JP2004003587A - Locking nut and its manufacturing method - Google Patents

Locking nut and its manufacturing method Download PDF

Info

Publication number
JP2004003587A
JP2004003587A JP2002281712A JP2002281712A JP2004003587A JP 2004003587 A JP2004003587 A JP 2004003587A JP 2002281712 A JP2002281712 A JP 2002281712A JP 2002281712 A JP2002281712 A JP 2002281712A JP 2004003587 A JP2004003587 A JP 2004003587A
Authority
JP
Japan
Prior art keywords
nut
female screw
peripheral wall
inner peripheral
extending portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002281712A
Other languages
Japanese (ja)
Inventor
Masato Nakawa
名川 政人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIKI KOGYO KK
Original Assignee
DAIKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIKI KOGYO KK filed Critical DAIKI KOGYO KK
Priority to JP2002281712A priority Critical patent/JP2004003587A/en
Publication of JP2004003587A publication Critical patent/JP2004003587A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bolts, Nuts, And Washers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple structured locking nut with high productivity, excellent in tightening efficiency and repeated use, capable of preventing screwing force from being lowered, when external force is applied to a member to be tightened and a bolt or the like capable of semi-permanently maintaining high tightening force and remarkably increasing safety of a tightened part of the member to be tightened. <P>SOLUTION: The locking nut is the nut to fasten the fastened member by screwing with a male screw such as a bolt, and it is equipped with a nut body, an extended part coaxially extended to the upper surface of the nut body, a main female screw part formed on the inner peripheral wall of the nut body, an annular groove part formed on the inner peripheral wall of the nut body side of the extended part, and a sub female screw part, formed on the inner peripheral wall of the extended part, whose phase with respect to the male screw being displaced by 12° through 100°, preferably 24° through 90°, or further preferably 24° through 72°. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ボルト等の雄螺子に螺合して被締結部材を締結するとともに、被締結部材やボルト等に振動等の外力がかかった際の螺着力、締結力の低下を防止できる緩み止めナット及びその製造方法に関するものである。
【0002】
【従来の技術】
従来から、自動車や航空機,電車等の輸送機器,各種の産業機械・機器,搬送パイプラインや電力等の送電装置,等における各種部分の締結には、ボルト・ナットが高い頻度で使用されており、また、ボルト・ナットは各種の締結部分の締結に用いられる機械要素として高い重要度を占めている。
しかしながら、従来から、ボルト・ナットで締結される被締結部材やボルト等にかかる振動等の外力によりボルトの雄螺子に螺合されたナットが緩み、螺着力や締結力が低下して被締結部材の締結部が緩んだりボルトに螺合されているナットが外れ被締結部材の締結部が外れたりするトラブルが後を絶たず、被締結部材の締結部の安全性の向上のため、被締結部材やボルト等にかかる振動等の外力によりボルトから緩むことを防止するボルトやナットが望まれていた。
このため、近年、ナットがボルトから緩むのを防止するために種々のボルトやナットが開発されており、特に、ナットの緩みを防止する緩み止めナットとして例えば以下のものが開示されている。
【0003】
「特許文献1」には、「軸方向両端面間で雌螺子を有する内周面に雌螺子の谷径より大きい径に形成された環状凹所と、前記環状凹所で区分された第1雌螺子及び第2雌螺子と、前記両端面のうち一端面に雌螺子の谷径より大きい径に形成された環状溝と、前記環状溝によって区分された中央部及び周辺部と、前記中央部を前記周辺部に対して軸方向に雌螺子の1/3乃至1/2ピッチだけ相対移動させて前記第1雌螺子と前記第2雌螺子の位相をずらす緩み止めナットの製造方法」が開示されている。
【0004】
【特許文献1】
特公昭62−26851号公報
【0005】
【発明が解決しようとする課題】
しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)特許文献1に開示の技術は、第1雌螺子が第2雌螺子の1/3乃至1/2ピッチも大きくずれて形成されるので、緩み止めナットの螺子部をボルトの螺子部に締結する際のトルクが大きくなり締結作業が困難で作業性に著しく欠ける。また、締結できたとしても、緩み止めナットの螺子部がボルトの螺子部にかみ込み、締結に必要な力が大きくなり締結作業性に欠け、さらに、締結時に緩み止めナットやボルトの螺子部に傷を付けたり使用時に焼付きが生じ易く繰り返し使用性に欠ける。また、ナットやボルトによっては螺子部のピッチや角度等のバラツキのために、締結する際にフランク同士の圧接が不十分で想定しただけのトルクが得られず締結できないことがあり安定性に欠ける。
【0006】
本発明は上記従来の課題を解決するもので、簡単な構造で生産性に優れるとともに、被締結部材やボルト等に外力がかかった際の螺着力の低下を防止することができ、半永久的に高い締結力を維持することができ、被締結部材の締結部の安全性を著しく向上でき、また締結作業性にも優れ、さらに繰り返し使用性にも優れる緩み止めナットを提供することを目的とする。
また、本発明は、簡便で作業性に優れるとともに生産性に優れ、さらに信頼性に優れる緩み止めナットの製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記従来の課題を解決するために本発明の緩み止めナット及びその製造方法は、以下の構成を有している。
【0008】
本発明の請求項1に記載の緩み止めナットは、ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットであって、ナット本体と、前記ナット本体と同軸に延設された延設部と、前記ナット本体の内周壁に形成された主雌螺子部と、前記延設部の前記ナット本体側の内周壁若しくは前記ナット本体の前記内周壁に前記主雌螺子部の谷径と同一若しくはより大きな径で形成された環状溝部と、前記主雌螺子部に対する位相が12〜100°好ましくは24〜90°より好ましくは24〜72°変位して前記延設部の内周壁に形成された副雌螺子部と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)雄螺子に締め付けられた緩み止めナットは、主雌螺子部に対する副雌螺子部の位相が所定量変位しているため、その締め付け力で発生する圧接力の主雌螺子部のフランクが雄螺子のフランクを圧接する方向と副雌螺子部のフランクが雄螺子のフランクを圧接する方向とが180°異なり相反している。このため、この圧接力と螺子のリード角等によって生じるトルクの方向が、主雌螺子部と副雌螺子部とでは正逆異なるので、ボルトや被締結部材等に振動等の外力が加わり雄螺子から主雌螺子部が緩もうとする回転方向の力が加わると、副雌螺子部のフランクに発生するトルクが締め付け方向に作用するため、緩み止めナットが雄螺子から緩むのを確実に防止でき半永久的に高い締結力を維持することができる。
(2)ナット本体に延設された延設部の内周壁に、主雌螺子部に対する位相が12〜100°好ましくは24〜90°より好ましくは24〜72°に変位されて形成された副雌螺子部を備えているので、被締結部材を締結する際に緩み止めナットをボルト等の雄螺子に螺合することにより、副雌螺子部が主雌螺子部の向きに雄螺子を押圧する反力と主雌螺子部が副雌螺子部の向きに雄螺子を押圧する反力と、又は副雌螺子部が主雌螺子部と反対側の向きに雄螺子を押圧する反力と主雌螺子部が副雌螺子部と反対側の向きに雄螺子を押圧する反力とが生じ、これによって主雌螺子部及び副雌螺子部と雄螺子との間で大きな摩擦力を得ることができ、振動等により雄螺子から主雌螺子部等が緩み螺着力が低下するのを確実に防止できる。
(3)ボルト等の雄螺子に緩み止めナットを締め付け締結力を加えると、緩み止めナットの副雌螺子部がボルト等の雄螺子によって弾性変形を生じ、弾性変形内でその反力により雄螺子に主雌螺子部と副雌螺子部をより強固に密着させて締結することができるので、緩み止めナットとボルト等の雄螺子の螺着力をより向上でき振動等の外力により緩み止めナットがボルト等の雄螺子から緩むのをより確実に防止できる。
(4)被締結部材と座面との間が磨耗して緩みが生じた場合であっても、副雌螺子部が雄螺子を主雌螺子部の方向に押圧する反力、又は副雌螺子部が雄螺子を主雌螺子部と反対側の方向に押圧する反力によって、緩み止めナットがボルト等から外れるのを防止することができ自動車や電車等の振動の激しい車両や橋梁等からボルトやナットが落下するという落下事故を防止することができる。
(5)ボルト等の雄螺子に螺合された緩み止めナットの副雌螺子部が雄螺子によって変形されて生じた弾性変形による反力により、雄螺子に主雌螺子部と副雌螺子部を強固に密着するので、ボルト等の雄螺子と緩み止めナットの雌螺子部の加工精度のばらつきによるガタツキを吸収することができ安定性に優れるとともに、位相の変位量が小さいので、締結時に緩み止めナットやボルトの螺子部に傷を付け難く、反力を安定して得ることができるので、同一の雄螺子であれば一旦螺合させた緩み止めナットを取り外した後に再度螺着して繰り返し使用することができ、繰り返し使用性に優れる。
(6)主雌螺子部の谷径と同一若しくは大きな外径で形成された環状溝部を有しているので、ボルト等の雄螺子に副雌螺子部を螺着する際にスムーズに螺着することができるとともに変形を容易にすることができ、設計の自由度を増すとともに座屈等を防止することができる。
【0009】
ここで、ナット本体としては、四角柱状や六角柱状等の多角形ナット状や丸ナット状、フランジ付きナット状等種々の形状のナット状に形成されたものが用いられる。ナット本体の座面が被締結部材に面して固着されたものも用いることができる。
【0010】
延設部としては、ナット本体の上面部にナット本体と一体に形成又は別途準備してナット本体の上面部に溶接等により固着してナット本体と同軸に延設され外形が略円形状、略多角形状等で形成され、ナット本体の内周壁と面一に形成された内周壁を有するものが用いられる。延設部の長さとしては、延設部の材質や螺着される雄螺子の材質等に応じて、雄螺子との螺着に必要なかみあい長さが得られる長さで形成される。
【0011】
主雌螺子部としては、緩み止めナットが螺着される雄螺子に応じて、メートル螺子やインチ螺子等の三角螺子状や台形螺子状等で、かつ、雄螺子に応じたピッチで、ナット本体の内周壁に形成される。ナット本体の内周壁に形成された主雌螺子部に連続して、延設部の内周壁に所定長さの主雌螺子部を形成することもできる。また、主雌螺子部の長さとしては、ナット本体や延設部の材質、主雌螺子部が螺着される雄螺子の材質等に応じて、雄螺子との螺着に必要なかみあい長さが得られる長さで形成される。螺子の種類としては、1条螺子の他、2条乃至複数条の多条螺子を形成することができる。
【0012】
環状溝部としては、ナット本体の軸心に対して略直交して若しくは斜交して形成され、延設部のナット本体側の内周壁若しくはナット本体の内周壁に主雌螺子部の谷径と同一若しくはそれより大きな径に形成され主雌螺子部と副雌螺子部とを分離するとともに延設部やナット本体を薄肉にするものが用いられる。
なお、環状溝部がナット本体の軸心に対して斜交して形成される場合は、主雌螺子部のリード角と略平行する角度で形成される。これにより主雌螺子部と環状溝部で分離されて形成された副雌螺子部に、雄螺子がかみ込むことなく螺着できる。
【0013】
副雌螺子部としては、環状溝部によって主雌螺子部と離間されて、延設部の内周壁に、主雌螺子部と同じピッチで、かつ、主雌螺子部に対する位相を12〜100°好ましくは24〜90°より好ましくは24〜72°変位させて形成される。
主雌螺子部に対する副雌螺子部の位相が、24°より小さくなるにつれボルト等の雄螺子と緩み止めナットの雌螺子部の加工精度のばらつきによるガタツキによって弾性変形量が少なくなり主雌螺子部と副雌螺子部によって雄螺子に得られる反力が小さく、緩み止めナットとボルト等の雄螺子の螺着力が低下する傾向がみられ、72°〜90°になると締結時のトルクが大きく使用時に焼付きを生じ易くなる傾向がみられるため好ましくない。90°より大きくなるにつれ、締結時に緩み止めナットの螺子部がボルトの螺子部にかみ込み易く締結に必要な力が大きくなり締結作業性に欠け、さらに締結時に緩み止めナットやボルトの螺子部に傷を付け易くなり繰り返し使用性が低下する傾向がみられるため好ましくない。特に、主雌螺子部に対する位相が12°より小さくなるか100°より大きくなると、これらの傾向が著しいため、いずれも好ましくない。
なお、副雌螺子部の位相は、主雌螺子部側又は主雌螺子部と反対側のいずれに変位していてもよい。いずれの場合も、締結した際に生じる圧接力の主雌螺子部のフランクが雄螺子のフランクを圧接する方向と副雌螺子部のフランクが雄螺子のフランクを圧接する方向とを180°異ならせることができるからである。
副雌螺子部の形状や条数としては、主雌螺子部と同様のものが用いられる。
【0014】
ボルト等としては、六角ボルト,角根ボルト等の多角状や皿状等の頭部を有するボルト、六角穴つきボルト等の頭部頂面に穴部を有するボルト、基礎ボルト等の一端が埋め込まれたボルト等のような一端に雄螺子が形成されたもの、埋込みボルト,控えボルト等のような両端に雄螺子が形成されたものを用いることができる。
【0015】
なお、内周壁に雌螺子が形成されたナットの内周壁の所定部に環状溝部を形成して、ナットの座面から環状溝部までのナットの一部分をナット本体とし、環状溝部からナットの上面までのナットの一部分を延設部とすることもできる。これにより、軸方向と略平行に荷重を印加するだけで、ナット本体に形成された雌螺子(主雌螺子部)に対する位相が12〜100°変位した副雌螺子部(延設部に形成された雌螺子)を形成することができ、容易にかつ簡便に緩み止めナットを製造することができる。
【0016】
本発明の請求項2に記載の緩み止めナットは、ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットであって、ナット本体と、前記ナット本体と同軸に延設された延設部と、前記ナット本体の内周壁に形成された主雌螺子部と、前記延設部の前記ナット本体側の外周壁若しくは前記ナット本体の外周壁に前記ナット本体の軸方向と直交する方向に形成された外周溝部と、前記主雌螺子部に対する位相が12〜100°好ましくは24〜90°より好ましくは24〜72°変位して前記延設部の内周壁に形成された副雌螺子部と、を備えた構成を有している。
この構成により、請求項1に記載の作用に加え、以下のような作用が得られる。
(1)JIS,ASME,DIN等で規格化されたナット等で形成されたナット本体の外周壁に外周溝部が形成されると、軸方向と略平行に荷重を印加するだけで主雌螺子部に対する位相が12〜100°変位した副雌螺子部を形成することができ、汎用性に優れる。
【0017】
ここで、ナット本体、延設部、主雌螺子部、副雌螺子部としては、請求項1で説明したものなので、説明を省略する。
外周溝部としては、主雌螺子部又は副雌螺子部のピッチの1/30倍以上の幅で形成されたもの、好ましくは1/30〜5/18×n倍(但し、nは自然数)の幅で形成されたものが用いられる。外周溝部を圧縮変形したときに主雌螺子部に対する副雌螺子部の位相を12〜100°に変位させることができるからである。
なお、内周壁に雌螺子が形成されたナットの外周壁の所定部に外周溝部を形成して、ナットの座面から外周溝部までのナットの一部分をナット本体とし、外周溝部からナットの上面までのナットの一部分を延設部とすることもできる。
【0018】
本発明の請求項3に記載の発明は、請求項1に記載の緩み止めナットであって、前記延接部若しくは前記ナット本体の前記環状溝部に対応する外周壁に形成された外周溝部を備えた構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)環状溝部における延設部若しくはナット本体を薄肉にして伸びや変形等を生じ易くすることができ、ボルト等の雄螺子や副雌螺子部の螺子山を潰したり傷付けたりすることなく主雌螺子部及び副雌螺子部のフランクが雄螺子のフランクを押圧し高い螺着力を得ることができる。環状溝部における延設部若しくはナット本体が厚肉に形成されていると機械的強度が大きく伸びや収縮が生じ難いため、ボルト等の雄螺子や副雌螺子部の螺子山を潰してしまうからである。
【0019】
ここで、外周溝部としては、請求項2で説明したものと同様なので、説明を省略する。
【0020】
本発明の請求項4に記載の発明は、請求項1乃至3の内いずれか1に記載の緩み止めナットであって、前記環状溝部又は前記外周溝部における前記延設部若しくは前記ナット本体が、軸方向に所定量だけ圧縮若しくは引張変形された弾性部を備えた構成を有している。
この構成により、請求項1乃至3の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)環状溝部における延設部等が圧縮若しくは引張変形された弾性部は弾性を有するので、螺合されたボルト等の雄螺子によって生じる副雌螺子部等の弾性変形に加え、螺合されたボルト等の雄螺子によって生じる弾性部の伸び若しくは収縮によって、雄螺子と緩み止めナットの雌螺子部の加工精度のばらつきによるガタツキ等を吸収するとともに、弾性部が有する弾力に応じて発生する応力によって、生じる反力をさらに大きくすることができ、緩み止めナットがボルト等の雄螺子から緩むのをより確実に防止できる。
(2)主雌螺子部と副雌螺子部とを同一ピッチかつ同一位相で形成した後、環状溝部を圧縮若しくは引張変形させることで主雌螺子部と副雌螺子部の位相を容易にずらすことができるので、製造が容易で生産性に優れる。
【0021】
ここで、弾性部は外側に膨出状に形成させるのが好ましい。製造が容易だからである。また、弾性部を形成する際に弾性部の外周側を拘束して、環状溝部内に膨出するように形成することもできる。この場合は、弾性部を主雌螺子部及び副雌螺子部の谷底より膨出させないようにする。雄螺子が挿通できなくなるからである。
【0022】
本発明の請求項5に記載の発明は、請求項3又は4に記載の緩み止めナットであって、前記環状溝部又は前記外周溝部の軸方向の変形量αが、前記主雌螺子部のピッチの大きさをPとしたとき、(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)である構成を有している。
この構成により、請求項4で得られる作用に加え、以下のような作用が得られる。
(1)環状溝部の変形量αを所定範囲に形成することにより、主雌螺子部に対する副雌螺子部の位相を12〜100°好ましくは24〜90°より好ましくは24〜72°に確実に変位させることができるので、製品得率が高いとともに生産性に優れる。
【0023】
ここで、環状溝部又は外周溝部の変形量αとしては、変形後の軸方向の環状溝部の長さL1を変形前の軸方向の環状溝部の長さL2から減じた長さ(=L2−L1)が用いられ、主雌螺子部のピッチの大きさをPとしたとき、(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)が好ましいとされる。環状溝部の変形量αが、(n+1/15)Pより小さくなる若しくは(n−1/15)Pより大きくなるにつれボルト等の雄螺子と緩み止めナットの雌螺子部の加工精度のばらつきによるガタツキを吸収し難く弾性変形量が少なくなり主雌螺子部と副雌螺子部によって雄螺子に得られる反力が小さく、緩み止めナットとボルト等の雄螺子の螺着力が低下する傾向がみられ、(n+1/5)P≦α≦(n+1/4)Pになると締結時のトルクが大きく使用時に焼付きが生じ易くなる傾向がみられる。(n+1/4)Pより大きくなる若しくは(n−1/4)Pより小さくなるにつれ、締結時に緩み止めナットの螺子部がボルトの螺子部にかみ込み易く締結に必要な力が大きくなり締結作業性に欠け、さらに締結時に緩み止めナットやボルトの螺子部に傷を付け易くなり繰り返し使用性が低下する傾向がみられるため好ましくない。特に、環状溝部の変形量αが(n+1/30)Pより小さくなる若しくは(n−1/30)Pより大きくなるか、(n+5/18)Pより大きくなる若しくは(n−5/18)Pより小さくなると、これらの傾向が著しいため、いずれも好ましくない。
【0024】
nは0以上の整数が用いられる。変形量α=(n+1/30)Pの場合を例にとって説明すると、α=nP+1/30・Pであって、nが整数の場合に変形量nPによっては位相のずれは発生せず、それを超えて変形された変形量1/30・Pによって位相のずれを形成することができるからである。さらに、0〜4好ましくは1〜3が好適に用いられる。nが0のときは環状溝部の変形量が小さいため弾性部の弾力が大きくなり弾性部のわずかな変位により得られる反力の大きさが著しく異なりばらつきが大きく安定性が乏しくなる傾向がみられ、3より大きくなるにつれ環状溝部の変形量が大きく弾性部の弾力が小さくなり弾性部の変位によって得られる反力が小さくなる傾向がみられるため、いずれも好ましくない。特に、nが4より大きくなるとこの傾向が著しいため好ましくない。
【0025】
圧縮変形前の環状溝部又は外周溝部の軸方向の長さL2は、(a)主雌螺子部のピッチの大きさをP、環状溝部の内径をA、環状溝部における延設部若しくはナット本体の外径又は外周溝部の底部の径をBとしたとき、P≦L2≦5P+B−A、又は、(b)圧縮変形後の環状溝部又は外周溝部の軸方向の長さをL1、弾性部の軸方向に対する変形角をθとしたとき、L2=L1/cosθ(但し、10°≦θ≦75°)が好適に用いられる。
これにより、以下のような作用が得られる。
(1)環状溝部等の軸方向の長さが所定範囲にあるので環状溝部等の座屈荷重を適量にし、圧縮変形させて副雌螺子部の位相を所定範囲に容易に変位させることができ、生産性に優れるとともに安定性に優れる。
(2)圧縮変形前の環状溝部等の軸方向の長さが所定範囲にあるので、変形量と弾性部の大きさを決定する際の設計の自由度を高めることができる。
(3)弾性部の変形角θが所定の範囲で形成されると、弾性部の最適な弾力が得られるとともに弾性部の変位と反力との関係が安定的に得られ、得られる反力のばらつきが小さく安定性に優れる。
【0026】
ここで、圧縮変形前の環状溝部等の軸方向の長さL2は、P≦L2≦5P+B−Aが好適に用いられる。圧縮変形前の環状溝部等の軸方向の長さL2がPより小さくなるにつれ、環状溝部等における延設部等の機械的強度が大きく環状溝部等を圧縮変形させるために大きな荷重を要しプレス設備等の設備負荷が大きくなるとともに環状溝部等以外の副雌螺子部等も変形し易く副雌螺子部等のピッチが小さくなりボルト等の雄螺子が副雌螺子部にかみ込み易くなる傾向がみられ、さらに変形量αを大きくすることができず安定性を高め難い傾向がみられ、5P+B−Aより大きくなるにつれ座屈荷重が小さくなるとともに安定性が低下し主雌螺子部と副雌螺子部との軸がずれ易くボルト等を副雌螺子部に螺着し難くなり、また副雌螺子部の機械的強度が小さく疲労し易いため長期信頼性が低下する傾向がみられるため好ましくない。
【0027】
また、圧縮変形前の環状溝部又は外周溝部の軸方向の長さL2は、圧縮変形後の環状溝部の軸方向の長さをL1、弾性部の軸方向に対する変形角をθとしたとき、L2=L1/cosθ(但し、10°≦θ≦75°)が好適に用いられる。弾性部の軸方向に対する変形角θが10°より小さくなるにつれ、環状溝部等の変形量が小さいため弾性部の弾力が大きくなり弾性部のわずかな変位により得られる反力の大きさが著しく異なりばらつきが大きく安定性が乏しくなる傾向がみられ、75°より大きくなるにつれ環状溝部等の変形量が大きく弾性部の弾力が小さくなり弾性部の変位によって得られる反力が小さくなる傾向がみられるため、いずれも好ましくない。
【0028】
本発明の請求項6に記載の発明は、請求項1乃至5の内いずれか1に記載の緩み止めナットであって、前記環状溝部若しくは前記外周溝部における前記延設部若しくは前記ナット本体の横断面積が、前記主雌螺子部の谷径を直径とする円の面積の5〜50%である構成を有している。
この構成により、請求項1乃至5の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)環状溝部における延設部等の横断面積を規定することによって副雌螺子部が雄螺子に与える反力Qを所定範囲に設定できるので、(数1)によって表される締め付け前の空トルクTqを約1〜50N・m程度に抑えることができ、締結作業性に優れる。
【数1】

Figure 2004003587
(2)環状溝部における延設部の肉厚を所定厚みに形成して機械的強度を所定範囲にできるので、延設部等を変形させて副雌螺子部の位相を所定範囲に容易に変位させることができる。また、環状溝部における延設部等に適量の伸びが生じ易く、ボルト等の雄螺子が螺着された際に延設部等が伸びることにより雄螺子や副雌螺子部の螺子山を潰し難く装着性に優れる。
【0029】
ここで、環状溝部若しくは外周溝部における延設部若しくはナット本体の横断面積としては、環状溝部における延設部若しくはナット本体の外周壁の外縁(外径)で囲まれた面積や外周溝部における延設部等の外縁(外周溝部の底部の径)で囲まれた面積から、環状溝部の内縁(内径)で囲まれた面積を減じたものが用いられ、主雌螺子部の谷径を直径とする円の面積の5〜50%の横断面積で形成される。横断面積が5%より小さくなるにつれ座屈荷重が小さくなるとともに機械的強度が低下する傾向がみられ、50%より大きくなるにつれ、環状溝部における延設部等の座屈荷重が大きくなるとともに伸びが生じ難くなり空トルクTqが大きくなるとともにフランクを傷めたり焼付きを起こしたりする傾向がみられるため好ましくない。
【0030】
なお、延設部の副雌螺子部における肉厚(副雌螺子部の谷底から延設部の外周壁までの厚み)は、延設部の材質等に応じて、雄螺子との螺着に必要な機械的強度が得られる厚みで形成される。
【0031】
本発明の請求項7に記載の発明は、請求項1乃至5の内いずれか1に記載の緩み止めナットであって、前記延設部が、外周壁の周部に突出した鍔部を備えた構成を有している。
この構成により、請求項1乃至5の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)圧縮変形されて膨出した弾性部が、延設部の外周壁に突出した鍔部とナット本体の内側に収まるので、緩み止めナットを締結するために用いるレンチ等が弾性部に当たるのを防止し、弾性部の変形や損傷等を防ぎ弾性部を保護して耐久性を高めることができる。
【0032】
ここで、鍔部としては、外縁の形状が略円状や略六角形等の多角形状等に形成されたものが用いられる。
鍔部の大きさとしては、鍔部の外縁が膨出された弾性部の外径と同一若しくはそれより大きく形成されたものが用いられる。弾性部を鍔部とナット本体の内側に収納するとともに、ナット本体を締結するレンチ等が鍔部に当たるのを防止して締結作業性を高めるためである。
【0033】
本発明の請求項8に記載の発明は、請求項1乃至7の内いずれか1に記載の緩み止めナットであって、前記延設部の外径が、前記ナット本体の軸方向と直交する断面の外縁に内接する内接円の外径の30〜100%に形成された構成を有している。
この構成により、請求項1乃至7の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)延設部をナット本体の上面部に溶接等により固着する際、開先を形成しなくても容易に溶接することができ加工性に優れる。
(2)延設部の外径が、ナット本体の軸方向と直交する断面の外縁に内接する内接円の外径の30〜100%に形成されており、延設部の外径がナット本体より小さいので、スパナ等を用いてナット本体を締結する際に延設部が邪魔にならずスパナ等がナット本体まで入り、締結し易く締結作業性に優れる。
【0034】
ここで、ナット本体の軸方向と直交する断面の外縁としては、ナット本体が四角柱状や六角柱状等の多角形ナット状に形成されている場合は多角形、丸ナット状に形成されている場合は円形が用いられる。
