口の閉塞の恐れがある。またプレス加工時に炎口分割板の材料が過度に伸びて板厚が薄くなり、材料切れが発生する。例えば炎口分割板の板厚が0.35mm、波型部22の振幅(頂部から頂部まで)が1mmの時、Pが1mmより小さいとプレス加工時に切れが発生した。よってPを1mm以上4mm以下とすることにより、埃等による希薄炎口25の閉塞やプレス加工時の材料切れを防止しつつ、希薄混合気の乱れを十分抑制して、燃焼騒音をさらに抑制できる。
【0053】
(実施例2)
図5(a)および(b)は本発明の実施例2の燃焼装置を示す平面図および正面図である。
【0054】
本実施例が実施例1と異なる点は、希薄バーナ形成板241と濃バーナ形成板291の下流近傍は長手方向の断面が波型である波型部221を有し、波型部221の頂部231近傍を略円弧形状として希薄バーナ形成体241および濃バーナ形成体291の頂部231が互いに密着するように配置し、小分割された濃炎口301を形成している点である。なお実施例1と同一符号のものは同じ構成を有し、説明を省略する。
【0055】
次に動作、作用について説明すると、希薄バーナ形成板241、濃バーナ形成板291が波型断面を有しているため、機械的強度を大きくでき、小入力時における両バーナ形成板の変形を防止し、逆火の発生を防止できる。また濃混合気の通路が長手方向に小分割されているため、整流された濃混合気が濃炎口301から噴出して安定な濃火炎を形成して燃焼騒音をさらに抑制できる。
【0056】
(実施例3)
図6(a)、(b)および(c)は本発明の実施例3の燃焼装置における炎口分割板を示す平面図、正面図および下面図である。
【0057】
本実施例が実施例1と異なる点は、炎口分割板211a、bの混合気通流方向の上流部に、長手方向の断面が直線である直線部34を有し、炎口分割板211a、bを複数枚配置して扁平通路35を構成している点である。36は直線部34において内向きに突出させた突起である。なお実施例1と同一符号のものは同じ構成を有し、説明を省略する。
【0058】
次に動作、作用について説明する。実施例1の構成では、小分割通路25aへの流入前後で希薄混合気の通路断面積が大きく変化する。ところが本実施例の扁平通路35の通路断面積は小分割通路25aの断面積よりも大きい。よって希薄混合気の通路断面積の縮小度合いが滑らかになり、希薄混合気の圧力低下が滑らかになって希薄混合気の乱れが十分抑制され、燃焼騒音をさらに抑制できる。また突起36により扁平通路35が精度よく構成される。
【0059】
(実施例4)
図7(a)、(b)、(c)および(d)は本発明の実施例4の燃焼装置における炎口分割板を示す平面図、正面図、下面図および図7(b)のX−X線断面図である。
【0060】
本実施例が実施例3と異なる点は、炎口分割板212a、bにおいて直線部34と波型部22の間に切り欠き部37を有し、炎口分割板212a、bを複数枚配置して、扁平通路35と小分割通路25aの間に空間部38を構成した点である。なお実施例1と同一符号のものは同じ構成を有し、説明を省略する。
【0061】
次に動作、作用について説明する。希薄混合気の乱れは図1に示した希薄抵抗部28の後流で大きく発生する。ところで炎口分割板212a、bの長さを長くすると圧損が単調に大きくなる。圧損の殆ど無い空間部38を設けて炎口分割板212a、bの長さを長くすることにより圧損を大きくすることなく、炎口分割板の上流側先端が乱れの発生しやすい希薄抵抗部28の後流に届くため、希薄混合気の乱れが発生する前に希薄混合気が扁平通路35に流入して乱れが十分抑制され、燃焼騒音をさらに抑制できる。
【0062】
なお、実施例1で示した直線部の無い波型部のみの炎口分割板21a、bに切り欠き部を設けて空間部を形成しても同様の効果を得ることができる。また従来一般的に用いられる直線部のみの炎口分割板に切り欠き部を設けて空間部を形成しても同様の効果を得ることができる。
【0063】
(実施例5)
図8(a)および(b)は本発明の実施例5の燃焼装置を示す平面図および正面図、図9(a)および(b)は同燃焼装置の希薄バーナ形成板を示す平面図および正面図、図10(a)および(b)は同燃焼装置の第一濃バーナ形成板を示す平面図および正面図、図11(a)および(b)は同燃焼装置の第二濃バーナ形成板を示す平面図および正面図、図12は図8(a)のY−Y線断面図、図13(a)および(b)は同燃焼装置の火炎の模式図および従来の燃焼装置の火炎の模式図である。
【0064】
本実施例が実施例1と異なる点は、希薄炎口25に近接配置された第一濃炎口43と、第一濃炎口43に近接配置された第二濃炎口46とを備えた点である。以下詳細を説明する。
【0065】
図8〜図13において、希薄バーナ形成板241が上部に希薄炎口25、下部に希薄燃料・空気導入口26、希薄混合管27、希薄混合気室41を形成している。希薄バーナ形成板241の両側に第一濃バーナ形成板42を接合し、第一濃炎口43とその上流の第一濃混合気室44を形成している。第一濃バーナ形成板42の外側には第二濃バーナ形成板45を接合し、第二濃炎口46とその上流の第二濃混合気室47を形成している。さらに第二濃バーナ形成板45は希薄バーナ形成板241とも接合することによって、第一濃混合気室44と第二濃混合気室47に連通する連通室48と希薄燃料・空気導入口26の上部に位置する共通燃料・空気導入口49を形成している。希薄バーナ形成板241には希薄混合気室41と第二濃混合気室47を連通させる連通手段50が設けられている。これら希薄バーナ形成板241とその両側の第一濃バーナ形成板42とその両側に設けられた第二濃バーナ形成板45とが一体化されてバーナユニット51が構成される。バーナケース52内にはこのバーナユニット51が複数個収納される。53はバーナユニット51の外側となる第二濃バーナ形成板45に設けた突起である。
【0066】
54a、54bはそれぞれ第一濃バーナ形成板42、第二濃バーナ形成板45において内側に突出させた段押し部である。なお実施例1と同一符号のものは同じ構成を有し、説明を省略する。
【0067】
次に動作、作用について説明すると、希薄燃料・空気導入口26より多量の燃料と空気が流入し、希薄混合気が希薄混合気室41に供給される。希薄混合気の大部分は希薄炎口25より噴出し、残りは連通手段50を通じて第二濃混合気室47に流入する。一方共通燃料・空気導入口49より少量の燃料と空気が流入し、可燃限界外の過濃混合気が連通室48に供給され、第一濃混合気室44と第二濃混合気室47に分岐される。第一濃混合気室44に供給された過濃混合気はそのままの濃度で第一濃炎口43より噴出する。また第二濃混合気室47に供給された過濃混合気は連通手段50から流入した少量の希薄混合気で希釈されて理論混合比に近い濃度の濃混合気となり、第二濃炎口46より噴出する。
【0068】
図13(a)に示すように、第二濃炎口46より噴出する理論混合比に近い濃混合気は火炎温度が高く自身が非常に安定な安定火炎Aを形成する。また希薄炎口25より噴出する希薄混合気は火炎温度が低くNOx濃度が低い希薄火炎Bを形成する。さらに第一濃炎口43より噴出する過濃混合気は高温の安定火炎Aの影響を受け熱分解して中間生成物を多量に発生しつつ濃火炎Cを形成する。そして前述中間生成物が希薄炎口25上に形成される希薄火炎Bの基部に拡散供給されて希薄火炎Bの基部に反応化学種が豊富で燃焼反応が極めて活発な「高温・高反応域」αが形成される。安定火炎A、濃火炎Cおよび希薄火炎Bはつながった一体的な火炎となる。
【0069】
このように、これら三種類の混合気濃度を有する本発明の燃焼は図13(b)に示す従来の濃淡燃焼で濃火炎Hの熱的な影響を受け希薄火炎Iが安定化された場合に比べ大幅に希薄火炎の安定化が図れるものである。従って火炎温度が低くNOx発生の少ない希薄火炎Bへの燃料入力比率を増すことができ、低燃焼騒音を維持しながら超低NOx化を実現できる。
【0070】
また共通燃料・空気導入口49は第一濃混合気室44と第二濃混合気室47に連通した構成となっているため、第一濃炎口43と第二濃炎口46にそれぞれ燃料、空気を個別に供給する必要がなく、バ−ナ構成の簡潔化と小型化を実現できる。
