【特許請求の範囲】
【請求項1】厚肉のゴム弾性体を室壁とする主液室と、薄肉のゴム膜を室壁とし上記主液室と仕切壁を隔てて対向する副液室と、この副液室と上記主液室とを連通し内部を流通する液の作用により所定の低周波振動を低減する第1の絞り流路と、中空とした上記仕切壁内に張設される弾性体膜と、該弾性体膜の上記主液室側に形成される第3の液室と、上記弾性体膜の上記副液室側に形成され外部より負圧を導入することにより上記弾性体膜を対向する上記仕切壁内表面に吸着するようになした負圧室と、上記第3の液室と上記主液室とを連通し上記第1の絞り流路より高周波側で作用する第2の絞り流路とを具備する液封入防振装置において、
上記負圧室に面する上記弾性体膜の表面に凸部を形成し、上記負圧室に負圧が導入された時に上記弾性体膜と上記仕切壁内表面との間に小空間を残存形成させることにより、該小空間に面する部分において上記弾性体膜を微小変位可能となしたことを特徴とする液封入防振装置。
【請求項2】上記仕切壁を、外周部に上記第1の絞り流路を設けた本体部と、該本体部の上記主液室側に設けられ上記本体部との間に上記負圧室を形成する上記弾性体膜と、上記弾性体膜と上記主液室との間に配設されて上記弾性体膜との間に上記第3の液室を形成し内部に上記第2の絞り流路を設けた仕切板とで構成し、上記凸部を上記弾性体膜の中央部に形成して、該凸部の周囲に前記小空間を残存形成させることを特徴とする請求項1記載の液封入防振装置。
【請求項3】上記仕切壁を、本体部と、該本体部の上記主液室側に設けられ本体部との間に上記負圧室を形成する上記弾性体膜と、上記弾性体膜と上記主液室との間に配設されて上記弾性体膜との間に上記第3の液室を形成する仕切板とで構成し、上記弾性体膜の上記負圧室に面する表面および上記第3の液室に面する表面にそれぞれ凸部を形成し、該凸部の端面をそれぞれ対向する上記本体部および上記仕切板に密着させるとともに、上記負圧室に面する上記弾性体膜の表面に形成した上記凸部により上記負圧室に負圧が導入された時に上記弾性体膜と 上記本体部表面との間に上記小空間を残存形成させたことを特徴とする請求項1記載の液封入防振装置。
【請求項4】上記凸部を、上記弾性体膜の上記負圧室に面する表面および上記第3の液室に面する表面のそれぞれ中央部に設けたことを特徴とする請求項3記載の液封入防振装置。
【請求項5】上記本体部の外周部に環状凸部を形成し、上記負圧室に負圧が導入された時に該環状凸部により上記弾性体膜と上記本体部表面との間に小空間を残存形成させて、該小空間に面する部分において上記弾性体膜を微小変位可能となしたことを特徴とする請求項2又は4記載の液封入防振装置。
【請求項6】上記弾性体膜の外周縁に上記本体部側に突出する立壁を形成し、該立壁の突出端面を上記本体部の環状凸部上に固定して、該突出端面でのみ上記弾性体膜が上記本体部の環状凸部に密着するようにした請求項5記載の液封入防振装置。
【発明の詳細な説明】
【0001】
【発明が属する技術分野】
本発明は車両のエンジンマウント等に利用される液封入防振装置に関し、特に、防振特性の切換手段を有する液封入防振装置に関する。
【0002】
【従来の技術】
液封入防振装置は、一般に、厚肉のゴム弾性体を室壁とする主液室と、薄肉のゴム膜を室壁とする副液室とを仕切壁で区画してなる。そして、該仕切壁内に設けた絞り流路を介して両液室間を流通する液の作用により、低周波振動域、主にエンジンシェイク振動(約5〜13Hz付近)に相当する振動の減衰を図っている。
【0003】
ところが、上記構造の液封入防振装置では、より高周波側の振動域において動ばね定数が高くなり、例えば、アイドリング振動(約15〜35Hz付近)に対する防振効果が低いという問題があった。これを解決するために、仕切壁を中空として弾性体膜を室壁とする第3の液室を設け、該第3の液室と上記主液室とを、エンジンシェイク振動より高周波側で作用する絞り流路によって連通させることで、複数の振動を低減可能とした液封入防振装置が提案されている。
【0004】
また、アイドリング振動用の絞り流路は、通常、エンジンシェイク振動用の絞り流路より、流路径が大きくあるいは流路長が短く形成してあって、液が流入しやすい。このため、上記第3の液室を構成する弾性体膜の背面に負圧室を設けて、防振特性を切換可能となしたものがある。この場合、上記負圧室内に負圧を導入すると、上記弾性体膜が背面に吸着されて移動が規制されるので、エンジンシェイク振動の入力時に、上記第3の液室への液の流入を規制し、上記副液室への絞り流路に強制的に液を流通させて高減衰を得ることができる。アイドル振動の入力時には、上記負圧室を大気開放することで、上記弾性体膜を弾性変形可能とし、上記第3の液室へ液を流入させて振動を低減する。
【0005】
【発明が解決しようとする課題】
一方、アイドリング振動より高周波側のこもり音振動(約60〜80Hz)に対する対策として、上記主液室内に可動部材を配設し、上記可動部材の変位により上記主液室内の液圧を低下させて振動を吸収低減することが知られている。また、この可動部材を上記負圧室内に設けたものがあり、例えば、特開平4−277338号公報には、上記負圧室内に弾性拘束部材を配置し、上記第3の液室を構成する弾性体膜に負圧力が及ぼされた際に、該弾性体膜を上記弾性拘束部材に吸着させて、一体に変形するようになしている。