【0035】
延設部の外径は、ナット本体の軸方向と直交する断面の外縁に内接する内接円の外径の30〜100%が好ましいとされる。30%より小さくなるにつれ延設部が細く副雌螺子部を形成するのが困難になる傾向がみられ、100%より大きくなるにつれナット本体をスパナ等を用いて締結する際に延設部が邪魔になり締結し難く締結作業性に欠ける傾向がみられるため好ましくない。
【0036】
本発明の請求項9に記載の緩み止めナットの製造方法は、ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットの製造方法であって、a.ナット本体と一体に形成された若しくはナット本体に固着された延設部の内周壁に環状溝部を形成するとともに前記ナット本体及び前記延設部の内周壁に前記雄螺子と同一ピッチの雌螺子を形成する、又は、b.ナットの内周壁の所定部に環状溝部を形成し前記ナットにナット本体と延設部とを形成する内周壁面形成工程と、前記ナット本体の座面と前記延設部の上面との間に所定荷重を所定時間印加して前記内周壁面形成工程で形成された前記環状溝部における前記延設部を、変形量αが前記雌螺子のピッチの大きさをPとしたとき、(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)だけ変形させて弾性部を形成する弾性部形成工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)内周壁に雌螺子を形成した後に環状溝部を変形させることで、位相のずれた主雌螺子部と副雌螺子部を容易に形成することができるので、製造が容易で生産性に優れる。
(2)環状溝部の変形量αを所定範囲に形成することにより、主雌螺子部に対する副雌螺子部の位相を12〜100°好ましくは24〜90°より好ましくは24〜72°に確実に変位させることができるので、信頼性に優れるとともに作業性に優れる。
【0037】
ここで、内周壁面形成工程としては、プレス成形等の塑性加工や切削加工等でナット本体と延設部とを一体に形成したものの内周壁に、又は、ナット本体に延設部を抵抗溶接や摩擦溶接等の溶接や嵌合等によって固着してナット本体と同軸に延設部を延設したものの内周壁に、旋盤やフライス等を用いた切削加工によって、環状溝部や雌螺子を形成するものが用いられる。或いは、雌螺子が形成されたナットの内周壁に、旋盤やフライス等を用いた切削加工によって環状溝部を形成して雌螺子を分離し、ナット本体と延設部とを形成するものが用いられる。
弾性部形成工程としては、加圧装置を用いてナット本体の座面と延設部の上面との間に所定圧力を所定時間印加するものが用いられる。圧力の印加は冷間で行うと好ましい。機械的強度が向上されるとともに高い寸法精度が得られるからである。
【0038】
本発明の請求項10に記載の緩み止めナットの製造方法は、ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットの製造方法であって、ナット本体と延設部とを一体に形成する、又はナット本体に延設部を固着して前記ナット本体の上面に同軸に前記延設部を延設する本体形成工程と、前記本体形成工程で前記ナット本体と一体に形成された若しくは前記ナット本体に固着された前記延設部の内周壁の所定部に環状溝部を形成するとともに前記ナット本体の内周壁に主雌螺子部を形成し、次いで前記延設部の内周壁に前記環状溝部から前記延設部の上面に向けて前記主雌螺子部に対する位相を12〜100°好ましくは24〜90°より好ましくは24〜72°変位させた副雌螺子部を形成する螺子部溝部形成工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)旋盤等で螺刻して副雌螺子部の主雌螺子部に対する位相を変位させる螺子部溝部形成工程を有しているので、圧縮変形させるためのプレス設備等を要さず設備負荷を少なくすることができる。
【0039】
ここで、本体形成工程としては、プレス成形等の塑性加工や切削加工等でナット本体と延設部とを一体に形成したり、ナット本体に延設部を抵抗溶接や摩擦溶接等の溶接や嵌合等によって固着してナット本体と同軸に延設部を延設するものが用いられる。本体形成工程で用いられるナット本体や延設部は、内周壁に雌螺子や環状溝部が形成されていないものが用いられる。
螺子部溝部形成工程としては、旋盤やフライス等を用いた切削加工によって、内周壁に環状溝部、主雌螺子部、副雌螺子部を形成するものが用いられる。
【0040】
本発明の請求項11に記載の緩み止めナットの製造方法は、ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットの製造方法であって、内周壁の所定部に環状溝部が形成された延設部を形成する延設部形成工程と、前記延設部形成工程で形成された前記延設部をナット本体の上面に固着する延設部固着工程と、前記延設部固着工程で前記延設部が固着された前記ナット本体の内周壁及び前記延設部の前記内周壁に前記雄螺子と同一ピッチかつ同一位相の雌螺子を形成する雌螺子形成工程と、前記雌螺子形成工程で前記雌螺子が形成された前記ナット本体の座面と前記延設部の上面との間に所定圧力を所定時間印加して前記環状溝部における前記延設部を、変形量αが前記雌螺子のピッチの大きさをPとしたとき、(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)だけ変形させて弾性部を形成する弾性部形成工程と、を備えた構成を有している。
この構成により、請求項9に記載の作用に加え、以下のような作用が得られる。
(1)延設部形成工程を有しているので、延設部や環状溝部の形状を自由に形成することができ自由性が高まる。
【0041】
ここで、延設部形成工程としては、プレス成形等の塑性加工や切削加工等で延設部に環状溝部を形成するものが用いられる。
延設部固着工程としては、ナット本体に延設部を抵抗溶接や摩擦溶接、融接溶接等の溶接や嵌合等によって固着してナット本体と同軸に延設部を延設するものが用いられる。特に、ナット本体と延設部を接触させた後、ナット本体と延設部との間に直流電流や交流電流を流して接触部分に抵抗熱を発生させて溶接する抵抗溶接が好適である。熱変形等を起こし難く確実性に優れるからである。抵抗溶接のうち、特に、溶接箇所に形成した突起部を接触させて電流を通じて溶接を行うプロジェクション溶接が好適に用いられる。過熱の危険がなく安全性に優れるからである。なお、延設部形成工程や延設部固着工程で用いられるナット本体や延設部は、内周壁に雌螺子が形成されていないものが用いられる。
雌螺子形成工程としては、旋盤やフライス等を用いた切削加工によって、内周壁に雌螺子を形成するものが用いられる。
弾性部形成工程としては、請求項9で説明したものと同様のものなので説明を省略する。
【0042】
本発明の請求項12に記載の緩み止めナットの製造方法は、ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットの製造方法であって、内周壁の所定部に環状溝部が形成された延設部を形成する延設部形成工程と、前記延設部形成工程で形成された前記延設部をナット本体の上面に固着する延設部固着工程と、前記延設部固着工程で前記延設部が固着された前記ナット本体の内周壁に主雌螺子部を形成するとともに、前記延設部の前記内周壁に前記環状溝部から前記延設部の上面に向けて前記主雌螺子部に対する位相を12〜100°好ましくは24〜90°より好ましくは24〜72°変位させた副雌螺子部を形成する雌螺子部形成工程と、を備えた構成を有している。
この構成により、請求項10乃至11に記載の作用が得られる。
【0043】
ここで、雌螺子部形成工程としては、旋盤やフライス等を用いた切削加工によって、内周壁に主雌螺子部及び副雌螺子部を形成するものが用いられる。
延設部形成工程、延設部固着工程としては、請求項11で説明したものと同様のものなので説明を省略する。
【0044】
本発明の請求項13に記載の緩み止めナットの製造方法は、ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットの製造方法であって、内周壁の所定部に環状溝部が形成された延設部を形成し、次いで前記延設部の軸方向と略平行に所定圧力を所定時間印加して前記環状溝部における前記延設部を、変形量αが前記雌螺子のピッチの大きさをPとしたとき、(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)だけ変形させて弾性部を形成する延設部変形工程と、前記延設部変形工程で形成された前記延設部をナット本体の上面に固着する延設部固着工程と、前記延設部固着工程で前記延設部が固着された前記ナット本体の内周壁に主雌螺子部を形成するとともに、前記延設部の内周壁に前記環状溝部から前記延設部の上面に向けて前記主雌螺子部に対する位相を12〜100°好ましくは24〜90°より好ましくは24〜72°変位させた副雌螺子部を形成する雌螺子部形成工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)延設部形成工程を有しているので、延設部や環状溝部の形状を自由に形成することができるとともに弾性部も成形することができ自由性が高まる。
【0045】
ここで、延設部変形工程としては、プレス成形等の塑性加工や切削加工等で延設部に環状溝部を形成し、次いで加圧装置を用いて延設部の軸方向と平行に所定荷重を所定時間印加するものが用いられる。圧力の印加は冷間で行うと好ましい。機械的強度が向上されるとともに高い寸法精度が得られるからである。
延設部固着工程としては、請求項11で説明したものと同様であり、雌螺子部形成工程としては、請求項12で説明したものと同様のものなので説明を省略する。
【0046】
【発明の実施の形態】
以下、本発明の一実施の形態を、図面を参照しながら説明する。
(実施の形態1)
図1(a)は実施の形態1における緩み止めナットの全体斜視図であり、図1(b)は図1(a)のA−A線における要部断面端面図である。
図中、1は実施の形態1における緩み止めナット、2は緩み止めナット1の六角ナット状に形成されたナット本体、2aはナット本体2の上面、2bはナット本体2の座面、2cはナット本体2の外周壁、2dはナット本体2の内周壁、3はナット本体2の上面2aにナット本体2と一体に形成され若しくはナット本体2と別途形成されナット本体2の上面2aに固着されて同軸に延設され外径がナット本体2の軸方向に直交する断面の外縁に内接する内接円の外径の30〜100%に形成された円筒状の延設部、3aは延設部3の上面、3bは延設部3の外周壁、3cはナット本体2の内周壁2dと面一に形成された延設部3の内周壁、4はナット本体2の内周壁2dと延設部3の内周壁3cに1条乃至複数条の三角螺子状や鋸歯螺子状等に形成された主雌螺子部、5は延設部3のナット本体2側の内周壁3cに主雌螺子部4の谷径よりも大きな径で延設部3の軸方向と略直交する方向で環状に形成された環状溝部、5aは環状溝部5における延設部3が主雌螺子部4のピッチの大きさをPとしたとき、変形量αが(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)の長さだけ圧縮変形(又は引張変形)されて延設部3の外周壁3b側に膨出又は凹み、軸方向に圧縮(又は引張)された弾性部(図では圧縮変形による膨出状態を示している。)、6は環状溝部5から延設部3の上面3aに向けて延設部3の内周壁3cに主雌螺子部4と同一形状でかつ同一ピッチで一条乃至複数条形成された副雌螺子部である。L1は圧縮変形(又は引張変形)された環状溝部5(弾性部5a)の軸方向の長さであり、θは弾性部5aの軸方向に対する変形角である。
【0047】
以上のように構成された実施の形態1における緩み止めナットの製造方法について、以下図面を用いて説明する。
図2は実施の形態1における緩み止めナットの環状溝部を圧縮変形する以前の状態を示す要部断面端面図である。
図中、4aはナット本体2の内周壁2dと延設部3の内周壁3cの一部に1条乃至複数条の三角螺子状等に形成された雌螺子、5bは延設部3のナット本体2側の内周壁3cに雌螺子4aの谷径よりも多少大きな径で延設部3の軸方向と略直交する環状に形成され延設部3を薄肉にして形成された環状溝部、6aは延設部3の内周壁3cに雌螺子4aと同一形状、同一ピッチで1条乃至複数条の三角螺子状等に形成された雌螺子である。Aは環状溝部5bの内径、Bは延設部3の外径、L2は圧縮変形前の環状溝部5bの軸方向の長さである。
ここで、実施の形態1では、圧縮変形前の環状溝部5bの軸方向の長さL2が、P≦L2≦5P+B−A(但し、Pは雌螺子4a,6aのピッチの大きさである)の大きさで形成されている。また、弾性部5aの変形角θが10°≦θ≦75°でL2=L1/cosθの関係で形成されている。さらに、環状溝部5bにおける延設部3の横断面積π・(B−A)/4が、雌螺子4a,6aの谷径を直径とする円の面積の5〜50%に形成されている。なお、雌螺子4aと雌螺子6aは螺合される雄螺子と同一ピッチかつ同一位相で形成されている。
【0048】
以上のように構成された実施の形態1における緩み止めナットについて、以下その製造方法を説明する。
【0049】
まず、プレス成形等の塑性加工や切削加工等で雌螺子の形成されていないナット本体2と延設部3とを一体に形成、若しくはナット本体2に延設部3を抵抗溶接や摩擦溶接等の溶接や嵌合等によって固着してナット本体2と同軸に延設部3を延設する。
次いで、内周壁面形成工程において、延設部3の内周壁3cに環状溝部5bを形成するとともに、ナット本体2の内周壁2d及び延設部3の内周壁3cの一部に螺子部4aを形成する。さらに、環状溝部5aから延設部3の上面部3aに向けて延設部3の内周壁3cに雌螺子部4aと同一ピッチかつ同一位相の雌螺子6aを形成する。
次いで、弾性部形成工程において、延設部3の上面3aとナット本体2の座面2bとの間に環状溝部5bにおける延設部3の座屈荷重より大きな荷重を所定時間印加し、環状溝部5bにおける延設部3を雌螺子4aのピッチの大きさをPとしたとき、変形量α(=L2−L1)が(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)だけ圧縮変形させて弾性部5aを形成する。これにより、雌螺子4aが主雌螺子部4となり、雌螺子6aが、主雌螺子部4に対する位相が12〜100°好ましくは24〜90°より好ましくは24〜72°に変位した副雌螺子部6となる。
【0050】
(実施の形態2)
図3は実施の形態2における緩み止めナットの要部断面端面図である。なお、実施の形態1で説明したものと同様のものは、同じ符号を付して説明を省略する。
図中、1´は実施の形態1の変形例である実施の形態2における緩み止めナット、2´は緩み止めナット1´の六角ナット状に形成され1条乃至複数条の三角螺子状等の雌螺子が形成されたナット、2a´はナット2´に形成された環状溝部5´(後述する)によってナット2´の座面2b側に形成されたナット本体、3´はナット2´に形成された環状溝部5´(後述する)によってナット2´の上面2a側に形成された延設部、4´はナット本体2a´の内周壁に1条乃至複数条の三角螺子状等に形成された主雌螺子部、5´はナット2´(ナット本体2a´若しくは延設部3´)の内周壁の所定部に主雌螺子部4´の谷径よりも大きな径でナット2´の軸方向と略直交する方向で環状に形成された環状溝部、5a´は環状溝部5´におけるナット2´が主雌螺子部4´のピッチの大きさをPとしたとき、変形量αが(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)だけ軸方向に圧縮変形されてナット2´の外周壁側に膨出した弾性部、6´は延設部3´の内周壁に主雌螺子部4´と同一形状、同一ピッチで1条乃至複数条で形成された副雌螺子部である。
ナット2´の内周壁の所定部に環状溝部5´を形成して緩み止めナット1´を形成することができるので、容易に製造することができ簡便に緩み止めナットを形成したい場合に適している。特に、JIS等で規格化されたナットを加工するので汎用性に優れる。
【0051】
(実施の形態3)
図4は実施の形態3における緩み止めナットの要部断面端面図である。なお、実施の形態1と同様のものは同じ符号を付して説明を省略する。
図中、1″は実施の形態1の別の変形例である実施の形態3における緩み止めナットであり、実施の形態2と異なる点は、ナット2´(ナット本体2a´若しくは延設部3´)の内周壁の所定部に主雌螺子部4´の谷径と同一の径でナット2´の軸方向と略直交する方向で環状に形成された環状溝部5″と、環状溝部5″に対応するナット2´の外周壁に形成された外周溝部7とを備え、ナット2´が軸方向に引張変形されて弾性部5a″が形成されている点である。
本実施の形態によれば、外周溝部でナットを薄肉にして伸びや変形等を生じ易くすることができるので、弾性部5a″を容易に形成することができる。また、弾性部5a″が外周溝部7内に収納されているので、緩み止めナットを締結するために用いるレンチ等が弾性部5a″に当たり難いため、弾性部5a″の変形や損傷等を防ぎ弾性部5a″を保護して耐久性を高める場合に適している。
【0052】
次に、以上のように構成された実施の形態1乃至3における緩み止めナットの使用時の動作について、実施の形態1の緩み止めナットを用いて説明する。
図5は実施の形態1における緩み止めナットで被締結部材を締結した状態を示す要部断面図であり、図6は実施の形態1における緩み止めナットで被締結部材を締結した際に弾性部に生じる反力と変位との関係を模式的に示す図であり、縦軸は弾性部に生じる反力(F)を示し、横軸は弾性部の変形量(x)を示す。
図5において、10はボルト、11はボルト10の雄螺子、12a,12bはボルト10と緩み止めナット1で締結される被締結部材、13は被締結部材12a,12bに穿設されボルト10が挿通されるボルト孔である。なお、図中B,Bは緩み止めナット1をボルト10に螺合した際に雄螺子11等の加工精度のばらつき等によって主雌螺子部4及び副雌螺子部6と雄螺子11の螺合部分に形成される隙間(バックラッシ)であり、各々反対方向に生じている。ここで、ボルト10としては、1条乃至複数条で雄螺子11が緩み止めナット1の主雌螺子部4及び副雌螺子部6と同一ピッチに形成されたものが用いられる。
【0053】
被締結部材12a,12bをボルト6と緩み止めナット1で締結する場合、被締結部材12a,12bのボルト孔13にボルト10を挿通し、図5に示すように、緩み止めナット1をボルト10の雄螺子11に螺合すると、弾性部5aの軸方向の変形量αによって生じる雄螺子11と副雌螺子部6との位相のずれに相当する軸方向の変形量(図6の0Pに等しいとする)とバックラッシBの軸方向の長さに相当する量(図6のPに等しいとする)との差分に相当する変形(図6に示す0P)が弾性部5aに生じる。これにより、弾性部5aの弾性変形に伴う反力(図6に示すP)が生じる。この反力(P)によって、副雌螺子部6と主雌螺子部4が雄螺子11のフランクを正逆方向から押すことにより強固に締結される。
ボルト10に一旦螺合させた緩み止めナット1を取り外せば、弾性部5aに生じる反力は0になるとともに弾性部5aの復元力によって変位も0になる。この取り外した緩み止めナット1をボルト10に再度螺着した場合も、弾性部5aに生じる反力(P)によって、副雌螺子部6と主雌螺子部4のフランクを雄螺子11のフランクに密着させて、何度でも強固に締結することができる。
【0054】
以上のように、実施の形態1における緩み止めナット及びその製造方法は構成されているので、以下のような作用が得られる。
(1)雄螺子に締め付けられた緩み止めナットは、主雌螺子部に対する副雌螺子部の位相が変位しているため、その締め付け力で、主雌螺子部のフランクが雄螺子のフランクを圧接する圧接力の方向と副雌螺子部のフランクが雄螺子のフランクを圧接する圧接力の方向とが180°異なり相反している。このため、この圧接力と螺子のリード角等によって生じるトルクの方向が、主雌螺子部と副雌螺子部とでは正逆異なるので、ボルトや被締結部材等に振動等の外力が加わり雄螺子から主雌螺子部が緩もうとする回転方向の力が加わると、副雌螺子部のフランクに発生するトルクが締め付け方向に作用するため、緩み止めナットが雄螺子から緩むのを確実に防止でき半永久的に高い締結力を維持することができる。
(2)ナット本体に延設された延設部の内周壁に、主雌螺子部に対する位相が12〜100°好ましくは24〜90°より好ましくは24〜72°に変位されて形成された副雌螺子部を備えているので、被締結部材を締結する際に緩み止めナットをボルト等の雄螺子に螺合することにより、副雌螺子部が主雌螺子部の向きに雄螺子を押圧する反力と主雌螺子部が副雌螺子部の向きに雄螺子を押圧する反力と、又は副雌螺子部が主雌螺子部と反対側の向きに雄螺子を押圧する反力と主雌螺子部が副雌螺子部と反対側の向きに雄螺子を押圧する反力とが生じ、これによって主雌螺子部及び副雌螺子部と雄螺子との間で大きな摩擦力を得ることができ、振動等により雄螺子から主雌螺子部等が緩み螺着力が低下するのを確実に防止できる。
(3)ボルト等の雄螺子に緩み止めナットを締め付け締結力を加えると、緩み止めナットの副雌螺子部がボルト等の雄螺子の締結によって変形されて弾性変形を生じ、弾性変形内でその反力により、雄螺子に主雌螺子部と副雌螺子部をより強固に密着させて締結することができるので、緩み止めナットとボルト等の雄螺子の螺着力をより向上でき振動等の外力により緩み止めナットがボルト等の雄螺子から緩むのをより確実に防止できる。
(4)被締結部材と座面との間が磨耗して緩みが生じた場合であっても、副雌螺子部が雄螺子を主雌螺子部の向きに押圧する反力、又は副螺子部が雄螺子を主雌螺子部と反対側の向きに押圧する反力によって、緩み止めナットがボルト等から外れるのを防止することができ、自動車や電車等の振動が激しい車両、橋梁等でのボルトやナットの落下事故を防止することができる。
(5)ボルト等の雄螺子に螺合された緩み止めナットの副雌螺子部が雄螺子によって生じた弾性変形による反力により、雄螺子に主雌螺子部と副雌螺子部を強固に密着するので、ボルト等の雄螺子と緩み止めナットの雌螺子部の加工精度のばらつきによるガタツキを吸収することができ安定性に優れるとともに位相の変位量が小さいので、締結時に緩み止めナットやボルトの螺子部に傷を付け難く、また弾性変形によって反力を安定して得ることができるので、同一の雄螺子であれば一旦螺合させた緩み止めナットを取り外した後に再度螺着して繰り返し使用することができ、繰り返し使用性に優れる。
(6)主雌螺子部の谷径よりと同一若しくは大きな外径で形成された環状溝部を有しているので、ボルト等の雄螺子に副雌螺子部を螺着する際にスムーズに螺着することができる。
(7)環状溝部における延設部が圧縮変形された弾性部は弾性を有するので、螺合されたボルト等の雄螺子によって生じる副雌螺子部等の永久変形及び弾性変形に加え、螺合されたボルト等の雄螺子によって生じる弾性部の伸びによって、雄螺子と緩み止めナットの雌螺子部の加工精度のばらつきによるガタツキ等を吸収するとともに、弾性部が有する弾力に応じて発生する応力によって生じる反力をさらに大きくすることができ、緩み止めナットがボルト等の雄螺子から緩むのをより確実に防止できる。
(8)主雌螺子部と副雌螺子部とを同一ピッチかつ同一位相で形成した後、環状溝部を圧縮変形又は引張変形させることで主雌螺子部と副雌螺子部の位相を容易にずらすことができるので、製造が容易で生産性に優れる。
(9)環状溝部が変形量αで変形されているので、主雌螺子部に対する副雌螺子部の位相を12〜100°好ましくは24〜90°より好ましくは24〜72°に確実に変位させることができ、変形量が適量なので締結時に螺子部に傷を付けたり使用時に焼付きが生じ難く易く繰り返し使用性に優れ、さらに螺子部のピッチや角度等にバラツキを生じても締結時にフランク同士の圧接が十分得られ安定性に優れる。また、製品得率が高く生産性に優れる。
(10)環状溝部の軸方向の長さが所定範囲にあるので環状溝部の座屈荷重を適量にし、圧縮変形させて副雌螺子部の位相を所定範囲に容易に変位させることができ、生産性に優れるとともに安定性に優れる。
(11)環状溝部における延設部の横断面積を規定することによって副雌螺子部が雄螺子に与える反力を所定範囲に設定できるので、雄螺子や雌螺子部を破損することなしに緩み止めを行うことができる。
(12)環状溝部における延設部の肉厚を所定厚みに形成して機械的強度を所定範囲にできるので、延設部を圧縮変形する際には副雌螺子部の位相を所定範囲に容易に変位させることができる。また、環状溝部における延設部に適量の伸びが生じ易く、ボルト等の雄螺子が螺着された際に延設部が伸びることにより雄螺子や副雌螺子部の螺子山を潰し難く装着性に優れる。
(13)延設部の外径が、ナット本体の軸方向と直交する断面の外縁に内接する内接円の外径の30〜100%に形成されており、延設部の外径がナット本体より小さいので、ナット本体をスパナ等を用いて締結することができ延設部に邪魔されずにスパナ等がナット本体まで入り、締結し易く締結作業性に優れる。
(14)弾性部の変形角θが所定の範囲で形成されているので、弾性部の最適な弾力が得られるとともに弾性部の変位と反力との関係が安定的に得られ、得られる反力のばらつきが小さく安定性に優れる。
【0055】
なお、実施の形態1においては、環状溝部5を変形量α(nは0以上の整数)だけ圧縮変形した場合について説明したが、環状溝部5に引張荷重を印加して、変形量α(nが0の場合)が−5/18・P≦α≦−1/30・P好ましくは−1/4・P≦α≦−1/15・Pより好ましくは−1/5・P≦α≦−1/15・Pの範囲になるようにすることもできる。この場合も同様の作用が得られる。
また、環状溝部5を変形量αだけ変形させる際に、捻りを加えながら圧縮変形若しくは引張変形させることもできる。この場合も同様の作用が得られる。
【0056】
(実施の形態4)
図7は実施の形態4における緩み止めナットで被締結部材を締結した状態を示す要部断面図であり、図8は実施の形態4における緩み止めナットで被締結部材を締結した際に主雌螺子部と副雌螺子部にかかる応力と歪みとの関係を模式的に示す図であり、縦軸は主雌螺子部と副雌螺子部にかかる応力を示し、横軸は主雌螺子部と副雌螺子部の歪みを示す。なお、実施の形態1で説明したものと同様のものは、同じ符号を付して説明を省略する。
図中、1aは実施の形態4における緩み止めナット、5bは延設部3のナット本体2側の内周壁3cに主雌螺子部4の谷径よりも多少大きな径で延設部3の軸方向と略直交する方向に環状に形成された環状溝部、6bは環状溝部5から延設部3の上面3aに向けて延設部3の内周壁3cに主雌螺子部4と同一形状、同一ピッチ、かつ、主雌螺子部4に対する位相が、12〜100°好ましくは24〜90°より好ましくは24〜72°に変位されて旋盤等で螺刻して形成された副雌螺子部である。
【0057】
実施の形態4における緩み止めナットが実施の形態1と異なる点は、環状溝部5bを圧縮変形させて副雌螺子部の位相を変位させるのではなく、旋盤等で螺刻して主雌螺子部4に対する副雌螺子部6bの位相を12〜100°好ましくは24〜90°より好ましくは24〜72°に変位させて形成した点である。
【0058】
被締結部材12a,12bをボルト10と緩み止めナット1aで締結する場合も、実施の形態1で説明したのと同様に図7に示すように、被締結部材12a,12bのボルト孔13にボルト10を挿通し、緩み止めナット1aをボルト10の雄螺子11に螺合すると、主雌螺子部4と副雌螺子部6bとに弾性限度(図8に示すU点)より大きく極限強さ(図8に示すM点)より小さな応力(図8に示すS点)が生じる。これにより、副雌螺子部6bに永久歪み(図8に示す0S)が生じて変形し、ボルト10の雄螺子11と主雌螺子部4,副雌螺子部6bの加工精度のばらつき等によるバックラッシB,Bが主雌螺子部4と副雌螺子部6bで正逆反対方向に生じる。さらに、弾性変形(図8に示すS)によって生じる反力によって、副雌螺子部6bと主雌螺子部4のフランクが、雄螺子11のフランクを正逆方向から押すことにより強固に締結される。
ボルト10に一旦螺合させた緩み止めナット1aは、ボルト10の雄螺子11に応じて副雌螺子部6bに永久歪み(図8に示す0S)が生じ変形しており、ボルト10から取り外した後もこの変形が維持される。この緩み止めナット1aをボルト10に再度螺着した場合でも、副雌螺子部6bの弾性変形(図8に示すS)によって生じる反力がボルト10の雄螺子11に働き、何度でも強固に締結することができる。
【0059】
以上のように、実施の形態4における緩み止めナットは構成されているので、実施の形態1に記載の作用に加え、以下のような作用が得られる。
(1)旋盤等で螺刻して副雌螺子部の主雌螺子部に対する位相(螺合される雄螺子に対する位相)を変位させるので、圧縮変形させるためのプレス設備等を要さず設備負荷を少なくすることができる。
【0060】
なお、実施の形態1における緩み止めナットは、実施の形態4で説明した弾性変形(図8に示すS)によって生じる反力と、実施の形態1における緩み止めナットにおいて弾性部5aに生じる反力(P)と、を加えた反力が発生しているので、実施の形態4と比較してより大きな反力が得られ大きな螺着力が得られる。
【0061】
(実施の形態5)
図9は本発明の実施の形態5における緩み止めナットの要部断面端面図である。なお、実施の形態1で説明したものと同様のものは、同じ符号を付して説明を省略する。
図中、20は実施の形態5における緩み止めナット、21は外縁が略円形状や略多角形状等に形成され延設部3の外周壁3bの周部に突設され外縁(外径)が弾性部5aの外径と同一若しくはそれより大きく形成された鍔部である。ここで、実施の形態5においては、鍔部21の外径はナット本体2の外径と略同じ大きさに形成されている。
【0062】
以上のように、実施の形態5における緩み止めナットは構成されているので、実施の形態1に記載の作用に加え、以下のような作用が得られる。
(1)弾性部が、延設部の外周壁に突出しナット本体の外径と略同じ大きさに形成された鍔部とナット本体の内側に収まるので、緩み止めナットを締結するために用いるレンチ等が弾性部に当たるのを防ぎ、弾性部の変形や損傷等を防ぎ弾性部を保護して耐久性を高めることができる。また、鍔部がナット本体の外径と略同じ大きさに形成されているので、緩み止めナットを締結するために用いるレンチ等を鍔部に邪魔されずにナット本体まで入れることができ締結作業性を高めることができる。
【0063】
(実施の形態6)
図10は本発明の実施の形態6における緩み止めナットの要部断面端面図である。なお、実施の形態1又は実施の形態2で説明したものと同様のものは、同じ符号を付して説明を省略する。