【0071】
また希薄燃料・空気導入口26と共通燃料・空気導入口49へそれぞれ燃料を独立して供給している。これにより希薄混合気と濃混合気への燃料供給割合を調節して安定燃焼範囲を調節したり、供給する燃料の種類が異なった場合にはその燃料に最適の燃料分配比および各混合気の濃度を容易に再設定することができる。従って同一燃焼装置で各種の燃料を使用できる。
【0072】
また希薄バーナ形成板241、第一濃バーナ形成板42、第二濃バーナ形成板45を接合してバーナユニット51を構成している。すなわち希薄バーナ形成板241は希薄炎口25と第一濃炎口43の形成を兼ね、一方第一濃バーナ形成板42は第一濃炎口43と第二濃炎口46の形成を兼ねている。これによりバーナユニット51を構成する板金等の材料を最小限にすることができ、燃焼装置全体を軽量で安価に製作できる。
【0073】
また第一濃バーナ形成板42に内側への段押し部54aを設けて希薄バーナ形成板241と密着させ、第二濃バーナ形成板45に内側への段押し部54bを設けて第一濃バーナ形成板42に密着させている。さらにバーナユニット51の外側となる第二濃バーナ形成板45に突起53を設け、バーナケース52内にバーナユニット51を複数隣接配置し、突起51を隣に配置されるバーナユニット52と密着させている。これにより組立時における溶接を最小限にしながらも各バーナ形成板の内側および外側への湾曲を防ぎ、所望の炎口寸法を長期にわたり維持して初期の燃焼性能を維持できる。また単一のバーナユニット51にて燃焼を完結でき、バーナユニット本数、配置間隔等を自由に選択でき、設計の自由度を高めることができる。
【0074】
また本実施例では第一濃炎口43から噴出する第一濃混合気の濃度を可燃限界外の過濃混合気としているため、希薄混合気と第一濃混合気の濃度勾配が大きくなり、これにより希薄火炎Bの基部への第一濃混合気の流入を促進させて「高温・高反応域」αの形成を促進でき、希薄火炎Bを強固に安定化できる。
【0075】
また本実施例では希薄炎口25への燃料供給量を、例えば総供給量の80%程度と、第一濃炎口43、第二濃炎口46への燃料供給量より多く設定している。これによりNOxの少ない希薄火炎Bの割合を増し、燃焼装置全体として超低NOxを実現できる。
【0076】
また本実施例では希薄炎口25からの希薄混合気の流速を速く設定しているため希薄混合気室41の内圧は、第二濃炎口46からの混合気流速が小さな第二濃混合気室47より大きくなっている。従って希薄混合気室41と第二濃混合気室47を連通させる連通手段50を介して希薄混合気が第二濃混合気室47に流入し連通室48から供給された第一濃混合気を希釈する。このように連通手段50を設けることにより個別に燃料供給系を設ける場合よりも燃焼装置全体を小型で安価に製作することができる。さらに高速噴流に伴う巻き込み効果により第一濃混合気が希薄混合気に巻き込まれ、「高温・高反応域」の形成を促進できる。また希薄混合気の流速を速く設定しても希薄火炎が安定化されるため希薄炎口の面積を小さくすることができ、燃焼装置全体を小型で安価に製作することができる。
【0077】
また本実施例では希薄炎口25の炎口面積を第一濃炎口43及び第二濃炎口46の炎口面積よりも大きく設定している。このため希薄混合気の噴出速度が極度に速くならず、安定した希薄火炎Bが形成されるとともに、ファン負荷が低減され、燃焼装置全体の騒音を抑制することができる。
【0078】
また本実施例では各炎口の燃料・空気導入口から各炎口までの通路長の内、希薄燃料・空気導入口26から希薄炎口25までの通路長を最も長く設定している。これにより希薄燃料・空気導入口26から供給された多量の空気と大部分の燃料は通路を通過する間に十分混合され、整流を受けて均一に希薄炎口25に供給される。このように希薄炎口25への均一供給及び流れの乱れの減衰が図られるため超NOx燃焼と燃焼騒音の低減を実現することができる。
【0079】
また本実施例では希薄燃料・空気導入口26の開口面積を共通燃料・空気導入口49の開口面積よりも大きく設定している。これによりファンからバーナケース52内に供給された燃焼用空気は大きな圧力損失を受けることなく希薄炎口25に多量に供給され、多量の希薄混合気を生成して超低NOxの希薄火炎Bを形成することができる。またファン負荷が低減され、燃焼装置全体の騒音を抑制することができる。
【0080】
また本実施例では希薄燃料・空気導入口26を共通燃料・空気導入口49よりも下部に位置させている。これによりファン120からバーナケース52内に供給された燃焼用空気は大きな圧力損失を受けることなく上流側に位置する各希薄燃料・空気導入口26から希薄炎口25に導かれるため、ファン負荷を低減し騒音を抑制することができる。
【0081】
【発明の効果】
以上説明したように本発明の燃焼装置は、炎口分割板の変形を未然に防止して小入力時の逆火を防止できる。また最小限の枚数の炎口分割板で小分割された希薄炎口を形成しつつ炎口面積を最大限大きくできるため、乱れの抑制された低流速の希薄混合気が噴出して安定した火炎長の短い希薄火炎が形成され、低騒音化、未燃成分の抑制を実現できる
【図面の簡単な説明】
【図1】(a)本発明の実施例1の燃焼装置を示す平面図
(b)同燃焼装置を示す正面図
【図2】(a1)同燃焼装置の炎口分割板を示す平面図
(b1)同燃焼装置の炎口分割板を示す正面図
(a2)同燃焼装置の炎口分割板を示す平面図
(b2)同燃焼装置の炎口分割板を示す正面図
【図3】同燃焼装置の炎口分割板の長さの影響を示す図
【図4】同燃焼装置の炎口分割板の波周期の影響を示す図
【図5】(a)本発明の実施例2の燃焼装置を示す平面図
(b)同燃焼装置を示す正面図
【図6】(a)本発明の実施例3の燃焼装置における炎口分割板を示す平面図
(b)同燃焼装置の炎口分割板を示す正面図
(c)同燃焼装置の炎口分割板を示す下面図
【図7】(a)本発明の実施例4の燃焼装置における炎口分割板を示す平面図
(b)同燃焼装置の炎口分割板を示す正面図
(c)同燃焼装置の炎口分割板を示す下面図
(d)図7(b)のX−X線断面図
【図8】(a)本発明の実施例5の燃焼装置を示す平面図
(b)同燃焼装置を示す正面図
【図9】(a)同燃焼装置の希薄バーナ形成板を示す平面図
(b)同燃焼装置の希薄バーナ形成板を示す正面図
【図10】(a)同燃焼装置の第一濃バーナ形成板を示す平面図
(b)同燃焼装置の第一濃バーナ形成板を示す正面図
【図11】(a)同燃焼装置の第二濃バーナ形成板を示す平面図
(b)同燃焼装置の第二濃バーナ形成板を示す正面図
【図12】図8(a)のY−Y線断面図
【図13】(a)同燃焼装置の火炎を示す模式図
(b)従来の燃焼装置の火炎を示す模式図
【図14】従来の燃焼装置を示す平面図
【符号の説明】
21a、21b、211a、211b、212a、212b 炎口分割板
22、221 波型部
23、231 頂部
24、241 希薄バーナ形成板
25 希薄炎口25
25a 小分割通路
26 希薄燃料・空気導入口
29、291 濃バーナ形成板
30、301 濃炎口
34 直線部
35 扁平通路
37 切り欠き部
38 空間部
41 希薄混合気室
42 第一濃バーナ形成板
43 第一濃炎口
44 第一濃混合気室
45 第二濃バーナ形成板
46 第二濃炎口
47 第二濃混合気室
49 共通燃料・空気導入口
50 連通手段
51 バーナユニット
53 突起
54a、54b 段押し部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a combustion apparatus mainly for home or business use, in which the NOx is reduced, the input variable range is expanded, the noise is reduced, and unburned components are suppressed.
