JP2003139304A - Combustion device - Google Patents

Combustion device

Info

Publication number
JP2003139304A
JP2003139304A JP2001333982A JP2001333982A JP2003139304A JP 2003139304 A JP2003139304 A JP 2003139304A JP 2001333982 A JP2001333982 A JP 2001333982A JP 2001333982 A JP2001333982 A JP 2001333982A JP 2003139304 A JP2003139304 A JP 2003139304A
Authority
JP
Japan
Prior art keywords
rich
flame
lean
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001333982A
Other languages
Japanese (ja)
Inventor
Nobuhiko Fujiwara
宣彦 藤原
Fumitaka Kikutani
文孝 菊谷
Hideo Tomita
英夫 富田
Tatsumura Mo
立群 毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001333982A priority Critical patent/JP2003139304A/en
Publication of JP2003139304A publication Critical patent/JP2003139304A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To reduce NOx and size in a low NOx combustion device. SOLUTION: The combustion device is provided with a lean burner port 102 ejecting a lean mixture, a first rich burner port 106 provided adjacently to the lean burner port 102 and ejecting a first rich mixture, and a second rich burner port 109 provided adjacently to the first rich burner port 106 and ejecting a second rich mixture with lower mixture concentration than the first rich burner port 106. The first rich mixture fed from the first burner port 106 is cracked by stable flame of the second burner port 109, generated activation chemical species are fed to a base part of lean flame by diffusion and a high temperature and high reaction area livelily carrying out combustion reaction is formed, and by this, stabilized ultralow NOx and miniaturization are realized even when a high speed lean mixture is fed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として家庭用又
は業務用の燃焼装置において特に超低NOx化と同時に
装置の小型化を図った燃焼装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion apparatus mainly for household or business use, which has an extremely low NOx and at the same time has a small size.

【0002】[0002]

【従来の技術】従来のこの種の低NOx燃焼装置は特開
平6−82011号公報に記載されている図12のよう
なものが一般的であった。この低NOx燃焼装置は希薄
混合気を淡炎口1から燃焼室内に噴出供給する淡バーナ
2と、この淡バーナ2の両側に濃炎口3から濃混合気を
噴出供給する濃バーナ4が交互に配置するように構成さ
れている。
2. Description of the Related Art A conventional low NOx combustion device of this type is generally shown in FIG. 12 of JP-A-6-82011. In this low NOx combustion device, a lean burner 2 for ejecting a lean air-fuel mixture from a lean flame port 1 into the combustion chamber and a rich burner 4 for injecting a rich air-fuel mixture from both sides of the lean burner 2 alternately. Is configured to be placed.

【0003】そして上記淡バーナ2から供給された淡希
薄混合気は、燃焼室内で火炎温度が低く従って低NOx
ではあるが自身は不安定な希薄火炎を形成する。一方濃
バーナ4から供給された濃混合気は燃焼室内で火炎温度
が高く従ってNOx濃度は高いが自身は安定な濃火炎を
形成し、近接した希薄火炎に熱エネルギーを供給して燃
焼反応を促進させることにより全体として安定ないわゆ
る濃淡燃焼を実現する。そして淡バーナ2の燃料供給割
合を濃バーナ4より大きく設定し、全体として低NOx
化を図っていた。
The lean lean air-fuel mixture supplied from the lean burner 2 has a low flame temperature in the combustion chamber and therefore low NOx.
However, he himself forms an unstable lean flame. On the other hand, the rich mixture supplied from the rich burner 4 has a high flame temperature in the combustion chamber and therefore a high NOx concentration, but forms a stable rich flame by itself, and supplies thermal energy to the adjacent lean flame to accelerate the combustion reaction. By doing so, stable so-called light and dark combustion is realized as a whole. Then, the fuel supply ratio of the light burner 2 is set to be larger than that of the rich burner 4, and low NOx as a whole is obtained.
I was trying to make it.

【0004】また他の例として混合気濃度を同様に段階
的に変化させ低NOx化を図った濃淡燃焼式の燃焼装置
が特開平7−310906号公報に記載されている。こ
の装置は図13に示すように濃混合気室9に希薄混合気
室(図示せず)から淡炎口10につながる希薄混合気通
路11のうち、仕切で区切られた区画12に向かい濃混
合気噴射口13を設けた構成になっている。
As another example, Japanese Patent Laid-Open Publication No. 7-310906 discloses a rich / lean combustion type combustion device in which the concentration of air-fuel mixture is similarly changed stepwise to reduce NOx. As shown in FIG. 13, this device is arranged in a rich air-fuel mixture chamber 9 from a lean air-fuel mixture chamber (not shown) to a section 12 of a lean air-fuel mixture passage 11 that connects to a lean flame port 10 and is subjected to rich mixing. The air injection port 13 is provided.

【0005】そして上記濃混合気室9から濃混合気噴射
口13を通って仕切で区切られた区画12の希薄混合気
通路11に向かい濃混合気を供給し、淡炎口10の両端
に中間濃度の中間炎Aと低流速の希薄火炎Bを形成し、
主炎である希薄火炎Cを濃火炎Dの作用と共に安定化し
て低NOx化を図るものである。
Then, the rich air-fuel mixture is supplied from the rich air-fuel mixture chamber 9 to the lean air-fuel mixture passage 11 of the partition 12 which is divided by the partition through the rich air-fuel mixture injection port 13, and the rich air-fuel mixture is supplied to both ends of the lean flame port 10 at an intermediate position. Forming a concentrated intermediate flame A and a low velocity lean flame B,
The lean flame C, which is the main flame, is stabilized together with the action of the rich flame D to reduce the NOx.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の第一の例における低NOx燃焼装置では、淡バーナ2
の燃料供給割合を増加して更にNOxの低減を図ろうと
すれば、希薄混合気の濃度を保つために空気もその分増
加して供給され淡炎口1から噴出する希薄混合気の噴出
流速が大幅に増加することになる。しかし濃バーナ4の
燃料供給割合がその分小さくなっており、希薄火炎を濃
火炎の熱的エネルギーで安定化する方式であるため噴出
流速が増加した希薄火炎は非常に不安定となるため低N
Ox化には限界が存在するという課題があった。
However, in the low NOx combustion device in the first conventional example, the light burner 2 is used.
If an attempt is made to further reduce the NOx by increasing the fuel supply ratio of, the air flow rate is also increased to maintain the concentration of the lean air-fuel mixture, and the jet flow velocity of the lean air-fuel mixture ejected from the lean flame port 1 is increased. It will be greatly increased. However, the fuel supply ratio of the rich burner 4 is reduced accordingly, and since the lean flame is stabilized by the thermal energy of the rich flame, the lean flame with the increased jet velocity becomes very unstable and the low N
There is a problem that there is a limit to Ox conversion.

【0007】また上記従来の第二の例における低NOx
燃焼装置では、仕切で区切られた区画12の混合気濃度
は濃混合気と希薄混合気が混合して中間濃度となり、形
成される中間炎Aはちょうど燃焼速度が最も高くなる理
論混合比に近い濃度となる。一方、中間炎Aの中間濃度
の混合気は炎口からの噴出流速が最も小さくなる。従っ
て中間炎は炎口に近接して当該炎口を加熱し、炎口赤熱
や火炎が上流側に進行するバックを発生させる。そして
低流速の中間炎Bも同様に当該炎口に近接し炎口を赤熱
するため燃焼量の可変幅を大きくすることが困難とな
る。また主炎となる希薄火炎Cの安定性を決定する火炎
基部は、低流速の希薄火炎Bが実質上の火炎基部を形成
することになり、火炎温度が高くないため保炎効果は小
さなものとなる。従ってこの点においても燃焼量の可変
調節幅が小さくなり、希薄火炎の燃焼割合を更に増加し
て一層の低NOx化や小型化を図るにも限界が有った。
Also, the low NOx in the above-mentioned second conventional example.
In the combustion device, the mixture concentration in the section 12 divided by the partition becomes an intermediate concentration by mixing the rich mixture and the lean mixture, and the intermediate flame A formed is close to the theoretical mixture ratio at which the combustion speed becomes the highest. It becomes the concentration. On the other hand, the air-fuel mixture having an intermediate concentration of the intermediate flame A has the smallest jet flow velocity from the flame port. Therefore, the intermediate flame heats the flame mouth in the vicinity of the flame mouth, and causes red heat of the flame mouth or back which advances the flame toward the upstream side. Similarly, the intermediate flame B having a low flow velocity is also close to the flame mouth and red-heats the flame mouth, which makes it difficult to increase the variable range of the combustion amount. Further, in the flame base portion that determines the stability of the lean flame C that is the main flame, the lean flame B having a low flow velocity forms a substantial flame base portion, and the flame holding effect is small because the flame temperature is not high. Become. Therefore, also in this point, the variable adjustment range of the combustion amount becomes small, and there is a limit to further increase the combustion ratio of the lean flame to further reduce NOx and downsize.

【0008】このように従来の燃焼装置では更に低NO
x化を図るために希薄火炎の燃料供給割合を増加させる
と希薄混合気の噴出流速が大きくなる一方で熱的効果で
保炎をする濃火炎が小さくなり、また中央部の炎口に向
かって混合気の濃度が段階的で単調に変化して薄くなっ
ていくという方式であって希薄火炎の安定性に制約を受
けており、一層の低NOx化や小型化を図るため希薄混
合気の噴出流速を大きくすることや濃度を更に薄くする
ことには限界があった。
As described above, in the conventional combustion device, the NO level is further reduced.
If the fuel supply ratio of the lean flame is increased in order to achieve x, the jet velocity of the lean air-fuel mixture increases, while the rich flame that holds the flame by the thermal effect decreases, and toward the flame mouth in the center part. It is a method in which the concentration of the air-fuel mixture gradually changes monotonically and becomes thinner, and it is restricted by the stability of the lean flame, and the injection of the lean air-fuel mixture is aimed at further reducing NOx and downsizing. There was a limit to increase the flow velocity and further decrease the concentration.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するため、希薄混合気を噴出する希薄炎口、これよりも
濃い濃度の第一濃混合気を噴出する第一濃炎口、前記希
薄混合気と第一濃混合気の間の濃度の混合気を噴出する
第二濃炎口を備え、前記各炎口は近接して配置すると共
に希薄炎口の隣に第一濃炎口を位置させたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a lean flame port for ejecting a lean air-fuel mixture, a first rich flame port for ejecting a first rich air-fuel mixture having a concentration higher than that, A second rich flame outlet for ejecting an air-fuel mixture having a concentration between the lean air-fuel mixture and the first rich air-fuel mixture is provided, and the respective flame orifices are arranged close to each other and the first rich flame orifice is provided next to the lean flame orifice. It is located.

【0010】ここで技術課題の解決ポイントとなる希薄
火炎の安定性を決定づける火炎基部構造を詳細に調査し
た結果、上記構成によって以下のことが明らかになっ
た。すなわち第二濃炎口から供給される第一濃炎口より
も薄い濃混合気により自身が安定な火炎を形成し、第一
濃炎口から噴出される濃混合気の熱分解反応を促進す
る。そして第一濃炎口から供給される濃混合気はこの熱
分解により化学的に活性な中間生成物を多量に発生し、
この中間生成物が希薄炎口上に形成される希薄火炎の基
部に拡散供給されて基部の微小空間に燃焼反応が活発に
行われる「高温・高反応域」が形成され、これにより希
薄火炎自身が安定化されることが分かった。そして物質
拡散の基本であるフックの法則から推察されるように、
希薄炎口と第一濃炎口から噴出される混合気の濃度差が
大きいほど、また希薄炎口と第一濃炎口の距離小さいほ
ど、「高温・高反応域」が形成されやすいことが判明し
た。従って希薄混合気の噴出流速を増加することや、希
薄混合気の濃度を小さくすることができるので、更に低
NOx化と小型化が図られるとともに、燃焼量可変幅の
拡大や、空気の高速変動にも追従して安定燃焼を実現で
きる。このように互いに濃度の異なる混合気を供給し超
低NOx燃焼を実現する燃焼方式を、従来の濃淡燃焼と
識別するため以後「多濃度燃焼」と呼ぶ。
As a result of detailed investigation of the flame base structure which determines the stability of the lean flame, which is a solution point of the technical problem, the following has been clarified by the above configuration. In other words, the rich air-fuel mixture supplied from the second rich-flame port is thinner than the first rich-flame port to form a stable flame, and promotes the thermal decomposition reaction of the rich air-fuel mixture ejected from the first rich-flame port. . Then, the rich air-fuel mixture supplied from the first rich flame port generates a large amount of chemically active intermediate products due to this thermal decomposition,
This intermediate product is diffused and supplied to the base of the lean flame formed on the lean flame mouth, and a "high temperature / high reaction zone" is formed in which the combustion reaction is actively carried out in the micro space of the base, whereby the lean flame itself is formed. It turned out to be stabilized. And as inferred from Hooke's law, which is the basis of material diffusion,
The higher the concentration difference of the air-fuel mixture ejected from the lean flame port and the first rich flame port, and the smaller the distance between the lean flame port and the first rich flame port, the more easily the "high temperature / high reaction zone" can be formed. found. Therefore, the jet velocity of the lean air-fuel mixture can be increased and the concentration of the lean air-fuel mixture can be reduced, so that NOx can be further reduced and downsized, and the combustion amount variable range and the high-speed air fluctuation can be increased. Can be followed to achieve stable combustion. Such a combustion system that supplies ultra-low NOx combustion by supplying air-fuel mixtures having different concentrations to each other is hereinafter referred to as "multi-concentration combustion" in order to distinguish it from conventional concentration combustion.

【0011】[0011]

【発明の実施の形態】請求項1に記載の発明は、希薄混
合気を噴出する希薄炎口、これよりも濃い濃度の第一濃
混合気を噴出する第一濃炎口、前記希薄混合気と第一濃
混合気の間の濃度の混合気を噴出する第二濃炎口を備
え、前記各炎口は近接して配置すると共に希薄炎口の隣
に第一濃炎口を位置させ、希薄炎口と第一濃炎口の間の
無口部距離を0.2mm以上1mm以下に設定している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is directed to a lean flame port for jetting a lean air-fuel mixture, a first rich flame port for jetting a first rich air-fuel mixture having a concentration higher than that, and the lean air-fuel mixture. And a second rich flame outlet for ejecting a mixture having a concentration between the first rich mixture and each of the flame orifices is arranged close to each other and the first rich flame orifice is located next to the lean flame orifice, The distance between the lean flame and the first rich flame is set to 0.2 mm or more and 1 mm or less.