図中、20aは実施の形態6における緩み止めナットである。実施の形態6が実施の形態2と異なる点は、JIS,ASME等で規格化されたナット本体2´の外周壁に主雌螺子部4´及び副雌螺子部6´のピッチ(P)の1/30以上の幅の外周溝部22が形成されている点、外周溝部22が(n+1/30)P≦α≦(n+5/18)P好ましくは(n+1/15)P≦α≦(n+1/4)Pより好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)の変形量αだけ軸方向に圧縮された弾性部23を有している点である。
この相違により実施の形態6における緩み止めナットは、規格化されたナット本体の外周壁に外周溝部が形成されているので、軸方向と略平行に荷重を印加するだけで主雌螺子部に対する位相が12〜100°好ましくは24〜90°より好ましくは24〜72°変位した副雌螺子部を形成することができ汎用性に優れる。
【0064】
(実施の形態7)
図11(a)は実施の形態7における緩み止めナットの製造方法のうち延設部形成工程を示す要部断面図であり、(b)は実施の形態7における緩み止めナットの製造方法のうち延設部固着工程を示す要部断面図であり、(c)は実施の形態7における緩み止めナットの製造方法のうち雌螺子形成工程を示す要部断面図であり、(d)は実施の形態7における緩み止めナットの製造方法のうち弾性部形成工程を示す要部断面図であり、図12は延設部とナット本体の形状の応用例を示す要部断面図である。
図11(a)、図11(b)において、30は外形が六角状に形成された円筒状のナット本体、31はナット本体30の内周壁、32はナット本体30の上面、33はナット本体30の座面、34はナット本体30とは別個に形成され端部にナット本体30の径より小さい鍔部37(後述する)を有する延設部、35はナット本体30の内周壁31と同一径で形成された延設部34の内周壁、36は延設部34の内周壁35に延設部34の軸方向と略直交する方向で環状に形成された環状溝部、36aは延設部34の外周壁、37は延設部34の一端部の外周壁36aの周部に突設された鍔部、38は延設部34の他端部に複数の突起状や突条若しくは環状の開先状等に形成された突起部である。
図11(c)において、31aはナット本体30の内周壁31に形成された雌螺子、35aは延設部34の内周壁35に形成された雌螺子である。雌螺子31a,35aは同一ピッチかつ同一位相で形成されている。
図11(d)において、36bは環状溝部36における延設部34が雌螺子31a,35aのピッチの大きさをPとしたとき、変形量αが(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)の長さだけ圧縮変形(又は引張変形)されて延設部34の外周壁36a側に膨出又は凹み、軸方向に圧縮(又は引張)された弾性部(図では圧縮変形による膨出状態を示している。)である。
【0065】
図12(a)において、39はナット本体30の内周壁31側の上面32にナット本体30と同軸で、かつ、延設部34の外周壁36aの外径よりわずかに大きな内径で形成された本体凹部であり、延設部34を本体凹部39内に嵌挿することにより、延設部34をナット本体30に安定して同軸に保持することができる。
図12(b)において、36cは延設部34の他端部に厚肉に形成された肉厚部、39aはナット本体30の内周壁31側の上面32にナット本体30と同軸で、かつ、延設部34の肉厚部36cの外径よりわずかに大きな内径で形成された本体凹部、39bは本体凹部39aの底部に上向きに形成された突起部である。延設部34の肉厚部36cとナット本体30の突起部39cとの間で溶接等がされるので、環状溝部36が形成された薄肉状の延設部34が溶接時の熱で変形するのを防止することができ製品得率を高めることができる。なお、図12(c)に示すように、突起部39bを本体凹部39aの底部に形成せず、肉厚部36cの下面に形成することもできる。この場合も同様の作用が得られる。
【0066】
以上のように構成された実施の形態7における緩み止めナットの製造方法について、以下図面を参照しながら説明する。
まず、ナット本体形成工程において、プレス成形等の塑性加工や切削加工等でナット本体30を形成する。また、延設部形成工程において、プレス成形等の塑性加工や切削加工等で内周壁35に環状溝部36が形成され端部に突起部38が形成された延設部34を形成する。(図11(a)参照)
次いで、延設部固着工程において、図11(a)に示すように、延設部34の突起部38をナット本体30の上面32に同軸に接触させた後、延設部34とナット本体30間に電流を通じ突起部38に大きな抵抗熱を発生させるプロジェクション溶接等の抵抗溶接によって、延設部34をナット本体30の上面32に固着する。(固着後の状態は図11(b)参照)
次いで、雌螺子形成工程において、ナット本体30の内周壁31及び延設部34の内周壁35に切削加工で同一ピッチかつ同一位相の雌螺子31a,35aを形成する。(図11(c)参照)
次いで、弾性部形成工程において、延設部34の鍔部37とナット本体30の座面33との間に環状溝部36における延設部34の座屈荷重より大きな荷重を所定時間印加し、変形量αだけ圧縮変形させて延設部34の外周壁36a側に膨出させた弾性部を形成する。(図11(d)参照)これにより、雌螺子31aが主雌螺子部となり、雌螺子35aが、主雌螺子部(雌螺子31a)に対する位相が12〜100°好ましくは24〜90°より好ましくは24〜72°に変位した副雌螺子部となる。
【0067】
以上のような実施の形態7における緩み止めナットの製造方法によれば、以下のような作用が得られる。
(1)延設部形成工程を備えナット本体と延設部とを別個に形成し、次いで延設部固着工程で一体化するので、生産性に優れる。
(2)延設部固着工程においてプロジェクション溶接等の抵抗溶接によって延設部をナット本体に固着するので、抵抗熱の発生を突起部に集中させることができ、突起部が熱軟化してくずれると接触面積が大きくなり電流は分散するため過熱することがなく安全性に優れる。また、ナット本体や延設部を大きく溶融しないので機械的強度の低下や変色等を起こし難い。さらに、薄肉の延設部と塊状のナット本体のような厚さが著しく異なる金属の溶接も容易に行うことができる。
(3)弾性部形成工程において延設部の一端部に形成された鍔部とナット本体の座面との間に荷重を印加して弾性部を形成するので、環状溝部が形成された薄肉状の延設部に荷重を分散させて均一に圧縮変形若しくは引張変形させることができ製品得率を高めることができる。
【0068】
【実施例】
以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
実施の形態1で説明した緩み止めナットにおいて、主雌螺子部及び副雌螺子部のピッチ(P)2mm、主雌螺子部及び副雌螺子部の谷の径(谷径)16mm、弾性部の軸方向の変形量(変形量α)1.47mmとした実施例1の緩み止めナットを製造した。
(実施例2)
変形量αを1.57mmとした以外は、実施例1と同様にして実施例2の緩み止めナットを製造した。
(実施例3)
変形量αを1.65mmとした以外は、実施例1と同様にして実施例3の緩み止めナットを製造した。
(実施例4)
変形量αを1.90mmとした以外は、実施例1と同様にして実施例4の緩み止めナットを製造した。
(実施例5)
変形量αを2.10mmとした以外は、実施例1と同様にして実施例5の緩み止めナットを製造した。
(実施例6)
変形量αを2.30mmとした以外は、実施例1と同様にして実施例6の緩み止めナットを製造した。
(実施例7)
変形量αを2.43mmとした以外は、実施例1と同様にして実施例7の緩み止めナットを製造した。
(実施例8)
変形量αを2.53mmとした以外は、実施例1と同様にして実施例8の緩み止めナットを製造した。
(比較例1)
変形量αを1.97mmとした以外は、実施例1と同様にして比較例1の緩み止めナットを製造した。
(比較例2)
雌螺子のピッチ2mm、雌螺子の谷径16mmのナットを2個用いて、緩み止め手段として一般に用いられているWナットを形成し、比較例2の緩み止めナットとした。
【0069】
(保証荷重試験)
JIS B1502(鋼製ナットの機械的性質)に準じた軸方向の引張り試験及び軸方向の圧縮試験によって、実施例1乃至8の緩み止めナットの保証荷重試験を行った。なお、本試験において、保証荷重が緩み止めナットの主雌螺子部の軸方向に働くように試験用マンドレルを緩み止めナットの主雌螺子部に螺合させ、保証荷重値を15秒間負荷した。
この試験によって、緩み止めナットの螺子山が剪断破壊したり緩み止めナットが破断するものはなかった。また、負荷された保証荷重値を取り除いた後に試験用マンドレルから取り外した緩み止めナットは、試験用マンドレルと同じ寸法の他のボルトに指でまわし入れることができた。
以上の保証荷重試験の結果、本発明の緩み止めナットは、実用上問題のない保証荷重を有していることが明らかになった。
【0070】
(振動試験)
実施例1乃至8及び比較例1乃至2の緩み止めナットについて、NAS式高速緩み試験機(米国航空機規格NAS3350に準じる)を用いて振動試験を行った。
図11は振動試験の様子を示す模式図である。
図中、1は試料として装着された実施例や比較例の緩み止めナット、40は振動試験機、41は緩み止めナット1を螺着したボルト、42はボルト41と緩み止めナット1とが取り付けられた振動バーレル、43は振動バーレル42と緩み止めナット1との間に装着されたワッシャ、44は振動バーレル42に固定され緩み止めナット1及びボルト41にボルト41の軸方向と直交する振動を繰り返し与える加振台である。なお、振動数は1780rpm、加振台ストロークは11mm、インパクトストロークは19mmとした。
実施例1乃至8及び比較例1乃至2の緩み止めナットを振動試験機に150N・mの締め付けトルクで取り付けた後、17分間(30000回)の振動を与え、緩み止めナット1に緩みが発生するか否かを調べた。なお、ワッシャ43、緩み止めナット1、ボルト41に付けた合マークがずれたときを緩み止めナット1が緩んだと判定した。
この結果、実施例1乃至8の緩み止めナットでは、緩みが発生したものはなかった。また、試験後の戻しトルクは130〜180N・mであり締め付けトルクとほぼ同等であった。なお、比較例1の緩み止めナットは、1500回でボルトから脱落し、比較例2の緩み止めナット(Wナット)は、4300回でボルトから脱落した。また、その他の比較例として、スプリングワッシャと通常のナットとを用いた場合に同様の振動試験を行ったところ1350回でボルトから脱落した。
【0071】
次に、実施例3、実施例6の緩み止めナットを振動試験機に150N・mの締め付けトルクで取り付けた後、1000000回の振動を与え、緩み止めナットに緩みが発生するか否かを調べた。
この結果、試験後の戻しトルクは締め付けトルクより若干高い200N・mになったが、試験中に緩みが発生したものはなかった。
以上の試験結果から、本発明の緩み止めナットは、雄螺子から緩むのを確実に防止でき半永久的に高い締結力を維持することができることが明らかになった。
【0072】
【発明の効果】
以上のように、本発明の緩み止めナット及びその製造方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)雄螺子に締め付けられた緩み止めナットは、主雌螺子部に対する副雌螺子部の位相が所定量変位しているため、その締め付け力で、主雌螺子部のフランクが雄螺子のフランクを圧接する方向と副雌螺子部のフランクが雄螺子のフランクを圧接する方向とが180°異なり相反している。このため、この圧接力と螺子のリード角等によって生じるトルクの方向が、主雌螺子部と副雌螺子部とでは正逆異なるので、ボルトや被締結部材等に振動等の外力が加わり雄螺子から主雌螺子部が緩もうとする回転方向の力が加わると、副雌螺子部のフランクに発生するトルクが締め付け方向に作用するため、緩み止めナットが雄螺子から緩むのを確実に防止でき半永久的に高い締結力を維持することができる緩み止めナットを提供することができる。
(2)ナット本体に延設された延設部の内周壁に、主雌螺子部に対する位相が12〜100°好ましくは24〜90°より好ましくは24〜72°に変位されて形成された副雌螺子部を備えているので、被締結部材を締結する際に緩み止めナットをボルト等の雄螺子に螺合することにより、副雌螺子部が主雌螺子部の向きに雄螺子を押圧する反力と主雌螺子部が副雌螺子部の向きに雄螺子を押圧する反力と、又は副雌螺子部が主雌螺子部と反対側の方向に雄螺子を押圧する反力と主雌螺子部が副雌螺子部と反対側の方向に雄螺子を押圧する反力とが生じ、これによって主雌螺子部及び副雌螺子部と雄螺子との間で大きな摩擦力を得ることができ、振動等により雄螺子から主雌螺子部等が緩み螺着力が低下するのを確実に防止できる緩み止めナットを提供することができる。
(3)ボルト等の雄螺子に緩み止めナットを締め付け締結力を加えると、緩み止めナットの副雌螺子部がボルト等の雄螺子によって弾性変形を生じ、その反力により雄螺子に主雌螺子部と副雌螺子部をより強固に密着させて締結することができるので、緩み止めナットとボルト等の雄螺子の螺着力をより向上でき振動等の外力により緩み止めナットがボルト等の雄螺子から緩むのをより確実に防止できる緩み止めナットを提供することができる。
(4)被締結部材と座面との間が磨耗して緩みが生じた場合であっても、副雌螺子部が雄螺子を主雌螺子部の方向に押圧する反力、又は副雌螺子部が雄螺子を主雌螺子部と反対側の方向に押圧する反力によって、緩み止めナットがボルト等から外れるのを防止することができ自動車や橋梁等の振動の激しい箇所に適応された場合にもボルトやナットの落下事故を防止することができる緩み止めナットを提供することができる。
(5)ボルト等の雄螺子に螺合された緩み止めナットの副雌螺子部が雄螺子によって変形されて生じた弾性変形による反力により、雄螺子に主雌螺子部と副雌螺子部を強固に密着するので、ボルト等の雄螺子と緩み止めナットの雌螺子部の加工精度のばらつきによるガタツキを吸収することができ安定性に優れるとともに、位相の変位量が小さいので、締結時に緩み止めナットやボルトの螺子部に傷を付け難く、反力を安定して得ることができるので、同一の雄螺子であれば一旦螺合させた緩み止めナットを取り外した後に再度螺着して繰り返し使用することができ、繰り返し使用性に優れた緩み止めナットを提供することができる。
(6)主雌螺子部の谷径と同一若しくは大きな外径で形成された環状溝部を有しているので、ボルト等の雄螺子に副雌螺子部を螺着する際にスムーズに螺着することができるとともに変形を容易にすることができ、設計の自由度を増すとともに圧縮変形の際に主雌螺子部等が座屈するのを防止することができる緩み止めナットを提供することができる。
【0073】
請求項2に記載の発明によれば、請求項1の効果に加え、
(1)JIS,ASME,DIN等で規格化されたナット等で形成されたナット本体の外周壁に外周溝部が形成されると、軸方向と略平行に荷重を印加するだけで主雌螺子部に対する位相が12〜100°変位した副雌螺子部を形成することができ、汎用性に優れた緩み止めナットを提供することができる。
【0074】
請求項3に記載の発明によれば、請求項1の効果に加え、
(1)環状溝部における延設部若しくはナット本体を薄肉にして伸びや変形等を生じ易くすることができ、ボルト等の雄螺子や副雌螺子部の螺子山を潰したり傷付けたりすることなく主雌螺子部及び副雌螺子部のフランクが雄螺子のフランクを押圧し高い螺着力を得ることができる緩み止めナットを提供することができる。
【0075】
請求項4に記載の発明によれば、請求項1乃至3の内いずれか1の効果に加え、
(1)環状溝部における延設部等が圧縮若しくは引張変形された弾性部は弾性を有するので、螺合されたボルト等の雄螺子によって生じる副雌螺子部等の永久変形及び弾性変形に加え、螺合されたボルト等の雄螺子によって生じる弾性部の伸び若しくは収縮によって、雄螺子と緩み止めナットの雌螺子部の加工精度のばらつきによるガタツキ等を吸収するとともに、弾性部が有する弾力に応じて発生する応力によって、生じる反力をさらに大きくすることができ、緩み止めナットがボルト等の雄螺子から緩むのをより確実に防止できる緩み止めナットを提供することができる。
(2)主雌螺子部と副雌螺子部とを同一ピッチかつ同一位相で形成した後、環状溝部を圧縮若しくは引張変形させることで主雌螺子部と副雌螺子部の位相を容易にずらすことができるので、製造が容易で生産性に優れた緩み止めナットを提供することができる。
【0076】
請求項5に記載の発明によれば、請求項4の効果に加え、
(1)環状溝部又は外周溝部の変形量を所定範囲に形成することにより、主雌螺子部に対する副雌螺子部の位相を12〜100°好ましくは24〜90°より好ましくは24〜72°に確実に変位させることができるので、製品得率が高いとともに生産性に優れた緩み止めナットを提供することができる。
【0077】
請求項6に記載の発明によれば、請求項1乃至5の内いずれか1の効果に加え、
(1)環状溝部における延設部等の横断面積を規定することによって副雌螺子部が雄螺子に与える反力Qを所定範囲に設定できるので、空トルクTqを約1〜50N・m程度に抑えることができ、締結作業性に優れた緩み止めナットを提供することができる。
(2)環状溝部における延設部の肉厚を所定厚みに形成して機械的強度を所定範囲にできるので、延設部等を変形させて副雌螺子部の位相を所定範囲に容易に変位させることができる。また、環状溝部における延設部等に適量の伸びが生じ易く、ボルト等の雄螺子が螺着された際に延設部等が伸びることにより雄螺子や副雌螺子部の螺子山を潰し難く装着性に優れた緩み止めナットを提供することができる。
【0078】
請求項7に記載の発明によれば、請求項4乃至6の内いずれか1の効果に加え、
(1)圧縮変形されて膨出した弾性部が、延設部の外周壁に突出した鍔部とナット本体の内側に収まるので、緩み止めナットを締結するために用いるレンチ等が弾性部に当たり難いため、弾性部の変形や損傷等を防ぎ弾性部を保護して耐久性を高めることができる緩み止めナットを提供することができる。
【0079】
請求項8に記載の発明によれば、請求項1乃至7の内いずれか1の効果に加え、
(1)延設部をナット本体の上面部に溶接等により固着する際、開先を形成しなくても容易に溶接することができ加工性に優れた緩み止めナットを提供することができる。
(2)延設部の外径が、ナット本体の軸方向と直交する断面の外縁に内接する内接円の外径の30〜100%に形成されており延設部の外径がナット本体より小さいので、レンチ等を用いてナット本体を締結する際に、延設部が邪魔にならずレンチ等がナット本体まで入り、締結し易く締結作業性に優れた緩み止めナットを提供することができる。
【0080】
請求項9に記載の発明によれば、
(1)内周壁に雌螺子を形成した後に環状溝部を変形させることで、位相のずれた主雌螺子部と副雌螺子部を容易に形成することができるので、製造が容易で生産性に優れた緩み止めナットの製造方法を提供することができる。
(2)環状溝部の変形量を所定範囲に形成することにより、主雌螺子部に対する副雌螺子部の位相を12〜100°好ましくは24〜90°より好ましくは24〜72°に確実に変位させることができるので、信頼性に優れるとともに作業性に優れた緩み止めナットの製造方法を提供することができる。
【0081】
請求項10に記載の発明によれば、
(1)旋盤等で螺刻して副雌螺子部の主雌螺子部に対する位相を変位させる螺子部溝部形成工程を有しているので、圧縮変形させるためのプレス設備等を要さず設備負荷を少なくすることができる緩み止めナットの製造方法を提供することができる。
【0082】
請求項11に記載の発明によれば、請求項9に記載の効果に加え、
(1)延設部形成工程を有しているので、延設部や環状溝部の形状を自由に形成することができ自由性の高い緩み止めナットの製造方法を提供することができる。
【0083】
請求項12に記載の発明によれば、請求項10乃至11に記載の効果が得られる。
【0084】
請求項13に記載の発明によれば、
(1)延設部形成工程を有しているので、延設部や環状溝部の形状を自由に形成することができるとともに弾性部も成形することができ自由性の高い緩み止めナットの製造方法を提供することができる。
【図面の簡単な説明】
【図1】(a)実施の形態1における緩み止めナットの全体斜視図
(b)図1(a)のA−A線における要部断面端面図
【図2】実施の形態1における緩み止めナットの環状溝部を圧縮変形する以前の状態を示す要部断面端面図
【図3】実施の形態2における緩み止めナットの要部断面端面図
【図4】実施の形態3における緩み止めナットの要部断面端面図
【図5】実施の形態1における緩み止めナットで被締結部材を締結した状態を示す要部断面図
【図6】実施の形態1における緩み止めナットで被締結部材を締結した際に弾性部に生じる反力と変位との関係を模式的に示す図
【図7】実施の形態4における緩み止めナットで被締結部材を締結した状態を示す要部断面図
【図8】実施の形態4における緩み止めナットで被締結部材を締結した際に主雌螺子部と副雌螺子部にかかる応力と歪みとの関係を模式的に示す図
【図9】実施の形態5における緩み止めナットにおける要部断面端面図
【図10】実施の形態6における緩み止めナットの要部断面端面図
【図11】(a)実施の形態7における緩み止めナットの製造方法のうち延設部形成工程を示す要部断面図
(b)実施の形態7における緩み止めナットの製造方法のうち延設部固着工程を示す要部断面図
(c)実施の形態7における緩み止めナットの製造方法のうち雌螺子形成工程を示す要部断面図
(d)実施の形態7における緩み止めナットの製造方法のうち弾性部形成工程を示す要部断面図
【図12】延設部とナット本体の形状の応用例を示す要部断面図
【図13】振動試験の様子を示す模式図
【符号の説明】
1,1´,1a,1″ 緩み止めナット
2,2a´ ナット本体
2´ ナット
2a 上面
2b 座面
2c 外周壁
2d 内周壁
3,3´ 延設部
3a 上面
3b 外周壁
3c 内周壁
4,4´ 主雌螺子部
4a 雌螺子
5,5´,5b,5″ 環状溝部
5a,5a´,5a″ 弾性部
6,6´,6b 副雌螺子部
6a 雌螺子
7 外周溝部
10 ボルト
11 雄螺子
12a,12b 被締結部材
13 ボルト孔
20,20a 緩み止めナット
21 鍔部
22 外周溝部
23 弾性部
30 ナット本体
31 内周壁
31a 雌螺子
32 上面
33 座面
34 延設部
35 内周壁
35a 雌螺子
36 環状溝部
36a 外周壁
36b 弾性部
36c 肉厚部
37 鍔部
38 突起部
39,39a 本体凹部
39b 突起部
40 振動試験機
41 ボルト
42 振動バーレル
43 ワッシャ
44 加振台[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a locking device that can fasten a member to be fastened by being screwed into a male screw such as a bolt, and can prevent a decrease in screwing force and fastening force when an external force such as vibration is applied to the member or bolt. The present invention relates to a nut and a method for manufacturing the nut.
[0002]
[Prior art]
2. Description of the Related Art Bolts and nuts have been used frequently for fastening various parts in transportation equipment such as automobiles, airplanes and trains, various industrial machines and equipment, transfer pipelines and power transmission devices such as electric power, and the like. Bolts and nuts are of great importance as mechanical elements used for fastening various fastening parts.
However, conventionally, the nut fastened to the male screw of the bolt is loosened by external force such as vibration applied to the member to be fastened by the bolt / nut or the bolt or the like, and the fastening force or the fastening force is reduced, so that the member to be fastened is reduced. In order to improve the safety of the fastening part of the member to be fastened, the trouble that the fastening part of the member to be fastened becomes loose or the nut screwed to the bolt comes off and the fastening part of the member to be fastened comes off, Bolts and nuts that prevent the bolts from being loosened by external force such as vibration applied to the bolts and the like have been desired.
For this reason, in recent years, various bolts and nuts have been developed to prevent the nut from loosening from the bolt. In particular, for example, the following are disclosed as locking nuts for preventing the nut from loosening.
[0003]
Patent Literature 1 discloses an annular recess formed on an inner peripheral surface having a female screw between both end surfaces in the axial direction to have a diameter larger than a root diameter of the female screw, and a first annular recess divided by the annular recess. A female screw and a second female screw, an annular groove formed at one end face of the both end faces with a diameter larger than a root diameter of the female screw, a central part and a peripheral part divided by the annular groove, and the central part A method of manufacturing a locking nut for shifting the phase of the first female screw and the second female screw by relatively moving the female screw in the axial direction with respect to the peripheral portion by 1/3 to 1/2 pitch of the female screw. Have been.
[0004]
[Patent Document 1]
JP-B-62-26851
[0005]
[Problems to be solved by the invention]
However, the above-described conventional technology has the following problems.
(1) According to the technique disclosed in Patent Document 1, the first female screw is formed with a large displacement of 1/3 to 1/2 pitch of the second female screw, so that the screw portion of the locking nut is replaced with the screw portion of the bolt. The torque at the time of fastening is increased, and fastening work is difficult, and workability is remarkably lacking. Also, even if it can be fastened, the screw part of the locking nut will bite into the screw part of the bolt, the force required for fastening will increase, and the workability of fastening will be lacking. Scratching and seizure easily occur during use, resulting in poor repeatability. In addition, due to variations in the pitch and angle of the threaded portion of some nuts and bolts, when fastening, the flanks are insufficiently press-contacted with each other, so that the expected torque cannot be obtained and fastening cannot be performed. .