[0002]
[Prior art]
A conventional low NOx combustion apparatus of this type is generally the one shown in FIG. 14 described in Japanese Patent No. 2690447. This low NOx combustion device is configured by arranging a plurality of burner units each having a lean flame port 1 from which a lean mixture is ejected, and a rich flame port 2 arranged on both sides of the lean flame port 1 to eject a rich mixture. I have. The dilute flame port 1 is a small flame port having a trapezoidal cross section by alternately stacking four metal corrugated plates 3 and three metal flat plates 4.
[0003]
The lean mixture supplied from the lean flame port 1 has a low flame temperature in the combustion chamber and thus has low NOx, but itself forms an unstable lean flame. On the other hand, the rich mixture supplied from the rich flame port 2 has a high flame temperature in the combustion chamber and therefore has a high NOx concentration, but forms a stable rich flame itself and supplies thermal energy to the adjacent lean flame to cause a combustion reaction. And thereby realizes so-called light and shade combustion which is stable as a whole. Then, the fuel supply ratio of the light burner 2 is set to be larger than that of the rich burner 4, so that the total NOx is reduced. Further, the lean flame is made into a small flame divided into small flames, so that the lean air-fuel mixture is rectified to suppress the combustion noise.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional low NOx combustion apparatus, the strength of the metal flat plate 4 is insufficient, so that when the lean flame approaches the lean flame opening 1 and the temperature of the lean flame opening 1 rises at a small input, the metal flat plate 4 increases. There is a problem that the lean flame port 1 is deformed and the opening becomes large, and the lean flame port 1 is red-heated, resulting in flashback. Further, since the thin flame port 1 is formed by alternately stacking the metal corrugated plates 3 and the metal flat plates 4, there is a problem that the weight becomes heavy. In addition, the presence of the metal flat plate 4 makes it impossible to set the flame area of the lean flame port 1 large, and the flow rate of the lean air-fuel mixture becomes high, so that the combustion noise is not sufficiently suppressed. (Hydrocarbons), CO and the like were frequently generated.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention has a flame-portion split plate having a corrugated portion having a longitudinal cross-section that is corrugated, with the corrugated portion having a substantially arc-shaped portion near the top so that the tops are in close contact with each other. To form a subdivided lean flame outlet.
[0006]
In addition, it is possible to prevent deformation of the flame splitter plate beforehand, thereby preventing flashback at the time of a small input, and expanding an input variable range. In addition, since the flame port area can be maximized while forming a lean flame port that is subdivided by a minimum number of flame port divider plates, a low-velocity lean mixture with reduced turbulence is blown out and a stable flame A short flame having a short length is formed, and low noise and suppression of unburned components can be realized.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 includes a lean burner forming plate including a plurality of flame splitters and forming a lean flame, and a rich flame disposed in close proximity to the lean flame. The dividing plate has a corrugated portion whose longitudinal section is corrugated and has a substantially arc shape near the top of the corrugated portion, and is arranged such that the tops of the plurality of flame opening divided plates are in close contact with each other. It forms a subdivided dilute flame outlet.
[0008]
And since all the flame splitters have a corrugated cross section, the mechanical strength can be increased, the deformation of the flame splitter at the time of small input can be prevented, and the occurrence of flashback can be prevented. The range can be expanded. Further, since the flame port divided into small parts by the minimum number of flame port dividing plates can be formed, the combustion device can be provided at a low weight and at a low cost. Furthermore, in addition to minimizing the overlapping portion of the plate by arranging the tops of the corrugated portions so as to be in close contact with each other, a flame port which is subdivided with a minimum number of flame port splitting plates is formed. By doing so, it is possible to increase the flame opening area, that is, to set the flow rate of the lean mixture to a small value. As a result, it is possible to suppress the combustion noise, shorten the lean flame length, and suppress the generation of unburned components such as HC and CO. In addition, since the lean flame port serving as the passage of the lean air-fuel mixture is subdivided in the longitudinal direction where there are many turbulence components in the lean air-fuel mixture, the flow velocity vector component in the longitudinal direction of the lean air-fuel mixture is attenuated and the turbulence is suppressed. A stable lean flame is formed, so that combustion noise and so-called oscillating combustion can be suppressed.
[0009]
The invention according to claim 2 includes a dense burner forming plate that is joined to the outside of the lean burner forming body to form a rich flame outlet, and the downstream vicinity of the lean burner forming plate and the dense burner forming plate is in a longitudinal direction. The cross section has a corrugated portion having a corrugated shape, and the vicinity of the top of the corrugated portion is formed in a substantially arc shape so that the dilute burner forming body and the dense burner forming body are arranged so as to be in close contact with each other and are subdivided. It forms a deep flame outlet.
[0010]
And since the lean burner forming plate and the dense burner forming plate have a corrugated cross section, the mechanical strength can be increased, the deformation of both burner forming plates at the time of small input can be prevented, and the occurrence of flashback can be prevented. . Further, since the passage of the rich mixture is subdivided in the longitudinal direction, the rectified rich mixture blows out from the rich flame port to form a stable rich flame, so that combustion noise can be further suppressed.
[0011]
According to a third aspect of the present invention, there is provided a lean burner forming plate that includes a plurality of flame splitters and forms a lean flame, a first rich flame disposed close to the lean flame, and the first burner. A second rich flame port disposed in close proximity to the rich flame port, wherein the flame port splitting plate has a corrugated portion whose longitudinal cross section is corrugated and has a substantially arc shape near the top of the corrugated portion. Forming a small divided lean flame port by arranging the top portions of the plurality of flame port split plates so as to be in close contact with each other, wherein the concentration of the gas mixture ejected from the first rich flame port is the second rich flame port. It is set to be higher than the concentration of the air-fuel mixture that blows out.
[0012]
Then, the flame itself is formed by a rich mixture that is thinner than the first rich flame supplied from the second rich flame and promotes the thermal decomposition reaction of the rich mixture ejected from the first rich flame. I do. The rich mixture supplied from the first flame outlet generates a large amount of chemically active intermediate products due to this thermal decomposition, and the intermediate products diffuse to the base of the lean flame formed on the lean flame outlet. A “high temperature / high reaction zone” is formed in the minute space at the base where the combustion reaction is actively performed, and the lean flame itself is stabilized. Therefore, the fuel input ratio to the lean flame port and the concentration of the lean air-fuel mixture can be reduced, so that a further reduction in NOx and noise can be realized. Following this, stable combustion can be realized.
[0013]
According to a fourth aspect of the present invention, the length of the flame outlet dividing plate in the air-fuel mixture flowing direction is 10 mm or more and 40 mm or less.
[0014]
And, since the turbulence of the lean air-fuel mixture is sufficiently suppressed without an excessive pressure loss, the operating speed of the fan for supplying the combustion air is suppressed to a low level, and a stable lean flame is formed. It can be further suppressed.
[0015]
In the invention according to claim 5, the wave period of the flame splitting plate is 1 mm or more and 4 mm or less.
[0016]
Then, the turbulence of the lean air-fuel mixture can be sufficiently suppressed, and the combustion noise can be further suppressed, while the period of the corrugated portion is not excessively dense, while preventing the clogging of the flame opening due to dust and the like and the running out of material at the time of press working. .
[0017]
According to a sixth aspect of the present invention, the flame splitting plate has a straight portion having a straight cross section in a longitudinal direction at an upstream portion in a flow direction of the air-fuel mixture. A flat passage is formed upstream of the small divided passage divided into small portions.
[0018]
Then, after the lean air-fuel mixture flows through the flat passage, it flows into the small divided passage, so that the pressure drop of the lean air-fuel mixture is smoothed, and the turbulence of the lean air-fuel mixture is sufficiently suppressed, and the combustion noise is further suppressed. it can.
[0019]
According to a seventh aspect of the present invention, the flame splitting plate has a cutout portion between the straight portion and the corrugated portion, and a plurality of the flame splitting plates are arranged so as to be located between the flat passage and the small split passage. Constitutes a space part.
[0020]
And, since the upstream end of the flame splitter reaches the upstream portion where turbulence easily occurs without increasing the pressure loss of the flame splitter, the lean air-fuel mixture flows through the flat passage before the turbulence of the lean air-fuel mixture occurs. And the turbulence is sufficiently suppressed, and the combustion noise can be further suppressed.
[0021]
In the invention according to claim 8, the lean flame port, the first rich flame port, and the second rich flame port each have a mixture chamber, and the second rich mixture chamber of the second rich flame port is connected through a communication means. The air-fuel mixture communicates with the lean air-fuel mixture chamber of the lean flame port to generate an air-fuel mixture having a concentration between the lean air-fuel mixture and the first rich air-fuel mixture.