【0006】
しかしながら、上記従来の構成では、防振特性を切換えるために必要な構成部材が多く、また、上記弾性拘束部材の変位を受容するために弾性拘束部材の背面に空間を設ける必要があるといった問題があった。
【0007】
しかして、本発明の目的は、より簡易な構成で製作が容易であり、コンパクトで、しかも広い領域で良好な防振特性を示す液封入防振装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の請求項1の液封入防振装置は、厚肉のゴム弾性体を室壁とする主液室と、薄肉のゴム膜を室壁とし上記主液室と仕切壁を隔てて対向する副液室と、この副液室と上記主液室とを連通し内部を流通する液の作用により所定の低周波振動を低減する第1の絞り流路と、中空とした上記仕切壁内に張設される弾性体膜と、該弾性体膜の上記主液室側に形成される第3の液室と、上記弾性体膜の上記副液室側に形成され外部より負圧を導入することにより上記弾性体膜を対向する上記仕切壁内表面に吸着するようになした負圧室と、上記第3の液室と上記主液室とを連通し上記第1の絞り流路より高周波側で作用する第2の絞り流路とを具備する。そして、上記負圧室に面する上記弾性体膜の表面に凸部を形成し、上記負圧室に負圧が導入された時に上記弾性体膜と上記仕切壁内表面との間に小空間を残存形成させることにより、該小空間に面する部分において上記弾性体膜を微小変位可能となしたものである。
【0009】
上記構成において、上記負圧室に負圧を導入すると、上記弾性体膜は対向面に吸引されてその移動が規制されるが、上記凸部により小空間が残存形成されるので、この小空間に面する部分において上記弾性体膜は微小変位が可能である。従って、こもり音振動の入力時には、上記弾性体膜の微小変位により振動を吸収することができる。また、この状態で低周波のシェイク振動が入力すると、上記弾性体膜は移動が規制されているので、主液室内の液は第1の絞り流路を介して上記副液室へ流入し、効果的に振動減衰がなされる。アイドリング振動の入力時には、上記負圧室を大気に開放して、上記弾性体膜が自由に変位できるようにし、より高周波側で作用する第2の絞り流路に液を流入させて振動を低減させる。
【0010】
このように、上記構成によれば、異なる周波数域の振動を良好に低減することができる。しかも、既成部材の形状を変更するのみで、部品点数を増加する必要がないので、構成がより簡易で、製作が容易であり、コンパクトにできる。
【0011】
より具体的には、上記仕切壁を、外周部に上記第1の絞り流路を設けた本体部と、該本体部の上記主液室側に設けられ上記本体部との間に上記負圧室を形成する上記弾性体膜と、上記弾性体膜と上記主液室との間に配設されて上記弾性体膜との間に上記第3の液室を形成し内部に上記第2の絞り流路を設けた仕切板とで構成し、上記凸部を上記弾性体膜の中央部に形成して、該凸部の周囲に前記小空間を残存形成させてもよい(請求項2)。
【0012】
あるいはまた、上記仕切壁を、本体部と、該本体部の上記主液室側に設けられ本体部との間に上記負圧室を形成する上記弾性体膜と、上記弾性体膜と上記主液室との間に配設されて上記弾性体膜との間に上記第3の液室を形成する仕切板とで構成し、上記弾性体膜の上記負圧室に面する表面および上記第3の液室に面する表面にそれぞれ凸部を形成し、該凸部の端面をそれぞれ対向する上記本体部および上記仕切板に密着させるとともに、上記負圧室に面する上記弾性体膜の表面に形成した上記凸部により上記負圧室に負圧が導入された時に上記弾性体膜と上記本体部表面との間に上記小空間を残存形成させてもよい(請求項3)。この場合、上記凸部を、上記弾性体膜の上記負圧室に面する表面および上記第3の液室に面する表面のそれぞれ中央部に設けてもよい(請求項4)。
【0013】
また、上記本体部の外周部に環状凸部を形成し、上記負圧室に負圧が導入された時に該環状凸部により上記弾性体膜と上記本体部表面との間に小空間を残存形成させて、該小空間に面する部分において上記弾性体膜を微小変位可能となすこともできる(請求項5)。また、この場合、上記弾性体膜の外周縁に上記本体部側に突出する立壁を形成し、該立壁の突出端面を上記本体部の環状凸部上に固定して、該突出端面でのみ上記弾性体膜が上記本体部の環状凸部に密着するようにすれば(請求項6)、上記小空間を形成しやすい。
【0014】
【発明の実施の形態】
以下、図1、図2により、本発明の第1の実施の形態を説明する。図1(a)において、1は厚肉のゴム弾性体で、中空とした下半部内を主液室Aとなしている。該ゴム弾性体1の下端開口には、これを閉鎖するように仕切壁2が配設され、さらにその下方には薄肉のゴム膜3が配してあって、上記仕切壁2とゴム膜3で囲まれる空間を副液室Bとしている。
【0015】
上記ゴム弾性体1の下半部外周には、筒状の本体金具4が接合してある。この本体金具4の下端縁は、上記仕切壁2および上記ゴム膜3の外周に沿って下方に延び、さらに内方へ屈曲してこれらを保持している。上記ゴム弾性体1の上部には連結部材11が埋設固定してあり、該連結部材11によってエンジンに連結されるようになしてある。上記ゴム弾性体1の上半部にはキャップ5が覆着されており、該キャップ5の側部に設けた複数の脚部51(図2参照)によって、車両本体に固定されるようになしてある。