【0012】そして、希薄火炎の基部に燃焼反応が活発
に行われる「高温・高反応域」が形成され、これにより
希薄火炎自身が安定化される。従って希薄混合気の噴出
流速を増加することや、希薄混合気の濃度を小さくする
ことができるのでさらなる低NOx化と小型化を達成で
き、燃焼量可変幅の拡大や、空気の高速変動にも追従し
て安定燃焼を実現できる。
At the base of the lean flame, a "high temperature / high reaction zone" in which the combustion reaction is actively carried out is formed, whereby the lean flame itself is stabilized. Therefore, it is possible to increase the jet velocity of the lean air-fuel mixture and to reduce the concentration of the lean air-fuel mixture, so that it is possible to achieve further reduction of NOx and downsizing, and to increase the combustion amount variable range and high-speed air fluctuations. Following this, stable combustion can be realized.

【0013】請求項2に記載の発明は、希薄混合気を噴
出する希薄炎口、これよりも濃い濃度の第一濃混合気を
噴出する第一濃炎口、前記希薄混合気と第一濃混合気の
間の濃度の混合気を噴出する第二濃炎口を備え、前記各
炎口は近接して配置すると共に第一濃炎口と第二濃炎口
とで希薄炎口を挟む構成とし、希薄炎口と第一濃炎口の
間の無口部距離を0.2mm以上1mm以下に設定してい
る。
According to a second aspect of the present invention, there is provided a lean flame port for ejecting a lean air-fuel mixture, a first rich flame port for ejecting a first rich air-fuel mixture having a concentration higher than that, the lean air-fuel mixture and the first air-rich mixture. A configuration is provided in which a second rich flame outlet that ejects a mixture having a concentration between the air-fuel mixtures is arranged, and the respective flame orifices are arranged close to each other, and the lean flame orifice is sandwiched between the first rich flame orifice and the second rich flame orifice. The distance between the lean flame opening and the first rich flame opening is 0.2 mm or more and 1 mm or less.

【0014】そして、第一濃炎口、第二濃炎口の数を最
低限にできるため、燃焼装置を軽量、安価に製作でき
る。また希薄火炎の左右側に異なる濃度、つまり異なる
固有振動周波数を持つ予混合火炎が左右非対称に形成さ
れることによって、振動の伝播を抑制し、ある特定の周
波数で大きな音を発生するいわゆる振動燃焼の抑制に効
果的がある。
Since the number of the first rich flame openings and the second rich flame openings can be minimized, the combustion device can be manufactured in a lightweight and inexpensive manner. In addition, premixed flames with different concentrations, that is, different natural vibration frequencies are formed asymmetrically on the left and right sides of the lean flame, which suppresses the propagation of vibration and produces a loud sound at a specific frequency. Is effective in suppressing.

【0015】請求項3に記載の発明は、希薄混合気を噴
出する希薄炎口、これよりも濃い濃度の第一濃混合気を
噴出する第一濃炎口、前記希薄混合気と第一濃混合気の
間の濃度の混合気を噴出する第二濃炎口を備え、前記各
炎口は近接して配置すると共に希薄炎口の希薄混合気が
隣接する炎口に流入する構成として、希薄炎口の隣の炎
口を希薄混合気と第一濃混合気の間の濃度の混合気を噴
出する第二濃炎口とし、希薄炎口と第二濃炎口の間の無
口部距離を0.2mm以上1mm以下に設定している。
According to a third aspect of the present invention, there is provided a lean flame port for jetting a lean air-fuel mixture, a first rich flame port for jetting a first rich air-fuel mixture having a concentration higher than this, the lean air-fuel mixture and the first air-rich mixture. A second rich flame port for ejecting a mixture having a concentration between the mixtures is provided, and the respective flame ports are arranged close to each other, and the lean mixture of the lean flame ports flows into the adjacent flame ports. The flame outlet next to the flame orifice is defined as the second rich flame outlet that injects a mixture having a concentration between the lean mixture and the first rich mixture, and the silent portion distance between the lean flame orifice and the second rich flame inlet is set. It is set to 0.2 mm or more and 1 mm or less.

【0016】そして、希薄炎口の噴出抵抗を第二濃炎口
よりも大きく設定すると共に希薄炎口と第二濃炎口を隣
接させているため希薄混合気が隣接する炎口に流入する
ことになる。よって、単なる開口を設けてその面積、個
数の調整で希薄混合気の第二濃炎口の混合室への流入を
調整でき、各種燃料への対応が容易にできるとともに燃
焼装置を安価に製作できる。
Since the jet resistance of the lean flame port is set to be larger than that of the second rich flame port and the lean flame port and the second rich flame port are adjacent to each other, the lean air-fuel mixture flows into the adjacent flame port. become. Therefore, it is possible to adjust the flow of the lean air-fuel mixture into the mixing chamber of the second rich flame port by simply providing openings and adjusting the area and number of them, and it is possible to easily deal with various fuels and to manufacture the combustion device at low cost. .

【0017】請求項4記載の発明は、希薄炎口、第一濃
炎口、第二濃炎口はそれぞれに独立した混合気室及び燃
料・空気導入口を有する構成としている。
According to a fourth aspect of the present invention, the lean flame port, the first rich flame port, and the second rich flame port each have an independent air-fuel mixture chamber and fuel / air inlet.

【0018】そして、希薄混合気と第一濃混合気と第二
濃混合気への燃料供給割合を調節して安定燃焼範囲を調
節したり、供給する燃料の種類が異なった場合にはその
燃料に最適の燃料分配比と各混合気の濃度に最も容易に
再設定することができる。従って同一燃焼装置で各種の
燃料を使用できる。
Then, the ratio of fuel supply to the lean air-fuel mixture, the first rich air-fuel mixture and the second rich air-fuel mixture is adjusted to adjust the stable combustion range, and when the kind of fuel to be supplied is different, the fuel is supplied. The optimum fuel distribution ratio and the concentration of each mixture can be reset most easily. Therefore, various fuels can be used in the same combustion device.

【0019】請求項5記載の発明は、希薄炎口、第一濃
炎口、第二濃炎口はそれぞれに混合気室を有すると共
に、第二濃炎口の第二濃混合気室は連通手段を介して希
薄炎口の希薄混合気室と連通させて希薄混合気と第一濃
混合気の間の濃度の混合気を生成させる構成としてい
る。
According to the fifth aspect of the present invention, the lean flame port, the first rich flame port, and the second rich flame port each have a mixture chamber, and the second rich mixture chamber of the second rich flame port communicates with each other. It is configured to communicate with the lean air-fuel mixture chamber of the lean flame port via the means to generate an air-fuel mixture having a concentration between the lean air-fuel mixture and the first rich air-fuel mixture.

【0020】そして、個別に燃料供給系を設ける場合よ
りも燃焼装置全体を小型で安価に製作することができ
る。
Further, the entire combustion apparatus can be manufactured in a smaller size and at a lower cost than in the case where individual fuel supply systems are provided.

【0021】請求項6記載の発明は、希薄混合気を噴出
する希薄炎口、これよりも濃い濃度の第一濃混合気を噴
出する第一濃炎口、前記希薄混合気と第一濃混合気の間
の濃度の混合気を噴出する第二濃炎口を備えるととも
に、前記希薄炎口、第一濃炎口、第二濃炎口のいずれか
に近接して空気供給部を設け、かつ同希薄炎口、第一濃
炎口、第二濃炎口はそれぞれに混合気室を有すると共
に、第二濃炎口の第二濃混合気室は前記空気供給部から
の空気を混入させて希薄混合気と第一濃混合気の間の濃
度の混合気を生成させる構成としている。
According to a sixth aspect of the present invention, there is provided a lean flame port for jetting a lean air-fuel mixture, a first rich flame port for jetting a first rich air-fuel mixture having a concentration higher than that, and the lean air-fuel mixture and the first rich air-fuel mixture. With a second rich flame port for ejecting a mixture of the concentration between the air, the lean flame port, the first rich flame port, an air supply section is provided in proximity to any of the second rich flame port, and The lean flame port, the first rich flame port, and the second rich flame port each have a mixture chamber, and the second rich mixture chamber of the second rich flame port mixes air from the air supply unit. It is configured to generate a mixture having a concentration between the lean mixture and the first rich mixture.

【0022】そして、空気供給部の開口面積の調整によ
り、希薄混合気と独立に第二濃混合気の濃度、噴出量を
調整できるため、各種燃料への対応が容易にできる。
By adjusting the opening area of the air supply section, the concentration and the injection amount of the second rich air-fuel mixture can be adjusted independently of the lean air-fuel mixture, so that various fuels can be easily handled.

【0023】請求項7記載の発明は、希薄炎口に混合気
室及び燃料・空気導入口を設けると共に、第一、第二濃
炎口にはそれぞれ混合気室とこの各混合気室に連通する
一つの共通燃料・空気導入口を設けている。
According to the seventh aspect of the present invention, the lean flame port is provided with the air-fuel mixture chamber and the fuel / air introduction port, and the first and second rich flame ports respectively communicate with the air-fuel mixture chamber and the respective air-fuel mixture chambers. There is one common fuel / air inlet.

【0024】そして、第一濃炎口と第二濃炎口に個別に
燃料、空気を供給する場合に比べて構成が簡単で小型化
が図られ、これら炎口に対応する燃料供給系や導入口に
至るまでの空気供給系も共通化できるので燃焼装置全体
を小型で安価に製作することができる。
As compared with the case where fuel and air are individually supplied to the first rich flame opening and the second rich flame opening, the structure is simple and downsizing is achieved, and the fuel supply system and introduction corresponding to these flame openings are introduced. Since the air supply system up to the mouth can be shared, the entire combustion device can be manufactured in a small size and at low cost.

【0025】請求項8記載の発明は、上流に希薄混合気
室を有する希薄炎口と、前記希薄炎口に隣接し上流に第
一濃混合気室を有する第一濃炎口と、前記第一濃炎口と
隣接し上流に第二濃混合気室を有する第二濃炎口とを備
え、前記第二濃混合気室は連通手段を介して希薄混合気
室と連通させて希薄混合気と第一濃混合気の間の濃度の
第二濃混合気を生成させるとともに、前記希薄混合気室
の上流には希薄燃料・空気導入口を設け、かつ第一、第
二濃混合気室の上流には当該第一、第二濃混合気室の両
方に連通する一つの共通燃料・空気導入口を設け、前記
希薄炎口と第一濃炎口の間の無口部距離を0.2mm以上
1mm以下に設定している。
According to an eighth aspect of the present invention, a lean flame port having a lean air-fuel mixture chamber upstream, a first rich flame port having a first rich air-fuel chamber adjacent to the lean flame port and upstream, A second rich flame opening adjacent to the one rich flame opening and having a second rich air-fuel mixture chamber upstream is provided, wherein the second rich air-fuel mixture chamber is communicated with the lean air-fuel mixture chamber through a communicating means to dilute the lean air-fuel mixture. And a second rich mixture having a concentration between the first rich mixture and the first rich mixture, and a lean fuel / air inlet is provided upstream of the lean mixture chamber, and One common fuel / air inlet that communicates with both the first and second rich mixture chambers is provided upstream, and the non-part distance between the lean flame port and the first rich flame port is 0.2 mm or more. It is set to 1 mm or less.

【0026】そして、希薄燃料・空気導入口と共通燃料
・空気導入口へそれぞれ燃料を独立して供給する構成と
しているため、希薄混合気と濃混合気への燃料供給割合
を調節して安定燃焼範囲を調節したり、供給する燃料の
種類が異なった場合にはその燃料に最適の燃料分配比お
よび各混合気の濃度を容易に再設定することができる。
従って同一燃焼装置で各種の燃料を使用できる。
Further, since the fuel is independently supplied to the lean fuel / air inlet and the common fuel / air inlet, the fuel supply ratio to the lean air-fuel mixture and the rich air-fuel mixture is adjusted for stable combustion. When the range is adjusted or the type of fuel to be supplied is different, the optimum fuel distribution ratio and the concentration of each air-fuel mixture can be easily reset for that fuel.
Therefore, various fuels can be used in the same combustion device.

【0027】第9の燃焼装置は、上部の希薄炎口と下部
の希薄燃料・空気導入口を形成する希薄炎口形成体と、
前記希薄炎口形成体に接合して第一濃炎口を形成する第
一濃炎口形成体と、前記第一濃炎口形成体に接合して第
二濃炎口を形成するとともに前記第一濃炎口と前記第二
濃炎口に連通する共通燃料・空気導入口を形成する第二
濃炎口形成体を設けている。
The ninth combustion apparatus includes a lean flame port forming member for forming a lean flame port at an upper portion and a lean fuel / air introducing port at a lower portion,
A first rich flame mouth forming body that is joined to the lean flame mouth forming body to form a first rich flame mouth, and a second rich flame mouth that is joined to the first rich flame mouth forming body and the first rich flame mouth forming body. There is provided a second rich flame port forming body forming a common fuel / air introducing port communicating with the first rich flame port and the second rich flame port.

【0028】そして、希薄炎口形成体は希薄炎口と第一
濃炎口の形成を兼ね、一方第一濃炎口形成体は第一濃炎
口と第二濃炎口の形成を兼ねているため、バーナユニッ
トを構成する板金等の材料を最小限にすることができ、
燃焼装置全体を軽量で安価に製作できる。また非常に近
接した状態で各炎口を配置することができるため、各混
合気間の温度勾配、濃度勾配が急峻になり希薄火炎基部
の「高温・高反応域」の形成が促進され、火炎全体をよ
り安定化できる。
Then, the lean flame mouth forming body serves to form the lean flame mouth and the first rich flame mouth, while the first rich flame mouth forming body serves to form the first rich flame mouth and the second rich flame mouth. Therefore, it is possible to minimize the materials such as sheet metal that make up the burner unit.
The entire combustion device is lightweight and can be manufactured at low cost. In addition, since each flame port can be placed very close to each other, the temperature gradient and concentration gradient between each mixture become steep, which promotes the formation of the "high temperature / high reaction zone" of the lean flame base, The whole can be made more stable.