[0006]
The present invention solves the above-mentioned conventional problems, and is excellent in productivity with a simple structure, and can prevent a decrease in screwing force when external force is applied to a member to be fastened or a bolt, and can be semi-permanently. An object of the present invention is to provide a locking nut that can maintain a high fastening force, can significantly improve the safety of a fastening portion of a member to be fastened, is excellent in fastening workability, and is also excellent in repeated use. .
Another object of the present invention is to provide a method of manufacturing a locking nut that is simple, has excellent workability, is excellent in productivity, and has excellent reliability.
[0007]
[Means for Solving the Problems]
In order to solve the above conventional problems, a locking nut according to the present invention and a method for manufacturing the same have the following configurations.
[0008]
The locking nut according to claim 1 of the present invention is a locking nut for fastening a member to be fastened by being screwed into a male screw such as a bolt, and is extended coaxially with the nut body. An extended portion, a main female screw portion formed on an inner peripheral wall of the nut main body, and a valley of the main female screw portion on an inner peripheral wall of the nut main body side of the extended portion or the inner peripheral wall of the nut main body. An annular groove formed with a diameter equal to or larger than the diameter, and a phase with respect to the main female screw portion being displaced from 12 to 100 °, preferably from 24 to 90 °, more preferably from 24 to 72 °, and the inner peripheral wall of the extending portion. And a sub female screw portion formed at the bottom.
With this configuration, the following operation is obtained.
(1) Since the phase of the sub female screw portion with respect to the main female screw portion is displaced by a predetermined amount, the flank of the main female screw portion of the press contact force generated by the tightening force of the locking nut tightened to the male screw is reduced. The direction in which the flank of the male screw is pressed and the direction in which the flank of the sub female screw portion presses the flank of the male screw are 180 ° opposite to each other. For this reason, since the direction of the torque generated by the pressing force and the lead angle of the screw is different between the main female screw part and the sub female screw part, an external force such as vibration is applied to the bolt or the member to be fastened, and the male screw is rotated. When a force in the rotational direction is applied to the main female screw to loosen the torque from the flank of the secondary female screw, it acts in the tightening direction, so that the locking nut can be reliably prevented from loosening from the male screw. A high fastening force can be maintained semi-permanently.
(2) On the inner peripheral wall of the extension part extended from the nut main body, a sub phase formed by displacing the phase with respect to the main female screw part to 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °. Since the female screw portion is provided, the locking female nut is screwed into a male screw such as a bolt when fastening the member to be fastened, so that the sub female screw portion presses the male screw in the direction of the main female screw portion. The reaction force and the reaction force where the main female screw presses the male screw in the direction of the sub female screw, or the reaction force where the sub female screw presses the male screw in the direction opposite to the main female screw and the main female A reaction force occurs in which the screw portion presses the male screw in the direction opposite to the sub female screw portion, whereby a large frictional force can be obtained between the main female screw portion and the sub female screw portion and the male screw. It is possible to reliably prevent the main female screw portion and the like from being loosened from the male screw due to vibration and the like, and to reduce the screwing force.
(3) When a tightening force is applied by tightening a locking nut to a male screw such as a bolt, the secondary female screw portion of the locking nut is elastically deformed by a male screw such as a bolt, and the male screw is formed by a reaction force within the elastic deformation. The main female screw and sub female screw can be tightened more firmly and fastened, so that the locking force between the locking nut and the male screw such as a bolt can be further improved, and the locking nut can be tightened by external force such as vibration. Can be more reliably prevented from loosening from the male screw.
(4) Even when the portion between the member to be fastened and the seat surface is worn and loosened, the secondary female screw portion presses the male screw in the direction of the main female screw portion, or the secondary female screw. The reaction force that presses the male screw in the direction opposite to the main female screw part can prevent the locking nut from coming off from the bolts, etc. It is possible to prevent a falling accident in which the nut or the nut falls.
(5) The main female screw part and the sub female screw part are connected to the male screw by the reaction force due to the elastic deformation generated by the sub female screw part of the locking nut screwed to the male screw such as a bolt being deformed by the male screw. Strong contact makes it possible to absorb backlash due to variations in processing accuracy of the male screw such as bolts and the female screw part of the locking nut, and is excellent in stability, and the phase displacement is small. It is hard to damage the nuts and bolts of the bolts, and the reaction force can be obtained stably.If the same male screw is used, remove the loosening nut once screwed, then screw it back on and use it repeatedly. And excellent in repeated use.
(6) Since an annular groove portion having the same or larger outer diameter as the root diameter of the main female screw portion is provided, the sub female screw portion can be smoothly screwed into the male screw such as a bolt. In addition, the deformation can be facilitated, the degree of freedom in design can be increased, and buckling and the like can be prevented.
[0009]
Here, as the nut main body, nuts formed in various shapes such as a polygonal nut shape such as a quadrangular prism shape or a hexagonal prism shape, a round nut shape, a nut shape with a flange, and the like are used. A nut in which the seating surface of the nut body faces and is fixed to the member to be fastened can also be used.
[0010]
The extended portion is formed integrally with the nut main body on the upper surface of the nut main body or separately prepared and fixed to the upper surface of the nut main body by welding or the like and extends coaxially with the nut main body. A nut having an inner peripheral wall formed in a polygonal shape or the like and formed flush with the inner peripheral wall of the nut body is used. The length of the extended portion is determined to be a length that can provide the necessary engagement length for screwing with the male screw, depending on the material of the extended portion, the material of the male screw to be screwed, and the like.
[0011]
The main female screw portion may be a triangular screw or a trapezoidal screw, such as a metric screw or an inch screw, depending on the male screw to which the locking nut is screwed, and at a pitch corresponding to the male screw. Formed on the inner peripheral wall of A main female screw portion having a predetermined length may be formed on the inner peripheral wall of the extension portion so as to be continuous with the main female screw portion formed on the inner peripheral wall of the nut body. The length of the main female screw portion is determined according to the material of the nut main body and the extension portion, the material of the male screw to which the main female screw portion is screwed, and the like. Is formed in a length that can obtain the following. As the type of the screw, two or more multi-threads can be formed in addition to the single screw.
[0012]
The annular groove portion is formed substantially orthogonally or obliquely to the axis of the nut main body, and the inner peripheral wall of the nut main body side of the extension portion or the inner peripheral wall of the nut main body has a valley diameter of the main female screw portion. A member formed to have the same diameter or a larger diameter to separate the main female screw portion and the sub female screw portion and to make the extension portion and the nut body thinner is used.
When the annular groove is formed obliquely to the axis of the nut main body, the groove is formed at an angle substantially parallel to the lead angle of the main female screw portion. As a result, the male screw can be screwed into the sub female screw portion formed by being separated by the main female screw portion and the annular groove portion without biting.
[0013]
As the sub female screw portion, the main female screw portion is separated from the main female screw portion by the annular groove portion, on the inner peripheral wall of the extension portion, at the same pitch as the main female screw portion, and the phase with respect to the main female screw portion is preferably 12 to 100 °. Are formed with a displacement of 24 to 90 °, more preferably 24 to 72 °.
As the phase of the sub female screw portion with respect to the main female screw portion becomes smaller than 24 °, the amount of elastic deformation is reduced due to rattling due to the variation in processing accuracy of the male screw such as a bolt and the female screw portion of the locking nut, and the main female screw portion is reduced. The reaction force obtained on the male screw by the sub-female screw part is small, and the screwing force of the male screw such as the locking nut and the bolt tends to decrease. When the angle becomes 72 ° to 90 °, the torque at the time of fastening is large. It is not preferable because seizure tends to occur sometimes. As the angle becomes larger than 90 °, the screw portion of the locking nut is easily entangled into the screw portion of the bolt at the time of fastening, and the force required for fastening is increased. It is not preferable because the film is liable to be scratched and the reusability tends to decrease. In particular, when the phase with respect to the main female screw portion is smaller than 12 ° or larger than 100 °, these tendencies are remarkable, and neither is preferable.
The phase of the sub female screw portion may be displaced to either the main female screw portion side or the opposite side to the main female screw portion. In any case, the direction in which the flank of the main female screw portion presses the flank of the male screw and the direction in which the flank of the sub female screw portion presses the flank of the male screw of the pressing force generated at the time of fastening differs by 180 °. Because you can do it.
The shape and the number of the sub female screw portions are the same as those of the main female screw portion.
[0014]
One end of a bolt having a hole on the top surface of the head, such as a hexagonal bolt, a square root bolt, a polygonal or dish-shaped bolt, a hexagon socket head bolt, etc., and a base bolt is embedded. A bolt having a male screw formed at one end, such as a set bolt, or a bolt having a male screw formed at both ends, such as an embedded bolt or a stay bolt, can be used.
[0015]
In addition, an annular groove is formed in a predetermined portion of the inner peripheral wall of the nut in which the internal thread is formed on the inner peripheral wall, and a part of the nut from the seat surface of the nut to the annular groove is used as the nut body, and from the annular groove to the upper surface of the nut. A portion of the nut may be an extension. By this, the phase with respect to the female screw (main female screw) formed on the nut main body is displaced by 12 to 100 ° just by applying a load substantially in parallel with the axial direction, and the sub female screw (formed on the extension) is formed. Female screw), and the locking nut can be easily and simply manufactured.
[0016]
The locking nut according to claim 2 of the present invention is a locking nut that is screwed to a male screw such as a bolt to fasten a member to be fastened, and is extended coaxially with the nut body and the nut body. An extended portion, a main female screw portion formed on an inner peripheral wall of the nut main body, and an outer peripheral wall of the nut main body side of the extended portion or an outer peripheral wall of the nut main body orthogonal to the axial direction of the nut main body. And a sub-groove formed on the inner peripheral wall of the extending portion with a phase shift of 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 ° with respect to the main female screw portion. And a female screw portion.
With this configuration, the following operation is obtained in addition to the operation described in the first aspect.