[0022]
Then, the entire combustion device can be manufactured in a smaller size and at a lower cost than when a fuel supply system is individually provided.
[0023]
According to a ninth aspect of the present invention, there is provided a lean burn port having a lean mixture chamber upstream, a first rich burn port having a first rich mixture chamber upstream adjacent to the lean burn port, and the first rich flame. A second rich flame port having a second rich mixture chamber adjacent to the mouth and having a second rich mixture chamber, wherein the second rich mixture chamber is communicated with the lean mixture chamber through communication means so that the lean mixture and the first While generating a second rich mixture having a concentration between the rich mixture, a lean fuel / air inlet is provided upstream of the lean mixture chamber, and upstream of the first and second rich mixture chambers. One common fuel / air inlet is provided for communicating with both the first and second rich mixture chambers.
[0024]
Since the fuel is supplied independently to the lean fuel / air inlet and the common fuel / air inlet, the fuel supply ratio to the lean mixture and the rich mixture is adjusted to adjust the stable combustion range. If the type of fuel to be supplied is different, the optimum fuel distribution ratio and the concentration of each air-fuel mixture can be easily reset. Therefore, various fuels can be used in the same combustion device.
[0025]
According to a tenth aspect of the present invention, there is provided a lean burner forming plate forming an upper lean burn port and a lower lean fuel / air inlet, and a first burner forming a first rich burn port by joining to the lean burner forming plate. A rich burner forming plate, and a common fuel / air inlet that is joined to the first rich burner forming plate to form a second rich flame port and communicates with the first rich flame port and the second rich flame port. A second dark burner forming plate is provided.
[0026]
Since the lean burner forming plate also serves as the formation of the lean flame port and the first rich flame port, while the first rich burner forming plate also serves as the formation of the first rich flame port and the second rich flame port, the burner unit is formed. Can be minimized, and the entire combustion device can be manufactured at a low cost and light weight.
[0027]
The invention according to claim 11 is that the first thick burner forming plate is provided with an inwardly stepped portion so as to be in close contact with the lean burner forming plate, and the second darkly burner forming plate is provided with an inwardly stepped portion. It is adhered to the burner plate.
[0028]
In addition, it is possible to prevent inward bending of each burner forming plate while minimizing welding at the time of assembling, to maintain a desired flame hole size for a long period, and to maintain initial combustion performance.
[0029]
According to a twelfth aspect of the present invention, the combustion device according to any one of the third and eighth to eleventh aspects is configured as a burner unit, and a plurality of the burner units are arranged adjacent to each other by providing a protrusion outside the burner unit. The protrusion is brought into close contact with a burner unit arranged next to the burner unit.
[0030]
In addition, it is possible to prevent outward bending of the plate forming the burner unit while minimizing welding at the time of assembling, and to maintain a desired flame port size for a long period of time to maintain the initial combustion performance. In addition, combustion can be completed with a single burner unit, the number of burner units, the arrangement interval, etc. can be freely selected, and the degree of freedom in design can be increased.
According to a thirteenth aspect of the present invention, the first rich air-fuel mixture ejected from the first rich flame outlet is an excessively rich air-fuel mixture outside the flammability limit.
[0031]
Then, by increasing the concentration gradient between the lean mixture and the first rich mixture, the inflow of the first rich mixture into the base of the lean flame can be promoted, and the formation of a "high temperature / high reaction zone" can be promoted. Can stabilize the flame.
[0032]
In the fourteenth aspect of the invention, the amount of fuel supplied to the lean flame outlet is set to be larger than the amount of fuel supplied to the first and second rich flame outlets.
[0033]
Then, the ratio of the lean flame with a small amount of NOx is increased, and an extremely low NOx can be realized.
[0034]
According to a fifteenth aspect of the present invention, the ejection speed of the air-fuel mixture from the lean flame outlet is set to be higher than the ejection speed of the air-fuel mixture from the first and second rich flame outlets.
[0035]
Then, the first rich air-fuel mixture is entrained in the lean air-fuel mixture by the entrainment effect associated with the high-speed jet, and the formation of a "high-temperature, high-reaction zone" can be promoted. Even if the flow rate of the lean mixture is set to be high, the lean flame is stabilized, so that the area of the lean flame port can be reduced, and the entire combustion device can be manufactured small and inexpensively.
[0036]
In the invention according to claim 16, the flame area of the lean flame port is set larger than the flame area of the first and second rich flame ports.
[0037]
Then, the injection speed of the lean air-fuel mixture does not become extremely high, a stable lean flame is formed, the load on the fan that supplies the combustion air is reduced, and the noise of the entire combustion device can be suppressed.
[0038]
In the invention according to claim 17, the passage length from the fuel / air introduction port of the lean flame to the lean flame port is set to be the longest among the passage lengths from the fuel / air introduction port of each flame port to each flame port. ing.
[0039]
Then, a large amount of air and most of the fuel supplied from the lean fuel / air inlet are sufficiently mixed while passing through the long passage, and are rectified and the turbulence is attenuated and supplied to the lean flame outlet. Ultra NOx combustion and reduction of combustion noise can be realized.
[0040]
In the invention according to claim 18, the opening area of the fuel / air inlet of the lean flame is set larger than the fuel / air inlet of the first and second flames.
[0041]
Then, a large amount of the combustion air is supplied to the lean flame port without receiving a large pressure loss, and a large amount of a lean air-fuel mixture can be generated to form a very low NOx lean flame. Further, the load on the fan that supplies the combustion air is reduced, and the noise of the entire combustion device can be suppressed.
[0042]
In the invention according to claim 19, the fuel / air introduction port of the lean flame port is located below the fuel / air introduction port of the first and second flame ports.
[0043]
Since the combustion air supplied by the fan is guided from the lean fuel / air inlet located upstream to the lean flame port without receiving a large pressure loss, the load on the fan is reduced and the noise of the entire combustion device is suppressed. can do.
[0044]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0045]
(Example 1)
1 (a) and 1 (b) are a plan view and a front view showing a combustion device according to a first embodiment of the present invention, and FIGS. 2 (a1) and (b1) are plan views showing a flame splitting plate of the combustion device. FIGS. 2 (a2) and 2 (b2) are a plan view and a front view, respectively, showing the flame splitter plate of the combustion device, and FIG. 3 is a diagram showing the effect of the length of the flame splitter plate of the combustion device. FIG. 4 is a diagram showing the influence of the wave period of the flame splitter of the combustion apparatus.
[0046]
In FIGS. 1 and 2, reference numerals 21 a and 21 b denote flame splitters, each of which has a corrugated portion 22 whose longitudinal cross section is corrugated, and has a substantially arc shape near the top 23 of the corrugated portion 22. . In this embodiment, four flame opening split plates are used. The lean burner forming plate 24 includes the flame splitters 21a and 21b, and the flame splitters 21a and 21b are arranged so that the top portions 23 are in close contact with each other to form a small split lean flame 25 and a small split. A passage 25a is formed. The lean burner forming body 24 forms a lean fuel / air inlet 26, a lean mixing pipe 27, and a lean resistance part 28.
[0047]
A rich burner forming plate 29 is joined to both sides of the lean burner forming plate 24 to form a rich flame port 30, a rich fuel / air inlet 30, a rich mixing pipe 32, and a rich resistance portion 33.
[0048]
Next, the operation and action will be described. A large amount of fuel and air flow from the lean fuel / air inlet 26 and are mixed in the lean mixing pipe 27 to form a lean air-fuel mixture. The passage thickness of the lean resistance portion 28 is adjusted so that a uniform lean mixture is supplied to the lean flame port 25. Further, a small amount of fuel and air flow from the rich fuel / air inlet 31 and are mixed by the rich mixing pipe 32 to form a rich mixture. The thickness of the passage of the dense resistance portion 33 is adjusted so that a uniform rich mixture is supplied to the rich flame outlet 30.
[0049]
A rich air-fuel mixture blows out from the rich flame port 30 to form a rich flame (not shown). A lean air-fuel mixture is ejected from the lean flame port 25 to form a lean flame (not shown). The lean flame is stabilized by the thermal influence of the rich flame. The flame temperature is low and the input ratio to a lean flame that generates little NOx is increased to achieve a low NOx as a whole.