【0029】請求項10記載の発明は、第一濃炎口から
噴出する第一濃混合気は可燃限界外の過濃度混合気とし
ている。
According to the tenth aspect of the invention, the first rich air-fuel mixture ejected from the first rich flame port is an over-concentrated air-fuel mixture outside the flammability limit.

【0030】そして、希薄混合気と第一濃混合気の濃度
勾配を大きくして、希薄火炎の基部への第一濃混合気の
流入を促進させて「高温・高反応域」の形成を促進で
き、希薄火炎を強固に安定化できる。
Then, the concentration gradient between the lean air-fuel mixture and the first rich air-fuel mixture is increased to promote the inflow of the first rich air-fuel mixture into the base portion of the lean flame to promote the formation of the "high temperature / high reaction zone". It is possible to strongly stabilize the lean flame.

【0031】請求項11記載の発明は、希薄炎口への燃
料供給量を第一、第二濃炎口への燃料供給量より多く設
定している。
In the eleventh aspect of the invention, the fuel supply amount to the lean flame port is set to be larger than the fuel supply amount to the first and second rich flame ports.

【0032】そして、NOxの少ない希薄火炎の割合を
増し、燃焼装置全体として超低NOxを実現できる。
Then, the ratio of the lean flame with a small amount of NOx can be increased, and ultra low NOx can be realized in the entire combustion apparatus.

【0033】請求項12記載の発明は、希薄炎口からの
混合気の噴出速度を第一、第二濃炎口からの混合気の噴
出速度より速く設定している。
In the twelfth aspect of the present invention, the jet speed of the air-fuel mixture from the lean flame port is set to be higher than the jet speed of the air-fuel mixture from the first and second rich flame ports.

【0034】そして、高速噴流に伴う巻き込み効果によ
り第一濃混合気が希薄混合気に巻き込まれ、「高温・高
反応域」の形成を促進できる。また希薄混合気の流速を
速く設定しても希薄火炎が安定化されるため希薄炎口の
面積を小さくすることができ、燃焼装置全体を小型で安
価に製作することができる。
The first concentrated air-fuel mixture is entrained in the lean air-fuel mixture due to the entrainment effect associated with the high-speed jet, and the formation of the "high temperature / high reaction zone" can be promoted. Further, since the lean flame is stabilized even if the flow velocity of the lean air-fuel mixture is set high, the area of the lean flame port can be made small, and the entire combustion apparatus can be made compact and inexpensive.

【0035】請求項13記載の発明は、希薄炎口の炎口
面積を第一、第二濃炎口の炎口面積より大きく設定して
いる。
In the thirteenth aspect of the present invention, the flame opening area of the lean flame opening is set to be larger than the flame opening areas of the first and second rich flame openings.

【0036】そして、希薄混合気の噴出速度が極度に速
くならず、安定した希薄火炎が形成されるとともに、燃
焼用空気を供給するファンの負荷が低減され、騒音を抑
制することができる。
Further, the jet speed of the lean air-fuel mixture does not become extremely high, a stable lean flame is formed, the load of the fan for supplying the combustion air is reduced, and the noise can be suppressed.

【0037】請求項14記載の発明は、各炎口の燃料・
空気導入口から各炎口までの通路長の内、希薄炎口の燃
料・空気導入口から希薄炎口までの通路長を最も長く設
定している。
According to a fourteenth aspect of the present invention, the fuel of each flame outlet is
Among the passage lengths from the air introduction port to each flame port, the passage length from the fuel / air introduction port of the lean flame port to the lean flame port is set to be the longest.

【0038】そして、希薄燃料・空気導入口から供給さ
れた多量の空気と大部分の燃料は長い通路を通過する間
に十分混合され、また整流されて乱れが減衰して希薄炎
口へ供給されるため、超NOx燃焼と燃焼騒音の低減を
実現することができる。
Then, a large amount of air supplied from the lean fuel / air inlet and most of the fuel are sufficiently mixed while passing through a long passage, and are rectified and the turbulence is attenuated and supplied to the lean flame port. Therefore, super NOx combustion and reduction of combustion noise can be realized.

【0039】請求項15記載の発明は、希薄炎口の燃料
・空気導入口の開口面積を第一、第二炎口の燃料・空気
導入口より大きく設定している。
According to the fifteenth aspect of the present invention, the opening area of the fuel / air introducing port of the lean flame port is set larger than that of the fuel / air introducing port of the first and second flame ports.

【0040】そして、燃焼用空気は大きな圧力損失を受
けることなく希薄炎口に多量に供給され、多量の希薄混
合気を生成して超低NOxの希薄火炎を形成することが
できる。また燃焼用空気を供給するファンの負荷が低減
され、騒音を抑制することができる。
A large amount of combustion air is supplied to the lean flame port without receiving a large pressure loss, and a large amount of lean air-fuel mixture is generated to form an ultralow NOx lean flame. Further, the load of the fan that supplies the combustion air is reduced, and noise can be suppressed.

【0041】請求項16記載の発明は、希薄炎口の燃料
・空気導入口を第一、第二炎口の燃料・空気導入口より
下部に位置させている。
According to the sixteenth aspect of the present invention, the fuel / air introducing port of the lean flame port is located below the fuel / air introducing port of the first and second flame ports.

【0042】そして、ファンが供給する燃焼用空気は大
きな圧力損失を受けることなく上流側に位置する希薄燃
料・空気導入口から希薄炎口に導かれるため、ファンの
負荷が低減され、騒音を抑制することができる。
The combustion air supplied by the fan is guided to the lean flame port from the lean fuel / air inlet located on the upstream side without receiving a large pressure loss, so that the load of the fan is reduced and the noise is suppressed. can do.

【0043】請求項17記載の発明は、炎口から噴出す
る混合気を点火させる着火手段を備え、この着火手段は
第一、第二炎口からの混合気を横切るように高圧放電さ
せている。
According to the seventeenth aspect of the present invention, there is provided igniting means for igniting the air-fuel mixture ejected from the flame opening, and the igniting means discharges the air-fuel mixture from the first and second flame openings at a high pressure so as to cross the air-fuel mixture. .

【0044】そして、燃料供給量等の変動による空気過
剰率の変動に関わらず、最も着火しやすい混合気濃度が
高圧放電αの形成部の何れかの位置に生じ、希薄炎口へ
の燃料供給量を多く設定しても確実に着火を行うことが
でき、着火時におけるHC等の未燃焼物質の排出を抑制
できる。
Then, regardless of fluctuations in the excess air ratio due to fluctuations in the fuel supply amount, the concentration of the air-fuel mixture that is most likely to ignite occurs at any position in the formation part of the high-pressure discharge α, and the fuel is supplied to the lean flame port. Ignition can be reliably performed even if a large amount is set, and discharge of unburned substances such as HC during ignition can be suppressed.

【0045】請求項18記載の発明は、請求項1〜9の
いずれかに記載の燃焼装置をバーナユニットとして構成
し、このバーナユニットを複数隣接配置して構成してい
る。そして、バーナユニットの本数を適宜選択すること
により幅広い能力の燃焼装置を提供できる。
According to an eighteenth aspect of the present invention, the combustion apparatus according to any one of the first to ninth aspects is configured as a burner unit, and a plurality of the burner units are arranged adjacent to each other. Then, by appropriately selecting the number of burner units, it is possible to provide a combustion device having a wide range of capabilities.

【0046】請求項19記載の発明は、請求項1、3〜
9のいずれかに記載の燃焼装置をバーナユニットとして
構成し、このバーナユニットは希薄炎口の両側に第一濃
炎口、その両側に第二濃炎口を配置して構成している。
The invention described in claim 19 is,
The burner unit according to any one of 9 is configured as a burner unit, and the burner unit is configured by arranging first rich flame ports on both sides of the lean flame port and second rich flame ports on both sides thereof.

【0047】そして、単一のバーナユニットにて燃焼を
完結でき、バーナユニット本数、配置間隔等を自由に選
択でき、設計の自由度を高めることができる。
Combustion can be completed with a single burner unit, the number of burner units, the arrangement interval, etc. can be freely selected, and the degree of freedom in design can be increased.

【0048】[0048]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0049】(実施例1)図1は本発明の実施例1の燃
焼装置を示す模式的な全体断面図、図2は同燃焼装置の
バーナユニットを分解した状態の斜視図、図3は同燃焼
装置のバーナユニットの斜視図、図4は同燃焼装置のバ
ーナユニットのTーT面断面図、図5は同燃焼装置の着
火手段近傍の拡大図、図6は同燃焼装置の火炎の模式
図、図7は同燃焼装置の吹き飛び流速を示す図、図8は
天然ガス燃焼時における希薄燃料割合とNOxの関係を
示す図である。
(Embodiment 1) FIG. 1 is a schematic overall sectional view showing a combustion apparatus according to Embodiment 1 of the present invention, FIG. 2 is a perspective view showing a state in which a burner unit of the combustion apparatus is disassembled, and FIG. 3 is the same. FIG. 4 is a perspective view of a burner unit of the combustion device, FIG. 4 is a sectional view of the burner unit of the combustion device taken along the line TT, FIG. 5 is an enlarged view of the vicinity of the ignition means of the combustion device, and FIG. 6 is a schematic view of the flame of the combustion device. FIG. 7 is a diagram showing a blow-off flow velocity of the combustion device, and FIG. 8 is a diagram showing a relationship between a lean fuel ratio and NOx at the time of natural gas combustion.

【0050】図1〜図8において、希薄炎口形成体10
1が上部に希薄炎口102、下部に希薄燃料・空気導入
口103、希薄炎口102の上流の希薄混合気室104
を形成している。希薄炎口形成体101の両側に第一濃
炎口形成体105を接合し、第一濃炎口106とその上
流の第一濃混合気室107を形成している。第一濃炎口
形成体105の外側には第二濃炎口形成体108を接合
し、第二濃炎口109とその上流の第二濃混合気室11
0を形成している。さらに第二濃炎口形成体108は希
薄炎口形成体101とも接合することによって、第一濃
混合気室107と第二濃混合気室110に連通する連通
室111と希薄燃料・空気導入口103の上部に位置す
る共通燃料・空気導入口112を形成している。希薄炎
口形成体101には希薄混合気室104と第二濃混合気
室110を連通させる連通手段113が設けられてい
る。これら希薄炎口形成体101とその両側の第一濃炎
口形成体105とその両側に設けられた第二濃炎口形成
体108とが一体化されてバーナユニット114が構成
される。なお図2においては、図の簡略化のため、希薄
炎口形成体101の片側に第一濃炎口形成体105、第
二濃炎口形成体108が接合される状態を示している。
In FIGS. 1 to 8, the lean flame mouth former 10 is formed.
Reference numeral 1 indicates a lean flame port 102 on the upper side, lean fuel / air inlet port 103 on the lower side, and lean mixture chamber 104 upstream of the lean flame port 102.
Is formed. The first rich flame mouth forming body 105 is joined to both sides of the lean flame mouth forming body 101, and the first rich flame mouth 106 and the first rich air-fuel mixture chamber 107 upstream thereof are formed. The second rich flame mouth forming body 108 is joined to the outside of the first rich flame mouth forming body 105, and the second rich flame mouth 109 and the second rich air-fuel mixture chamber 11 upstream thereof.
Forming 0. Further, the second rich flame port forming body 108 is also joined to the lean flame port forming body 101, so that the communication chamber 111 communicating with the first rich mixture chamber 107 and the second rich mixture chamber 110 and the lean fuel / air introducing port. A common fuel / air inlet 112 is formed at the upper part of 103. The lean flame port forming body 101 is provided with a communication means 113 for communicating the lean air-fuel mixture chamber 104 and the second rich air-fuel mixture chamber 110. A burner unit 114 is configured by integrating the lean flame port forming body 101, the first rich flame port forming bodies 105 on both sides thereof, and the second rich flame port forming bodies 108 provided on both sides thereof. Note that, in FIG. 2, for simplification of the drawing, a state in which the first rich flame mouth forming body 105 and the second rich flame mouth forming body 108 are joined to one side of the lean flame mouth forming body 101 is shown.

【0051】バーナケース115内にはこのバーナユニ
ット114が複数個収納され燃焼室116と連接してい
る。またバーナケース115の上流側には燃料供給を遮
断する開閉弁117とその下流側に設けた燃料調節手段
118を有する燃料管119と、燃焼用空気を供給する
ファン120が設けられている。ここで燃料管119の
下流側には希薄燃料管121、濃燃料管122がそれぞ
れ分岐して設けられている。各バーナユニット114に
は図3に示す如く希薄燃料・空気導入口103に対応し
た希薄ノズル123と2つの共通燃料・空気導入口11
2に対応した2つの濃ノズル124が希薄燃料管121
と濃燃料管122からそれぞれ分岐して設けられてい
る。また第一濃炎口106と第二濃炎口109に近接し
て図5に示す如く着火手段125を設けている。
A plurality of burner units 114 are housed in the burner case 115 and are connected to the combustion chamber 116. Further, on the upstream side of the burner case 115, an on-off valve 117 for shutting off the fuel supply, a fuel pipe 119 having a fuel adjusting means 118 provided on the downstream side thereof, and a fan 120 for supplying combustion air are provided. Here, a lean fuel pipe 121 and a rich fuel pipe 122 are branched and provided on the downstream side of the fuel pipe 119. As shown in FIG. 3, each burner unit 114 has a lean nozzle 123 corresponding to the lean fuel / air inlet 103 and two common fuel / air inlets 11.
Two rich nozzles 124 corresponding to No. 2 are used for the lean fuel pipe 121.
And the rich fuel pipe 122 are respectively branched. Further, an ignition means 125 is provided near the first rich flame outlet 106 and the second rich flame outlet 109 as shown in FIG.

【0052】次に動作、作用について説明すると、開閉
弁117が開き燃料調節手段118で所定の供給量に調
節された燃料は燃料管119を通って希薄燃料管121
と濃燃料管122に分岐される。そして希薄ノズル12
3と濃ノズル124で所定の分配比に調節された後、各
バーナユニット114の希薄燃料・空気導入口103、
共通燃料・空気導入口112にそれぞれ噴射供給され
る。
Next, the operation and action will be described. The opening / closing valve 117 is opened, and the fuel adjusted to a predetermined supply amount by the fuel adjusting means 118 passes through the fuel pipe 119 and the lean fuel pipe 121.
To the rich fuel pipe 122. And the lean nozzle 12
3 and the rich nozzle 124, the lean fuel / air inlets 103 of the burner units 114 are adjusted to a predetermined distribution ratio.
It is injected and supplied to the common fuel / air inlet 112, respectively.