(1) When an outer peripheral groove is formed in an outer peripheral wall of a nut body formed of a nut standardized by JIS, ASME, DIN, or the like, the main female screw portion can be applied simply by applying a load substantially parallel to the axial direction. Can be formed with a phase shift of 12 to 100 ° with respect to the above, which is excellent in versatility.
[0017]
Here, the nut main body, the extension portion, the main female screw portion, and the sub female screw portion are the same as those described in claim 1, and thus description thereof will be omitted.
The outer peripheral groove portion is formed with a width of 1/30 or more times the pitch of the main female screw portion or the sub female screw portion, preferably 1/30 to 5/18 × n times (where n is a natural number). What is formed with a width is used. This is because, when the outer peripheral groove portion is compressed and deformed, the phase of the sub female screw portion with respect to the main female screw portion can be displaced by 12 to 100 °.
In addition, an outer peripheral groove is formed in a predetermined portion of the outer peripheral wall of the nut in which the internal thread is formed on the inner peripheral wall, a part of the nut from the seat surface of the nut to the outer peripheral groove is a nut main body, and from the outer peripheral groove to the upper surface of the nut. A portion of the nut may be an extension.
[0018]
The invention according to claim 3 of the present invention is the locking nut according to claim 1, further comprising an outer peripheral groove formed on an outer peripheral wall corresponding to the extending groove or the annular groove of the nut body. Configuration.
With this configuration, the following operation is obtained in addition to the operation obtained in the first aspect.
(1) The extension portion or the nut main body in the annular groove portion can be made thinner to make it easier to elongate or deform, and the main thread without crushing or damaging the screw thread of the male screw such as a bolt or the sub female screw portion. The flank of the female screw portion and the sub female screw portion presses the flank of the male screw to obtain a high screwing force. If the extending portion or the nut body in the annular groove portion is formed to be thick, the mechanical strength is large, and it is difficult for elongation or shrinkage to occur, so that the thread of the male screw such as a bolt or the sub female screw portion is crushed. is there.
[0019]
Here, the outer peripheral groove portion is the same as that described in the second aspect, and the description is omitted.
[0020]
The invention according to claim 4 of the present invention is the locking nut according to any one of claims 1 to 3, wherein the extending portion or the nut main body in the annular groove portion or the outer peripheral groove portion includes: It has a configuration provided with an elastic portion that is compressed or tensile-deformed by a predetermined amount in the axial direction.
With this configuration, the following operation is obtained in addition to the operation obtained in any one of the first to third aspects.
(1) Since the elastic portion of the annular groove portion in which the extending portion or the like is compressed or tensilely deformed has elasticity, the elastic portion is screwed in addition to the elastic deformation of the sub-female screw portion or the like generated by the male screw such as a screwed bolt. The expansion or contraction of the elastic part caused by the male screw, such as a bolt, absorbs the rattling due to the variation in processing accuracy of the male screw and the female screw part of the locking nut, and the stress generated according to the elasticity of the elastic part. As a result, the generated reaction force can be further increased, and the locking nut can be more reliably prevented from loosening from a male screw such as a bolt.
(2) After the main female screw part and the sub female screw part are formed with the same pitch and the same phase, the phase of the main female screw part and the sub female screw part is easily shifted by compressing or tensile deforming the annular groove part. Therefore, the production is easy and the productivity is excellent.
[0021]
Here, it is preferable that the elastic portion is formed to bulge outward. This is because manufacturing is easy. Further, when the elastic portion is formed, the outer peripheral side of the elastic portion may be restricted so as to bulge into the annular groove portion. In this case, the elastic portion is prevented from protruding from the bottoms of the main female screw portion and the sub female screw portion. This is because the male screw cannot be inserted.
[0022]
The invention according to claim 5 of the present invention is the locking nut according to claim 3 or 4, wherein the amount of deformation α in the axial direction of the annular groove portion or the outer peripheral groove portion is the pitch of the main female screw portion. Is P, (n + 1/30) P ≦ α ≦ (n + 5/18) P, preferably (n + 1/15) P ≦ α ≦ (n + /) P, more preferably (n + 1/15) P ) P ≦ α ≦ (n + /) P or (n−5 / 18) P ≦ α ≦ (n−1 / 30) P, preferably (n−1 / 4) P ≦ α ≦ (n−1) / 15) P, more preferably (n-1 / 5) P ≦ α ≦ (n−1 / 15) P (where n is an integer of 0 or more. Α is positive in the compression direction and negative in the tensile direction). ).
With this configuration, the following operation is obtained in addition to the operation obtained in the fourth aspect.
(1) By forming the deformation amount α of the annular groove portion within a predetermined range, the phase of the sub female screw portion with respect to the main female screw portion is surely set to 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °. Since it can be displaced, the product yield is high and the productivity is excellent.
[0023]
Here, the deformation amount α of the annular groove portion or the outer peripheral groove portion is a length obtained by subtracting the length L1 of the axial annular groove portion after deformation from the length L2 of the axial annular groove portion before deformation (= L2-L1). ) Is used, and when the size of the pitch of the main female screw portion is P, (n + 1/30) P ≦ α ≦ (n + 5/18) P, preferably (n + 1/15) P ≦ α ≦ (n + 1 / 4) P, more preferably (n + 1/15) P ≦ α ≦ (n + /) P, or (n−5 / 18) P ≦ α ≦ (n−1 / 30) P, preferably (n−1) / 4) P ≦ α ≦ (n−1 / 15) P, more preferably (n−1 / 5) P ≦ α ≦ (n−1 / 15) P (where n is an integer of 0 or more; α) Is preferably a positive compression direction and a negative tension direction). As the deformation amount α of the annular groove portion becomes smaller than (n + 1/15) P or becomes larger than (n−1 / 15) P, rattling due to variation in processing accuracy of a male screw such as a bolt and a female screw portion of a locking nut is performed. It is difficult to absorb the elastic deformation and the amount of elastic deformation is reduced, the reaction force obtained on the male screw by the main female screw portion and the sub female screw portion is small, and the screwing force of the male screw such as the locking nut and the bolt tends to decrease, When (n + /) P ≦ α ≦ (n + /) P, there is a tendency that the torque at the time of fastening is large and seizure tends to occur during use. As the value becomes larger than (n + /) P or becomes smaller than (n − /) P, the screw portion of the locking nut is easily bitten into the screw portion of the bolt at the time of fastening, and the force required for fastening increases. It is not preferable because it lacks in ease of use, and tends to damage the thread portion of the locking nut and the bolt at the time of fastening, which tends to reduce the usability repeatedly. In particular, the deformation amount α of the annular groove is smaller than (n + 1/30) P, larger than (n−1 / 30) P, larger than (n + 5/18) P, or larger than (n−5 / 18) P. When the size is smaller, these tendencies are remarkable, and neither is preferable.
[0024]
n is an integer of 0 or more. Taking the case where the deformation amount α = (n + 1/30) P as an example, α = nP + 1/30 · P, and when n is an integer, no phase shift occurs depending on the deformation amount nP. This is because a phase shift can be formed by the deformation amount 1/30 · P deformed beyond. Further, 0 to 4, preferably 1 to 3, is suitably used. When n is 0, the amount of deformation of the annular groove is small, so that the elasticity of the elastic portion becomes large, and the magnitude of the reaction force obtained by a slight displacement of the elastic portion is remarkably different. Since the deformation amount of the annular groove becomes larger and the elasticity of the elastic portion becomes smaller as the ratio becomes larger than 3, the reaction force obtained by the displacement of the elastic portion tends to become smaller. In particular, when n is larger than 4, this tendency is remarkable, which is not preferable.
[0025]
The axial length L2 of the annular groove portion or the outer peripheral groove portion before compression deformation is as follows: (a) The size of the pitch of the main female screw portion is P, the inner diameter of the annular groove portion is A, the extension of the annular groove portion or the nut body When the outer diameter or the diameter of the bottom of the outer circumferential groove is B, P ≦ L2 ≦ 5P + BA, or (b) the axial length of the annular groove or the outer circumferential groove after compression deformation is L1, and the axis of the elastic part is Assuming that the deformation angle with respect to the direction is θ, L2 = L1 / cos θ (where 10 ° ≦ θ ≦ 75 °) is preferably used.
Thereby, the following operation is obtained.
(1) Since the axial length of the annular groove or the like is within the predetermined range, the buckling load of the annular groove or the like can be adjusted to an appropriate amount, and the phase of the sub female screw portion can be easily displaced to the predetermined range by compressive deformation. Excellent in productivity and stability.
(2) Since the axial length of the annular groove and the like before the compression deformation is within the predetermined range, the degree of freedom in designing when determining the amount of deformation and the size of the elastic portion can be increased.
(3) When the deformation angle θ of the elastic portion is formed in a predetermined range, the optimum elasticity of the elastic portion is obtained, and the relationship between the displacement of the elastic portion and the reaction force is stably obtained, and the obtained reaction force And the stability is excellent.
[0026]
Here, as the length L2 in the axial direction of the annular groove and the like before the compression deformation, P ≦ L2 ≦ 5P + BA is suitably used. As the axial length L2 of the annular groove or the like before the compression deformation becomes smaller than P, the mechanical strength of the extended portion or the like in the annular groove or the like becomes large and a large load is required to compressively deform the annular groove or the like. As the equipment load of the equipment increases, the auxiliary female screw portion other than the annular groove portion and the like easily deforms, the pitch of the auxiliary female screw portion decreases, and the male screw such as a bolt tends to bite into the auxiliary female screw portion. In addition, the deformation amount α cannot be increased, and the stability tends to be difficult to increase. As the ratio becomes larger than 5P + BA, the buckling load decreases and the stability decreases. It is not preferable because the axis of the screw portion is easily displaced, so that it is difficult to screw a bolt or the like to the sub female screw portion, and the mechanical strength of the sub female screw portion is small and easily fatigued, so that long-term reliability tends to decrease. .
[0027]
The axial length L2 of the annular groove or the outer peripheral groove before the compression deformation is L2, where L1 is the axial length of the annular groove after the compression deformation and θ is the deformation angle of the elastic portion with respect to the axial direction. = L1 / cos θ (10 ° ≦ θ ≦ 75 °) is preferably used. As the deformation angle θ of the elastic portion with respect to the axial direction becomes smaller than 10 °, the elasticity of the elastic portion increases due to the small amount of deformation of the annular groove and the like, and the magnitude of the reaction force obtained by a slight displacement of the elastic portion is significantly different. The dispersion tends to be large and the stability tends to be poor. As the angle exceeds 75 °, the amount of deformation of the annular groove and the like tends to be large, the elasticity of the elastic portion decreases, and the reaction force obtained by the displacement of the elastic portion tends to decrease. Therefore, neither is preferable.
[0028]
The invention according to claim 6 of the present invention is the locking nut according to any one of claims 1 to 5, wherein the nut extends in the annular groove or the outer peripheral groove and crosses the extending portion or the nut body. The area is 5 to 50% of the area of a circle whose diameter is the root diameter of the main female screw portion.
With this configuration, the following operation is obtained in addition to the operation obtained in any one of the first to fifth aspects.
(1) By defining the cross-sectional area of the extending portion or the like in the annular groove portion, the reaction force Q applied to the male screw by the sub female screw portion can be set within a predetermined range. The torque Tq can be suppressed to about 1 to 50 N · m, and the fastening workability is excellent.
(Equation 1)
Figure 2004003587
(2) Since the thickness of the extending portion in the annular groove portion is formed to a predetermined thickness and the mechanical strength can be set in a predetermined range, the extension portion and the like are deformed to easily displace the phase of the sub female screw portion to a predetermined range. Can be done. In addition, an appropriate amount of elongation is easily generated in the extended portion or the like in the annular groove portion, and when the male screw such as a bolt is screwed, the extended portion or the like is elongated, so that it is difficult to crush the screw thread of the male screw or the sub female screw portion. Excellent fit.
[0029]
Here, the extending portion in the annular groove or the outer peripheral groove or the cross-sectional area of the nut body may be the area surrounded by the extending portion in the annular groove or the outer edge (outer diameter) of the outer peripheral wall of the nut body, or the extending area in the outer peripheral groove. The area surrounded by the inner edge (inner diameter) of the annular groove portion is subtracted from the area surrounded by the outer edge (diameter of the bottom portion of the outer peripheral groove portion) of the portion, etc., and the diameter is defined as the root diameter of the main female screw portion. It is formed with a cross-sectional area of 5 to 50% of the area of the circle. As the cross-sectional area becomes smaller than 5%, the buckling load becomes smaller and the mechanical strength tends to decrease. As the cross-sectional area becomes larger than 50%, the buckling load of the extending portion in the annular groove becomes larger and the elongation increases. This is not preferable because it tends to cause the occurrence of the empty torque Tq and the tendency to damage the flank and cause seizure.
[0030]
The thickness of the sub female screw portion of the extension portion (the thickness from the bottom of the sub female screw portion to the outer peripheral wall of the extension portion) depends on the material of the extension portion and the like. It is formed with a thickness that provides the required mechanical strength.
[0031]
The invention according to claim 7 of the present invention is the locking nut according to any one of claims 1 to 5, wherein the extending portion includes a flange protruding from a peripheral portion of an outer peripheral wall. Configuration.
With this configuration, the following operation is obtained in addition to the operation obtained in any one of the first to fifth aspects.
(1) Since the elastic portion that has been compressed and swelled fits inside the nut body and the flange portion protruding from the outer peripheral wall of the extension portion, a wrench or the like used to fasten the locking nut hits the elastic portion. To prevent deformation and damage of the elastic portion, and protect the elastic portion to enhance durability.
[0032]
Here, a flange whose outer edge is formed in a polygonal shape such as a substantially circular shape or a substantially hexagonal shape is used as the flange portion.
As the size of the flange, a flange whose outer edge is formed to be equal to or larger than the outer diameter of the bulged elastic portion is used. This is because the elastic portion is housed inside the flange portion and the nut main body, and a wrench or the like for fastening the nut main body is prevented from hitting the flange portion to enhance the fastening workability.
[0033]
The invention according to claim 8 of the present invention is the locking nut according to any one of claims 1 to 7, wherein an outer diameter of the extending portion is orthogonal to an axial direction of the nut main body. It has a configuration in which the outer diameter of the inscribed circle inscribed in the outer edge of the cross section is 30 to 100%.
With this configuration, the following operation is obtained in addition to the operation obtained in any one of the first to seventh aspects.
(1) When the extended portion is fixed to the upper surface of the nut body by welding or the like, welding can be easily performed without forming a groove, and the workability is excellent.
(2) The outer diameter of the extended portion is formed to be 30 to 100% of the outer diameter of the inscribed circle inscribed in the outer edge of the cross section orthogonal to the axial direction of the nut body, and the outer diameter of the extended portion is Since the main body is smaller than the main body, the extended portion does not interfere with the nut main body when the nut main body is fastened using a spanner or the like, and the wrench or the like enters the nut main body, so that the fastening is easy and the workability of the fastening is excellent.
[0034]
Here, as the outer edge of the cross section orthogonal to the axial direction of the nut body, when the nut body is formed in a polygonal nut shape such as a quadrangular prism shape or hexagonal prism shape, it is formed in a polygonal shape, a round nut shape Is circular.
[0035]
The outer diameter of the extension is preferably 30 to 100% of the outer diameter of the inscribed circle inscribed in the outer edge of the cross section orthogonal to the axial direction of the nut body. As the extension becomes smaller than 30%, the extension becomes thinner and it becomes difficult to form the sub female screw portion. As the extension becomes larger than 100%, the extension becomes smaller when the nut body is fastened using a spanner or the like. This is not preferable because it tends to hinder fastening and tends to lack fastening workability.
[0036]
A method for manufacturing a locking nut according to claim 9 of the present invention is a method for manufacturing a locking nut for fastening a member to be fastened by screwing into a male screw such as a bolt. An annular groove is formed on the inner peripheral wall of the extension portion formed integrally with or fixed to the nut body, and a female screw having the same pitch as the male screw is formed on the inner peripheral wall of the nut body and the extension portion. Forming, or b. An inner peripheral wall forming step of forming an annular groove in a predetermined portion of an inner peripheral wall of the nut and forming a nut main body and an extended portion in the nut, and between a seating surface of the nut main body and an upper surface of the extended portion. When a predetermined load is applied for a predetermined time and the extended portion in the annular groove formed in the inner peripheral wall surface forming step is deformed, the amount of deformation α is represented by P of the pitch of the female screw, and (n + 1/30) ) P ≦ α ≦ (n + 5/18) P, preferably (n + 1/15) P ≦ α ≦ (n + /) P, more preferably (n + 1/15) P ≦ α ≦ (n + /) P, or , (N−5 / 18) P ≦ α ≦ (n−1 / 30) P, preferably (n − /) P ≦ α ≦ (n−1 / 15) P, more preferably (n − /) P ) P ≦ α ≦ (n−1 / 15) P (where n is an integer of 0 or more. Α is positive in the compression direction and negative in the tensile direction). And an elastic portion forming step of forming an elastic portion by deforming.
With this configuration, the following operation is obtained.
(1) By deforming the annular groove after the female screw is formed on the inner peripheral wall, it is possible to easily form the main female screw and the sub female screw that are out of phase. Excellent.
(2) By forming the deformation amount α of the annular groove portion within a predetermined range, the phase of the sub female screw portion with respect to the main female screw portion is reliably set to 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °. Because it can be displaced, it is excellent in reliability and workability.
[0037]
Here, as the inner peripheral wall forming step, the nut body and the extended portion are integrally formed by plastic working such as press forming or cutting, or the inner peripheral wall, or the extended portion is welded to the nut body by resistance welding. An annular groove or female screw is formed by cutting using a lathe or milling cutter on the inner peripheral wall of the nut, which is fixed by welding or fitting such as friction welding or the like, and is coaxial with the nut body. Things are used. Alternatively, a nut that forms an annular groove on the inner peripheral wall of a nut on which a female screw is formed by cutting using a lathe or a milling cutter to separate the female screw and form a nut main body and an extended portion is used. .
In the step of forming the elastic portion, a process of applying a predetermined pressure between the seating surface of the nut main body and the upper surface of the extending portion for a predetermined time by using a pressing device is used. It is preferable that the pressure is applied in a cold state. This is because mechanical strength is improved and high dimensional accuracy is obtained.
[0038]
The method for manufacturing a locking nut according to claim 10 of the present invention is a method for manufacturing a locking nut for fastening a member to be fastened by screwing into a male screw such as a bolt, wherein the nut body and the extending portion are provided. Or a body forming step in which the extending portion is fixed to the nut body and the extending portion is coaxially extended on the upper surface of the nut body, and formed integrally with the nut body in the body forming step. Forming an annular groove in a predetermined portion of an inner peripheral wall of the extending portion fixed or fixed to the nut main body, and forming a main female screw portion on an inner peripheral wall of the nut main body; A screw forming a sub-female screw part whose phase with respect to the main female screw part is displaced from the annular groove part toward the upper surface of the extending part by 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °. Groove forming step. The it has.
With this configuration, the following operation is obtained.
(1) Since there is a screw groove forming step of displacing the sub female screw portion with respect to the main female screw portion by screwing with a lathe or the like, a press load for compressive deformation is not required, and the equipment load is reduced. Can be reduced.
[0039]
Here, as the main body forming step, the nut main body and the extended portion are integrally formed by plastic working such as press molding or cutting, or the extended portion is formed on the nut main body by welding such as resistance welding or friction welding. The one that is fixed by fitting or the like and extends the extension portion coaxially with the nut body is used. As the nut main body and the extending portion used in the main body forming step, those having no female screw or an annular groove formed on the inner peripheral wall are used.
As the screw groove forming step, an annular groove, a main female screw, and a sub female screw are formed on the inner peripheral wall by cutting using a lathe or a milling machine.
[0040]
A method for manufacturing a lock nut according to claim 11 of the present invention is a method for manufacturing a lock nut for screwing a member to be fastened by screwing into a male screw such as a bolt, and wherein an annular ring is formed on a predetermined portion of the inner peripheral wall. An extending portion forming step of forming an extending portion in which a groove portion is formed; an extending portion fixing step of fixing the extending portion formed in the extending portion forming step to an upper surface of a nut body; A female screw forming step of forming a female screw having the same pitch and the same phase as the male screw on the inner peripheral wall of the nut main body and the inner peripheral wall of the extending part to which the extending part is fixed in the part fixing step; A predetermined pressure is applied for a predetermined time between the seating surface of the nut main body where the female screw is formed in the female screw forming step and the upper surface of the extending portion to cause the extending portion in the annular groove to have a deformation amount α. When the size of the pitch of the female screw is P, (n + 1/30 P ≦ α ≦ (n + 5/18) P, preferably (n + 1/15) P ≦ α ≦ (n + /) P, more preferably (n + 1/15) P ≦ α ≦ (n + /) P, or (N−5 / 18) P ≦ α ≦ (n−1 / 30) P, preferably (n−1 / 4) P ≦ α ≦ (n−1 / 15) P, more preferably (n−1 / 5) Elastic part that forms an elastic part by deforming by P ≦ α ≦ (n−1 / 15) P (where n is an integer of 0 or more; α is positive in the compression direction and negative in the tensile direction) And a forming step.
With this configuration, the following operation is obtained in addition to the operation described in claim 9.
(1) Since the step of forming the extending portion is provided, the shape of the extending portion and the annular groove can be freely formed, and the flexibility is enhanced.
[0041]
Here, as the extension portion forming step, a process of forming an annular groove portion in the extension portion by plastic working such as press molding, cutting, or the like is used.
As the extension portion fixing step, a process in which the extension portion is fixed to the nut body by welding or fitting such as resistance welding, friction welding, fusion welding, or the like and the extension portion is coaxially extended with the nut body is used. Can be In particular, resistance welding is preferred in which after the nut main body and the extension portion are brought into contact with each other, a DC current or an AC current is passed between the nut main body and the extension portion to generate resistance heat at the contact portion and perform welding. This is because thermal deformation and the like hardly occur and the reliability is excellent. Among resistance weldings, particularly, projection welding, in which a projection formed at a welding location is brought into contact with and welded through an electric current, is suitably used. This is because there is no danger of overheating and the safety is excellent. The nut main body and the extension portion used in the extension portion forming step and the extension portion fixing step are those having no female screw formed on the inner peripheral wall.
As the female screw forming step, a method of forming a female screw on the inner peripheral wall by cutting using a lathe, a milling machine, or the like is used.
Since the elastic portion forming step is the same as that described in the ninth aspect, the description is omitted.
[0042]
A method of manufacturing a locking nut according to claim 12 of the present invention is a method of manufacturing a locking nut which is screwed to a male screw such as a bolt to fasten a member to be fastened. An extending portion forming step of forming an extending portion in which a groove portion is formed; an extending portion fixing step of fixing the extending portion formed in the extending portion forming step to an upper surface of a nut body; A main female screw portion is formed on the inner peripheral wall of the nut body to which the extending portion is fixed in the portion fixing step, and the inner peripheral wall of the extending portion is formed from the annular groove toward the upper surface of the extending portion. A female screw part forming step of forming a sub female screw part in which the phase with respect to the main female screw part is displaced by 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °. I have.