【0016】
上記仕切壁2は、図2に示すように、アルミニウム鋳物または樹脂の一体成形品よりなる略容器状の本体部21と、その内部に保持される弾性体膜22および仕切板23からなる。上記本体部21は、下面外周部を厚肉に形成して下方に開口する円弧状の溝21aを設け、下方に配設されるゴム膜3の外周部31との間に、第1の絞り流路S1(図1参照)を形成するようになしてある。ここで、上記ゴム膜3の外周部31には、筒状の補強部材が接合してあり、その上端は、上記溝21aの底部に沿うフランジ形状となしてある。
【0017】
上記本体部21には、上記第1の絞り流路S1と主液室Aとを連通する連通孔21bが設けられるとともに、図示しない位置に上記第1の絞り流路S1と副液室Bとを連通する連通孔を有している。そして、上記第1の絞り流路S1を介して上記主液室Aと副液室Bとの間に液を流通させることにより、その流路径および流路長によって設定される所定の周波数域の振動、例えばエンジンシェイク振動を低減する。
【0018】
上記弾性体膜22は、ゴム等の弾性部材よりなり、上記ゴム膜3よりやや膜厚に形成してある。上記弾性体膜22の外周には、筒状の金属部材22aが固定され、該金属部材22aにて上記本体部21内に嵌着固定されるようになしてある。上記金属部材22aの上端縁は外方に屈曲して上記本体部21上面に当接している。上記弾性体膜22と上記本体部21との間に形成される空間は負圧室Cとしてあり、上記本体部21内に設けた負圧路21cから負圧を導入することにより上記弾性体膜22を下方に吸引できるようにしてある。
【0019】
上記負圧路21cは、上記本体部21側部に突出する負圧管21dに連通し、該負圧管21dをエンジンの負圧路等に連通することで、上記負圧室Cへ負圧を導入することができる。なお、上記本体金具4の、ゴム弾性体1が接合されない下端部には、周方向の複数箇所に切欠き部41が形成してあり、上記負圧管21dは、上記本体金具4の切欠き部41の1つに対応して設けられて、組付けと同時に上記負圧管21dの取り出しができるようになしてある。また、上記本体金具4の他の切欠き部41には、上記本体部21側部に設けた複数の突起21eが、それぞれ対応しており、組付け時の位置合わせを容易にしている。
【0020】
上記仕切板23は、外周部に第2の絞り流路S2となる環状空間を有するとともに、下面外周縁に下方に突出するフランジ23aを有し、上記金属部材22a内に嵌着保持されるようになしてある。これにより、上記仕切板23と、上記弾性体膜22との間に第3の液室Dが形成される(図1参照)。上記第2の絞り流路S2は、上記第1の絞り流路S1より流路径が大きくあるいは流路長を短く形成して、上記第1の絞り流路S1より高周波側の振動、例えばアイドリング振動を吸収するように調整される。上記第2の絞り流路S2は、連通孔23bにて上記主液室と連通するとともに、図示しない位置に設けた連通孔により上記副液室Bに連通している。
【0021】
上記弾性体膜22の中央部には、上下面に突出する凸部22bが形成してあり、該凸部22bは、両端面が上記本体部21の上面および上記仕切板23の下面にそれぞれ密着するようになしてある(図1)。また、上記弾性体膜22の外周縁には下方に突出する立壁22cが形成してある。上記本体部21の外周部には、環状凸部21fが設けてあり、該環状凸部21f上面に、上記立壁22cの下端面が密着するようになしてある。上記凸部22bおよび上記環状凸部21fを設けることで、上記弾性体膜22と、上記本体部21との間に空間が形成されやすくなる。上記立壁22cは、上記弾性体膜22を補強すると同時に、上記本体部21との間の空間形成を容易にしている。
【0022】
上記構成において、上記負圧室Cに負圧を導入すると、図1(b)に示すように、上記弾性体膜22は下方に吸引される。ただし、上記弾性体膜22と上記本体部21とは完全に密着せず、中央部の上記凸部22bの周囲、および外周部の上記環状凸部21fと上記立壁22cとの間に小空間6が残る。従って、この小空間6に面する部分において、上記弾性体膜22は微小変位が可能であり、負圧作用時の上記弾性体膜22の剛性および上記小空間6の容積が適当となるようにすることで、こもり音振動を効果的に吸収することができる。通常、車両走行時に得られる−200〜−500mmHg負圧時の、上記弾性体膜22と上記本体部21との接触部面積が、大気導入時(図1(b)に点線で示す)の可動面積の40〜95%程度となるようにするのがよい。また、この時、上記弾性体膜22の自由な変形は規制されるので、エンジンシェイク振動の入力時には、より変形しやすい上記副液室Bへ液が流入し、振動減衰がなされる。
【0023】
これを図3、図4の周波数特性図を用いて説明する。図3は、上記弾性体膜22および上記本体部21が凸部を有しない場合で、負圧時、上記負圧室Cに小空間が残らないため、上記弾性体膜22は剛体として機能する。この場合、図に実線で示すように、エンジンシェイク振動に対応する約10Hz付近において、上記第1の絞り流路S1を流通する液の作用により高い減衰係数が得られるが、これより高周波側では動バネ定数が高く、振動低減効果が得られない。図の点線は上記負圧室Cを大気に連通した場合で、上記弾性体膜22の自由変形により、上記第3の液室Dへの液流入が可能となる。そして、上記第2の絞り流路S2を流通する液の作用により、アイドリング振動に対応する約30Hz付近の動バネ定数が低くなるが、これより高周波側では動バネ定数が高くなり、振動低減効果が得られない。