[0050]
Here, since the flame splitters 21a and 21b have a corrugated cross section, the mechanical strength can be increased, the deformation of the flame splitter at the time of small input can be prevented, and the occurrence of flashback can be prevented. Further, since the dilute flame port 25 divided into small parts by the minimum number of flame port dividing plates can be formed, the combustion apparatus can be provided at a low weight and at a low cost. Further, the top portion 23 of the corrugated portion 22 is arranged so as to be in close contact with each other, so that the overlapping portion of the plates is minimized. With the formation of 25, the flame opening area can be increased, that is, the flow rate of the lean air-fuel mixture can be set small. As a result, combustion noise can be suppressed, and the lean flame length can be shortened, and unburned components such as HC and CO are generated. Can be suppressed. Further, since the small split passage 25a is divided in the longitudinal direction where the turbulence component of the lean mixture is large, the flow velocity component in the longitudinal direction of the lean mixture is attenuated, the turbulence is suppressed, and a stable lean flame is formed. Combustion noise can be suppressed and so-called oscillating combustion can be suppressed.
[0051]
In FIG. 3, as the length L of the flame splitter plates 21a, b increases, the length of the small split passage 25a increases, and the turbulence of the lean mixture decreases. If L is less than 10 mm, the turbulence becomes very large, and the combustion noise becomes very large. On the other hand, as L becomes longer, the pressure loss monotonously increases, the load of a fan (not shown) for supplying combustion air increases, and it is necessary to set the fan speed higher. If L is larger than 40 mm, the degree of turbulence reduction of the lean mixture is saturated, and the noise of the combustion device increases due to the influence of an increase in the fan speed. Therefore, when L is set to 10 mm or more and 40 mm or less, the turbulence of the lean air-fuel mixture is sufficiently suppressed without an excessive pressure loss, so that the operating speed of the fan for supplying the combustion air can be suppressed low and a stable lean flame can be obtained. Thus, the noise of the entire combustion device can be further suppressed.
[0052]
In FIG. 4, as the wave period P of the flame splitter plate becomes longer, the lean flame 25 becomes larger in the longitudinal direction, and the flow velocity component of the lean mixture in the longitudinal direction is not sufficiently attenuated, and the turbulence becomes larger. When P is 4 mm or more, the turbulence increases rapidly, and the combustion noise also increases rapidly. On the other hand, if P becomes too small, the opening becomes small and there is a possibility that the flame opening may be blocked by dust or the like. Further, the material of the flame splitter plate is excessively stretched during the press working, the plate thickness becomes thinner, and the material breaks. For example, when the thickness of the flame splitting plate is 0.35 mm and the amplitude (from the top to the top) of the corrugated portion 22 is 1 mm, if P is smaller than 1 mm, breakage occurs during press working. Therefore, by setting P to be 1 mm or more and 4 mm or less, it is possible to sufficiently prevent the lean air-fuel mixture 25 from being clogged by dust or the like and to run out of material at the time of press working, to sufficiently suppress the turbulence of the lean mixture, and to further suppress the combustion noise. .
[0053]
(Example 2)
FIGS. 5A and 5B are a plan view and a front view showing a combustion apparatus according to a second embodiment of the present invention.
[0054]
The difference between the present embodiment and the first embodiment is that the vicinity of the downstream side of the lean burner forming plate 241 and the dense burner forming plate 291 has a corrugated portion 221 whose longitudinal section is corrugated, and the top of the corrugated portion 221. The point that the vicinity of 231 is formed in a substantially arc shape is arranged such that the top portion 231 of the lean burner forming body 241 and the dense burner forming body 291 are in close contact with each other to form a small divided flame opening 301. Note that components having the same reference numerals as those in the first embodiment have the same configuration, and description thereof will be omitted.
[0055]
Next, the operation and action will be described. Since the lean burner forming plate 241 and the dense burner forming plate 291 have a corrugated cross section, mechanical strength can be increased, and deformation of both burner forming plates at the time of a small input is prevented. And the occurrence of flashback can be prevented. Further, since the passage of the rich mixture is subdivided in the longitudinal direction, the rectified rich mixture is blown out from the rich flame port 301 to form a stable rich flame, thereby further suppressing the combustion noise.
[0056]
(Example 3)
FIGS. 6A, 6B, and 6C are a plan view, a front view, and a bottom view showing a flame splitter plate in a combustion apparatus according to a third embodiment of the present invention.
[0057]
The present embodiment is different from the first embodiment in that a straight section 34 having a straight section in the longitudinal direction is provided at an upstream portion of the flame splitters 211a and 211b in the mixture flow direction. , B are arranged to form the flat passage 35. Numeral 36 denotes a protrusion protruding inward in the linear portion 34. Note that components having the same reference numerals as those in the first embodiment have the same configuration, and description thereof will be omitted.
[0058]
Next, the operation and operation will be described. In the configuration of the first embodiment, the passage cross-sectional area of the lean mixture largely changes before and after flowing into the small divided passage 25a. However, the cross-sectional area of the flat passage 35 of this embodiment is larger than the cross-sectional area of the small divided passage 25a. Therefore, the degree of reduction of the passage cross-sectional area of the lean air-fuel mixture becomes smooth, the pressure drop of the lean air-fuel mixture becomes smooth, and the turbulence of the lean air-fuel mixture is sufficiently suppressed, so that the combustion noise can be further suppressed. Further, the flat passage 35 is formed with high accuracy by the projection 36.
[0059]
(Example 4)
7 (a), (b), (c) and (d) are a plan view, a front view, a bottom view, and an X of FIG. 7 (b) showing a flame splitter plate in a combustion apparatus according to Embodiment 4 of the present invention. -It is an X-ray sectional view.
[0060]
This embodiment is different from the third embodiment in that a cutout portion 37 is provided between the straight portion 34 and the corrugated portion 22 in the flame splitting plates 212a and 212b, and a plurality of flame splitting plates 212a and 212b are arranged. Thus, a space 38 is formed between the flat passage 35 and the small divided passage 25a. Note that components having the same reference numerals as those in the first embodiment have the same configuration, and description thereof will be omitted.
[0061]
Next, the operation and operation will be described. The turbulence of the lean air-fuel mixture is largely generated downstream of the lean resistor portion 28 shown in FIG. By the way, if the length of the flame splitting plates 212a and 212b is increased, the pressure loss monotonously increases. By providing a space portion 38 with almost no pressure loss and increasing the length of the flame splitter plates 212a and 212b, the upstream end of the flame splitter plate is likely to be disturbed without increasing the pressure loss. Therefore, the lean air-fuel mixture flows into the flat passage 35 before the turbulence of the lean air-fuel mixture occurs, and the turbulence is sufficiently suppressed, so that the combustion noise can be further suppressed.
[0062]
Note that the same effect can be obtained by providing a cutout portion in the flame-portion dividing plates 21a and 21b of only the corrugated portion having no straight portion shown in the first embodiment to form a space portion. A similar effect can be obtained even if a notch is formed in a flame-portion dividing plate having only a straight portion, which is generally used in the related art, to form a space.
[0063]
(Example 5)
8A and 8B are a plan view and a front view showing a combustion device according to a fifth embodiment of the present invention, and FIGS. 9A and 9B are plan views showing a lean burner forming plate of the combustion device. FIGS. 10 (a) and 10 (b) are plan and front views showing a first rich burner forming plate of the combustion device, and FIGS. 11 (a) and (b) are second dense burner formations of the combustion device. FIG. 12 is a plan view and a front view showing a plate, FIG. 12 is a sectional view taken along line YY of FIG. 8A, and FIGS. 13A and 13B are schematic views of a flame of the combustion device and a flame of a conventional combustion device. FIG.
[0064]
The present embodiment is different from the first embodiment in that a first rich flame outlet 43 disposed close to the lean flame outlet 25 and a second rich flame outlet 46 disposed close to the first rich flame outlet 43 are provided. Is a point. The details will be described below.