【0053】またファン120から所定の流量に調節さ
れて供給された燃焼用空気はバーナケース115内に供
給され、一部が各バーナユニット114との隙間を通過
してバーナケース115の内面を冷却しながら燃焼室1
16に流出する。大部分の燃焼用空気は各バーナユニッ
ト114の希薄燃料・空気導入口103と共通燃料・空
気導入口112にそれぞれ供給される。着火手段125
に高電圧を供給し、第一濃炎口106と第二濃炎口10
9の下流で高圧放電αを形成し、着火をする。
Further, the combustion air supplied from the fan 120 at a predetermined flow rate is supplied into the burner case 115, and a part thereof passes through the gaps between the burner units 114 to cool the inner surface of the burner case 115. While combustion chamber 1
It flows to 16. Most of the combustion air is supplied to the lean fuel / air inlet 103 and the common fuel / air inlet 112 of each burner unit 114. Ignition means 125
To the first rich flame outlet 106 and the second rich flame outlet 10
A high-pressure discharge α is formed downstream of 9 to ignite.

【0054】ここで希薄ノズル123から大部分(約8
0%)の燃料と、大量の燃焼用空気が希薄燃料・空気導
入口103から希薄混合気室104に供給され、希薄混
合気室104の長い流路を通過する間に十分混合される
とともに、乱れの小さく整流された均一な希薄混合気と
なって希薄炎口102に均一に供給される。希薄炎口1
02から燃焼室116内に高速で噴出された希薄混合気
は図6(a)に示すように、火炎温度が低く極めてNO
x濃度が低い希薄火炎Eを形成する。
From the lean nozzle 123, most (about 8
(0%) fuel and a large amount of combustion air are supplied from the lean fuel / air inlet 103 to the lean air-fuel mixture chamber 104, and are sufficiently mixed while passing through a long flow path of the lean air-fuel mixture chamber 104. A uniform lean air-fuel mixture with little turbulence is rectified and uniformly supplied to the lean flame port 102. Dilute flame mouth 1
As shown in FIG. 6 (a), the lean air-fuel mixture jetted into the combustion chamber 116 at high speed has a low flame temperature and is extremely NO.
A lean flame E having a low x concentration is formed.

【0055】また少量の燃料が各バーナユニット114
ごとに2つの濃ノズル124から、少量の燃焼用空気と
ともに共通燃料・空気導入口112に供給される。少量
の燃料と少量の燃焼用空気は比較的短い流路を通過する
間に均一な、可燃限界外の第一濃度濃混合気となって連
通室111に至り、ここで第一濃混合気室107と第二
濃混合気室110に分岐される。第一濃混合気室107
に供給された第一濃混合気はそのままの濃度で第一濃炎
口106から燃焼室116内に低速度で流出する。
A small amount of fuel is used for each burner unit 114.
Each of them is supplied from the two rich nozzles 124 to the common fuel / air inlet 112 together with a small amount of combustion air. While passing a relatively short flow path, a small amount of fuel and a small amount of combustion air become a uniform first concentration rich mixture outside the flammability limit and reach the communication chamber 111, where the first rich mixture chamber is formed. 107 and the second rich mixture chamber 110. First rich mixture chamber 107
The first concentrated air-fuel mixture supplied to the combustion chamber 116 flows out from the first rich flame port 106 into the combustion chamber 116 at a low speed with the same concentration.

【0056】一方、第二濃混合気室110に供給された
第一濃混合気は連通手段113から流入する少量の希薄
混合気で希釈されて理論混合比に近い濃度の第二濃混合
気となり、第二濃炎口109から燃焼室116内に流出
する。第二濃炎口109から噴出する理論混合比に近い
第二濃混合気は火炎温度が高く自身が非常に安定な安定
火炎Fを形成する。第一濃炎口106の第一濃混合気は
低速で流出し、高温の安定火炎Fの影響を受け熱分解し
て中間生成物を多量に発生する。そしてこれが希薄炎口
102上に形成される希薄火炎Fの基部に拡散供給され
て希薄火炎Eの基部に反応化学種が豊富で燃焼反応が極
めて活発な「高温・高反応域」βが形成される。そして
希薄火炎Eから酸素供給を受け形成される濃火炎Gは希
薄火炎Eと安定火炎Fとつながり一体的な火炎を形成す
る。これにより希薄炎口102から噴出する希薄混合気
の流速を速く設定してもその火炎基部では活発な燃焼反
応が維持されるため吹き飛ぶことがなく安定燃焼を維持
することができる。
On the other hand, the first rich air-fuel mixture supplied to the second rich air-fuel mixture chamber 110 is diluted with a small amount of the lean air-fuel mixture flowing from the communicating means 113 to become the second rich air-fuel mixture having a concentration close to the theoretical mixing ratio. , Out of the second rich flame port 109 into the combustion chamber 116. The second rich air-fuel mixture, which is ejected from the second rich flame port 109 and is close to the theoretical mixture ratio, has a high flame temperature and forms a stable flame F which is very stable. The first rich air-fuel mixture from the first rich flame outlet 106 flows out at a low speed, is thermally decomposed under the influence of the high-temperature stable flame F, and produces a large amount of intermediate products. Then, this is diffused and supplied to the base portion of the lean flame F formed on the lean flame port 102, and a "high temperature / high reaction zone" β in which the reactive chemical species are abundant and the combustion reaction is extremely active is formed at the base portion of the lean flame E. It The rich flame G formed by receiving the oxygen supply from the lean flame E is connected to the lean flame E and the stable flame F to form an integral flame. As a result, even if the flow velocity of the lean air-fuel mixture ejected from the lean flame port 102 is set to be high, an active combustion reaction is maintained at the flame base, so that stable combustion can be maintained without being blown off.

【0057】このように、これら三種類の混合気濃度を
有する多濃度燃焼は図6(b)に示す従来の濃淡燃焼で
濃火炎Hの熱的な影響を受け希薄火炎Iが安定化された
場合に比べ大幅に希薄火炎の安定化が図れるものであ
る。ここで図7に示す如く、従来の濃淡燃焼では希薄炎
口と濃炎口の間の無口部距離Lが小さくなっていくと濃
火炎Hの熱的影響を受け希薄火炎Iの吹き飛び流速が増
大するが、小さくなりすぎると希薄火炎Iの吹き飛び流
速Vが減少する。これは希薄混合気の剪断力により濃火
炎Hが希薄混合気に引っ張られて吹き飛びやすくなり、
その結果希薄火炎Iも吹き飛びやすくなるためである。
As described above, in the multi-concentration combustion having these three kinds of air-fuel mixture concentrations, the lean flame I is stabilized by the thermal influence of the rich flame H by the conventional rich-lean combustion shown in FIG. 6 (b). Compared to the case, it is possible to significantly stabilize the lean flame. Here, as shown in FIG. 7, in the conventional rich-lean combustion, as the non-portion portion distance L between the lean flame port and the rich flame port becomes smaller, the rich flame H is thermally influenced and the blow-off flow velocity of the lean flame I increases. However, if it becomes too small, the blowoff flow velocity V of the lean flame I decreases. This is because the rich flame H is pulled by the lean air-fuel mixture due to the shearing force of the lean air-fuel mixture and is easily blown off.
As a result, the lean flame I is also easily blown off.

【0058】本発明の多濃度燃焼では、濃火炎Gの外側
に安定火炎Eが形成されているため、希薄炎口102と
第一濃炎口106の間の無口部距離Lが1mm以下になる
と「高温・高反応域」βが形成され、希薄火炎Fの吹き
飛び流速Vが急増し、Lが0.2mm程度になるまでVは
増大する。これは希薄混合気と第一濃混合気の濃度勾配
の急峻化によりLが小さくなるほど第一濃混合気の希薄
混合気への物質拡散が活発になり、「高温・高反応域」
βの形成が促進されるためである。Lが0.2mm程度よ
りも小さくなると上述した希薄混合気の剪断力の影響を
受け、濃火炎G、希薄火炎Fとも不安定化し、Vは減少
する。ここで希薄炎口102と第一濃炎口106の間の
無口部距離Lは希薄炎口形成体101の肉厚分となる。
希薄炎口形成体101の肉厚を0.3mmに設定すること
により、Lが0.3mmとなり、Vが最も大きくなり、希
薄火炎Fが最も安定化される。
In the multi-concentration combustion of the present invention, the stable flame E is formed on the outside of the rich flame G, so that the non-portion distance L between the lean flame port 102 and the first rich flame port 106 becomes 1 mm or less. A "high temperature / high reaction zone" β is formed, the blow-off flow velocity V of the lean flame F rapidly increases, and V increases until L becomes about 0.2 mm. This is because as L becomes smaller due to the steeper concentration gradient between the lean mixture and the first rich mixture, the diffusion of the first rich mixture into the lean mixture becomes more active, resulting in a "high temperature / high reaction zone".
This is because the formation of β is promoted. When L is smaller than about 0.2 mm, the rich flame G and the lean flame F are destabilized due to the influence of the shearing force of the above-mentioned lean mixture, and V is reduced. Here, the non-portion portion distance L between the lean flame port 102 and the first rich flame port 106 is the thickness of the lean flame port forming body 101.
By setting the thickness of the lean flame port forming body 101 to 0.3 mm, L becomes 0.3 mm, V becomes the largest, and the lean flame F is most stabilized.

【0059】図8に示す如く希薄燃料の供給割合が増加
すると、すなわちNOxの低い希薄化炎の割合が増加す
るとその燃焼装置の最終的なNOxも低下する。希薄燃
料がゼロつまりブンゼン燃焼を行なうP点ではNOxも
130ppmと高濃度だが、希薄燃料供給割合が約60
%である通常の濃淡燃焼のQ点では半分以下の60pp
m程度まで削減できる。本発明の多濃度燃焼では希薄火
炎そのものの安定化が図られるため、より多量の希薄混
合気を安定燃焼できNOx濃度もR点の30ppm以下
を実現できた。また希薄混合気の流速を速く設定しても
希薄火炎Eを安定化できるため、希薄炎口102の面積
を小さくすることができ、燃焼装置全体を小型で安価に
製作することができる。
As shown in FIG. 8, when the supply ratio of the lean fuel increases, that is, when the ratio of the leaning flame with low NOx increases, the final NOx of the combustion device also decreases. The lean fuel is zero, that is, NOx is a high concentration of 130 ppm at the point P where Bunsen combustion is performed, but the lean fuel supply ratio is about 60.
60pp, which is less than half at the Q point of normal light and dark combustion
It can be reduced to about m. Since the lean flame itself is stabilized in the multi-concentration combustion of the present invention, a larger amount of lean mixture can be stably burned, and the NOx concentration can be realized at the R point of 30 ppm or less. Further, since the lean flame E can be stabilized even if the flow velocity of the lean air-fuel mixture is set high, the area of the lean flame port 102 can be reduced, and the entire combustion apparatus can be made small and inexpensive.

【0060】また本実施例では希薄炎口102からの希
薄混合気の流速を速く設定しているため希薄混合気室1
04の内圧は、第二濃炎口109からの混合気流速が小
さな第二濃混合気室110より大きくなっている。従っ
て希薄混合気室104と第二濃混合気室110を連通さ
せる連通手段113を介して希薄混合気が第二濃混合気
室110に流入し連通室111から供給された第一濃混
合気を希釈する。このように連通手段113を設けるこ
とにより個別に燃料供給系を設ける場合よりも燃焼装置
全体を小型で安価に製作することができる。
Further, in this embodiment, since the flow rate of the lean air-fuel mixture from the lean flame port 102 is set to be high, the lean air-fuel mixture chamber 1
The internal pressure of 04 is larger than that of the second rich mixture chamber 110 in which the mixture flow velocity from the second rich flame port 109 is small. Therefore, the lean air-fuel mixture flows into the second rich air-fuel mixture chamber 110 through the communication means 113 for connecting the lean air-fuel mixture chamber 104 and the second rich air-fuel mixture chamber 110, and the first rich air-fuel mixture supplied from the communication chamber 111 is supplied. Dilute. By thus providing the communication means 113, the entire combustion apparatus can be made smaller and less expensive than the case where individual fuel supply systems are provided.

【0061】また本実施例では共通燃料・空気導入口1
12は第一濃混合気室107と第二濃混合気室110に
連通した構成となっているため、第一濃炎口106と第
二濃炎口109へ個別に混合気を供給する場合に比べて
バーナ構成が簡単で小型化が図られ、濃燃料管122や
濃ノズル124の燃料供給系や導入口に至るまでの空気
供給系も共通化でき、燃焼装置全体を小型で安価に製作
することができる。
In this embodiment, the common fuel / air inlet 1
Since 12 is configured to communicate with the first rich air-fuel mixture chamber 107 and the second rich air-fuel mixture chamber 110, when the air-fuel mixture is individually supplied to the first rich flame port 106 and the second rich flame port 109. In comparison, the burner structure is simple and downsized, and the fuel supply system of the rich fuel pipe 122 and the rich nozzle 124 and the air supply system up to the introduction port can be shared, and the entire combustion device can be made small and inexpensive. be able to.

【0062】また本実施例では希薄燃料・空気導入口1
03と共通燃料・空気導入口112へそれぞれ希薄ノズ
ル123と濃ノズル124から燃料を独立して供給する
構成としてある。これにより希薄混合気と濃混合気への
燃料供給割合を調節して安定燃焼範囲を調節したり、供
給する燃料の種類が異なった場合にはその燃料に最適の
燃料分配比および各混合気の濃度を容易に再設定するこ
とができる。従って同一燃焼装置で各種の燃料を使用で
きる。
Further, in this embodiment, the lean fuel / air inlet 1 is used.
03 and the common fuel / air introducing port 112 are configured to independently supply fuel from the lean nozzle 123 and the rich nozzle 124, respectively. This adjusts the fuel supply ratio to the lean mixture and rich mixture to adjust the stable combustion range, and when the type of fuel to be supplied is different, the optimum fuel distribution ratio for that fuel and the optimum mixture ratio of each mixture. The concentration can be easily reset. Therefore, various fuels can be used in the same combustion device.