【0024】
図4は、上記弾性体膜22および上記本体部21に凸部22b、21f、立壁22cを設けた本発明の構成において、負圧を導入した場合の特性図である。この時、上記弾性体膜22は充分に高い剛性を有し、第3の液室Dへの液の流入が規制されるので、約10Hz付近のエンジンシェイク振動の入力時には、上記第1の絞り流路S1を流通する液の作用により良好な振動減衰がなされる。また、こもり音振動に対応する約60〜80Hz付近においては、上記弾性体膜22と上記本体部21の間に形成される小空間6により、上記弾性体膜22が微小変位可能であり、上記主液室の内圧上昇を吸収して動バネ定数を低下させることにより、振動低減する。アイドリング振動の入力時には、上記負圧室Cに大気を導入することにより上記図3(点線)と同様に、動バネ定数を低下させ、振動を低減することができる。
【0025】
このように、上記構成によれば、簡易な構成で、良好な防振特性が得られ、実用性が高い。なお、本発明において、上記凸部の数、設置位置等は、上記実施の形態に示したものに限らず、適宜変更することができる。
【図面の簡単な説明】
【図1】(a)は本発明の液封入防振装置の全体断面図、(b)はその部分拡大断面図である。
【図2】本発明の液封入防振装置の分解断面図である。
【図3】従来の液封入防振装置の周波数特性を示す図である。
【図4】本発明の液封入防振装置の周波数特性を示す図である。
【符号の説明】
1 ゴム弾性体
2 仕切壁
21 本体部
21f 環状凸部(凸部)
22 弾性体膜
22b 凸部
22c 立壁
23 仕切板
3 ゴム膜
4 本体金具
5 キャップ
A 主液室
B 副液室
C 負圧室
D 第3の液室
S1 第1の絞り流路
S2 第2の絞り流路[Claims]
1. A main liquid chamber having a thick rubber elastic body as a chamber wall, a sub liquid chamber having a thin rubber film as a chamber wall and facing the main liquid chamber with a partition wall therebetween, and a sub liquid chamber. A first throttle channel that reduces a predetermined low-frequency vibration by the action of a liquid flowing through the interior of the main liquid chamber and an elastic film stretched in the hollow partition wall; A third liquid chamber formed on the main liquid chamber side of the elastic film and the elastic film formed on the sub liquid chamber side of the elastic film by introducing a negative pressure from the outside. A second throttle flow which communicates the negative pressure chamber adsorbed to the inner surface of the partition wall with the third liquid chamber and the main liquid chamber and acts on the high frequency side of the first throttle flow path; A liquid filled vibration isolator comprising a path and
A convex portion is formed on the front surface of the elastic film facing the negative pressure chamber, a small space between the elastic film and the partition wall surface when the negative pressure in the negative pressure chamber is introduced by remaining formed, liquid filled vibration isolating device, characterized in that the Do allow small displacement of the elastic film in the portion facing the said small space.