With this configuration, the effects described in claims 10 and 11 can be obtained.
[0043]
Here, as the female screw portion forming step, a process of forming a main female screw portion and a sub female screw portion on the inner peripheral wall by cutting using a lathe, a milling machine, or the like is used.
Since the extending portion forming step and the extending portion fixing step are the same as those described in claim 11, their description is omitted.
[0044]
A method for manufacturing a locking nut according to claim 13 of the present invention is a method for manufacturing a locking nut for fastening a member to be fastened by being screwed into a male screw such as a bolt, and wherein an annular ring is formed on a predetermined portion of an inner peripheral wall. Forming an extended portion in which the groove portion is formed, and then applying a predetermined pressure substantially in parallel to the axial direction of the extended portion for a predetermined time to deform the extended portion in the annular groove portion, the deformation amount α of the female screw Assuming that the pitch is P, (n + 1/30) P ≦ α ≦ (n + 5/18) P, preferably (n + 1/15) P ≦ α ≦ (n + /) P, and more preferably (n + 1/30) P 15) P ≦ α ≦ (n + /) P or (n−5 / 18) P ≦ α ≦ (n−1 / 30) P, preferably (n−1 / 4) P ≦ α ≦ (n− (1/15) P, more preferably (n-1 / 5) P ≦ α ≦ (n−1 / 15) P (where n is an integer of 0 or more; α is An extension portion deformation step of forming an elastic portion by deforming only the compression direction is positive and a tension direction is negative, and the extension portion formed in the extension portion deformation step is fixed to the upper surface of the nut body. A main female screw portion is formed on an inner peripheral wall of the nut body to which the extending portion is fixed in the extending portion fixing step, and the annular groove portion is formed on an inner peripheral wall of the extending portion. Female screw part forming step of forming a sub female screw part whose phase with respect to the main female screw part is displaced from 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 ° from the top toward the upper surface of the extending part And a configuration having:
With this configuration, the following operation is obtained.
(1) Since the step of forming the extension portion is provided, the shape of the extension portion and the annular groove portion can be freely formed, and the elastic portion can also be formed, thereby increasing the flexibility.
[0045]
Here, as the extension portion deformation step, an annular groove is formed in the extension portion by plastic working such as press molding or cutting, and then a predetermined load is applied in parallel with the axial direction of the extension portion using a pressing device. Is applied for a predetermined time. It is preferable that the pressure is applied in a cold state. This is because mechanical strength is improved and high dimensional accuracy is obtained.
The extending portion fixing step is the same as that described in claim 11, and the female screw portion forming step is the same as that described in claim 12, and therefore the description is omitted.
[0046]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1A is an overall perspective view of a locking nut according to Embodiment 1, and FIG. 1B is a cross-sectional end view of a main part along line AA in FIG. 1A.
In the figure, reference numeral 1 denotes a nut for locking in the first embodiment, 2 denotes a nut body formed in a hexagonal nut shape of the locking nut 1, 2a denotes an upper surface of the nut body 2, 2b denotes a seating surface of the nut body 2, and 2c denotes a nut surface. The outer peripheral wall 2d of the nut main body 2 is the inner peripheral wall of the nut main body 2, and the reference numeral 3 is formed integrally with the nut main body 2 on the upper surface 2a of the nut main body 2 or separately formed with the nut main body 2 and is fixed to the upper surface 2a of the nut main body 2. And a cylindrical extension portion having an outer diameter of 30 to 100% of the outer diameter of an inscribed circle inscribed in the outer edge of the cross section orthogonal to the axial direction of the nut body 2. The upper surface of the portion 3, 3 b is the outer peripheral wall of the extending portion 3, 3 c is the inner peripheral wall of the extending portion 3 formed flush with the inner peripheral wall 2 d of the nut main body 2, and 4 is the inner peripheral wall 2 d of the nut main body 2. The inner peripheral wall 3c of the installation part 3 has one or more triangular screw shapes, saw tooth screw shapes, or the like. The formed main female screw portion 5 has a diameter larger than the root diameter of the main female screw portion 4 on the inner peripheral wall 3 c of the extension portion 3 on the nut body 2 side in a direction substantially orthogonal to the axial direction of the extension portion 3. The annular groove 5a formed in an annular shape has a deformation amount α of (n + 1/30) P ≦ α ≦ (n + 5, where P is the pitch of the main female screw portion 4 in the extending portion 3 of the annular groove 5. / 18) P, preferably (n + 1/15) P ≦ α ≦ (n + /) P, more preferably (n + 1/15) P ≦ α ≦ (n + /) P, or (n−5 / 18) ) P ≦ α ≦ (n−1 / 30) P, preferably (n−1 / 4) P ≦ α ≦ (n−1 / 15) P, more preferably (n − /) P ≦ α ≦ (n −1/15) P (where n is an integer equal to or greater than 0. α is a compression direction positive and a tensile direction negative.) An elastic portion swelled or recessed toward the outer peripheral wall 3b and compressed (or pulled) in the axial direction (a swelling state due to compression deformation is shown in the drawing), and 6 is an upper surface of the extending portion 3 extending from the annular groove portion 5. A sub-female screw part is formed in the inner peripheral wall 3c of the extension part 3 toward the main female screw part 3a in the same shape and at the same pitch as the main female screw part 4. L1 is the axial length of the annular groove 5 (elastic portion 5a) that has been subjected to compression deformation (or tensile deformation), and θ is the deformation angle of the elastic portion 5a with respect to the axial direction.
[0047]
The method for manufacturing the locking nut according to the first embodiment configured as described above will be described below with reference to the drawings.
FIG. 2 is a cross-sectional end view of a main part showing a state before the annular groove of the locking nut according to the first embodiment is compressed and deformed.
In the drawing, reference numeral 4a denotes a female screw formed in a part of the inner peripheral wall 2d of the nut body 2 and a part of the inner peripheral wall 3c of the extension part 3 in a triangular screw shape or the like, and 5b denotes a nut of the extension part 3. An annular groove portion 6a formed on the inner peripheral wall 3c of the main body 2 in a ring shape having a diameter slightly larger than the root diameter of the female screw 4a and substantially perpendicular to the axial direction of the extension portion 3 and having the extension portion 3 thinned; Is a female screw formed on the inner peripheral wall 3c of the extension 3 in the same shape and the same pitch as the female screw 4a in the form of one or more triangular screws. A is the inner diameter of the annular groove 5b, B is the outer diameter of the extending portion 3, and L2 is the axial length of the annular groove 5b before compression deformation.
Here, in the first embodiment, the axial length L2 of the annular groove 5b before the compression deformation is P ≦ L2 ≦ 5P + BA (where P is the pitch of the female screws 4a, 6a). It is formed in the size of. Further, the elastic portion 5a is formed in a relationship of L2 = L1 / cos θ where the deformation angle θ is 10 ° ≦ θ ≦ 75 °. Further, the cross-sectional area π · (B 2 -A 2 ) / 4 are formed in 5 to 50% of the area of a circle whose diameter is the root diameter of the female screws 4a and 6a. The female screw 4a and the female screw 6a are formed with the same pitch and the same phase as the male screw to be screwed.
[0048]
A method of manufacturing the locking nut according to the first embodiment configured as described above will be described below.
[0049]
First, the nut body 2 having no female screw and the extended portion 3 are integrally formed by plastic working such as press molding or cutting, or the extended portion 3 is connected to the nut body 2 by resistance welding, friction welding, or the like. And the extension portion 3 is coaxially fixed to the nut body 2 by welding or fitting.
Next, in the inner peripheral wall surface forming step, an annular groove portion 5b is formed in the inner peripheral wall 3c of the extension portion 3, and a screw portion 4a is formed on the inner peripheral wall 2d of the nut body 2 and a part of the inner peripheral wall 3c of the extension portion 3. Form. Further, a female screw 6a having the same pitch and the same phase as the female screw portion 4a is formed on the inner peripheral wall 3c of the extending portion 3 from the annular groove portion 5a toward the upper surface portion 3a of the extending portion 3.
Next, in the elastic portion forming step, a load larger than the buckling load of the extension portion 3 in the annular groove portion 5b is applied between the upper surface 3a of the extension portion 3 and the seating surface 2b of the nut main body 2 for a predetermined time. Assuming that the size of the pitch of the female screw 4a in the extension portion 3 in 5b is P, the deformation amount α (= L2−L1) is (n + 1/30) P ≦ α ≦ (n + 5/18) P, preferably ( (n + 1/15) P ≦ α ≦ (n + /) P, more preferably (n + 1/15) P ≦ α ≦ (n + /) P, or (n−5 / 18) P ≦ α ≦ (n− 1/30) P, preferably (n-/) P ≦ α ≦ (n−1 / 15) P, more preferably (n−−1) P ≦ α ≦ (n−1 / 15) P (however, , N is an integer greater than or equal to 0. α is a compression direction positive and a tension direction negative.) To compress and deform to form the elastic portion 5a. As a result, the female screw 4a becomes the main female screw portion 4, and the female screw 6a is the sub female screw whose phase with respect to the main female screw portion 4 is displaced to 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °. It becomes part 6.
[0050]
(Embodiment 2)
FIG. 3 is a sectional end view of a main part of a locking nut according to the second embodiment. Note that the same components as those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the figure, reference numeral 1 'denotes a locking nut in the second embodiment which is a modification of the first embodiment, and 2' denotes a hexagonal nut formed of the locking nut 1 'and one or more triangular screws. A nut having an internal thread is formed, 2a 'is a nut body formed on the seat 2b side of the nut 2' by an annular groove 5 '(described later) formed on the nut 2', and 3 'is formed on the nut 2'. An extended portion 4 ′ formed on the upper surface 2 a side of the nut 2 ′ by the formed annular groove portion 5 ′ (described later) is formed in one or more triangular screw shapes or the like on the inner peripheral wall of the nut main body 2 a ′. The main female screw portion 5 ′ has a diameter larger than the root diameter of the main female screw portion 4 ′ at a predetermined portion of the inner peripheral wall of the nut 2 ′ (the nut main body 2a ′ or the extension portion 3 ′). An annular groove portion 5a 'formed annularly in a direction substantially perpendicular to the direction is a nut 2' in the annular groove portion 5 '. When the size of the pitch of the main female screw portion 4 ′ is P, the deformation amount α is (n + 1/30) P ≦ α ≦ (n + 5/18) P, preferably (n + 1/15) P ≦ α ≦ (n + 1 / 4) P, more preferably (n + 1/15) P ≦ α ≦ (n + /) P, or (n−5 / 18) P ≦ α ≦ (n−1 / 30) P, preferably (n− (1/4) P ≦ α ≦ (n−1 / 15) P, more preferably (n−1 / 5) P ≦ α ≦ (n−1 / 15) P (where n is an integer of 0 or more). α is the compression direction is positive, and the tension direction is negative.) The elastic portion which is compressed and deformed in the axial direction and swells toward the outer peripheral wall side of the nut 2 ′, and 6 ′ is mainly located on the inner peripheral wall of the extended portion 3 ′. This is a sub female screw portion formed of one or more female screws with the same shape and the same pitch as the female screw portion 4 '.
Since the locking nut 1 'can be formed by forming the annular groove portion 5' in a predetermined portion of the inner peripheral wall of the nut 2 ', it can be easily manufactured and is suitable when it is desired to easily form the locking nut. I have. In particular, it is excellent in versatility because a nut standardized by JIS or the like is processed.
[0051]
(Embodiment 3)
FIG. 4 is a cross-sectional end view of a main part of the locking nut according to the third embodiment. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the figure, reference numeral 1 "denotes a locking nut according to a third embodiment which is another modification of the first embodiment. The difference from the second embodiment is that the nut 2 '(the nut main body 2a' or the extended portion 3) is different from the second embodiment. An annular groove portion 5 ″ formed in a predetermined portion of the inner peripheral wall of the inner peripheral wall in the direction substantially perpendicular to the axial direction of the nut 2 ′ with the same diameter as the root diameter of the main female screw portion 4 ′, and an annular groove portion 5 ″ And an outer peripheral groove portion 7 formed on the outer peripheral wall of the nut 2 'corresponding to the first embodiment, wherein the elastic portion 5a "is formed by tensile deformation of the nut 2' in the axial direction.
According to the present embodiment, the nut can be made thinner in the outer peripheral groove portion to easily cause elongation, deformation, and the like, so that the elastic portion 5a ″ can be easily formed. Since the wrench or the like used to fasten the locking nut is hard to hit the elastic portion 5a "because it is housed in the groove 7, the elastic portion 5a" is prevented from being deformed or damaged, and the elastic portion 5a "is protected and durable. It is suitable for enhancing the performance.
[0052]
Next, an operation when the locking nut according to the first to third embodiments configured as described above is used will be described using the locking nut according to the first embodiment.
FIG. 5 is a cross-sectional view of a main part showing a state where the member to be fastened is locked by the locking nut according to the first embodiment. FIG. 6 is an elastic portion when the member to be fastened is locked by the locking nut according to the first embodiment. FIG. 4 is a diagram schematically showing a relationship between a reaction force and a displacement generated in the elastic member. The vertical axis indicates a reaction force (F) generated in the elastic portion, and the horizontal axis indicates a deformation amount (x) of the elastic portion.
In FIG. 5, 10 is a bolt, 11 is a male screw of the bolt 10, 12a and 12b are members to be fastened to the bolt 10 with the locking nut 1, and 13 is a drilled hole in the members to be fastened 12a and 12b. It is a bolt hole to be inserted. In the drawing, B and B indicate the screwing of the main female screw part 4 and the sub female screw part 6 with the male screw 11 due to variations in the processing accuracy of the male screw 11 and the like when the locking nut 1 is screwed into the bolt 10. It is a gap (backlash) formed in the portion, and is generated in the opposite direction. Here, as the bolt 10, one or more male screws 11 having the same pitch as the main female screw portion 4 and the sub female screw portion 6 of the locking nut 1 are used.
[0053]
When the members 12a and 12b are fastened to the bolt 6 with the locking nut 1, the bolt 10 is inserted into the bolt hole 13 of the members 12a and 12b, and the locking nut 1 is connected to the bolt 10 as shown in FIG. 6, the axial deformation amount corresponding to the phase shift between the male screw 11 and the sub female screw portion 6 caused by the axial deformation amount α of the elastic portion 5a (0P in FIG. 6). 2 And an amount corresponding to the axial length of the backlash B (P in FIG. 6). 1 P 2 (Equivalent to 0P shown in FIG. 6). 1 ) Occurs in the elastic portion 5a. Thereby, a reaction force (P shown in FIG. 6) is generated due to the elastic deformation of the elastic portion 5a. By this reaction force (P), the sub female screw part 6 and the main female screw part 4 are firmly fastened by pressing the flank of the male screw 11 from the forward and reverse directions.
If the locking nut 1 once screwed to the bolt 10 is removed, the reaction force generated in the elastic part 5a becomes zero and the displacement becomes zero due to the restoring force of the elastic part 5a. Even when the removed locking nut 1 is screwed into the bolt 10 again, the flank of the sub female screw portion 6 and the main female screw portion 4 is changed to the flank of the male screw 11 by the reaction force (P) generated in the elastic portion 5a. By tightly contacting, it can be firmly fastened many times.
[0054]
As described above, since the locking nut and the method of manufacturing the locking nut according to the first embodiment are configured, the following operations can be obtained.
(1) Since the phase of the sub female screw portion with respect to the main female screw portion is displaced in the locking nut tightened to the male screw, the flank of the main female screw portion presses the flank of the male screw with the tightening force. And the direction of the pressing force at which the flank of the sub female screw portion presses the flank of the male screw is 180 ° opposite to each other. For this reason, since the direction of the torque generated by the pressing force and the lead angle of the screw is different between the main female screw part and the sub female screw part, an external force such as vibration is applied to the bolt or the member to be fastened, and the male screw is rotated. When a force in the rotational direction is applied to the main female screw to loosen the torque from the flank of the secondary female screw, it acts in the tightening direction, so that the locking nut can be reliably prevented from loosening from the male screw. A high fastening force can be maintained semi-permanently.
(2) On the inner peripheral wall of the extension part extended from the nut main body, a sub phase formed by displacing the phase with respect to the main female screw part to 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °. Since the female screw portion is provided, the locking female nut is screwed into a male screw such as a bolt when fastening the member to be fastened, so that the sub female screw portion presses the male screw in the direction of the main female screw portion. The reaction force and the reaction force where the main female screw presses the male screw in the direction of the sub female screw, or the reaction force where the sub female screw presses the male screw in the direction opposite to the main female screw and the main female A reaction force occurs in which the screw portion presses the male screw in the direction opposite to the sub female screw portion, whereby a large frictional force can be obtained between the main female screw portion and the sub female screw portion and the male screw. It is possible to reliably prevent the main female screw portion and the like from being loosened from the male screw due to vibration and the like, and to reduce the screwing force.
(3) When a tightening force is applied by tightening a locking nut to a male screw such as a bolt, the secondary female screw portion of the locking nut is deformed by the fastening of a male screw such as a bolt to generate elastic deformation. By the reaction force, the main female screw part and the sub female screw part can be tightly adhered to the male screw and fastened, so that the screwing force of the male screw such as the locking nut and the bolt can be further improved, and the external force such as vibration can be improved. Thereby, it is possible to more reliably prevent the locking nut from loosening from a male screw such as a bolt.
(4) Even when looseness occurs due to wear between the member to be fastened and the seat surface, the secondary female screw part presses the male screw in the direction of the main female screw part, or the secondary screw part. Can prevent the locking nut from coming off from bolts, etc. by the reaction force that presses the male screw in the direction opposite to the main female screw part. Bolts and nuts can be prevented from falling.
(5) The main female screw part and the sub female screw part are firmly adhered to the male screw by the reaction force due to the elastic deformation generated by the male screw of the locking female nut of the locking nut screwed to the male screw such as a bolt. As a result, it is possible to absorb rattling due to variations in processing accuracy of the male screw such as a bolt and the female screw part of the locking nut, and it is excellent in stability and the phase displacement is small. It is hard to damage the screw part, and the reaction force can be stably obtained by elastic deformation.If the same male screw is used, remove the screwed nut once and screw it again and use it repeatedly. And excellent in repeated use.
(6) Since it has an annular groove formed with an outer diameter equal to or larger than the root diameter of the main female screw part, it can be smoothly screwed when the sub female screw part is screwed into a male screw such as a bolt. can do.
(7) Since the elastic portion of the annular groove portion in which the extending portion is compressed and deformed has elasticity, the elastic portion is screwed together with permanent deformation and elastic deformation of the sub-female screw portion and the like generated by a male screw such as a screwed bolt. The expansion of the elastic part caused by the male screw such as the bolts absorbs the rattling due to the variation in the processing accuracy of the male screw and the female screw part of the locking nut, and is caused by the stress generated according to the elasticity of the elastic part. The reaction force can be further increased, and the locking nut can be more reliably prevented from loosening from a male screw such as a bolt.
(8) After the main female screw part and the sub female screw part are formed with the same pitch and the same phase, the phases of the main female screw part and the sub female screw part are easily shifted by compressively deforming or tensile deforming the annular groove part. Therefore, the production is easy and the productivity is excellent.
(9) Since the annular groove portion is deformed by the deformation amount α, the phase of the sub female screw portion with respect to the main female screw portion is surely displaced to 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °. Since the amount of deformation is appropriate, the screw part is not easily scratched at the time of fastening or seizure is less likely to occur during use, and it is excellent in repeated use, and even if the pitch or angle of the screw part varies, the flanks are fastened at the time of fastening. Is obtained and the stability is excellent. In addition, the product yield is high and the productivity is excellent.
(10) Since the axial length of the annular groove portion is within the predetermined range, the buckling load of the annular groove portion is adjusted to an appropriate amount, and the phase of the sub female screw portion can be easily displaced to the predetermined range by compressive deformation, thereby producing Excellent stability and stability.
(11) By defining the cross-sectional area of the extending portion in the annular groove portion, the reaction force exerted on the male screw by the sub female screw portion can be set within a predetermined range, so that the male screw and the female screw portion are prevented from being loosened without being damaged. It can be performed.
(12) Since the thickness of the extending portion in the annular groove portion is formed to a predetermined thickness and the mechanical strength can be set in a predetermined range, the phase of the sub female screw portion can be easily set to a predetermined range when the extending portion is compressed and deformed. Can be displaced. In addition, an appropriate amount of elongation is easily generated in the extending portion in the annular groove portion, and when the male screw such as a bolt is screwed, the extending portion is elongated, so that the screw thread of the male screw or the sub female screw portion is hardly crushed, and the mountability is improved. Excellent.
(13) The outer diameter of the extending portion is formed to be 30 to 100% of the outer diameter of the inscribed circle inscribed in the outer edge of the cross section orthogonal to the axial direction of the nut body, and the outer diameter of the extending portion is Since it is smaller than the main body, the nut main body can be fastened using a spanner or the like, and the wrench or the like enters the nut main body without being disturbed by the extended portion, and the fastening workability is excellent and the workability is excellent.
(14) Since the deformation angle θ of the elastic portion is formed within a predetermined range, the optimum elasticity of the elastic portion can be obtained, and the relationship between the displacement of the elastic portion and the reaction force can be stably obtained. Small variations in force and excellent stability.
[0055]
In the first embodiment, the case where the annular groove 5 is compressed and deformed by the deformation amount α (n is an integer of 0 or more) has been described, but the tensile load is applied to the annular groove 5 and the deformation amount α (n Is 0) is −5 / 18 · P ≦ α ≦ −1 / 30 · P, preferably − / · P ≦ α ≦ −1 / 15 · P, more preferably −−1 · P ≦ α ≦ It is also possible to set the range of −1 / 15 · P. In this case, the same operation can be obtained.
Further, when the annular groove 5 is deformed by the deformation amount α, the annular groove 5 can be subjected to compression deformation or tensile deformation while applying twist. In this case, the same operation can be obtained.
[0056]
(Embodiment 4)
FIG. 7 is a cross-sectional view of a main part showing a state in which the member to be fastened is locked with the locking nut according to the fourth embodiment. FIG. 8 shows a main female when the member to be fastened is locked with the locking nut according to the fourth embodiment. It is a diagram schematically showing the relationship between the stress and strain applied to the screw portion and the secondary female screw portion, the vertical axis indicates the stress applied to the main female screw portion and the secondary female screw portion, the horizontal axis is the main female screw portion and 4 shows distortion of a sub female screw portion. Note that the same components as those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the figure, reference numeral 1a denotes a locking nut according to the fourth embodiment, and 5b denotes an inner peripheral wall 3c of the extension portion 3 on the nut body 2 side having a diameter slightly larger than a root diameter of the main female screw portion 4. An annular groove portion 6 b formed in a direction substantially perpendicular to the direction is formed in the same shape as the main female screw portion 4 on the inner peripheral wall 3 c of the extending portion 3 from the annular groove portion 5 toward the upper surface 3 a of the extending portion 3. The sub female screw portion is formed such that the pitch and the phase with respect to the main female screw portion 4 are displaced by 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °, and threaded with a lathe or the like. .