【0063】また本実施例では希薄炎口形成体101、
第一濃炎口形成体105、第二濃炎口形成体108を接
合してバーナユニット114を構成している。すなわち
希薄炎口形成体101は希薄炎口102と第一濃炎口1
06の形成を兼ね、一方第一濃炎口形成体105は第一
濃炎口106と第二濃炎口109の形成を兼ねている。
Further, in this embodiment, the lean flame mouth forming member 101,
The burner unit 114 is configured by joining the first rich flame mouth forming body 105 and the second rich flame mouth forming body 108. That is, the lean flame port forming member 101 includes the lean flame port 102 and the first rich flame port 1.
06, while the first rich flame mouth forming body 105 also serves as forming the first rich flame mouth 106 and the second rich flame mouth 109.

【0064】これによりバーナユニットを構成する板金
等の材料を最小限にすることができ、燃焼装置全体を軽
量で安価に製作できる。また希薄炎口102と第一濃炎
口106の間の無口部距離、第一濃炎口106と第二濃
炎口109の間の無口部距離はそれぞれ希薄炎口形成体
101、第一濃炎口形成体105の肉厚分だけとなり、
非常に近接して構成することができる。従って温度勾配
が大きくなるため第一濃炎口106の第一濃混合気は第
二濃炎口109上の高温火炎Fの熱的影響を強く受け、
熱分解が促進される。また濃度勾配が大きくなるため希
薄混合気へ拡散供給される化学活性種の豊富な第一濃混
合気の量が多くなり、「高温・高反応域」βの形成が促
進されるので、バーナユニット114上に形成される火
炎全体がより安定化する。
As a result, it is possible to minimize the materials such as the metal plate forming the burner unit, and the entire combustion apparatus can be manufactured lightweight and at low cost. Further, the no-letter distance between the lean flame port 102 and the first rich flame port 106 and the no-portion distance between the first rich flame port 106 and the second rich flame port 109 are the lean flame port forming body 101 and the first rich flame port, respectively. Only the thickness of the flame mouth forming body 105,
Can be configured very close together. Therefore, since the temperature gradient becomes large, the first rich air-fuel mixture in the first rich flame port 106 is strongly affected by the high temperature flame F on the second rich flame port 109,
Thermal decomposition is accelerated. Also, since the concentration gradient becomes large, the amount of the first concentrated air-fuel mixture rich in chemically active species that is diffused and supplied to the lean air-fuel mixture increases, and the formation of the "high temperature / high reaction zone" β is promoted. The overall flame formed on 114 is more stable.

【0065】また本実施例では第一濃炎口106から噴
出する第一濃混合気の濃度を可燃限界外の過濃混合気と
しているため、希薄混合気と第一濃混合気の濃度勾配が
大きくなり、これにより希薄火炎Eの基部への第一濃混
合気の流入を促進させて「高温・高反応域」βの形成を
促進でき、希薄火炎Eを強固に安定化できる。
Further, in this embodiment, since the concentration of the first rich air-fuel mixture ejected from the first rich flame outlet 106 is the rich air-fuel mixture outside the flammability limit, the concentration gradient of the lean air-fuel mixture and the first rich air-fuel mixture is As a result, the first concentrated air-fuel mixture is allowed to flow into the base portion of the lean flame E to form a "high temperature / high reaction zone" β, and the lean flame E can be firmly stabilized.

【0066】また本実施例では希薄炎口102への燃料
供給量を、例えば総供給量の80%程度と、第一濃炎口
106、第二濃炎口109への燃料供給量より多く設定
している。これによりNOxの少ない希薄火炎Eの割合
を増し、燃焼装置全体として超低NOxを実現できる。
Further, in this embodiment, the fuel supply amount to the lean flame port 102 is set to, for example, about 80% of the total supply amount, which is larger than the fuel supply amounts to the first rich flame port 106 and the second rich flame port 109. is doing. As a result, the proportion of the lean flame E with a small amount of NOx can be increased, and ultra low NOx can be realized in the entire combustion device.

【0067】また希薄炎口102からの希薄混合気の噴
出速度が第一濃炎口106からの第一濃混合気の噴出速
度よりも速くなるように設定している。このため高速噴
流に伴う巻き込み効果により第一濃混合気が希薄混合気
に巻き込まれ、その結果「高温・高反応域」βの形成を
促進できる。
The jet speed of the lean air-fuel mixture from the lean flame port 102 is set to be faster than the jet speed of the first rich air-fuel mixture from the first rich flame port 106. Therefore, the first concentrated air-fuel mixture is entrained in the lean air-fuel mixture due to the entrainment effect of the high-speed jet, and as a result, the formation of the "high temperature / high reaction zone" β can be promoted.

【0068】また本実施例では希薄炎口102の炎口面
積を第一濃炎口106及び第二濃炎口109の炎口面積
よりも大きく設定している。このため希薄混合気の噴出
速度が極度に速くならず、安定した希薄火炎Eが形成さ
れるとともに、ファン120負荷が低減され、騒音を抑
制することができる。
Further, in the present embodiment, the flame opening area of the lean flame opening 102 is set larger than the flame opening areas of the first rich flame opening 106 and the second rich flame opening 109. Therefore, the jet speed of the lean air-fuel mixture does not become extremely high, a stable lean flame E is formed, the load of the fan 120 is reduced, and noise can be suppressed.

【0069】また本実施例では各炎口の燃料・空気導入
口から各炎口までの通路長の内、希薄燃料・空気導入口
103から希薄炎口102までの通路長を最も長く設定
している。これにより希薄燃料・空気導入口103から
供給された多量の空気と大部分の燃料は通路を通過する
間に十分混合され、整流を受けて均一に希薄炎口102
に供給される。このように希薄炎口102への均一供給
及び流れの乱れの減衰が図られるため超NOx燃焼と燃
焼騒音の低減を実現することができる。
Further, in the present embodiment, of the passage lengths from the fuel / air introduction port of each flame port to each flame port, the passage length from the lean fuel / air introduction port 103 to the lean flame port 102 is set to be the longest. There is. As a result, a large amount of air supplied from the lean fuel / air introduction port 103 and most of the fuel are sufficiently mixed while passing through the passage, and are subjected to rectification to be evenly diluted with the lean flame port 102.
Is supplied to. In this way, uniform supply to the lean flame port 102 and attenuation of flow turbulence are achieved, so super NOx combustion and combustion noise reduction can be realized.

【0070】また本実施例では希薄燃料・空気導入口1
03の開口面積を共通燃料・空気導入口112の開口面
積よりも大きく設定している。これによりファン120
からバーナケース115内に供給された燃焼用空気は大
きな圧力損失を受けることなく希薄炎口102に多量に
供給され、多量の希薄混合気を生成して超低NOxの希
薄火炎Eを形成することができる。またファン120の
負荷が低減され、騒音を抑制することができる。
In this embodiment, the lean fuel / air inlet 1 is used.
The opening area of 03 is set larger than the opening area of the common fuel / air introducing port 112. This allows the fan 120
The combustion air supplied from the burner case 115 to the burner case 115 is supplied to the lean flame port 102 in a large amount without receiving a large pressure loss, and a large amount of lean air-fuel mixture is generated to form the ultralow NOx lean flame E. You can Further, the load on the fan 120 is reduced, and noise can be suppressed.

【0071】また本実施例では希薄燃料・空気導入口1
03を共通燃料・空気導入口112よりも下部に位置さ
せている。これによりファン120からバーナケース1
15内に供給された燃焼用空気は大きな圧力損失を受け
ることなく上流側に位置する各希薄燃料・空気導入口1
03から希薄炎口102に導かれるため、ファン120
負荷を低減し騒音を抑制することができる。
Also, in this embodiment, the lean fuel / air inlet 1 is used.
03 is located below the common fuel / air inlet 112. This allows the fan 120 to be connected to the burner case 1.
The combustion air supplied to the inside of 15 does not receive a large pressure loss, and each lean fuel / air inlet 1 is located on the upstream side.
03 to the lean flame outlet 102, the fan 120
The load can be reduced and the noise can be suppressed.

【0072】また本実施例では炎口から噴出する混合気
を点火させる着火手段を備え、この着火手段は第一濃炎
口106、第二濃炎口109からの第一、第二濃混合気
を横切るように高圧放電αを形成させる。高圧放電αを
濃度の濃い第一濃混合気と理論混合比に近い第二濃混合
気中で形成されるため、燃料供給量あるいはファン回転
数の変動による空気過剰率の変動に関わらず、最も着火
しやすい混合気濃度(一次空気過剰率が0.6〜0.8
程度)が高圧放電αの形成部の何れかの位置に生じる。
これにより超低NOx化のために希薄炎口102への燃
料供給量を多く設定しても確実に着火を行うことがで
き、着火時におけるHC等の未燃焼物質の排出を抑制で
きる。
Further, in this embodiment, an igniting means for igniting the air-fuel mixture ejected from the flame mouth is provided, and the igniting means is used for the first and second rich air-fuel mixture from the first rich flame mouth 106 and the second rich flame mouth 109. A high-voltage discharge α is formed so as to traverse. Since the high-pressure discharge α is formed in the first rich mixture having a high concentration and the second rich mixture having a stoichiometric ratio close to the theoretical mixture ratio, it is the most regardless of the variation of the air excess rate due to the variation of the fuel supply amount or the fan speed. Air-fuel mixture concentration that easily ignites (primary air excess ratio is 0.6 to 0.8
Degree) occurs at any position in the formation part of the high-voltage discharge α.
As a result, even if a large amount of fuel is supplied to the lean flame port 102 for ultra-low NOx, ignition can be reliably performed, and discharge of unburned substances such as HC during ignition can be suppressed.

【0073】また本実施例では希薄炎口102とその外
側の第一濃炎口106とさらにその外側の第二濃炎口1
09でバーナユニット114を構成し、このバーナユニ
ット114を図1に示す如く複数隣接配置して燃焼装置
を構成している。よってバーナユニット114の本数を
適宜選択することにより幅広い能力の燃焼装置を提供で
きる。
Further, in this embodiment, the lean flame port 102, the first rich flame port 106 on the outer side thereof, and the second rich flame port 1 on the outer side thereof are further provided.
The burner unit 114 is constituted by 09, and a plurality of the burner units 114 are arranged adjacent to each other as shown in FIG. Therefore, by appropriately selecting the number of burner units 114, it is possible to provide a combustion device having a wide range of capabilities.

【0074】また本実施例では希薄炎口102の両側に
第一濃炎口106、その両側に第二濃炎口109を配置
してバーナユニット114を構成している。このため、
単一のバーナユニット114にて燃焼を完結でき、バー
ナユニット本数、配置間隔等を自由に選択でき、設計の
自由度を高めることができる。
Further, in this embodiment, the burner unit 114 is constructed by disposing the first rich flame openings 106 on both sides of the lean flame opening 102 and the second rich flame openings 109 on both sides thereof. For this reason,
Combustion can be completed with a single burner unit 114, and the number of burner units, arrangement intervals, etc. can be freely selected, and the degree of freedom in design can be increased.

【0075】なお各バーナユニット114には第1、第
2濃炎口用にそれぞれ2つの共通燃料・空気導入口11
2とそれに対応する2つの濃ノズル124を有する構成
を示したが、各濃炎口共有の共通燃料・空気導入口11
2と濃ノズル124を設けてもよい。要は第一濃炎口1
06に供給される燃料が希薄炎口102に供給される希
薄ノズル123とそれぞれ独立していればよい。さらに
連通手段113は図1、2、4においては、第一濃炎口
形成体105に設けた開口から希薄炎口形成体101の
一部を外側に突出させて連通させる構成とし、図6にお
いては第一濃炎口形成体105の一部を内側に突出させ
て希薄炎口形成体101と密着させる構成としたが、ど
ちらを突出させて構成しても良く、あるいは別構成の部
品で構成しても良い。
Each burner unit 114 has two common fuel / air inlets 11 for the first and second rich flame inlets, respectively.
2 and two corresponding thick nozzles 124 are shown, the common fuel / air introduction port 11 shared by each rich flame port is shown.
2 and the thick nozzle 124 may be provided. The point is the first rich flame mouth 1
The fuel supplied to 06 is independent of the lean nozzle 123 supplied to the lean flame port 102. Further, the communication means 113 has a structure in which a part of the lean flame port forming body 101 is projected outward from an opening provided in the first rich flame port forming body 105 in FIG. Has a structure in which a part of the first rich flame mouth forming member 105 is protruded inward so as to be brought into close contact with the lean flame mouth forming member 101, but either one may be protruded or a component having a different structure is used. You may.

【0076】(実施例2)図9は本発明の実施例2の燃
焼装置を示す模式的な全体断面図である。本実施例が実
施例1と異なる点は、希薄炎口102、第一濃炎口10
6、第二濃炎口109はそれぞれに独立した希薄混合気
室104、第一濃混合気室107、第二濃混合気室11
0を有し、またそれぞれに独立した希薄燃料・空気導入
口103、第一濃燃料・空気導入口201、第二濃燃料
・空気導入口202を有する構成とし、また各炎口は近
接して配置すると共に第一濃炎口106と第二濃炎口1
09とで希薄炎口102を挟む構成として、バーナユニ
ット203を構成している点である。
(Second Embodiment) FIG. 9 is a schematic overall sectional view showing a combustion apparatus according to a second embodiment of the present invention. The present embodiment is different from the first embodiment in that the lean flame port 102 and the first rich flame port 10 are provided.
6, the second rich flame inlet 109 is independent of each of the lean mixture chamber 104, the first rich mixture chamber 107, and the second rich mixture chamber 11
0, and each of them has a lean fuel / air inlet 103, a first rich fuel / air inlet 201, and a second rich fuel / air inlet 202 which are independent of each other. The first rich flame mouth 106 and the second rich flame mouth 1 are arranged.
The lean burner 102 is sandwiched between the burner unit 203 and the burner unit 203.