2. The negative pressure chamber is provided between the partition wall and a main body provided with the first throttle flow path on the outer periphery thereof and the main body provided on the main liquid chamber side of the main body. And the third liquid chamber is formed between the elastic film and the elastic film and is disposed between the elastic film and the main liquid chamber, and the second diaphragm is formed therein. 2. A partition plate provided with a flow path, wherein the convex portion is formed at a central portion of the elastic film, and the small space is left around the convex portion. 3. Liquid filled vibration isolator.
3. The elastic membrane, wherein the partition wall is provided with a main body, the elastic film provided on the main liquid chamber side of the main body, and forming the negative pressure chamber between the main body and the elastic film. A partition plate disposed between the main liquid chamber and the elastic film to form the third liquid chamber with the elastic film; and a surface of the elastic film facing the negative pressure chamber; A projection is formed on the surface facing the third liquid chamber, and the end faces of the projection are brought into close contact with the main body and the partition plate facing each other, and the elastic film facing the negative pressure chamber. 2. The small space remains between the elastic film and the surface of the main body when a negative pressure is introduced into the negative pressure chamber by the convex portion formed on the surface of the main body. The liquid filled vibration isolator as described in the above.
4. The elastic film according to claim 3 , wherein said elastic film is provided at a central portion of a surface of said elastic film which faces said negative pressure chamber and a surface of said elastic film which faces said third liquid chamber. Liquid filled vibration isolator.
5. An annular convex portion is formed on an outer peripheral portion of said main body portion, and when a negative pressure is introduced into said negative pressure chamber, a small convex portion is formed between said elastic film and said main body surface by said annular convex portion. 5. The liquid filled vibration isolator according to claim 2, wherein a space is formed so as to be able to minutely displace the elastic film at a portion facing the small space.
6. An upright wall protruding toward the main body portion is formed on an outer peripheral edge of the elastic body film, and a protruding end surface of the upright wall is fixed on an annular convex portion of the main body portion, and only the protruding end surface is used. 6. The liquid-filled vibration isolator according to claim 5, wherein the elastic film is in close contact with the annular projection of the main body.
DETAILED DESCRIPTION OF THE INVENTION
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid-filled vibration isolator used for an engine mount of a vehicle and the like, and more particularly, to a liquid-filled vibration isolator having switching means for vibration-proof characteristics.
[0002]
[Prior art]
In general, the liquid-filled vibration isolator includes a main liquid chamber having a thick rubber elastic body as a chamber wall and a sub liquid chamber having a thin rubber film as a chamber wall. Then, due to the action of the liquid flowing between the two liquid chambers through the restricting flow path provided in the partition wall, attenuation of vibration corresponding to a low frequency vibration region, mainly engine shake vibration (about 5 to 13 Hz). I am planning.
[0003]
However, the liquid-filled vibration damping device having the above-described structure has a problem in that the dynamic spring constant becomes higher in a vibration region on a higher frequency side, and the vibration damping effect for idling vibration (about 15 to 35 Hz) is low, for example. In order to solve this, a third liquid chamber having a hollow partition wall and an elastic film as a chamber wall is provided, and the third liquid chamber and the main liquid chamber are operated on a higher frequency side than engine shake vibration. There has been proposed a liquid filled vibration isolator capable of reducing a plurality of vibrations by communicating with each other through a restricted flow path.
[0004]
In addition, the throttle flow path for idling vibration is usually formed to have a larger flow path diameter or a shorter flow path length than the throttle flow path for engine shake vibration, so that liquid can easily flow in. For this reason, there is a type in which a negative pressure chamber is provided on the back surface of the elastic film constituting the third liquid chamber so that the vibration isolation characteristics can be switched. In this case, when a negative pressure is introduced into the negative pressure chamber, the elastic film is adsorbed to the back surface and its movement is regulated. Therefore, when the engine shake vibration is input, the flow of the liquid into the third liquid chamber is prevented. By restricting the liquid, the liquid can be forced to flow through the throttle flow path to the sub liquid chamber to obtain high attenuation. When the idle vibration is input, the negative pressure chamber is opened to the atmosphere to make the elastic film elastically deformable, and the liquid flows into the third liquid chamber to reduce the vibration.