[0065]
8 to 13, a lean burner forming plate 241 forms a lean flame port 25 at an upper part, a lean fuel / air inlet 26, a lean mixing pipe 27, and a lean gas mixture chamber 41 at a lower part. The first rich burner forming plate 42 is joined to both sides of the lean burner forming plate 241 to form a first rich flame port 43 and a first rich mixture chamber 44 upstream thereof. A second rich burner forming plate 45 is joined to the outside of the first rich burner forming plate 42 to form a second rich flame port 46 and a second rich mixture chamber 47 upstream thereof. Further, the second rich burner forming plate 45 is also joined to the lean burner forming plate 241, so that the communication chamber 48 communicating with the first rich mixture chamber 44 and the second rich mixture chamber 47 and the lean fuel / air inlet 26 are formed. A common fuel / air introduction port 49 located at the top is formed. The lean burner forming plate 241 is provided with a communication means 50 that allows the lean mixture chamber 41 and the second rich mixture chamber 47 to communicate with each other. The burner unit 51 is formed by integrating the diluted burner forming plate 241, the first dark burner forming plate 42 on both sides thereof, and the second dark burner forming plate 45 provided on both sides thereof. A plurality of the burner units 51 are stored in the burner case 52. Reference numeral 53 denotes a projection provided on the second dark burner forming plate 45 outside the burner unit 51.
[0066]
Numerals 54a and 54b denote stepped portions of the first dark burner forming plate 42 and the second dark burner forming plate 45, which project inward. Note that components having the same reference numerals as those in the first embodiment have the same configuration, and description thereof will be omitted.
[0067]
Next, the operation and action will be described. A large amount of fuel and air flow into the lean fuel / air inlet 26, and the lean mixture is supplied to the lean mixture chamber 41. Most of the lean mixture is blown out from the lean flame port 25, and the rest flows into the second rich mixture chamber 47 through the communication means 50. On the other hand, a small amount of fuel and air flows in from the common fuel / air inlet 49, and the rich mixture outside the flammable limit is supplied to the communication chamber 48, and the rich mixture is supplied to the first rich mixture chamber 44 and the second rich mixture chamber 47. Branched. The rich mixture supplied to the first rich mixture chamber 44 is blown out of the first rich flame port 43 with the same concentration. The rich mixture supplied to the second rich mixture chamber 47 is diluted with a small amount of lean mixture flowing from the communicating means 50 to become a rich mixture having a concentration close to the theoretical mixture ratio. Squirts more.
[0068]
As shown in FIG. 13A, a rich mixture that is close to the stoichiometric ratio and that is ejected from the second rich flame port 46 forms a stable flame A that has a high flame temperature and is very stable. The lean air-fuel mixture ejected from the lean flame port 25 forms a lean flame B having a low flame temperature and a low NOx concentration. Further, the rich air-fuel mixture ejected from the first rich flame port 43 is thermally decomposed under the influence of the high-temperature stable flame A, and forms a rich flame C while generating a large amount of intermediate products. Then, the above-mentioned intermediate product is diffused and supplied to the base of the lean flame B formed on the lean flame port 25, and the base of the lean flame B is rich in reactive species and the combustion reaction is extremely active, so that a "high temperature / high reaction zone". α is formed. The stable flame A, the rich flame C, and the lean flame B become a connected and integrated flame.
[0069]
As described above, the combustion according to the present invention having these three types of air-fuel mixture concentrations is performed when the lean flame I is stabilized by the thermal influence of the rich flame H in the conventional lean-burn combustion shown in FIG. Compared with this, it is possible to stabilize the lean flame significantly. Therefore, it is possible to increase the fuel input ratio to the lean flame B having a low flame temperature and low NOx generation, and to realize ultra-low NOx while maintaining low combustion noise.
[0070]
Further, since the common fuel / air inlet 49 is configured to communicate with the first rich mixture chamber 44 and the second rich mixture chamber 47, the fuel is supplied to the first rich flame port 43 and the second rich flame port 46 respectively. It is not necessary to supply air separately, and the burner configuration can be simplified and downsized.
[0071]
Further, fuel is supplied independently to the lean fuel / air inlet 26 and the common fuel / air inlet 49. In this way, the fuel supply ratio to the lean mixture and the rich mixture is adjusted to adjust the stable combustion range, and when the type of fuel to be supplied is different, the optimal fuel distribution ratio and the optimal The concentration can be easily reset. Therefore, various fuels can be used in the same combustion device.
[0072]
The burner unit 51 is formed by joining the lean burner forming plate 241, the first dark burner forming plate 42, and the second dark burner forming plate 45. That is, the lean burner forming plate 241 functions to form the lean flame port 25 and the first rich flame port 43, while the first rich burner forming plate 42 also functions to form the first rich flame port 43 and the second rich flame port 46. I have. This makes it possible to minimize the amount of material such as sheet metal that constitutes the burner unit 51, and to manufacture the entire combustion device at a low weight and at a low cost.
[0073]
Further, the first dark burner forming plate 42 is provided with an inwardly stepped portion 54a to be in close contact with the lean burner forming plate 241, and the second darkly burner forming plate 45 is provided with an inwardly stepped portion 54b to be provided with the first deep burner. It is in close contact with the forming plate 42. Further, a projection 53 is provided on the second dense burner forming plate 45 outside the burner unit 51, a plurality of the burner units 51 are arranged adjacently in the burner case 52, and the projection 51 is brought into close contact with the burner unit 52 arranged next to the burner unit 52. I have. This prevents inward and outward bending of each burner forming plate while minimizing welding at the time of assembling, thereby maintaining the desired flame hole size for a long period of time and maintaining the initial combustion performance. Further, the combustion can be completed by a single burner unit 51, the number of burner units, the arrangement interval, and the like can be freely selected, and the degree of freedom in design can be increased.
[0074]
Further, in the present embodiment, the concentration of the first rich mixture ejected from the first rich flame port 43 is defined as the rich mixture outside the flammability limit, so that the concentration gradient between the lean mixture and the first rich mixture becomes large, As a result, the flow of the first rich air-fuel mixture into the base of the lean flame B can be promoted to promote the formation of the “high temperature / high reaction zone” α, and the lean flame B can be firmly stabilized.
[0075]
Further, in this embodiment, the fuel supply amount to the lean flame port 25 is set to, for example, about 80% of the total supply amount, which is larger than the fuel supply amount to the first rich flame port 43 and the second rich flame port 46. . As a result, the ratio of the lean flame B having a small amount of NOx can be increased, and an ultra-low NOx can be realized as the entire combustion device.
[0076]
In this embodiment, since the flow rate of the lean mixture from the lean flame port 25 is set to be high, the internal pressure of the lean mixture chamber 41 is reduced to a second rich mixture in which the mixture flow velocity from the second rich flame port 46 is small. It is larger than the room 47. Therefore, the lean air-fuel mixture flows into the second rich air-fuel mixture chamber 47 through the communication means 50 for communicating the lean air-fuel mixture chamber 41 with the second rich air-fuel mixture chamber 47, and the first rich air-fuel mixture supplied from the communication chamber 48 is removed. Dilute. By providing the communication means 50 in this way, it is possible to manufacture the entire combustion device in a smaller size and at lower cost than in a case where a separate fuel supply system is provided. Furthermore, the first rich air-fuel mixture is entrained in the lean air-fuel mixture by the entrainment effect associated with the high-speed jet, and the formation of a "high-temperature, high-reaction zone" can be promoted. Even if the flow rate of the lean mixture is set to be high, the lean flame is stabilized, so that the area of the lean flame port can be reduced, and the entire combustion device can be manufactured small and inexpensively.
[0077]
Further, in the present embodiment, the flame area of the lean flame port 25 is set to be larger than the flame area of the first rich flame port 43 and the second rich flame port 46. For this reason, the injection speed of the lean air-fuel mixture does not become extremely high, the stable lean flame B is formed, the fan load is reduced, and the noise of the entire combustion device can be suppressed.
[0078]
Further, in this embodiment, the passage length from the lean fuel / air introduction port 26 to the lean flame port 25 is set to be the longest among the path lengths from the fuel / air introduction port of each flame port to each flame port. As a result, a large amount of air supplied from the lean fuel / air inlet 26 and most of the fuel are sufficiently mixed while passing through the passage, are rectified, and are uniformly supplied to the lean flame outlet 25. As described above, uniform supply to the lean flame port 25 and attenuation of flow turbulence are achieved, so that super NOx combustion and reduction of combustion noise can be realized.
[0079]
In this embodiment, the opening area of the lean fuel / air inlet 26 is set to be larger than the opening area of the common fuel / air inlet 49. As a result, a large amount of combustion air supplied from the fan into the burner case 52 is supplied to the lean flame port 25 without receiving a large pressure loss, and a large amount of a lean air-fuel mixture is generated to generate a very low NOx lean flame B. Can be formed. Further, the fan load is reduced, and the noise of the entire combustion device can be suppressed.