【0077】そしてバーナユニット203を複数個密接
配置して燃焼装置を構成している。燃料管119の下流
側には希薄燃料管121、第一濃燃料管204、第二濃
燃料管205がそれぞれ分岐されて設けられている。各
バーナユニット203には希薄燃料・空気導入口103
に対応した希薄ノズル123と第一濃燃料・空気導入口
201に対応した第一濃ノズル206と第二濃燃料・空
気導入口202に対応した第二濃ノズル207が、希薄
燃料管121と第一濃燃料管204と第二濃燃料管20
5からそれぞれ分岐して設けられている。なお実施例1
と同一符号のものは同じ構成を有し、説明を省略する。
A plurality of burner units 203 are closely arranged to form a combustion device. A lean fuel pipe 121, a first rich fuel pipe 204, and a second rich fuel pipe 205 are branched and provided on the downstream side of the fuel pipe 119. Each burner unit 203 has a lean fuel / air inlet 103.
Corresponding to the first rich fuel / air inlet 201, the second rich nozzle 206 corresponding to the second rich fuel / air inlet 202, and the second rich nozzle 207 corresponding to the second rich fuel / air inlet 202. 1st fuel pipe 204 and 2nd fuel pipe 20
5 are branched from each. Example 1
Those having the same reference numerals as those have the same configuration and will not be described.

【0078】次に動作、作用について説明すると、燃料
は燃料管119を通って希薄燃料管121と第一濃燃料
管204と第二濃燃料管205に分岐される。そして希
薄ノズル123と第一濃ノズル206と第二濃ノズル2
07で所定の分配比に調節された後、各バーナユニット
203の希薄燃料・空気導入口103と第一濃燃料・空
気導入口201と第二濃燃料・空気導入口202にそれ
ぞれ噴射供給される。
Next, the operation and action will be described. The fuel is branched into the lean fuel pipe 121, the first rich fuel pipe 204 and the second rich fuel pipe 205 through the fuel pipe 119. Then, the lean nozzle 123, the first thick nozzle 206, and the second thick nozzle 2
After adjusting to a predetermined distribution ratio at 07, the fuel is injected and supplied to the lean fuel / air introduction port 103, the first rich fuel / air introduction port 201, and the second rich fuel / air introduction port 202 of each burner unit 203. .

【0079】またファン120から所定の流量に調節さ
れて供給された燃焼用空気は各バーナユニット203の
希薄燃料・空気導入口103と第一濃燃料・空気導入口
201と第二濃燃料・空気導入口202にそれぞれ供給
される。希薄ノズル123から大部分(約80%)の燃
料と、大量の燃焼用空気が希薄燃料・空気導入口103
から希薄混合気室104に供給され、希薄混合気室10
4にて均一な希薄混合気が生成される。また少量の燃料
が第一濃ノズル206から、少量の燃焼用空気とともに
第一濃燃料・空気導入口201に供給され、第一濃混合
気室107で均一な可燃限界外の第一濃混合気が生成さ
れる。
The combustion air supplied from the fan 120 at a predetermined flow rate is supplied with the lean fuel / air introduction port 103, the first rich fuel / air introduction port 201, the second rich fuel / air of each burner unit 203. Each is supplied to the inlet 202. Most of the fuel (about 80%) from the lean nozzle 123 and a large amount of combustion air are lean fuel / air inlet 103.
Is supplied to the lean mixture chamber 104 from the
At 4, a uniform lean mixture is produced. In addition, a small amount of fuel is supplied from the first rich nozzle 206 to the first rich fuel / air inlet 201 together with a small amount of combustion air, and the first rich air-fuel mixture chamber 107 uniformly mixes the first rich air-fuel mixture outside the flammability limit. Is generated.

【0080】さらに第一濃ノズル206と同量程度の第
二濃ノズル207からの少量の燃料と、第一濃燃料・空
気導入口201に供給される燃焼用空気よりもやや多い
燃焼用空気が第二濃燃料・空気導入口202に供給さ
れ、第二濃混合気室110で均一な理論混合比に近い濃
度の第二濃混合気が生成される。第一濃混合気、希薄混
合気、第二濃混合気がそれぞれ第一濃炎口106、希薄
炎口102、第二濃炎口109より噴出し、各バーナユ
ニット203に濃火炎G、希薄火炎F、安定火炎Eの順
に火炎が形成される。ここで希薄炎口102の形成体の
肉厚を0.3mmとし、希薄炎口102と第一濃炎口10
6との間の無口部距離Lを0.3mmとしている。
Further, a small amount of fuel from the second rich nozzle 207, which is about the same amount as the first rich nozzle 206, and combustion air slightly larger than the combustion air supplied to the first rich fuel / air inlet 201 are generated. It is supplied to the second rich fuel / air inlet 202, and the second rich air-fuel mixture chamber 110 produces a second rich air-fuel mixture having a concentration close to a uniform theoretical mixture ratio. The first rich air-fuel mixture, the lean air-fuel mixture, and the second rich air-fuel mixture are ejected from the first rich flame port 106, the lean flame port 102, and the second rich flame port 109, respectively, and the rich flame G and the lean flame are supplied to each burner unit 203. Flames are formed in the order of F and stable flame E. Here, the wall thickness of the formed body of the lean flame port 102 is 0.3 mm, and the lean flame port 102 and the first rich flame port 10
The silent portion distance L with the No. 6 is set to 0.3 mm.

【0081】ここで隣のバーナユニットの安定火炎Eを
加え、希薄火炎Fの左側には実施例1と同じく、安定火
炎E、濃火炎G、希薄火炎Fの順に火炎が形成され、一
方右側には希薄火炎F、安定火炎E、濃火炎Gの順に火
炎が形成される。実施例1で説明した「高温・高反応
域」は安定火炎E、濃火炎G、希薄火炎Fの順に形成さ
れる希薄火炎Fの左側基部に形成され(図示せず)、希
薄火炎F、安定火炎E、濃火炎Gの順に形成される希薄
火炎Fの右側基部には、左側ほど反応の活発な「高温・
高反応域」は形成されない。このため実施例1に比べて
希薄火炎Fの安定性に劣り、結果的にNOxがやや多く
なるが、第一濃炎口106、第二濃炎口109の数を半
減できるため、実施例1に比べて燃焼装置を軽量、安価
に製作できる。
Here, the stable flame E of the adjacent burner unit is added, and on the left side of the lean flame F, the stable flame E, the rich flame G, and the lean flame F are formed in this order on the right side, as in the first embodiment. A flame is formed in the order of a lean flame F, a stable flame E, and a rich flame G. The "high temperature / high reaction zone" described in the first embodiment is formed on the left side base portion of the lean flame F (not shown) formed in the order of the stable flame E, the rich flame G, and the lean flame F (not shown), and the lean flame F, stable On the right side of the lean flame F, which is formed in order of the flame E and the rich flame G, the "high temperature / high temperature
No high reaction zone is formed. For this reason, the stability of the lean flame F is inferior to that of the first embodiment, and NOx is slightly increased as a result, but the number of the first rich flame openings 106 and the second rich flame openings 109 can be halved, so Combustion device is lighter and cheaper to manufacture.

【0082】また希薄火炎Fの両側に隣接する濃火炎
G、安定火炎Eが非対称の順に形成される。このように
希薄火炎Fの左右側に異なる濃度、つまり異なる固有振
動周波数を持つ予混合火炎が左右非対称に形成されるこ
とによって、振動の伝播を抑制し、ある特定の周波数で
大きな音を発生するいわゆる振動燃焼の抑制に効果的が
ある。
Further, a rich flame G and a stable flame E adjacent to both sides of the lean flame F are formed in an asymmetrical order. In this way, premixed flames having different concentrations, that is, different natural vibration frequencies are formed asymmetrically on the left and right sides of the lean flame F, so that vibration propagation is suppressed and a loud sound is generated at a specific frequency. It is effective in suppressing so-called oscillatory combustion.

【0083】さらに各炎口に独立して燃料・空気導入
口、燃料ノズルを配置しているため、希薄混合気と第一
濃混合気と第二濃混合気への燃料供給割合を調節して安
定燃焼範囲を調節したり、供給する燃料の種類が異なっ
た場合にはその燃料に最適の燃料分配比と各混合気の濃
度に最も容易に再設定することができる。従って同一燃
焼装置で各種の燃料を使用できる。
Further, since the fuel / air introduction port and the fuel nozzle are independently arranged at each flame port, the fuel supply ratio to the lean mixture, the first rich mixture and the second rich mixture is adjusted. When the stable combustion range is adjusted, or when the type of fuel to be supplied is different, the fuel distribution ratio and the concentration of each air-fuel mixture that are optimal for that fuel can be reset most easily. Therefore, various fuels can be used in the same combustion device.

【0084】(実施例3)図10は本発明の実施例3の
燃焼装置を示す模式的な全体断面図である。
(Third Embodiment) FIG. 10 is a schematic overall sectional view showing a combustion apparatus according to a third embodiment of the present invention.

【0085】本実施例が実施例1と異なる点は、希薄炎
口102の隣に第二濃炎口109、その隣に第一濃炎口
106を近接して配置するとともに、第二濃混合気室1
10と希薄混合気室104を連通させる連通口301を
設けて、バーナユニット302を構成している点であ
る。第一濃混合気室107と第二濃混合気室110はそ
れぞれ第一濃連通口303と第二濃連通口304で連通
室305と連通している。最左のバーナユニット302
には対応する希薄ノズル123が存在しない。なお実施
例1と同一符号のものは同じ構成を有し、説明を省略す
る。
The present embodiment is different from the first embodiment in that the second rich flame port 109 is arranged next to the lean flame port 102, the first rich flame port 106 is arranged next to it, and the second rich mixing is performed. Air chamber 1
A burner unit 302 is configured by providing a communication port 301 for communicating the lean air-fuel mixture chamber 104 with each other. The first rich air-fuel mixture chamber 107 and the second rich air-fuel mixture chamber 110 communicate with the communication chamber 305 through the first rich communication port 303 and the second rich communication port 304, respectively. Leftmost burner unit 302
Does not have a corresponding lean nozzle 123. The same reference numerals as those in the first embodiment have the same configurations, and the description thereof will be omitted.

【0086】次に動作、作用について説明すると、大量
の空気と大部分の燃料が各バーナユニット302の希薄
燃料・空気導入口103に供給される。希薄混合気室1
04にて均一に混合された希薄混合気が生成される。一
方少量の空気と少量の燃料が各バーナユニット302の
共通燃料・空気導入口112に供給される。連通室30
5で均一な可燃限界外の第一濃混合気が生成され、それ
ぞれ第一濃連通口303、第二濃連通口304を通じて
第一濃混合気室107、第二濃混合気室110に分配さ
れる。第一濃炎口106から第一濃混合気室107の第
一濃混合気がそのままの濃度で燃焼室116に噴出す
る。希薄混合気室104で生成された希薄混合気の大部
分は希薄炎口102から燃焼室116に噴出する。希薄
混合気の噴出抵抗は、炎口面積の調整により第二濃炎口
109における第二濃混合気の噴出抵抗よりも大きく設
定している。このため第二濃混合気室110よりも希薄
混合気室104の圧力が高くなり、少量の希薄混合気が
希薄混合気室104から第二濃混合気室110に流出す
る。
The operation and action will be described below. A large amount of air and most of the fuel are supplied to the lean fuel / air introduction port 103 of each burner unit 302. Lean mixture chamber 1
At 04, a lean air-fuel mixture that is uniformly mixed is generated. On the other hand, a small amount of air and a small amount of fuel are supplied to the common fuel / air introduction port 112 of each burner unit 302. Communication room 30
5, a uniform first rich mixture outside the flammability limit is generated and distributed to the first rich mixture chamber 107 and the second rich mixture chamber 110 through the first rich communication port 303 and the second rich communication port 304, respectively. It The first rich air-fuel mixture in the first rich air-fuel mixture chamber 107 is ejected from the first rich flame outlet 106 into the combustion chamber 116 with the same concentration. Most of the lean air-fuel mixture generated in the lean air-fuel mixture chamber 104 is ejected from the lean flame port 102 into the combustion chamber 116. The jetting resistance of the lean air-fuel mixture is set to be larger than the jetting resistance of the second rich air-fuel mixture at the second rich flame port 109 by adjusting the flame opening area. Therefore, the pressure of the lean air-fuel mixture chamber 104 becomes higher than that of the second rich air-fuel mixture chamber 110, and a small amount of the lean air-fuel mixture flows out from the lean air-fuel mixture chamber 104 to the second rich air-fuel mixture chamber 110.

【0087】すなわち第二濃混合気室110において第
一濃混合気が希釈され、理論混合比に近い第二濃混合気
が生成されて、第二濃炎口109より燃焼室116に噴
出する。そして各バーナユニット302に希薄火炎F、
安定火炎E、濃火炎Gの順に火炎が形成される。最左の
バーナユニット302の希薄炎口102には対応する希
薄ノズル123が存在せず、空気だけが希薄炎口102
より噴出する。そして隣のバーナユニット302の安定
火炎E、濃火炎Gを加え、希薄火炎Fの左側には実施例
1と同じく、安定火炎E、濃火炎G、希薄火炎Fの順に
火炎が形成され、一方右側には希薄火炎F、安定火炎
E、濃火炎Gの順に火炎が形成される。
That is, the first rich air-fuel mixture is diluted in the second rich air-fuel mixture chamber 110, and the second rich air-fuel mixture having a ratio close to the theoretical mixing ratio is generated and ejected from the second rich flame port 109 into the combustion chamber 116. Then, a lean flame F is attached to each burner unit 302.
Flames are formed in the order of stable flame E and rich flame G. There is no corresponding lean nozzle 123 at the lean flame port 102 of the leftmost burner unit 302, and only the lean flame port 102 has air.
Eject more. Then, the stable flame E and the rich flame G of the adjacent burner unit 302 are added, and the stable flame E, the rich flame G, and the lean flame F are formed in this order on the left side of the lean flame F, similarly to the first embodiment, while the right side is formed. A flame is formed in this order of a lean flame F, a stable flame E, and a rich flame G.