[0005]
[Problems to be solved by the invention]
On the other hand, as a countermeasure against muffled sound vibration (about 60 to 80 Hz) on the higher frequency side than idling vibration, a movable member is arranged in the main liquid chamber, and the liquid pressure in the main liquid chamber is reduced by displacement of the movable member. It is known to reduce vibrations. In some cases, the movable member is provided in the negative pressure chamber. For example, in Japanese Patent Application Laid-Open No. 4-277338, an elastic restraining member is disposed in the negative pressure chamber to constitute the third liquid chamber. When a negative pressure is applied to the elastic film, the elastic film is adsorbed to the elastic restraining member so as to be integrally deformed.
[0006]
However, in the above-described conventional configuration, there are many components necessary for switching the vibration isolation characteristics, and there is a problem that a space needs to be provided on the back surface of the elastic restraining member to receive the displacement of the elastic restraining member. there were.
[0007]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a liquid-filled vibration damping device that is simpler in structure, easy to manufacture, compact, and exhibits good vibration damping characteristics over a wide area.
[0008]
[Means for Solving the Problems]
In the liquid filling vibration isolator according to the first aspect of the present invention, a main liquid chamber having a thick rubber elastic body as a chamber wall and a main rubber chamber having a thin rubber film as a chamber wall are opposed to each other with a partition wall therebetween. A sub-liquid chamber, a first throttle flow path communicating with the sub-liquid chamber and the main liquid chamber, and reducing a predetermined low-frequency vibration by the action of a liquid flowing through the sub-liquid chamber; An elastic film to be stretched; a third liquid chamber formed on the main liquid chamber side of the elastic film; and a negative pressure introduced from the outside formed on the sub liquid chamber side of the elastic film. This connects the negative pressure chamber, which adsorbs the elastic film to the inner surface of the opposing partition wall, the third liquid chamber and the main liquid chamber, and the high frequency from the first throttle channel. A second throttle channel acting on the side. Then, a small between the negative pressure chamber of the convex portion is formed on the front surface of the elastic film facing said elastic membrane when the negative pressure in the negative pressure chamber is introduced and the partition wall surface by remaining a space, in which the elastic film Do allows minute displacement in the portion facing the said small space.
[0009]
In the above configuration, when a negative pressure is introduced into the negative pressure chamber, the elastic film is sucked by the opposing surface and its movement is regulated. However, since the small space remains formed by the convex portion, the small space is formed. The elastic film can be slightly displaced in the portion facing the surface. Therefore, when the muffled sound vibration is input, the vibration can be absorbed by the minute displacement of the elastic film. Also, when low-frequency shake vibration is input in this state, the movement of the elastic film is restricted, so that the liquid in the main liquid chamber flows into the sub liquid chamber via the first throttle channel, Vibration damping is effectively performed. When the idling vibration is input, the negative pressure chamber is opened to the atmosphere so that the elastic film can be freely displaced, and the vibration is reduced by flowing the liquid into the second throttle flow path acting on the higher frequency side. Let it.
[0010]
As described above, according to the above configuration, vibrations in different frequency ranges can be favorably reduced. Moreover, since it is not necessary to increase the number of parts only by changing the shape of the existing member, the configuration is simpler, the production is easy, and the device can be made compact.
[0011]
More specifically, the negative pressure is applied between the main body provided with the first throttle channel on the outer peripheral portion thereof and the main body provided on the main liquid chamber side of the main body. The third liquid chamber is formed between the elastic film forming the chamber, and the elastic film disposed between the elastic film and the main liquid chamber, and the second liquid chamber is formed therein. A partition plate provided with a throttle channel may be provided, and the convex portion may be formed at the center of the elastic film, and the small space may remain around the convex portion. .
[0012]
Alternatively, the partition wall may include the main body portion, the elastic film provided on the main liquid chamber side of the main body portion and forming the negative pressure chamber between the main body portion, the elastic film, and the main body. A partition plate disposed between the elastic film and the elastic film to form the third liquid chamber between the elastic film and the elastic film; 3, a convex portion is formed on the surface facing the liquid chamber, and the end surface of the convex portion is brought into close contact with the main body portion and the partition plate facing each other, and the surface of the elastic film facing the negative pressure chamber. The small space may remain between the elastic film and the surface of the main body when a negative pressure is introduced into the negative pressure chamber by the convex portion formed in (3). In this case, the convex portion may be provided at a central portion of each of the surface of the elastic film facing the negative pressure chamber and the surface facing the third liquid chamber.