[0080]
In this embodiment, the lean fuel / air inlet 26 is located below the common fuel / air inlet 49. As a result, the combustion air supplied from the fan 120 into the burner case 52 is guided to the lean flame port 25 from each of the lean fuel / air inlets 26 located upstream without receiving a large pressure loss. It is possible to reduce noise and suppress noise.
[0081]
【The invention's effect】
As described above, the combustion apparatus of the present invention can prevent backfire at the time of a small input by preventing deformation of the flame splitter plate. In addition, since the flame port area can be maximized while forming a lean flame port that is subdivided by a minimum number of flame port divider plates, a low-velocity lean mixture with reduced turbulence is blown out and a stable flame A short flame with a short length is formed, which can reduce noise and suppress unburned components.
[Brief description of the drawings]
FIG. 1A is a plan view showing a combustion apparatus according to a first embodiment of the present invention.
(B) Front view showing the combustion device
FIG. 2 (a1) is a plan view showing a flame outlet split plate of the combustion apparatus.
(B1) Front view showing a flame splitter plate of the combustion device.
(A2) A plan view showing a flame splitter plate of the combustion device.
(B2) Front view showing a flame splitter plate of the combustion device.
FIG. 3 is a view showing the influence of the length of a flame split plate of the combustion apparatus.
FIG. 4 is a diagram showing the effect of the wave period of the flame splitter plate of the combustion device.
FIG. 5A is a plan view showing a combustion apparatus according to a second embodiment of the present invention.
(B) Front view showing the combustion device
FIG. 6 (a) is a plan view showing a flame outlet split plate in a combustion apparatus according to Embodiment 3 of the present invention.
(B) Front view showing a flame splitter plate of the combustion device
(C) A bottom view showing a flame splitting plate of the combustion device.
FIG. 7 (a) is a plan view showing a flame splitting plate in a combustion apparatus according to Embodiment 4 of the present invention.
(B) Front view showing a flame splitter plate of the combustion device
(C) A bottom view showing a flame splitting plate of the combustion device.
(D) Sectional view along line XX of FIG. 7 (b)
FIG. 8 (a) is a plan view showing a combustion apparatus according to a fifth embodiment of the present invention.
(B) Front view showing the combustion device
FIG. 9A is a plan view showing a lean burner forming plate of the combustion apparatus.
(B) Front view showing a lean burner forming plate of the combustion apparatus
FIG. 10 (a) is a plan view showing a first rich burner forming plate of the combustion apparatus.
(B) Front view showing a first rich burner forming plate of the combustion device.
FIG. 11A is a plan view showing a second rich burner forming plate of the combustion apparatus.
(B) Front view showing a second rich burner forming plate of the combustion device.
FIG. 12 is a sectional view taken along line YY of FIG.
FIG. 13 (a) is a schematic view showing a flame of the combustion device.
(B) A schematic diagram showing a flame of a conventional combustion device.
FIG. 14 is a plan view showing a conventional combustion device.
[Explanation of symbols]
21a, 21b, 211a, 211b, 212a, 212b Flame split plate
22, 221 corrugated part
23,231 Top
24,241 Diluted burner forming plate
25 Dilute Flame Port 25
25a Subdivision passage
26 Lean fuel / air inlet
29,291 Dark burner forming plate
30, 301 deep flame outlet
34 straight section
35 flat passage
37 Notch
38 Space
41 Lean mixture chamber
42 First dense burner forming plate
43 First Flame Outlet
44 First rich mixture chamber
45 Second dense burner forming plate
46 Second Flame Mouth
47 Second rich mixture chamber
49 Common fuel / air inlet
50 Communication means
51 Burner unit
53 protrusion
54a, 54b Stepped part

Claims (19)

複数枚の炎口分割板を内包し希薄炎口を形成する希薄バーナ形成板と、前記希薄炎口に近接配置された濃炎口とを備え、前記炎口分割板は長手方向の断面が波型である波型部を有するとともに前記波型部の頂部近傍を略円弧形状とし、複数の前記炎口分割板の前記頂部が互いに密着するように配置して小分割された希薄炎口を形成した燃焼装置。A lean burner forming plate that includes a plurality of flame splitters and forms a lean burner, and a rich flame close to the lean burner, wherein the flame splitter has a longitudinal cross-section. It has a corrugated portion that is a mold and has a substantially arc shape near the top of the corrugated portion, and is arranged so that the tops of the plurality of flame-portion split plates are in close contact with each other to form a small divided lean flame port. Combustion equipment. 希薄バーナ形成体の外側に接合して濃炎口を形成する濃バーナ形成板を備え、前記希薄バーナ形成板と前記濃バーナ形成板の下流近傍は長手方向の断面が波型である波型部を有し、前記波型部の頂部近傍を略円弧形状として前記希薄バーナ形成体および前記濃バーナ形成体の前記頂部が互いに密着するように配置して小分割された濃炎口を形成した燃焼装置。A corrugated portion having a dense burner forming plate that is joined to the outside of the lean burner forming body to form a rich flame port, and a downstream section of the lean burner forming plate and the dense burner forming plate has a longitudinal cross section in a wavy shape. Combustion in which the vicinity of the top of the corrugated portion is formed in a substantially circular arc shape and the tops of the lean burner forming body and the rich burner forming body are arranged so as to be in close contact with each other to form a small divided deep flame outlet. apparatus. 複数枚の炎口分割板を内包し希薄炎口を形成する希薄バーナ形成板と、前記希薄炎口に近接配置された第一濃炎口と、前記第一濃炎口に近接配置された第二濃炎口とを備え、前記炎口分割板は長手方向の断面が波型である波型部を有するとともに前記波型部の頂部近傍を略円弧形状とし、複数の前記炎口分割板の前記頂部が互いに密着するように配置して小分割された希薄炎口を形成し、前記第一濃炎口より噴出する混合気濃度は前記第二濃炎口より噴出する混合気濃度よりも濃く設定した燃焼装置。A lean burner forming plate that includes a plurality of flame splitters and forms a lean flame port, a first rich flame port disposed close to the lean flame port, and a second rich flame port disposed close to the first rich flame port. The flame splitter has a corrugated portion whose longitudinal cross section is corrugated, and the vicinity of the top of the corrugated portion has a substantially arc shape, and a plurality of the flame splitters are provided. The top portions are arranged so as to be in close contact with each other to form a small divided lean flame port, and the mixture concentration ejected from the first rich flame port is higher than the mixture concentration ejected from the second rich flame port. Set combustion device. 炎口分割板の混合気通流方向の長さを10mm以上40mm以下とした請求項1〜3いずれか1項記載の燃焼装置。The combustion device according to any one of claims 1 to 3, wherein a length of the flame splitting plate in a flow direction of the mixture is 10 mm or more and 40 mm or less. 炎口分割板の波周期を1mm以上4mm以下とした請求項1〜4いずれか1項記載の燃焼装置。The combustion device according to any one of claims 1 to 4, wherein the wave period of the flame splitting plate is 1 mm or more and 4 mm or less. 炎口分割板は、混合気通流方向の上流部に長手方向の断面が直線である直線部を有し、前記炎口分割板を複数枚配置して波型部で小分割され小分割通路の上流に扁平通路を構成した請求項1〜5いずれか1項記載の燃焼装置。The flame splitter has a straight portion whose longitudinal cross-section is straight at the upstream part in the mixture flow direction, and a plurality of the flame splitters are arranged and subdivided by a corrugated portion to form a small split passage. The combustion device according to any one of claims 1 to 5, wherein a flat passage is formed upstream of the combustion device. 炎口分割板は、直線部と波型部の間に切り欠き部を有し、前記炎口分割板を複数枚配置して、扁平通路と小分割通路の間に空間部を構成した請求項6記載の燃焼装置。The flame splitter has a cutout portion between a straight portion and a corrugated portion, a plurality of the flame splitters are arranged, and a space is formed between the flat passage and the small split passage. 