【0088】ここで各炎口の形成体の肉厚を0.3mmと
している。希薄炎口102の左側においては、希薄炎口
形成体101および第一濃炎口形成体105が重なり合
い、希薄炎口102と第一濃炎口106との間の無口部
距離は0.6mmとなる。一方希薄炎口102の右側にお
いては、希薄炎口102と第二濃炎口109との間の無
口部距離は0.3mmとなる。このため希薄混合気と希薄
混合気と隣接して噴出する第一、第二濃混合気との間の
濃度勾配は実施例1の構成のときよりも小さくなり、希
薄火炎Fの基部の「高温・高反応域」は、実施例1の構
成で形成される「高温・高反応域」よりも反応が活発で
ない。
Here, the wall thickness of the formed body of each flame mouth is 0.3 mm. On the left side of the lean flame port 102, the lean flame port forming body 101 and the first rich flame port forming body 105 overlap with each other, and the silent portion distance between the lean flame port 102 and the first rich flame port 106 is 0.6 mm. Become. On the other hand, on the right side of the lean flame opening 102, the distance between the lean flame opening 102 and the second rich flame opening 109 is 0.3 mm. Therefore, the concentration gradient between the lean air-fuel mixture and the first and second rich air-fuel mixture ejected adjacent to the lean air-fuel mixture becomes smaller than that in the configuration of the first embodiment, and the "high temperature" at the base of the lean flame F is generated. The reaction in the "high reaction zone" is less active than in the "high temperature / high reaction zone" formed in the configuration of Example 1.

【0089】このため実施例1に比べて希薄火炎Fの安
定性に劣り、結果的にNOxがやや多くなるが、希薄混
合気室104と第二濃混合気室110を連通させる構成
として、実施例1のような突出形状の連通手段113で
はなく、単なる開口である連通口301にて連通できる
ため、実施例1に比べて燃焼装置を安価に製作できる。
また連通口301の面積、個数の調整で希薄混合気の第
二濃混合室への流入量を調整でき、各種燃料への対応が
容易にできる。
Therefore, the stability of the lean flame F is inferior to that of the first embodiment, and NOx is slightly increased as a result, but the lean air-fuel mixture chamber 104 and the second rich air-fuel mixture chamber 110 are connected to each other. Since it is possible to communicate with each other through the communication port 301 which is a simple opening, instead of the communication means 113 having the protruding shape as in Example 1, the combustion device can be manufactured at a lower cost than in Example 1.
Further, the flow rate of the lean air-fuel mixture into the second rich mixing chamber can be adjusted by adjusting the area and the number of the communication ports 301, so that various fuels can be easily handled.

【0090】なお、希薄混合気が隣接する炎口に流入す
る構成としては、希薄炎口形成体101の一部を上流側
に開口するように希薄混合気室104側に切り起こす構
成としても、連通口301と同様の効果が得られる。こ
の場合、希薄混合気の動圧を利用して希薄混合気の流出
量をより多くできる。
As a structure in which the lean air-fuel mixture flows into the adjacent flame ports, a structure in which a part of the lean flame port forming body 101 is cut and raised to the side of the lean air-fuel mixture chamber 104 so as to open to the upstream side is also possible. The same effect as the communication port 301 can be obtained. In this case, the outflow amount of the lean air-fuel mixture can be increased by utilizing the dynamic pressure of the lean air-fuel mixture.

【0091】(実施例4)図11は本発明の実施例4の
燃焼装置を示す模式的な全体断面図である。
(Fourth Embodiment) FIG. 11 is a schematic overall sectional view showing a combustion apparatus according to a fourth embodiment of the present invention.

【0092】本実施例が実施例1と異なる点は第二濃炎
口109に近接して空気供給部401を設けてバーナユ
ニット402を構成している点である。なお実施例1と
同一符号のものは同じ構成を有し、説明を省略する。
The present embodiment is different from the first embodiment in that the burner unit 402 is constructed by providing the air supply section 401 in the vicinity of the second rich flame port 109. The same reference numerals as those in the first embodiment have the same configurations, and the description thereof will be omitted.

【0093】次に動作、作用について説明すると、連通
室111で生成される可燃限界外の第一濃混合気は第一
濃混合気室107と第二濃混合気室110に流入する。
ファン120から供給する空気の一部が空気供給部40
1より第二濃混合気室110に流入し、第一濃混合気が
希釈され理論混合比に近い第二濃混合気が生成される。
希薄炎口102、第一濃炎口106、第二濃炎口109
よりそれぞれ希薄混合気、第一濃混合気、第二濃混合気
が燃焼室に噴出し、希薄火炎F、濃火炎G、安定火炎E
が形成される(図示せず)。
Next, the operation and action will be described. The first rich air-fuel mixture outside the flammability limit generated in the communication chamber 111 flows into the first rich air-fuel mixture chamber 107 and the second rich air-fuel mixture chamber 110.
Part of the air supplied from the fan 120 is the air supply unit 40.
From 1 to the second rich air-fuel mixture chamber 110, the first rich air-fuel mixture is diluted and a second rich air-fuel mixture close to the theoretical mixture ratio is generated.
Lean flame port 102, first rich flame port 106, second rich flame port 109
A lean mixture, a first rich mixture, and a second rich mixture are ejected into the combustion chamber, and a lean flame F, a rich flame G, and a stable flame E, respectively.
Are formed (not shown).

【0094】ここで実施例1、3は第二濃混合気室にお
いて第一濃混合気を希薄混合気で希釈しているが、本実
施例では空気供給部の開口面積の調整により、希薄混合
気と独立に第二濃混合気の濃度、噴出量を調整できるた
め、各種燃料への対応が容易にできる。
Here, in the first and third embodiments, the first rich air-fuel mixture is diluted with the lean air-fuel mixture in the second rich air-fuel mixture chamber, but in this embodiment, the lean air-fuel mixture is adjusted by adjusting the opening area of the air supply portion. Since the concentration and injection amount of the second rich air-fuel mixture can be adjusted independently of the air, it is possible to easily deal with various fuels.

【0095】なお、各炎口の配置順として、 (1)希薄炎口102、第一濃炎口106、第二濃炎口
109(実施例1) (2)第一濃炎口106、希薄炎口102、第二濃炎口
109(実施例2) (3)希薄炎口102、第二濃炎口109、第一濃炎口
106(実施例3) を各実施例にて説明した。
The arrangement order of the flame openings is as follows: (1) lean flame opening 102, first rich flame opening 106, second rich flame opening 109 (Example 1) (2) first rich flame opening 106, lean Flame port 102, second rich flame port 109 (Example 2) (3) The lean flame port 102, the second rich flame port 109, and the first rich flame port 106 (Example 3) have been described in each example.

【0096】また、バーナユニットの炎口構成としては (1)第一濃炎口106、第二濃炎口109を希薄炎口
102の両側に配置する(実施例1) (2)第一濃炎口106、第二濃炎口109を希薄炎口
102の片側に配置する(実施例3) を各実施例にて説明した。
The burner unit has a flame port configuration (1) arranging the first rich flame port 106 and the second rich flame port 109 on both sides of the lean flame port 102 (Example 1) (2) first rich flame Arranging the flame port 106 and the second rich flame port 109 on one side of the lean flame port 102 (Example 3) has been described in each example.

【0097】さらに、理論混合比に近い第二濃混合気の
生成法として (1)第一濃混合気室107と第二濃混合気室110に
共通の共通燃料・空気導入口112を備え、第二濃混合
気室110と希薄混合気室104を連通手段113(連
通口301)で連通させて第一濃混合気を希釈して第二
濃混合気を生成する(実施例1、3) (2)第一濃混合気室107と第二濃混合気室110に
共通の共通燃料・空気導入口112を備え、第二濃混合
気室110に設けた空気供給部401からの空気で第一
濃混合気を希釈して第二濃混合気を生成する(実施例
4) (3)第一濃混合気室107と第二濃混合気室110に
それぞれ対応した第一濃燃料・空気導入口201と第二
濃燃料・空気導入口202を独立して設ける(実施例
2)を各実施例にて説明した。
Further, as a method for producing the second rich mixture close to the theoretical mixture ratio, (1) a common fuel / air inlet 112 common to the first rich mixture chamber 107 and the second rich mixture chamber 110 is provided, The second rich air-fuel mixture chamber 110 and the lean air-fuel mixture chamber 104 are communicated with each other by the communication means 113 (communication port 301) to dilute the first rich air-fuel mixture to generate the second rich air-fuel mixture (Examples 1 and 3). (2) A common fuel / air inlet 112 common to the first rich air-fuel mixture chamber 107 and the second rich air-fuel mixture chamber 110 is provided, and air is supplied from the air supply unit 401 provided in the second rich air-fuel mixture chamber 110 to the first The second rich mixture is generated by diluting the first rich mixture (Example 4) (3) First rich fuel / air introduction corresponding to the first rich mixture chamber 107 and the second rich mixture chamber 110, respectively. In each example, the port 201 and the second rich fuel / air inlet 202 are provided independently (Example 2). And Akira.

【0098】ここで、実施例1〜4に説明した以外に、
上記で説明した各炎口の配置順、バーナユニットの炎口
構成、第二濃混合気の生成法を適宜組み合わせてもよ
い。
Here, in addition to the description in Examples 1 to 4,
The arrangement order of the flame openings, the flame opening configuration of the burner unit, and the method of producing the second rich air-fuel mixture described above may be appropriately combined.

【0099】なお、第二濃混合気の濃度は第一濃混合気
と希薄混合気の間の濃度として説明したが、第一濃混合
と同一濃度としても良い。この場合、希薄火炎の安定性
に劣り、結果的にNOxが高くなるが、構成を簡潔にで
きる。
Although the concentration of the second rich mixture has been described as the concentration between the first rich mixture and the lean mixture, the concentration may be the same as that of the first rich mixture. In this case, the stability of the lean flame is poor and NOx is high as a result, but the structure can be simplified.

【0100】なお、各実施例において燃料は都市ガス等
の気体燃料で説明したが、灯油等の液体燃料をガス化さ
せて用いてもよい。
In each embodiment, the fuel is gas fuel such as city gas, but liquid fuel such as kerosene may be gasified and used.

【0101】[0101]

【発明の効果】以上説明したように本発明の燃焼装置
は、第二濃炎口の安定火炎で第一濃炎口から流出した濃
混合気の熱分解を促進させ活性化学種を多量に発生させ
て希薄炎口上に形成される希薄火炎の基部に拡散供給し
て「高温・高反応域」を形成し希薄火炎を安定化するた
め、希薄混合気の燃料供給割合を増加させることができ
超低NOx化を実現することができる。
As described above, the combustion apparatus of the present invention promotes the thermal decomposition of the rich air-fuel mixture flowing out from the first rich flame mouth by the stable flame of the second rich flame mouth to generate a large amount of active chemical species. Then, it diffuses and supplies it to the base of the lean flame formed on the lean flame mouth to form a "high temperature / high reaction zone" and stabilizes the lean flame, so the fuel supply ratio of the lean mixture can be increased. Low NOx can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の燃焼装置を示す模式的な全
体断面図
FIG. 1 is a schematic overall sectional view showing a combustion apparatus according to a first embodiment of the present invention.

【図2】同燃焼装置のバーナユニットを分解した状態の
斜視図
FIG. 2 is a perspective view showing a state in which a burner unit of the combustion device is disassembled.

【図3】同燃焼装置のバーナユニットの斜視図FIG. 3 is a perspective view of a burner unit of the combustion device.

【図4】同燃焼装置のバーナユニットのTーT面断面図FIG. 4 is a sectional view of a burner unit of the same combustion apparatus taken along the TT plane.

【図5】同燃焼装置の着火手段近傍の拡大断面図FIG. 5 is an enlarged cross-sectional view of the vicinity of the ignition means of the combustion device.

【図6】(a)同燃焼装置の火炎の模式図 (b)同燃焼装置の火炎の参考模式図FIG. 6 (a) is a schematic diagram of a flame of the combustion device. (B) Reference schematic diagram of flame of the same combustion device

【図7】同燃焼装置の希薄火炎の吹き飛び流速を示す特
性図
FIG. 7 is a characteristic diagram showing a blow-off flow velocity of a lean flame of the combustion device.

【図8】天然ガス燃焼時における希薄燃料割合とNOx
の関係を示す特性図
FIG. 8: Ratio of lean fuel and NOx during combustion of natural gas
Characteristic diagram showing the relationship of

【図9】本発明の実施例2の燃焼装置を示す模式的な全
体断面図
FIG. 9 is a schematic overall cross-sectional view showing a combustion device according to a second embodiment of the present invention.

【図10】本発明の実施例3の燃焼装置を示す模式的な
全体断面図
FIG. 10 is a schematic overall cross-sectional view showing a combustion apparatus of Example 3 of the present invention.

【図11】本発明の実施例4の燃焼装置を示す模式的な
全体断面図
FIG. 11 is a schematic overall cross-sectional view showing a combustion apparatus of Example 4 of the present invention.

【図12】従来の燃焼装置の要部断面図FIG. 12 is a sectional view of a main part of a conventional combustion device.

【図13】従来の他の燃焼装置の要部断面図FIG. 13 is a sectional view of a main part of another conventional combustion device.