[0013]
Further, an annular convex portion is formed on an outer peripheral portion of the main body portion, and when a negative pressure is introduced into the negative pressure chamber, a small space remains between the elastic film and the surface of the main body portion by the annular convex portion. The elastic film can be made minutely displaceable in a portion facing the small space by forming the elastic film (claim 5). Further, in this case, an upright wall protruding toward the main body portion is formed on an outer peripheral edge of the elastic film, and a protruding end surface of the upright wall is fixed on an annular convex portion of the main body portion. If the elastic film is in close contact with the annular convex portion of the main body (claim 6), it is easy to form the small space.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In FIG. 1A, reference numeral 1 denotes a thick rubber elastic body, and a main liquid chamber A is formed in a hollow lower half. A partition wall 2 is disposed at the lower end opening of the rubber elastic body 1 so as to close it, and a thin rubber film 3 is further disposed below the partition wall 2. The sub-liquid chamber B is defined by the space surrounded by.
[0015]
A cylindrical main body fitting 4 is joined to the outer periphery of the lower half portion of the rubber elastic body 1. The lower edge of the main body fitting 4 extends downward along the outer periphery of the partition wall 2 and the rubber film 3 and is bent inward to hold them. A connecting member 11 is embedded and fixed above the rubber elastic body 1 and is connected to the engine by the connecting member 11. A cap 5 is covered on the upper half of the rubber elastic body 1, and is fixed to the vehicle body by a plurality of legs 51 (see FIG. 2) provided on the side of the cap 5. It is.
[0016]
As shown in FIG. 2, the partition wall 2 is composed of a substantially container-shaped main body portion 21 made of an integrally molded product of aluminum casting or resin, and an elastic film 22 and a partition plate 23 held therein. The main body 21 has an arc-shaped groove 21a that opens downward and has an outer peripheral portion formed with a thicker lower surface, and a first diaphragm between the outer peripheral portion 31 of the rubber film 3 disposed below. A channel S1 (see FIG. 1) is formed. Here, a cylindrical reinforcing member is joined to the outer peripheral portion 31 of the rubber film 3, and the upper end thereof has a flange shape along the bottom of the groove 21 a.
[0017]
The main body 21 is provided with a communication hole 21b that communicates the first throttle flow path S1 with the main liquid chamber A, and the first throttle flow path S1 and the sub liquid chamber B are located at a position (not shown). And a communication hole for communicating the same. Then, by flowing the liquid between the main liquid chamber A and the sub liquid chamber B via the first throttle flow path S1, a predetermined frequency range set by the flow path diameter and the flow path length is obtained. Reduce vibration, eg, engine shake vibration.
[0018]
The elastic film 22 is made of an elastic member such as rubber, and is formed to be slightly thicker than the rubber film 3. A cylindrical metal member 22a is fixed to the outer periphery of the elastic film 22, and is fitted and fixed in the main body 21 by the metal member 22a. The upper edge of the metal member 22a is bent outward and is in contact with the upper surface of the main body 21. The space formed between the elastic film 22 and the main body 21 is a negative pressure chamber C. By introducing a negative pressure from a negative pressure passage 21 c provided in the main body 21, the elastic film is formed. 22 can be sucked downward.
[0019]
The negative pressure passage 21c communicates with a negative pressure tube 21d protruding from the side of the main body 21, and the negative pressure tube 21d communicates with a negative pressure passage or the like of the engine to introduce a negative pressure into the negative pressure chamber C. can do. At the lower end of the body fitting 4 where the rubber elastic body 1 is not joined, cutouts 41 are formed at a plurality of positions in the circumferential direction. The negative pressure tube 21d is provided at the notch of the body fitting 4. 41, so that the negative pressure tube 21d can be taken out simultaneously with assembling. A plurality of projections 21e provided on the side of the main body 21 correspond to the other notches 41 of the main body fitting 4, respectively, to facilitate the alignment at the time of assembly.
[0020]
The partition plate 23 has an annular space on the outer peripheral portion to be the second throttle channel S2, and has a flange 23a protruding downward on the outer peripheral edge of the lower surface so that the partition plate 23 is fitted and held in the metal member 22a. It has been done. Thus, a third liquid chamber D is formed between the partition plate 23 and the elastic film 22 (see FIG. 1). The second throttle flow path S2 is formed to have a larger flow path diameter or a shorter flow path length than the first throttle flow path S1, so that vibration on the higher frequency side than the first throttle flow path S1, for example, idling vibration Is adjusted to absorb the The second throttle passage S2 communicates with the main liquid chamber through a communication hole 23b, and communicates with the sub liquid chamber B through a communication hole provided at a position (not shown).