7. The combustion device according to 6. 希薄炎口、第一濃炎口、第二濃炎口はそれぞれに混合気室を有すると共に、第二濃炎口の第二濃混合気室は連通手段を介して希薄炎口の希薄混合気室と連通させて希薄混合気と第一濃混合気の間の濃度の混合気を生成させる構成とした請求項3記載の燃焼装置。The lean flame port, the first rich flame port, and the second rich flame port each have an air-fuel mixture chamber, and the second rich air-fuel mixture chamber of the second rich flame port has a lean air-fuel mixture of the lean flame port through communication means. The combustion device according to claim 3, wherein the combustion device is configured to generate a mixture having a concentration between the lean mixture and the first rich mixture by communicating with the chamber. 上流に希薄混合気室を有する希薄炎口と、前記希薄炎口に隣接し上流に第一濃混合気室を有する第一濃炎口と、前記第一濃炎口と隣接し上流に第二濃混合気室を有する第二濃炎口とを備え、前記第二濃混合気室は連通手段を介して希薄混合気室と連通させて希薄混合気と第一濃混合気の間の濃度の第二濃混合気を生成させるとともに、前記希薄混合気室の上流には希薄燃料・空気導入口を設け、かつ第一、第二濃混合気室の上流には当該第一、第二濃混合気室の両方に連通する一つの共通燃料・空気導入口を設けた請求項3または8項記載の燃焼装置。A lean flame port having a lean mixture chamber upstream, a first rich flame port having a first rich mixture chamber upstream adjacent to the lean flame port, and a second rich flame port adjacent to the first rich flame port upstream. A second rich flame port having a rich mixture chamber, wherein the second rich mixture chamber is communicated with the lean mixture chamber through communication means so that the concentration between the lean mixture and the first rich mixture is reduced. While generating a second rich mixture, a lean fuel / air inlet is provided upstream of the lean mixture chamber, and the first and second rich mixtures are provided upstream of the first and second rich mixture chambers. 9. The combustion apparatus according to claim 3, wherein one common fuel / air introduction port communicating with both of the air chambers is provided. 上部の希薄炎口と下部の希薄燃料・空気導入口を形成する希薄バーナ形成板と、前記希薄バーナ形成板に接合して第一濃炎口を形成する第一濃バーナ形成板と、前記第一濃バーナ形成板に接合して第二濃炎口を形成するとともに前記第一濃炎口と前記第二濃炎口に連通する共通燃料・空気導入口を形成する第二濃バーナ形成板を設けた請求項3、8〜9のいずれか1項記載の燃焼装置。A lean burner forming plate forming an upper lean burn port and a lower lean fuel / air inlet, a first rich burner forming plate joining to the lean burner forming plate to form a first rich burner port, A second rich burner forming plate which forms a second rich burner port by being joined to the rich burner forming plate and forms a common fuel / air inlet communicating with the first rich burner port and the second rich burner port; The combustion device according to claim 3, wherein the combustion device is provided. 第一濃バーナ形成板に内側への段押し部を設けて希薄バーナ形成板と密着させ、第二濃バーナ形成板に内側への段押し部を設けて前記第一濃バーナ形成板に密着させた請求項10記載の燃焼装置。The first dark burner forming plate is provided with an inwardly stepped portion and is in close contact with the diluted burner forming plate, and the second darkly burner forming plate is provided with an inwardly stepped portion and is in close contact with the first dark burner forming plate. The combustion device according to claim 10. 請求項3、8〜11のいずれか1項記載の燃焼装置をバーナユニットとして構成し、前記バーナユニットの外側に突起を設けて前記バーナユニットを複数隣接配置し、前記突起を隣に配置されるバーナユニットと密着させた燃焼装置。The combustion device according to any one of claims 3, 8 to 11, is configured as a burner unit, a protrusion is provided outside the burner unit, a plurality of the burner units are arranged adjacent to each other, and the protrusion is arranged next to the burner unit. Combustion device in close contact with the burner unit. 第一濃炎口から噴出する第一濃混合気は可燃限界外の過濃混合気とした請求項3、8〜12のいずれか1項記載の燃焼装置。The combustion device according to any one of claims 3 to 8, wherein the first rich air-fuel mixture ejected from the first rich flame outlet is an excessively rich air-fuel mixture outside a flammable limit. 希薄炎口への燃料供給量を第一、第二濃炎口への燃料供給量より多く設定した請求項3、8〜13のいずれか1項記載の燃焼装置。14. The combustion apparatus according to claim 3, wherein the amount of fuel supplied to the lean flame outlet is set to be larger than the amount of fuel supplied to the first and second rich flame outlets. 希薄炎口からの混合気の噴出速度を第一、第二濃炎口からの混合気の噴出速度より速く設定した請求項3、8〜14のいずれか1項記載の燃焼装置。The combustion device according to any one of claims 3 to 8, wherein an ejection speed of the air-fuel mixture from the lean flame outlet is set higher than an ejection speed of the air-fuel mixture from the first and second rich flame openings. 希薄炎口の炎口面積を第一、第二濃炎口の炎口面積より大きく設定した請求項3、8〜15のいずれか1項記載の燃焼装置。The combustion device according to any one of claims 3 to 8, wherein the flame area of the lean flame port is set larger than the flame area of the first and second rich flame ports. 各炎口の燃料・空気導入口から各炎口までの通路長の内、希薄炎口の燃料・空気導入口から希薄炎口までの通路長を最も長く設定した請求項3、8〜16のいずれか1項記載の燃焼装置。The passage length from the fuel / air introduction port of the lean flame port to the lean flame port is set to be the longest among the passage lengths from the fuel / air introduction port of each flame port to each flame port. A combustion device according to any one of the preceding claims. 希薄炎口の燃料・空気導入口の開口面積を第一、第二炎口の燃料・空気導入口より大きく設定した請求項3、8〜17のいずれか1項記載の燃焼装置。18. The combustion apparatus according to claim 3, wherein the opening area of the fuel / air inlet of the lean flame is set larger than the fuel / air inlet of the first and second flames. 希薄炎口の燃料・空気導入口を第一、第二炎口の燃料・空気導入口より下部に位置させた請求項2、8〜18のいずれか1項記載の燃焼装置。19. The combustion apparatus according to claim 2, wherein the fuel / air introduction port of the lean flame port is located below the fuel / air introduction port of the first and second flame ports.
JP2002161191A 2002-06-03 2002-06-03 Combustion apparatus Pending JP2004003767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161191A JP2004003767A (en) 2002-06-03 2002-06-03 Combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161191A JP2004003767A (en) 2002-06-03 2002-06-03 Combustion apparatus

Publications (1)

Publication Number Publication Date
JP2004003767A true JP2004003767A (en) 2004-01-08

Family

ID=30430326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161191A Pending JP2004003767A (en) 2002-06-03 2002-06-03 Combustion apparatus

Country Status (1)

Country Link
JP (1) JP2004003767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166660A (en) * 2014-03-04 2015-09-24 パーパス株式会社 Burner, combustion apparatus, and combustion method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166660A (en) * 2014-03-04 2015-09-24 パーパス株式会社 Burner, combustion apparatus, and combustion method
US9927143B2 (en) 2014-03-04 2018-03-27 Purpose Co., Ltd. Burner, combustion apparatus, water heating apparatus and combustion method

Similar Documents

Publication Publication Date Title
US20070089419A1 (en) Combustor for gas turbine engine
US7127899B2 (en) Non-swirl dry low NOx (DLN) combustor
JP4066658B2 (en) Gas turbine combustor, gas turbine combustor premixing device, and gas turbine combustor premixing method
JP3821048B2 (en) Combustion device
CN115451431B (en) Fuel nozzle premixing system for combustion chamber of gas turbine
JP3435833B2 (en) Combustor
JP2004003767A (en) Combustion apparatus
JP2021173191A (en) Burner assembly, gas turbine combustor and gas turbine
JP2004053117A (en) Combustion device
JPH04126921A (en) Premix-type gas turbine combustor
JP2956242B2 (en) Combustion equipment
JP2956229B2 (en) Combustion equipment
JP4803430B2 (en) Combustion device and combustion unit
JPH06281146A (en) Burner for combustor
JP2003139304A (en) Combustion device
JP3879304B2 (en) Low NOx combustion equipment
JPH04236004A (en) Burner
JP2002130622A (en) Combustion equipment
JP3320903B2 (en) Combustion equipment
JP2587095Y2 (en) Lean burner
JP3317371B2 (en) Low NOx burner and combustion device using the low NOx burner
JP2956215B2 (en) Combustion equipment
JP2005351491A (en) Combustion device
JPH1122926A (en) Combustion burner with rarefied gas
JPH0278814A (en) Burner