【符号の説明】[Explanation of symbols]

101 希薄炎口形成体 102 希薄炎口 103 希薄燃料・空気導入口 104 希薄混合気室 105 第一濃炎口形成体 106 第一濃炎口 107 第一濃混合気室 108 第二濃炎口形成体 109 第二濃炎口 110 第二濃混合気室 112 共通燃料・空気導入口 113 連通手段 114 バーナユニット 125 着火手段 201 第一濃燃料・空気導入口 202 第二濃燃料・空気導入口 203 バーナユニット 302 バーナユニット 401 空気供給部 402 バーナユニット 101 Dilute flame mouth former 102 Dilute flame mouth 103 Lean fuel / air inlet 104 lean mixture chamber 105 First rich flame former 106 First rich flame mouth 107 First rich mixture chamber 108 Second rich flame mouth former 109 Second rich flame mouth 110 Second rich mixture chamber 112 Common fuel / air inlet 113 Communication means 114 burner unit 125 ignition means 201 First concentrated fuel / air inlet 202 Second concentrated fuel / air inlet 203 burner unit 302 burner unit 401 Air supply unit 402 burner unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富田 英夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 毛 立群 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3K017 AA06 AB02 AB07 AC02 AD01 CA06 CB01 CB08 3K065 TA01 TD05 TH04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideo Tomita             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor hair group             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 3K017 AA06 AB02 AB07 AC02 AD01                       CA06 CB01 CB08                 3K065 TA01 TD05 TH04

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 希薄混合気を噴出する希薄炎口、これよ
りも濃い濃度の第一濃混合気を噴出する第一濃炎口及び
前記希薄混合気と第一濃混合気との間の濃度もしくは前
記第一濃混合気と同濃度の混合気を噴出する第二濃炎口
とを備え、前記各炎口は近接して配置すると共に前記希
薄炎口の隣に前記第一濃炎口を位置させ、前記希薄炎口
と第一濃炎口との間の無口部距離を0.2mm以上1mm以
下に設定した燃焼装置。
1. A lean flame port for ejecting a lean air-fuel mixture, a first rich flame port for ejecting a first rich air-fuel mixture having a concentration higher than that, and a concentration between the lean air-fuel mixture and the first rich air-fuel mixture. Alternatively, it is provided with a second rich flame port that ejects a mixture having the same concentration as the first rich air mixture, and the respective flame ports are arranged close to each other and the first rich flame port is adjacent to the lean flame port. A combustion device which is positioned so that the distance between the lean flame and the first rich flame is 0.2 mm or more and 1 mm or less.
【請求項2】 希薄混合気を噴出する希薄炎口、これよ
りも濃い濃度の第一濃混合気を噴出する第一濃炎口及び
前記希薄混合気と第一濃混合気との間の濃度もしくは前
記第一濃混合気と同濃度の混合気を噴出する第二濃炎口
とを備え、前記各炎口は近接して配置すると共に前記第
一濃炎口と前記第二濃炎口とで希薄炎口を挟むように形
成し、前記希薄炎口と第一濃炎口の間の無口部距離を
0.2mm以上1mm以下に設定した燃焼装置。
2. A lean flame port for ejecting a lean air-fuel mixture, a first rich flame port for ejecting a first rich air-fuel mixture having a concentration higher than that, and a concentration between the lean air-fuel mixture and the first rich air-fuel mixture. Alternatively, it is provided with a second rich flame outlet for ejecting a mixture of the same concentration as the first rich air mixture, and the respective flame orifices are arranged in proximity to each other and the first rich flame orifice and the second rich flame orifice. And a lean flame port sandwiched between the lean flame port and the first rich flame port, and the distance between the lean flame port and the first rich flame port is set to 0.2 mm or more and 1 mm or less.
【請求項3】 希薄混合気を噴出する希薄炎口、これよ
りも濃い濃度の第一濃混合気を噴出する第一濃炎口及び
前記希薄混合気と第一濃混合気との間の濃度の混合気を
噴出する第二濃炎口とを備え、前記各炎口は近接して配
置すると共に前記希薄炎口の希薄混合気が隣接する炎口
に流入するように形成して、前記希薄炎口の隣の炎口を
希薄混合気と第一濃混合気の間の濃度の混合気を噴出す
る第二濃炎口とし、前記希薄炎口と前記第二濃炎口との
間の無口部距離を0.2mm以上1mm以下に設定した燃焼
装置。
3. A lean flame port ejecting a lean air-fuel mixture, a first rich flame port ejecting a first rich air-fuel mixture having a concentration higher than that, and a concentration between the lean air-fuel mixture and the first rich air-fuel mixture. A second rich flame outlet for ejecting the air-fuel mixture, the flame outlets are arranged close to each other, and the lean air-fuel mixture of the lean flame inlet is formed so as to flow into an adjacent flame outlet. A flame outlet next to the flame orifice is defined as a second rich flame orifice that ejects a mixture having a concentration between the lean air-fuel mixture and the first rich air-fuel mixture, and there is no mouth between the lean flame orifice and the second rich flame orifice. Combustion device with part distance set to 0.2 mm or more and 1 mm or less.
【請求項4】 希薄炎口、第一濃炎口、第二濃炎口は、
それぞれに独立した混合気室及び燃料・空気導入口を有
する請求項1、2又は3記載の燃焼装置。
4. The lean flame mouth, the first rich flame mouth, and the second rich flame mouth are:
The combustion device according to claim 1, 2 or 3, which has an air-fuel mixture chamber and a fuel / air inlet which are independent of each other.
【請求項5】 希薄炎口、第一濃炎口、第二濃炎口は、
それぞれに混合気室を有すると共に、前記第二濃炎口の
第二濃混合気室は連通手段を介して前記希薄炎口の希薄
混合気室と連通させて希薄混合気と第一濃混合気の間の
濃度の混合気を生成させる請求項1又は2記載の燃焼装
置。
5. The lean flame mouth, the first rich flame mouth, and the second rich flame mouth are:
Each of them has an air-fuel mixture chamber, and the second rich air-fuel mixture chamber of the second rich flame port communicates with the lean air-fuel mixture chamber of the lean flame port through a communicating means to form a lean air-fuel mixture and a first rich air-fuel mixture. The combustion apparatus according to claim 1 or 2, which produces a mixture having a concentration of between.
【請求項6】 希薄炎口、第一濃炎口、第二濃炎口のい
ずれかに近接して空気供給部を設け、かつ前記希薄炎
口、第一濃炎口、第二濃炎口はそれぞれに混合気室を有
すると共に、前記第二濃炎口の第二濃混合気室は前記空
気供給部からの空気を混入させて希薄混合気と第一濃混
合気の間の濃度の混合気を生成させる請求項1又は2記
載の燃焼装置。
6. An air supply unit is provided near any of the lean flame port, the first rich flame port, and the second rich flame port, and the lean flame port, the first rich flame port, and the second rich flame port. Each have a mixture chamber, and the second rich mixture chamber at the second rich flame inlet mixes air from the air supply unit to mix the concentration between the lean mixture and the first rich mixture. The combustion device according to claim 1 or 2, which generates air.
【請求項7】 希薄炎口に混合気室及び燃料・空気導入
口を設けると共に、第一、第二濃炎口にはそれぞれ混合
気室とこの各混合気室に連通する一つの共通燃料・空気
導入口を設けた請求項1、2又は3記載の燃焼装置。
7. The lean flame port is provided with a mixture chamber and a fuel / air inlet port, and the first and second rich flame ports are respectively provided with a mixture chamber and one common fuel communicating with each mixture chamber. The combustion apparatus according to claim 1, 2 or 3, wherein an air inlet is provided.
【請求項8】 上流に希薄混合気室を有する希薄炎口
と、前記希薄炎口に隣接し上流に第一濃混合気室を有す
る第一濃炎口と、前記第一濃炎口と隣接し上流に第二濃
混合気室を有する第二濃炎口とを備え、前記第二濃混合
気室は連通手段を介して希薄混合気室と連通させて希薄
混合気と第一濃混合気の間の濃度の第二濃混合気を生成
させるとともに、前記希薄混合気室の上流には希薄燃料
・空気導入口を設け、かつ第一、第二濃混合気室の上流
には当該第一、第二濃混合気室の両方に連通する一つの
共通燃料・空気導入口を設け、前記希薄炎口と第一濃炎
口の間の無口部距離を0.2mm以上1mm以下に設定した
燃焼装置。
8. A lean flame port having a lean mixture chamber upstream, a first rich flame port having a first rich mixture chamber upstream of the lean flame port, and adjacent to the first rich flame port. And a second rich flame outlet having a second rich air-fuel mixture chamber upstream, and the second rich air-fuel mixture chamber is communicated with the lean air-fuel mixture chamber through a communication means to form a lean air-fuel mixture and a first rich air-fuel mixture. A second rich air-fuel mixture having a concentration of between 1 and 2 is provided, a lean fuel / air inlet is provided upstream of the lean air-fuel mixture chamber, and the first and second rich air-fuel mixture is provided upstream of the first rich air-fuel mixture chamber. Combustion in which one common fuel / air inlet communicating with both the second rich air-fuel mixture chamber is provided, and the distance between the lean flame and the first rich flame is 0.2 mm or more and 1 mm or less apparatus.
【請求項9】 上部の希薄炎口と下部の希薄燃料・空気
導入口を形成する希薄炎口形成体と、前記希薄炎口形成
体に接合して第一濃炎口を形成する第一濃炎口形成体
と、前記第一濃炎口形成体に接合して第二濃炎口を形成
するとともに前記第一濃炎口と前記第二濃炎口に連通す
る共通燃料・空気導入口を形成する第二濃炎口形成体を
設けた請求項8記載の燃焼装置。
9. A lean flame port forming body forming an upper lean flame port and a lower lean fuel / air introducing port, and a first rich flame forming a first rich flame port bonded to the lean flame port forming body. A common fuel / air introduction port that is connected to the first rich flame port and the second rich flame port while forming a second rich flame port by joining the flame port forming body and the first rich flame port forming body. The combustion apparatus according to claim 8, further comprising a second rich flame mouth forming body to be formed.
【請求項10】 第一濃炎口から噴出する第一濃混合気
は可燃限界外の過濃度混合気とした請求項1〜9のいず
れか1項記載の燃焼装置。
10. The combustion device according to claim 1, wherein the first rich air-fuel mixture ejected from the first rich flame port is an over-concentrated air-fuel mixture outside the flammability limit.
【請求項11】 希薄炎口への燃料供給量を第一、第二
濃炎口への燃料供給量より多く設定した請求項1〜9の
いずれか1項記載の燃焼装置。
11. The combustion apparatus according to claim 1, wherein the fuel supply amount to the lean flame port is set to be larger than the fuel supply amount to the first and second rich flame ports.
【請求項12】 希薄炎口からの混合気の噴出速度を第
一、第二濃炎口からの混合気の噴出速度より速く設定し
た請求項1〜9のいずれか1項記載の燃焼装置。
12. The combustion apparatus according to claim 1, wherein the jet speed of the air-fuel mixture from the lean flame port is set higher than the jet speed of the air-fuel mixture from the first and second rich flame ports.
【請求項13】 希薄炎口の炎口面積を第一、第二濃炎
口の炎口面積より大きく設定した請求項1〜9のいずれ
か1項記載の燃焼装置。
13. The combustion apparatus according to claim 1, wherein the flame opening area of the lean flame opening is set larger than the flame opening areas of the first and second rich flame openings.
【請求項14】 各炎口の燃料・空気導入口から各炎口
までの通路長の内、希薄炎口の燃料・空気導入口から希
薄炎口までの通路長を最も長く設定した請求項1〜9の
いずれか1項記載の燃焼装置。
14. The passage length from the fuel / air introduction port of each lean to each lean is set to be the longest among the passage lengths from the fuel / air introduction port of each lean to each lean. A combustion device according to any one of claims 1 to 9.
【請求項15】 希薄炎口の燃料・空気導入口の開口面
積を第一、第二炎口の燃料・空気導入口より大きく設定
した請求項1〜9のいずれか1項記載の燃焼装置。
15. The combustion apparatus according to claim 1, wherein an opening area of the fuel / air introduction port of the lean flame port is set larger than that of the fuel / air introduction port of the first and second flame ports.
【請求項16】 希薄炎口の燃料・空気導入口を第一、
第二炎口の燃料・空気導入口より下部に位置させた請求
項1〜9のいずれか1項記載の燃焼装置。
16. The fuel / air introduction port of the lean flame port is first,
The combustion device according to any one of claims 1 to 9, which is located below a fuel / air introduction port of the second flame port.
【請求項17】 炎口から噴出する混合気を点火させる
着火手段を備え、この着火手段は第一、第二炎口からの
混合気を横切るように高圧放電させる請求項1〜9のい
ずれか1項記載の燃焼装置。
17. An ignition means for igniting an air-fuel mixture ejected from a flame opening, the ignition means performing a high-pressure discharge across the air-fuel mixture from the first and second flame openings. The combustion device according to item 1.
【請求項18】 請求項1〜9のいずれか1項記載の燃
焼装置をバーナユニットとして構成し、このバーナユニ
ットを複数隣接配置して構成した燃焼装置。
18. A combustion device comprising the combustion device according to claim 1 as a burner unit, and a plurality of the burner units arranged adjacent to each other.
【請求項19】 請求項1、3〜9のいずれか1項記載
の燃焼装置をバーナユニットとして構成し、このバーナ
ユニットは希薄炎口の両側に第一濃炎口、第二濃炎口を
配置して構成した燃焼装置。
19. The burner unit according to any one of claims 1, 3 to 9 is configured as a burner unit, and the burner unit has a first rich flame port and a second rich flame port on both sides of a lean flame port. Combustion device arranged and configured.
JP2001333982A 2001-10-31 2001-10-31 Combustion device Pending JP2003139304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333982A JP2003139304A (en) 2001-10-31 2001-10-31 Combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333982A JP2003139304A (en) 2001-10-31 2001-10-31 Combustion device

Publications (1)

Publication Number Publication Date
JP2003139304A true JP2003139304A (en) 2003-05-14

Family

ID=19149178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333982A Pending JP2003139304A (en) 2001-10-31 2001-10-31 Combustion device

Country Status (1)

Country Link
JP (1) JP2003139304A (en)

Similar Documents

Publication Publication Date Title
KR100542900B1 (en) Air atomized discrete jet liquid fuel injector and method
US20080280238A1 (en) Low swirl injector and method for low-nox combustor
CN115451432B (en) Micro-mixing nozzle assembly and system for fuel in combustion chamber of gas turbine
US7127899B2 (en) Non-swirl dry low NOx (DLN) combustor
JP4066658B2 (en) Gas turbine combustor, gas turbine combustor premixing device, and gas turbine combustor premixing method
JPH10196958A (en) Method for burning fuel in burner of gas turbine engine
JP3821048B2 (en) Combustion device
CN115451431B (en) Fuel nozzle premixing system for combustion chamber of gas turbine
JP2003139304A (en) Combustion device
JP2003074808A (en) LOW NOx COMBUSTION DEVICE
JPH04126921A (en) Premix-type gas turbine combustor
JP3879304B2 (en) Low NOx combustion equipment
JP2863841B1 (en) High load swivel burner array
JP2004003767A (en) Combustion apparatus
JP2002310408A (en) Combustion device
JP3136201B2 (en) Premixing device
JP3229481B2 (en) Concentration combustion device
RU54142U1 (en) BURNER
JPH06101821A (en) Combustion device
JPH04371709A (en) Combustion device
JP3116007B2 (en) Concentration combustion device
JP2004053117A (en) Combustion device
JPH0861614A (en) High turn down burner
JP2005351491A (en) Combustion device
JPH07208707A (en) Thick and thin fuel concentration combustion device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704