[0021]
At the center of the elastic film 22, a convex portion 22b projecting upward and downward is formed, and the both ends of the convex portion 22b adhere to the upper surface of the main body 21 and the lower surface of the partition plate 23, respectively. (FIG. 1). An upright wall 22c is formed on the outer peripheral edge of the elastic film 22 so as to protrude downward. An annular convex portion 21f is provided on the outer peripheral portion of the main body portion 21. The lower end surface of the standing wall 22c is in close contact with the upper surface of the annular convex portion 21f. By providing the convex portions 22b and the annular convex portions 21f, a space is easily formed between the elastic film 22 and the main body portion 21. The upright wall 22c reinforces the elastic film 22 and facilitates formation of a space between the upright wall 22c and the main body 21.
[0022]
In the above configuration, when a negative pressure is introduced into the negative pressure chamber C, the elastic film 22 is sucked downward as shown in FIG. However, the elastic film 22 and the main body 21 do not completely adhere to each other, and a small space 6 is formed around the central convex portion 22b and between the annular convex portion 21f at the outer peripheral portion and the vertical wall 22c. Remains. Therefore, in the portion facing the small space 6, the elastic film 22 can be slightly displaced, so that the rigidity of the elastic film 22 and the volume of the small space 6 at the time of the negative pressure action become appropriate. By doing so, muffled sound vibration can be effectively absorbed. Normally, the area of the contact portion between the elastic film 22 and the main body 21 at the time of negative pressure of -200 to -500 mmHg obtained during running of the vehicle is movable when introduced into the atmosphere (indicated by a dotted line in FIG. 1B). It is preferable that the area is about 40 to 95% of the area. At this time, since the free deformation of the elastic film 22 is regulated, when the engine shake vibration is input, the liquid flows into the sub liquid chamber B, which is more easily deformed, and the vibration is attenuated.
[0023]
This will be described with reference to the frequency characteristic diagrams of FIGS. FIG. 3 shows a case where the elastic film 22 and the main body 21 do not have a convex portion. When a negative pressure is applied, no small space remains in the negative pressure chamber C, so that the elastic film 22 functions as a rigid body. . In this case, as shown by the solid line in the figure, a high damping coefficient is obtained at about 10 Hz corresponding to engine shake vibration due to the action of the liquid flowing through the first throttle passage S1, but on the higher frequency side, The dynamic spring constant is high and the effect of reducing vibration cannot be obtained. The dotted line in the drawing indicates the case where the negative pressure chamber C is communicated with the atmosphere. The free deformation of the elastic film 22 allows the liquid to flow into the third liquid chamber D. Then, due to the action of the liquid flowing through the second throttle flow path S2, the dynamic spring constant around about 30 Hz corresponding to the idling vibration decreases, but the dynamic spring constant increases on the higher frequency side, and the vibration reduction effect is obtained. Can not be obtained.
[0024]
FIG. 4 is a characteristic diagram when a negative pressure is introduced in the configuration of the present invention in which the protrusions 22b and 21f and the upright wall 22c are provided on the elastic film 22 and the main body 21. At this time, since the elastic film 22 has sufficiently high rigidity and the inflow of the liquid into the third liquid chamber D is restricted, the first diaphragm is input when an engine shake vibration of about 10 Hz is input. Good vibration damping is achieved by the action of the liquid flowing through the flow path S1. Further, in the vicinity of about 60 to 80 Hz corresponding to the muffled sound vibration, the elastic film 22 can be minutely displaced by the small space 6 formed between the elastic film 22 and the main body portion 21. Vibration is reduced by absorbing a rise in the internal pressure of the main liquid chamber and reducing the dynamic spring constant. At the time of inputting the idling vibration, the dynamic spring constant can be reduced and the vibration can be reduced by introducing the atmosphere into the negative pressure chamber C, as in the case of FIG. 3 (dotted line).
[0025]
As described above, according to the above-described configuration, with a simple configuration, good vibration-proof characteristics can be obtained, and the practicability is high. In the present invention, the number of the convex portions, the installation positions, and the like are not limited to those described in the above embodiment, and can be appropriately changed.
[Brief description of the drawings]
FIG. 1A is an overall sectional view of a liquid filled vibration isolator of the present invention, and FIG. 1B is a partially enlarged sectional view thereof.
FIG. 2 is an exploded sectional view of the liquid filling vibration isolator of the present invention.
FIG. 3 is a diagram showing a frequency characteristic of a conventional liquid filled vibration isolator.
FIG. 4 is a diagram showing a frequency characteristic of the liquid filling vibration isolator of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rubber elastic body 2 Partition wall 21 Main part 21f Annular convex part (convex part)
22 Elastic film 22b Convex portion 22c Standing wall 23 Partition plate 3 Rubber film 4 Body fitting 5 Cap A Main liquid chamber B Sub liquid chamber C Negative pressure chamber D Third liquid chamber S1 First throttle channel S2 Second throttle Channel