[0057]
The difference between the locking nut in the fourth embodiment and the first embodiment is that the annular groove 5b is not compressed and deformed to displace the phase of the sub female screw portion, but is threaded by a lathe or the like to form the main female screw portion. 4 is formed by displacing the phase of the sub female screw portion 6b to 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °.
[0058]
Also in the case where the members to be fastened 12a, 12b are fastened to the bolt 10 with the locking nuts 1a, bolts 13 are inserted into the bolt holes 13 of the members to be fastened 12a, 12b, as shown in FIG. 10, the locking nut 1a is screwed into the male screw 11 of the bolt 10, and the ultimate strength of the main female screw portion 4 and the sub female screw portion 6b is greater than the elastic limit (point U in FIG. 8). A stress (point S shown in FIG. 8) smaller than that (point M shown in FIG. 8) occurs. Thereby, the secondary female screw portion 6b is permanently set (0S shown in FIG. 8). 1 ) Is generated and deformed, and backlashes B and B due to variations in the processing accuracy of the male screw 11 and the main female screw portion 4 and the sub female screw portion 6b of the bolt 10 are corrected by the main female screw portion 4 and the sub female screw portion 6b. It occurs in the opposite direction. Further, elastic deformation (S shown in FIG. 8) 1 S 2 ), The flank of the sub female screw portion 6b and the flank of the main female screw portion 4 are firmly fastened by pushing the flank of the male screw 11 in the forward and reverse directions.
The locking nut 1a once screwed to the bolt 10 permanently sets the sub female screw portion 6b in accordance with the male screw 11 of the bolt 10 (0S shown in FIG. 8). 1 ) Occurs and is deformed, and this deformation is maintained even after being removed from the bolt 10. Even when the locking nut 1a is screwed into the bolt 10 again, the secondary female screw portion 6b is elastically deformed (S shown in FIG. 8). 1 S 2 ) Acts on the male screw 11 of the bolt 10, and can be firmly fastened any number of times.
[0059]
As described above, since the locking nut according to the fourth embodiment is configured, the following operation is obtained in addition to the operation described in the first embodiment.
(1) Since the phase of the sub female screw portion with respect to the main female screw portion (the phase with respect to the male screw to be screwed) is displaced by being screwed with a lathe or the like, the equipment load is eliminated without the need for press equipment for compressive deformation. Can be reduced.
[0060]
Note that the locking nut according to the first embodiment has the elastic deformation (S shown in FIG. 8) described in the fourth embodiment. 1 S 2 ) And the reaction force (P) generated in the elastic portion 5a in the locking nut according to the first embodiment, the reaction force is larger than in the fourth embodiment. A reaction force is obtained, and a large screwing force is obtained.
[0061]
(Embodiment 5)
FIG. 9 is a cross-sectional end view of a main part of a locking nut according to Embodiment 5 of the present invention. Note that the same components as those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the drawing, reference numeral 20 denotes a locking nut according to the fifth embodiment, 21 denotes an outer edge formed in a substantially circular shape or a substantially polygonal shape, and protrudes from a peripheral portion of an outer peripheral wall 3b of the extending portion 3 so as to have an outer edge (outer diameter). The flange portion is formed to be the same as or larger than the outer diameter of the elastic portion 5a. Here, in the fifth embodiment, the outer diameter of the flange portion 21 is formed to be substantially the same as the outer diameter of the nut body 2.
[0062]
As described above, since the locking nut according to the fifth embodiment is configured, the following operation is obtained in addition to the operation described in the first embodiment.
(1) The wrench used to fasten the locking nut is provided because the elastic portion protrudes from the outer peripheral wall of the extending portion and fits inside the nut body and the flange formed to be substantially the same size as the outer diameter of the nut body. And the like can be prevented from hitting the elastic portion, the elastic portion can be prevented from being deformed or damaged, and the elastic portion can be protected to increase the durability. In addition, since the flange portion is formed to be substantially the same size as the outer diameter of the nut body, a wrench or the like used for fastening the locking nut can be inserted into the nut body without being disturbed by the flange portion. Can be enhanced.
[0063]
(Embodiment 6)
FIG. 10 is a cross-sectional end view of a main part of a locking nut according to Embodiment 6 of the present invention. Note that the same components as those described in the first or second embodiment are denoted by the same reference numerals and description thereof is omitted.
In the figure, reference numeral 20a denotes a locking nut according to the sixth embodiment. The sixth embodiment differs from the second embodiment in that the pitch (P) of the main female screw portion 4 'and the sub female screw portion 6' on the outer peripheral wall of the nut main body 2 'standardized by JIS, ASME, etc. The point that the outer peripheral groove 22 having a width of 1/30 or more is formed, and the outer peripheral groove 22 is (n + 1/30) P ≦ α ≦ (n + 5/18) P, preferably (n + 1/15) P ≦ α ≦ (n + 1 / 4) More preferably P (n + 1/15) P ≦ α ≦ (n ++ 1) P or (n−5 / 18) P ≦ α ≦ (n−1 / 30) P, preferably (n−1 / 15) P 4) P ≦ α ≦ (n−1 / 15) P, more preferably (n−1 / 5) P ≦ α ≦ (n−1 / 15) P (where n is an integer of 0 or more; α is (The compression direction is positive and the tension direction is negative.) The elastic part 23 is compressed in the axial direction by the deformation amount α.
Due to this difference, the locking nut in the sixth embodiment has the outer circumferential groove formed on the outer circumferential wall of the standardized nut main body, so that the phase with respect to the main female screw portion can be obtained simply by applying a load substantially in parallel to the axial direction. However, it is possible to form a sub female screw portion displaced by 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °, and it is excellent in versatility.
[0064]
(Embodiment 7)
FIG. 11A is a cross-sectional view of a main part showing an extended portion forming step in the method of manufacturing the locking nut according to the seventh embodiment, and FIG. 11B is a sectional view of the manufacturing method of the locking nut according to the seventh embodiment. It is principal part sectional drawing which shows an extended part fixing process, (c) is principal part sectional drawing which shows the female screw formation process in the manufacturing method of the locking nut in Embodiment 7, (d) is implementation. FIG. 13 is a cross-sectional view of a main part showing a step of forming an elastic part in the method of manufacturing the locking nut according to the seventh embodiment. FIG.
11 (a) and 11 (b), reference numeral 30 denotes a cylindrical nut main body having an outer shape formed in a hexagon, 31 denotes an inner peripheral wall of the nut main body 30, 32 denotes an upper surface of the nut main body 30, and 33 denotes a nut main body. A seating surface 30 is formed separately from the nut main body 30 and an extended portion having a flange 37 (described later) smaller than the diameter of the nut main body 30 at an end portion, and 35 is the same as the inner peripheral wall 31 of the nut main body 30. An inner peripheral wall of the extending portion 34 having a diameter, 36 is an annular groove formed on the inner peripheral wall 35 of the extending portion 34 in a direction substantially orthogonal to the axial direction of the extending portion 34, and 36a is an extending portion. Reference numeral 34 denotes an outer peripheral wall, 37 denotes a flange portion protruding from an outer peripheral wall 36a at one end of the extending portion 34, and 38 denotes a plurality of protrusions, ridges or annular members at the other end of the extending portion 34. It is a projection formed in a groove shape or the like.
In FIG. 11C, 31a is a female screw formed on the inner peripheral wall 31 of the nut main body 30, and 35a is a female screw formed on the inner peripheral wall 35 of the extension portion. The female screws 31a and 35a are formed with the same pitch and the same phase.
In FIG. 11D, when the pitch of the female screws 31a and 35a of the extending portion 34 in the annular groove portion 36 is P, the deformation amount α is (n + 1/30) P ≦ α ≦ (n + 5 / 18) P, preferably (n + 1/15) P ≦ α ≦ (n + /) P, more preferably (n + 1/15) P ≦ α ≦ (n + /) P, or (n−5 / 18) P ≦ α ≦ (n−1 / 30) P, preferably (n−1 / 4) P ≦ α ≦ (n−1 / 15) P, more preferably (n−1 / 5) P ≦ α ≦ (n− 1/15) P (where n is an integer equal to or greater than 0; α is positive in the compression direction and negative in the tensile direction). The elastic portion is bulged or recessed toward the outer peripheral wall 36a, and is compressed (or stretched) in the axial direction (the bulged state is shown in the figure by compression deformation).
[0065]
In FIG. 12A, reference numeral 39 is formed on the upper surface 32 on the inner peripheral wall 31 side of the nut main body 30 so as to be coaxial with the nut main body 30 and having an inner diameter slightly larger than the outer diameter of the outer peripheral wall 36a of the extension portion 34. This is a main body concave portion, and the extended portion 34 can be stably held coaxially with the nut main body 30 by fitting the extended portion 34 into the main body concave portion 39.
In FIG. 12 (b), reference numeral 36 c denotes a thick portion formed at the other end of the extension portion 34, and 39 a denotes a coaxial surface with the nut main body 30 on the upper surface 32 on the inner peripheral wall 31 side of the nut main body 30. The main body concave portion 39b having an inner diameter slightly larger than the outer diameter of the thick portion 36c of the extension portion 34, and a protrusion 39b formed upward at the bottom of the main body concave portion 39a. Since welding or the like is performed between the thick portion 36c of the extension portion 34 and the projection 39c of the nut body 30, the thin extension portion 34 in which the annular groove portion 36 is formed is deformed by heat during welding. Can be prevented, and the product yield can be increased. In addition, as shown in FIG. 12C, the protrusion 39b may not be formed at the bottom of the main body recess 39a but may be formed on the lower surface of the thick portion 36c. In this case, the same operation can be obtained.
[0066]
A method for manufacturing the locking nut according to the seventh embodiment configured as described above will be described below with reference to the drawings.
First, in a nut main body forming step, the nut main body 30 is formed by plastic working such as press forming or cutting. In the extension portion forming step, an extension portion 34 is formed in which an annular groove portion 36 is formed in the inner peripheral wall 35 and a protrusion portion 38 is formed at an end portion by plastic working such as press molding or cutting. (See FIG. 11A)
Next, in the extension portion fixing step, as shown in FIG. 11A, after the projection portion 38 of the extension portion 34 is brought into coaxial contact with the upper surface 32 of the nut body 30, the extension portion 34 and the nut body 30 The extension portion 34 is fixed to the upper surface 32 of the nut main body 30 by resistance welding such as projection welding in which a large amount of resistance heat is generated in the projection 38 by passing an electric current therebetween. (Refer to Fig. 11 (b) for the state after fixing)
Next, in the female screw forming step, female screws 31a and 35a having the same pitch and the same phase are formed on the inner peripheral wall 31 of the nut main body 30 and the inner peripheral wall 35 of the extension portion 34 by cutting. (See FIG. 11 (c))
Next, in the elastic portion forming step, a load larger than the buckling load of the extension portion 34 in the annular groove portion 36 is applied between the flange portion 37 of the extension portion 34 and the bearing surface 33 of the nut body 30 for a predetermined time, and the deformation is performed. An elastic portion which is compressed and deformed by the amount α and swells toward the outer peripheral wall 36a of the extension portion 34 is formed. As a result, the female screw 31a becomes a main female screw portion, and the female screw 35a has a phase of 12 to 100 °, preferably 24 to 90 ° with respect to the main female screw portion (female screw 31a). Is a sub female screw portion displaced by 24 to 72 °.
[0067]
According to the manufacturing method of the locking nut in the seventh embodiment as described above, the following operations can be obtained.
(1) Since the nut body and the extending portion are separately formed after the extension portion forming step is provided and then integrated in the extending portion fixing step, the productivity is excellent.
(2) Since the extension portion is fixed to the nut main body by resistance welding such as projection welding in the extension portion fixing step, generation of resistance heat can be concentrated on the protrusion, and if the protrusion is thermally softened and collapsed. Since the contact area is increased and the current is dispersed, it is not overheated and excellent in safety. Further, since the nut main body and the extending portion are not largely melted, a decrease in mechanical strength, discoloration and the like are unlikely to occur. Further, welding of metals having significantly different thicknesses, such as a thin extended portion and a massive nut body, can be easily performed.
(3) Since a load is applied between the flange formed at one end of the extending portion and the seat surface of the nut body to form the elastic portion in the elastic portion forming step, the thin portion having the annular groove is formed. The load can be dispersed in the extended portion to uniformly and compressively or tensilely deform, and the product yield can be increased.
[0068]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples. Note that the present invention is not limited to these examples.
(Example 1)
In the locking nut described in the first embodiment, the pitch (P) of the main female screw portion and the sub female screw portion is 2 mm, the valley diameter (trough diameter) of the main female screw portion and the sub female screw portion is 16 mm, The locking nut of Example 1 in which the axial deformation (deformation α) was 1.47 mm was manufactured.
(Example 2)
A locking nut according to Example 2 was manufactured in the same manner as in Example 1, except that the deformation amount α was 1.57 mm.
(Example 3)
A locking nut according to Example 3 was manufactured in the same manner as in Example 1, except that the deformation amount α was 1.65 mm.
(Example 4)
A locking nut of Example 4 was manufactured in the same manner as in Example 1 except that the deformation amount α was 1.90 mm.
(Example 5)
A lock nut according to Example 5 was manufactured in the same manner as in Example 1 except that the deformation amount α was 2.10 mm.
(Example 6)
A locking nut of Example 6 was manufactured in the same manner as in Example 1 except that the deformation amount α was 2.30 mm.
(Example 7)
A locking nut according to Example 7 was manufactured in the same manner as in Example 1 except that the deformation amount α was 2.43 mm.
(Example 8)
A lock nut of Example 8 was manufactured in the same manner as in Example 1 except that the deformation amount α was changed to 2.53 mm.
(Comparative Example 1)
A lock nut of Comparative Example 1 was manufactured in the same manner as in Example 1 except that the deformation amount α was 1.97 mm.
(Comparative Example 2)
Using two nuts with a female screw pitch of 2 mm and a female screw root diameter of 16 mm, a W nut generally used as a locking means was formed, and the locking nut of Comparative Example 2 was obtained.
[0069]
(Guaranteed load test)
The guaranteed load test of the locking nuts of Examples 1 to 8 was performed by an axial tension test and an axial compression test according to JIS B1502 (mechanical properties of steel nut). In this test, the test mandrel was screwed onto the main female screw portion of the lock nut so that the guaranteed load acts in the axial direction of the main female screw portion of the lock nut, and the guaranteed load value was applied for 15 seconds.
In this test, none of the threads of the locking nut was sheared or the locking nut was broken. The locking nut removed from the test mandrel after removing the applied guaranteed load value could be finger-turned into another bolt of the same size as the test mandrel.
As a result of the above-mentioned guaranteed load test, it has been clarified that the locking nut of the present invention has a guaranteed load with no practical problem.
[0070]
(Vibration test)
Vibration tests were performed on the locking nuts of Examples 1 to 8 and Comparative Examples 1 and 2 using a NAS-type high-speed loosening tester (conforming to US aircraft standard NAS3350).
FIG. 11 is a schematic view showing a state of the vibration test.
In the drawing, 1 is a locking nut of the embodiment or the comparative example mounted as a sample, 40 is a vibration tester, 41 is a bolt screwed with the locking nut 1, and 42 is a bolt 41 and the locking nut 1 are attached. The vibrating barrel 43 is a washer mounted between the vibrating barrel 42 and the locking nut 1, and 44 is fixed to the vibrating barrel 42 and causes the locking nut 1 and the bolt 41 to vibrate in a direction perpendicular to the axial direction of the bolt 41. A shake table that is given repeatedly. The frequency was 1780 rpm, the stroke of the exciting table was 11 mm, and the impact stroke was 19 mm.
After attaching the locking nuts of Examples 1 to 8 and Comparative Examples 1 and 2 to the vibration tester with a tightening torque of 150 Nm, vibration is applied for 17 minutes (30000 times), and the locking nut 1 is loosened. I checked whether to do it. It is determined that the locking nut 1 is loosened when the matching marks on the washer 43, the locking nut 1, and the bolt 41 are displaced.
As a result, none of the locking nuts of Examples 1 to 8 was loosened. The return torque after the test was 130 to 180 N · m, which was almost equal to the tightening torque. In addition, the locking nut of Comparative Example 1 dropped off the bolt after 1500 times, and the locking nut (W nut) of Comparative Example 2 dropped from the bolt after 4300 times. As another comparative example, when a similar vibration test was performed using a spring washer and a normal nut, the bolt was dropped from the bolt at 1350 times.
[0071]
Next, after attaching the locking nuts of Examples 3 and 6 to a vibration tester with a tightening torque of 150 N · m, vibration was applied 1,000,000 times to check whether or not the locking nuts became loose. Was.
As a result, the return torque after the test was 200 Nm, which was slightly higher than the tightening torque, but no loosening occurred during the test.
From the above test results, it has become clear that the locking nut according to the present invention can reliably prevent loosening from the male screw and can maintain a high fastening force semipermanently.
[0072]
【The invention's effect】
As described above, according to the locking nut and the method of manufacturing the same according to the present invention, the following advantageous effects can be obtained.
According to the first aspect of the present invention,
(1) Since the phase of the sub female screw portion with respect to the main female screw portion is displaced by a predetermined amount in the locking nut tightened to the male screw, the flank of the main female screw portion changes the flank of the male screw by the tightening force. And the direction in which the flank of the sub female screw portion presses the flank of the male screw is 180 ° opposite to each other. For this reason, since the direction of the torque generated by the pressing force and the lead angle of the screw is different between the main female screw part and the sub female screw part, an external force such as vibration is applied to the bolt or the member to be fastened, and the male screw is rotated. When a force in the rotational direction is applied to the main female screw to loosen the torque from the flank of the secondary female screw, it acts in the tightening direction, so that the locking nut can be reliably prevented from loosening from the male screw. A locking nut capable of maintaining a high fastening force semipermanently can be provided.
(2) On the inner peripheral wall of the extension part extended from the nut main body, a sub phase formed by displacing the phase with respect to the main female screw part to 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °. Since the female screw portion is provided, the locking female nut is screwed into a male screw such as a bolt when fastening the member to be fastened, so that the sub female screw portion presses the male screw in the direction of the main female screw portion. The reaction force and the reaction force in which the main female screw presses the male screw in the direction of the sub female screw, or the reaction force in which the sub female screw presses the male screw in the direction opposite to the main female screw and the main female A reaction force occurs in which the screw portion presses the male screw in a direction opposite to the sub female screw portion, whereby a large frictional force can be obtained between the main female screw portion and the sub female screw portion and the male screw. Locking nut that can reliably prevent the main female thread from loosening from the male screw due to vibration, etc. It is possible to provide a.
(3) When a tightening force is applied by tightening a locking nut to a male screw such as a bolt, the secondary female screw portion of the locking nut is elastically deformed by a male screw such as a bolt, and the reaction force causes the male screw to become a main female screw. And the female screw part can be tightened more firmly, so that the screwing force between the locking nut and the male screw such as a bolt can be further improved, and the locking nut can be replaced by a male screw such as a bolt due to external force such as vibration. It is possible to provide a locking nut which can more reliably prevent the nut from loosening.
(4) Even when the portion between the member to be fastened and the seat surface is worn and loosened, the secondary female screw portion presses the male screw in the direction of the main female screw portion, or the secondary female screw. The locking part prevents the locking nut from coming off from the bolts, etc. by the reaction force that presses the male screw in the direction opposite to the main female screw part. It is also possible to provide a locking nut which can prevent a bolt or nut from falling.
(5) The main female screw part and the sub female screw part are connected to the male screw by the reaction force due to the elastic deformation generated by the sub female screw part of the locking nut screwed to the male screw such as a bolt being deformed by the male screw. Strong contact makes it possible to absorb backlash due to variations in processing accuracy of the male screw such as bolts and the female screw part of the locking nut, and is excellent in stability, and the phase displacement is small. It is hard to damage the nuts and bolts of the bolts, and the reaction force can be obtained stably.If the same male screw is used, remove the loosening nut once screwed, then screw it back on and use it repeatedly. And a locking nut excellent in repeated use can be provided.
(6) Since an annular groove portion having the same or larger outer diameter as the root diameter of the main female screw portion is provided, the sub female screw portion can be smoothly screwed into the male screw such as a bolt. It is possible to provide a locking nut that can facilitate deformation and increase the degree of freedom in design and prevent buckling of the main female screw portion and the like during compression deformation.
[0073]
According to the invention described in claim 2, in addition to the effect of claim 1,
(1) When an outer peripheral groove is formed in an outer peripheral wall of a nut body formed of a nut standardized by JIS, ASME, DIN, or the like, the main female screw portion can be applied simply by applying a load substantially parallel to the axial direction. The secondary female screw portion whose phase with respect to is shifted by 12 to 100 ° can be formed, and a locking nut having excellent versatility can be provided.
[0074]
According to the third aspect of the invention, in addition to the effect of the first aspect,
(1) The extension portion or the nut main body in the annular groove portion can be made thinner to make it easier to elongate or deform, and the main thread without crushing or damaging the screw thread of the male screw such as a bolt or the sub female screw portion. It is possible to provide a locking nut in which the flank of the female screw portion and the sub female screw portion presses the flank of the male screw to obtain a high screwing force.
[0075]
According to the invention described in claim 4, in addition to the effect of any one of claims 1 to 3,
(1) Since the elastic portion of the annular groove portion in which the extending portion or the like is compressed or tensilely deformed has elasticity, in addition to the permanent and elastic deformation of the sub-female screw portion and the like generated by the male screw such as a screwed bolt, The expansion or contraction of the elastic portion caused by a male screw such as a bolt that is screwed in absorbs rattling due to variation in processing accuracy of the male screw and the female screw portion of the locking nut, and according to the elasticity of the elastic portion. The reaction force generated by the generated stress can be further increased, and a locking nut that can more reliably prevent the locking nut from loosening from a male screw such as a bolt can be provided.
(2) After the main female screw part and the sub female screw part are formed with the same pitch and the same phase, the phase of the main female screw part and the sub female screw part is easily shifted by compressing or tensile deforming the annular groove part. Therefore, it is possible to provide a locking nut which is easy to manufacture and excellent in productivity.
[0076]
According to the fifth aspect of the invention, in addition to the effect of the fourth aspect,
(1) By forming the deformation amount of the annular groove portion or the outer peripheral groove portion in a predetermined range, the phase of the sub female screw portion with respect to the main female screw portion is set to 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °. Since it can be displaced reliably, it is possible to provide a locking nut having a high product yield and excellent productivity.
[0077]
According to the invention described in claim 6, in addition to the effect of any one of claims 1 to 5,
(1) By defining the cross-sectional area of the extending portion or the like in the annular groove portion, the reaction force Q applied to the male screw by the sub-female screw portion can be set within a predetermined range, so that the idle torque Tq is reduced to approximately 1 to 50 Nm. It is possible to provide a locking nut which can be suppressed and has excellent fastening workability.
(2) Since the thickness of the extending portion in the annular groove portion is formed to a predetermined thickness and the mechanical strength can be set in a predetermined range, the extension portion and the like are deformed to easily displace the phase of the sub female screw portion to a predetermined range. Can be done. In addition, an appropriate amount of extension is easily generated in the extended portion or the like in the annular groove portion, and when the male screw such as a bolt is screwed, the extended portion or the like is extended, so that it is difficult to crush the screw thread of the male screw or the sub female screw portion. It is possible to provide a locking nut having excellent mounting properties.
[0078]
According to the invention described in claim 7, in addition to the effect of any one of claims 4 to 6,
(1) Since the elastic portion that has been compressed and deformed and swells is accommodated inside the nut body and the flange portion protruding from the outer peripheral wall of the extension portion, a wrench or the like used to fasten the locking nut hardly hits the elastic portion. Therefore, it is possible to provide a locking nut which can prevent deformation and damage of the elastic portion, protect the elastic portion, and enhance durability.
[0079]
According to the invention described in claim 8, in addition to the effect of any one of claims 1 to 7,
(1) When the extending portion is fixed to the upper surface of the nut main body by welding or the like, it is possible to easily provide welding without forming a groove and provide a locking nut excellent in workability.
(2) The outer diameter of the extending portion is formed to be 30 to 100% of the outer diameter of the inscribed circle inscribed in the outer edge of the cross section orthogonal to the axial direction of the nut body, and the outer diameter of the extending portion is When tightening the nut body with a wrench or the like, the extended portion does not interfere with the wrench or the like into the nut body when the nut body is fastened, so that it is possible to provide a locking nut that is easy to fasten and has excellent fastening workability. it can.
[0080]
According to the ninth aspect of the present invention,
(1) By deforming the annular groove portion after forming the female screw on the inner peripheral wall, the main female screw portion and the sub female screw portion which are out of phase can be easily formed, so that manufacturing is easy and productivity is improved. An excellent method of manufacturing a locking nut can be provided.
(2) By forming the deformation amount of the annular groove portion within a predetermined range, the phase of the sub female screw portion with respect to the main female screw portion is reliably displaced to 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °. Therefore, it is possible to provide a method of manufacturing a locking nut having excellent reliability and excellent workability.
[0081]
According to the tenth aspect,
(1) Since there is a screw groove forming step of displacing the sub female screw part with respect to the main female screw part by screwing with a lathe or the like, a press equipment for compressive deformation is not required, and the equipment load is reduced. Thus, a method for manufacturing a locking nut capable of reducing the number of locks can be provided.
[0082]
According to the eleventh aspect, in addition to the effect of the ninth aspect,
(1) Since the step of forming the extended portion is provided, the shape of the extended portion and the annular groove can be freely formed, and a method of manufacturing a locking nut with high flexibility can be provided.
[0083]
According to the twelfth aspect, the effects described in the tenth and eleventh aspects can be obtained.
[0084]
According to the invention of claim 13,
(1) Since there is an extended portion forming step, the shape of the extended portion and the annular groove portion can be freely formed, and at the same time, the elastic portion can be molded. Can be provided.
[Brief description of the drawings]
FIG. 1A is an overall perspective view of a locking nut according to Embodiment 1. FIG.
(B) Cross-sectional end view of a main part along line AA in FIG.
FIG. 2 is an essential part cross-sectional end view showing a state before the annular groove of the locking nut according to the first embodiment is compressed and deformed.
FIG. 3 is a cross-sectional end view of a main part of a locking nut according to a second embodiment.
FIG. 4 is a sectional end view of a main part of a locking nut according to a third embodiment;
FIG. 5 is a cross-sectional view of a main part showing a state where the member to be fastened is locked with the locking nut according to the first embodiment;
FIG. 6 is a diagram schematically illustrating a relationship between a reaction force and a displacement generated in an elastic portion when the member to be fastened is fastened with the locking nut according to the first embodiment.
FIG. 7 is an essential part cross-sectional view showing a state where a member to be fastened is locked with a locking nut according to a fourth embodiment.
FIG. 8 is a diagram schematically illustrating a relationship between stress and strain applied to a main female screw portion and a sub female screw portion when a member to be fastened is locked with a locking nut according to a fourth embodiment.
FIG. 9 is a cross-sectional end view of a main part of a locking nut according to a fifth embodiment.
FIG. 10 is a cross-sectional end view of a main part of a locking nut according to a sixth embodiment.
FIG. 11A is a cross-sectional view of a main part showing an extended portion forming step in the method of manufacturing the locking nut according to the seventh embodiment;
(B) Cross-sectional view of a principal part showing an extended portion fixing step in the method of manufacturing the locking nut according to the seventh embodiment.
(C) Principal sectional view showing the female screw forming step in the method of manufacturing the locking nut according to the seventh embodiment.
(D) Main part sectional view showing an elastic part forming step in the method of manufacturing the locking nut according to the seventh embodiment.
FIG. 12 is a sectional view of an essential part showing an application example of the shape of the extension part and the nut body.
FIG. 13 is a schematic diagram showing a state of a vibration test.
[Explanation of symbols]
1,1 ', 1a, 1 "Lock nut
2,2a 'nut body
2 'nut
2a Top surface
2b seat surface
2c Outer wall
2d inner wall
3,3 'extension
3a Top surface
3b Outer wall
3c Inner wall
4,4 'main female screw
4a female screw
5,5 ', 5b, 5 "annular groove
5a, 5a ', 5a "elastic part
6,6 ', 6b Sub female screw part
6a female screw
7 Outer groove
10 volts
11 Male screw
12a, 12b Fastened member
13 bolt hole
20, 20a Lock nut
21 Tsubabe
22 Outer groove
23 elastic part
30 Nut body
31 Inner wall
31a female screw
32 Top
33 Seat
34 Extension
35 Inner wall
35a female screw
36 annular groove
36a Outer wall
36b elastic part
36c Thick part
37 Tsubabe
38 Projection
39, 39a Body recess
39b Projection
40 Vibration testing machine
41 volts
42 Vibrating barrel
43 Washer
44 Shaking table

Claims (13)

ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットであって、
ナット本体と、前記ナット本体と同軸に延設された延設部と、前記ナット本体の内周壁に形成された主雌螺子部と、前記延設部の前記ナット本体側の内周壁若しくは前記ナット本体の前記内周壁に前記主雌螺子部の谷径と同一若しくはより大きな径で形成された環状溝部と、前記主雌螺子部に対する位相が12〜100°好ましくは24〜90°より好ましくは24〜72°変位して前記延設部の内周壁に形成された副雌螺子部と、を備えていることを特徴とする緩み止めナット。
A locking nut for fastening a member to be fastened by screwing into a male screw such as a bolt,
A nut body, an extended portion coaxially extended with the nut body, a main female screw portion formed on an inner peripheral wall of the nut body, and an inner peripheral wall of the extended portion on the nut body side or the nut An annular groove formed on the inner peripheral wall of the main body with a diameter equal to or larger than a root diameter of the main female screw part, and a phase with respect to the main female screw part of 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 90 °. And a sub female screw portion formed on the inner peripheral wall of the extension portion so as to be displaced by -72 °.
ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットであって、
ナット本体と、前記ナット本体と同軸に延設された延設部と、前記ナット本体の内周壁に形成された主雌螺子部と、前記延設部の前記ナット本体側の外周壁若しくは前記ナット本体の外周壁に前記ナット本体の軸方向と直交する方向に形成された外周溝部と、前記主雌螺子部に対する位相が12〜100°好ましくは24〜90°より好ましくは24〜72°変位して前記延設部の内周壁に形成された副雌螺子部と、を備えていることを特徴とする緩み止めナット。
A locking nut for fastening a member to be fastened by screwing into a male screw such as a bolt,
A nut body, an extended portion coaxially extended with the nut body, a main female screw portion formed on an inner peripheral wall of the nut body, and an outer peripheral wall of the extended portion on the nut body side or the nut An outer peripheral groove formed on the outer peripheral wall of the main body in a direction orthogonal to the axial direction of the nut main body; And a sub female screw portion formed on an inner peripheral wall of the extension portion.
前記延接部若しくは前記ナット本体の前記環状溝部の外周壁に形成された外周溝部を備えていることを特徴とする請求項1に記載の緩み止めナット。The locking nut according to claim 1, further comprising an outer peripheral groove formed on an outer peripheral wall of the extending portion or the annular groove of the nut main body. 前記環状溝部又は前記外周溝部における前記延設部若しくは前記ナット本体が、軸方向に圧縮若しくは引張変形された弾性部を備えていることを特徴とする請求項1乃至3の内いずれか1に記載の緩み止めナット。The said extended part in the said annular groove part or the said outer peripheral groove part or the said nut main body is provided with the elastic part compressed or tensile-deformed in the axial direction, The Claims any one of Claim 1 thru | or 3 characterized by the above-mentioned. Lock nut. 前記環状溝部又は前記外周溝部の軸方向の変形量αが、前記主雌螺子部のピッチの大きさをPとしたとき、(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)であることを特徴とする請求項3又は4に記載の緩み止めナット。The amount of deformation α in the axial direction of the annular groove portion or the outer circumferential groove portion is (n + 1/30) P ≦ α ≦ (n + 5/18) P, where P is the size of the pitch of the main female screw portion, preferably (N + 1/15) P ≦ α ≦ (n + /) P, more preferably (n + 1/15) P ≦ α ≦ (n + /) P, or (n−5 / 18) P ≦ α ≦ (n −1/30) P, preferably (n − /) P ≦ α ≦ (n−1 / 15) P, more preferably (n − /) P ≦ α ≦ (n−1 / 15) P ( The locking nut according to claim 3 or 4, wherein n is an integer of 0 or more, and α is positive in the compression direction and negative in the tensile direction. 前記環状溝部若しくは前記外周溝部における前記延設部若しくは前記ナット本体の横断面積が、前記主雌螺子部の谷径を直径とする円の面積の5〜50%であることを特徴とする請求項1乃至5の内いずれか1に記載の緩み止めナット。The cross-sectional area of the extending portion or the nut main body in the annular groove portion or the outer peripheral groove portion is 5 to 50% of an area of a circle having a diameter equal to a root diameter of the main female screw portion. 6. The locking nut according to any one of 1 to 5. 前記延設部が、外周壁の周部に突出した鍔部を備えていることを特徴とする請求項1乃至6の内いずれか1に記載の緩み止めナット。The locking nut according to any one of claims 1 to 6, wherein the extending portion includes a flange protruding from a peripheral portion of an outer peripheral wall. 前記延設部の外径が、前記ナット本体の軸方向と直交する断面の外縁に内接する内接円の外径の30〜100%に形成されていることを特徴とする請求項1乃至7の内いずれか1に記載の緩み止めナット。The outer diameter of the extension portion is formed to be 30% to 100% of the outer diameter of an inscribed circle inscribed in an outer edge of a cross section orthogonal to the axial direction of the nut main body. The locking nut according to any one of the claims. ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットの製造方法であって、
a.ナット本体と一体に形成された若しくはナット本体に固着された延設部の内周壁に環状溝部を形成するとともに前記ナット本体及び前記延設部の内周壁に前記雄螺子と同一ピッチの雌螺子を形成する、又は、b.ナットの内周壁の所定部に環状溝部を形成し前記ナットにナット本体と延設部とを形成する内周壁面形成工程と、
前記ナット本体の座面と前記延設部の上面との間に所定圧力を所定時間印加して前記内周壁面形成工程で形成された前記環状溝部における前記延設部を、変形量αが前記雌螺子のピッチの大きさをPとしたとき、(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)だけ変形させて弾性部を形成する弾性部形成工程と、
を備えていることを特徴とする緩み止めナットの製造方法。
A method of manufacturing a locking nut for fastening a member to be fastened by being screwed into a male screw such as a bolt,
a. An annular groove is formed on the inner peripheral wall of the extension portion formed integrally with or fixed to the nut body, and a female screw having the same pitch as the male screw is formed on the inner peripheral wall of the nut body and the extension portion. Forming, or b. An inner peripheral wall forming step of forming an annular groove in a predetermined portion of an inner peripheral wall of the nut and forming a nut main body and an extended portion on the nut;
Applying a predetermined pressure between the seating surface of the nut body and the upper surface of the extending portion for a predetermined time, the extending portion in the annular groove formed in the inner peripheral wall surface forming step has a deformation amount α. When the pitch of the female screw is P, (n + 1/30) P ≦ α ≦ (n + 5/18) P, preferably (n + 1/15) P ≦ α ≦ (n + /) P, more preferably (N + 1/15) P ≦ α ≦ (n + /) P or (n−5 / 18) P ≦ α ≦ (n−1 / 30) P, preferably (n−1 / 4) P ≦ α ≦ (N−1 / 15) P, more preferably (n−1 / 5) P ≦ α ≦ (n−1 / 15) P (where n is an integer of 0 or more. An elastic part forming step of forming the elastic part by deforming only the direction.
A method for manufacturing a locking nut, comprising:
ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットの製造方法であって、
ナット本体と延設部とを一体に形成する、又はナット本体に延設部を固着して前記ナット本体の上面に同軸に前記延設部を延設する本体形成工程と、
前記本体形成工程で前記ナット本体と一体に形成された若しくは前記ナット本体に固着された前記延設部の内周壁の所定部に環状溝部を形成するとともに前記ナット本体の内周壁に主雌螺子部を形成し、次いで前記延設部の内周壁に前記環状溝部から前記延設部の上面に向けて前記主雌螺子部に対する位相を12〜100°好ましくは24〜90°より好ましくは24〜72°変位させた副雌螺子部を形成する螺子部溝部形成工程と、
を備えていることを特徴とする緩み止めナットの製造方法。
A method of manufacturing a locking nut for fastening a member to be fastened by being screwed into a male screw such as a bolt,
A body forming step of integrally forming the nut body and the extending portion, or extending the extending portion coaxially to the upper surface of the nut body by fixing the extending portion to the nut body,
In the main body forming step, an annular groove is formed in a predetermined portion of an inner peripheral wall of the extension portion formed integrally with the nut main body or fixed to the nut main body, and a main female screw portion is formed on an inner peripheral wall of the nut main body. And then, on the inner peripheral wall of the extending portion, the phase with respect to the main female screw portion from the annular groove portion toward the upper surface of the extending portion is 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 °. ° screw part groove forming step of forming a displaced sub female screw part,
A method for manufacturing a locking nut, comprising:
ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットの製造方法であって、
内周壁の所定部に環状溝部が形成された延設部を形成する延設部形成工程と、
前記延設部形成工程で形成された前記延設部をナット本体の上面に固着する延設部固着工程と、
前記延設部固着工程で前記延設部が固着された前記ナット本体の内周壁及び前記延設部の前記内周壁に前記雄螺子と同一ピッチかつ同一位相の雌螺子を形成する雌螺子形成工程と、
前記雌螺子形成工程で前記雌螺子が形成された前記ナット本体の座面と前記延設部の上面との間に所定圧力を所定時間印加して前記環状溝部における前記延設部を、変形量αが前記雌螺子のピッチの大きさをPとしたとき、(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)だけ変形させて弾性部を形成する弾性部形成工程と、
を備えていることを特徴とする緩み止めナットの製造方法。
A method of manufacturing a locking nut for fastening a member to be fastened by being screwed into a male screw such as a bolt,
An extending portion forming step of forming an extending portion in which an annular groove portion is formed in a predetermined portion of the inner peripheral wall,
An extending portion fixing step of fixing the extending portion formed in the extending portion forming step to an upper surface of a nut body;
A female screw forming step of forming a female screw having the same pitch and the same phase as the male screw on the inner peripheral wall of the nut body and the inner peripheral wall of the extending portion to which the extending portion is fixed in the extending portion fixing step. When,
A predetermined pressure is applied for a predetermined time between the seating surface of the nut main body on which the female screw is formed in the female screw forming step and the upper surface of the extending portion to deform the extending portion in the annular groove portion. When α is the pitch of the female screw, P is (n + 1/30) P ≦ α ≦ (n + 5/18) P, preferably (n + 1/15) P ≦ α ≦ (n + /) P, More preferably, (n + 1/15) P ≦ α ≦ (n + /) P, or (n−5 / 18) P ≦ α ≦ (n−1 / 30) P, preferably (n−1 / 4) P .Ltoreq..alpha..ltoreq. (N-1 / 15) P, more preferably (n-1 / 5) P.ltoreq..alpha..ltoreq. (N-1 / 15) P, where n is an integer of 0 or more. An elastic part forming step of forming an elastic part by deforming only the positive and negative directions.
A method for manufacturing a locking nut, comprising:
ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットの製造方法であって、
内周壁の所定部に環状溝部が形成された延設部を形成する延設部形成工程と、
前記延設部形成工程で形成された前記延設部をナット本体の上面に固着する延設部固着工程と、
前記延設部固着工程で前記延設部が固着された前記ナット本体の内周壁に主雌螺子部を形成するとともに、前記延設部の前記内周壁に前記環状溝部から前記延設部の上面に向けて前記主雌螺子部に対する位相を12〜100°好ましくは24〜90°より好ましくは24〜72°変位させた副雌螺子部を形成する雌螺子部形成工程と、
を備えていることを特徴とする緩み止めナットの製造方法。
A method of manufacturing a locking nut for fastening a member to be fastened by being screwed into a male screw such as a bolt,
An extending portion forming step of forming an extending portion in which an annular groove portion is formed in a predetermined portion of the inner peripheral wall,
An extending portion fixing step of fixing the extending portion formed in the extending portion forming step to an upper surface of a nut body;
A main female screw portion is formed on an inner peripheral wall of the nut body to which the extending portion is fixed in the extending portion fixing step, and an upper surface of the extending portion from the annular groove portion on the inner peripheral wall of the extending portion. A female screw part forming step of forming a sub female screw part displaced by 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 ° in phase with respect to the main female screw part,
A method for manufacturing a locking nut, comprising:
ボルト等の雄螺子に螺合して被締結部材を締結する緩み止めナットの製造方法であって、
内周壁の所定部に環状溝部が形成された延設部を形成し、次いで前記延設部の軸方向と略平行に所定圧力を所定時間印加して前記環状溝部における前記延設部を、変形量αが前記雌螺子のピッチの大きさをPとしたとき、(n+1/30)P≦α≦(n+5/18)P、好ましくは(n+1/15)P≦α≦(n+1/4)P、より好ましくは(n+1/15)P≦α≦(n+1/5)P、又は、(n−5/18)P≦α≦(n−1/30)P好ましくは(n−1/4)P≦α≦(n−1/15)Pより好ましくは(n−1/5)P≦α≦(n−1/15)P(但し、nは0以上の整数とする。αは圧縮方向を正、引張方向を負とする。)だけ変形させて弾性部を形成する延設部変形工程と、
前記延設部変形工程で形成された前記延設部をナット本体の上面に固着する延設部固着工程と、
前記延設部固着工程で前記延設部が固着された前記ナット本体の内周壁に主雌螺子部を形成するとともに、前記延設部の内周壁に前記環状溝部から前記延設部の上面に向けて前記主雌螺子部に対する位相を12〜100°好ましくは24〜90°より好ましくは24〜72°変位させた副雌螺子部を形成する雌螺子部形成工程と、
を備えていることを特徴とする緩み止めナットの製造方法。
A method of manufacturing a locking nut for fastening a member to be fastened by being screwed into a male screw such as a bolt,
An extended portion having an annular groove formed in a predetermined portion of the inner peripheral wall is formed, and then a predetermined pressure is applied substantially in parallel with an axial direction of the extended portion for a predetermined time to deform the extended portion in the annular groove. Assuming that the amount α is P, the pitch of the female screw is (n + 1/30) P ≦ α ≦ (n + 5/18) P, preferably (n + 1/15) P ≦ α ≦ (n + /) P , More preferably (n + 1/15) P ≦ α ≦ (n + /) P, or (n−5 / 18) P ≦ α ≦ (n−1 / 30) P, preferably (n− /). P ≦ α ≦ (n−1 / 15) P, more preferably (n−1 / 5) P ≦ α ≦ (n−1 / 15) P (where n is an integer of 0 or more; α is the compression direction) Is a positive direction, and the tensile direction is a negative direction).
An extending portion fixing step of fixing the extending portion formed in the extending portion deforming step to an upper surface of a nut body;
A main female screw portion is formed on an inner peripheral wall of the nut body to which the extending portion is fixed in the extending portion fixing step, and an inner peripheral wall of the extending portion is formed on the inner peripheral wall from the annular groove portion to an upper surface of the extending portion. Female screw part forming step of forming a sub female screw part displaced by 12 to 100 °, preferably 24 to 90 °, more preferably 24 to 72 ° in phase with respect to the main female screw,
A method for manufacturing a locking nut, comprising:
JP2002281712A 2002-02-01 2002-09-26 Locking nut and its manufacturing method Pending JP2004003587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281712A JP2004003587A (en) 2002-02-01 2002-09-26 Locking nut and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002026183 2002-02-01
JP2002108374 2002-04-10
JP2002281712A JP2004003587A (en) 2002-02-01 2002-09-26 Locking nut and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004003587A true JP2004003587A (en) 2004-01-08

Family

ID=30449104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281712A Pending JP2004003587A (en) 2002-02-01 2002-09-26 Locking nut and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004003587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191968A (en) * 2008-02-14 2009-08-27 Ihi Corp Bolt temporary fixing nut
KR102141902B1 (en) * 2019-05-15 2020-08-06 주식회사 니프코코리아 Push nuts for cars

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191968A (en) * 2008-02-14 2009-08-27 Ihi Corp Bolt temporary fixing nut
KR102141902B1 (en) * 2019-05-15 2020-08-06 주식회사 니프코코리아 Push nuts for cars
CN111946712A (en) * 2019-05-15 2020-11-17 利富高(韩国)股份有限公司 Anti-loose nut for automobile
CN111946712B (en) * 2019-05-15 2022-02-08 利富高(韩国)股份有限公司 Anti-loose nut for automobile

Similar Documents

Publication Publication Date Title
US20030147716A1 (en) Structure of loosening-stop tightening means, loosening-stop bolt having the structure, method for producing the same bolt, loosening-stop nut having the structure, and method for producing the same nut
US4958970A (en) Graduated-load spring washer system for screws and threaded fasteners
EP2644912B1 (en) Loosening prevention threaded fastener
JP4519045B2 (en) Screw locking structure
JP6469888B2 (en) Thread structure for preventing loosening and its processing tool
JP5597477B2 (en) Nut loosening prevention device
US20130064624A1 (en) Lock nut and a fastening unit comprising the same
CN108071642B (en) Fastening member
JP2004204867A (en) Lock device for screw
JP2009115297A (en) Lock-nut, its manufacturing method, and its jig for processing
WO2018116724A1 (en) Male threaded member
JP2004003587A (en) Locking nut and its manufacturing method
US7828500B2 (en) Threaded engagement element with self-locking threads
JP2004003585A (en) Locking bolt and its manufacturing method
JP4837963B2 (en) Screw locking structure
JP2006118582A (en) Female screw part
US11835080B2 (en) Anti-loosening metallic externally threaded fastener
JP2007155105A (en) Lock nut and lock bolt
JPH0972327A (en) Nonloosening nut
WO2015019872A1 (en) Screw set
JP2009074674A (en) Fastening member
JP2002039142A (en) Locking washer
JP2001271820A (en) Locking nut
JP2004218674A (en) Locking nut
JP7171980B2 (en) Anti-loosening nut

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050204