JP2004003464A - Impeller for blowers, and its method of manufacture - Google Patents

Impeller for blowers, and its method of manufacture Download PDF

Info

Publication number
JP2004003464A
JP2004003464A JP2003098699A JP2003098699A JP2004003464A JP 2004003464 A JP2004003464 A JP 2004003464A JP 2003098699 A JP2003098699 A JP 2003098699A JP 2003098699 A JP2003098699 A JP 2003098699A JP 2004003464 A JP2004003464 A JP 2004003464A
Authority
JP
Japan
Prior art keywords
resin
impeller
blower
bearing
bearing portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003098699A
Other languages
Japanese (ja)
Other versions
JP4311965B2 (en
Inventor
Masaharu Ota
太田 雅春
Hironao Numamoto
沼本 浩直
Shigenobu Mitani
三谷 重信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003098699A priority Critical patent/JP4311965B2/en
Publication of JP2004003464A publication Critical patent/JP2004003464A/en
Application granted granted Critical
Publication of JP4311965B2 publication Critical patent/JP4311965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the recyclability of an impeller for blowers using a bearing of a metallic motor shaft and a rubber damping member. <P>SOLUTION: In the impeller 3 for the blowers provided with a plurality of impellers 2 around a hub 1, a polypropylene resin bearing part 4 used for the bearing of the motor shaft is arranged at the center of the hub 1, the damping member 5 at the circumference of the resin-made bearing 4, a polypropylene resin outer peripheral cylinder 6 at the circumference of the damping member, and a resin-made main body 7 forming the hub and the impeller 2 at the circumference of the resin-made outer peripheral cylinder 6. The damping member 5 is made of an olefin thermoplastic elastomer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、粉砕して再生ができるリサイクル性を考慮した送風機用羽根車及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、この種の送風機用羽根車は、例えば、特許文献1等に開示されているように、図6及び図7に示すような構成のものが一般に知られている。図6は、従来の送風機用羽根車60の外観斜視図である。すなわち、送風機用羽根車60は、円筒形状の樹脂製ハブ61の周囲に複数個の翼型形状をした羽根62を設けて形成されており、中央のファンボス70(モータ固定用)をモータ軸に固定して羽根車60を回転させて送風するものである。
【0003】
図7は前記ファンボス70の斜視図であり、この送風機用羽根車のファンボスは、一般的にDCのトランジスタモータを使用する場合に、モータの固有振動に対して防振性を付与させるために、中心部にモータ軸を固定するためのアルミ製軸受け部71を配置し、この軸受け部71の外周部に金属製外周円筒部72が嵌め込まれ、さらに、この外周円筒部72の周りにゴム製の防振部73を圧縮成形したものが嵌め込まれている。なお、防振部73のゴムとしてはCR(クロロプレンゴム)が使用されていた。
【0004】
【特許文献1】
特開平9−228993号公報
【0005】
【発明が解決しようとする課題】
しかし、前記のような従来の送風機用羽根車60では、構成材料に合成樹脂と金属とゴムを用いているため、廃棄された家庭用電化製品をリサイクルする時に合成樹脂とゴムと金属とを分別しないと、再生が困難である。従って、かかる構成材料からなる送風機用羽根車60は、リサイクル性が劣る問題があった。また、ゴムと金属で構成されたボス部材は高価であり低コストの代替材料が要望されていた。また、ボス部材の構成樹脂としては、グラスファイバーやマイカを混入したポリオレフィン系樹脂、例えばポリプロピレン(以下PPと云う)とオレフィンブロックを添加したスチレン系エラストマーとを一体化したリサイクル性の良い材料もある。しかし、送風機用羽根車の高温連続・繰り返しの過酷な運転条件を考慮すると、さらに剛性・耐熱性・接着性が優れた構成樹脂が必要となっている。
【0006】
上記する従来例の技術問題点に鑑み、本発明が解決しようとする課題は、リサイクル時に構成材料の樹脂と熱可塑性エラストマーを同時に粉砕して再生することができるリサイクル性の良い送風機用羽根車を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために本発明は、ハブの周囲に複数の羽根を備えた羽根車において、前記ハブの中心にはモータ軸の軸受けとなる樹脂製軸受部を、前記樹脂製軸受部の外周に防振部材を、前記防振部材の外周には樹脂製外周筒部を、前記樹脂製外周筒部の外周にはハブと羽根を構成する樹脂製本体部を配設し、前記防振部材が熱可塑性エラストマーとした送風機用羽根車であって、前記樹脂製軸受部と樹脂製外周筒部と樹脂製本体部はいずれも高剛性のポリプロピレン系の合成樹脂とし、かつ防振部材の熱可塑性のエラストマーはポリプロピレン系の合成樹脂と相溶性のあるオレフィン系熱可塑性エラストマーとした。
【0008】
上記構成によって、リサイクル時に樹脂製軸受部・樹脂製外周筒部・樹脂製本体部・防振部材すなわちモータ軸の軸受けとなる円筒状の樹脂部と、熱可塑性エラストマーの円筒状の防振部材と、防振部材の外周の樹脂部とハブと羽根の樹脂部を同時に粉砕して再生することができる。また使用される構成樹脂と相溶性の優れた熱可塑性エラストマーを用いることにより、曲げ弾性率や荷重たわみ温度の物性低下が小さい樹脂としてリサイクルすることができる。
【0009】
【発明の実施の形態】
上記した本発明の目的は各請求項に記載した構成ならびに製造方法を実施の形態とすることにより達成できるので、以下には各請求項の構成ならびに製造方法による作用を併記し併せて請求項記載のうち説明を必要とする特定用語については詳細な説明を加えて本発明の実施の形態の説明とする。
【0010】
第1の本発明は、ハブの周囲に複数の羽根を備えた羽根車において、前記ハブの中心には、モータ軸の軸受けとなる樹脂製軸受部を、樹脂製軸受部の外周に防振部材を、前記防振部材の外周には樹脂製外周筒部を、前記樹脂外周筒部の外周にはハブと羽根を構成する樹脂製本体部を配設し、前記防振部材が熱可塑性エラストマーとした送風機用羽根車であって、前記樹脂製軸受部と樹脂製外周筒部と樹脂製本体部はいずれも高剛性のポリプロピレン(以下PPと略称する)系の合成樹脂とし、かつ防振部材の熱可塑性エラストマーはポリプロピレン系の合成樹脂と相溶性のあるオレフィン系熱可塑性エラストマーとしたものである。
【0011】
この構成によれば、金属とゴムを含まない構成であり、リサイクル時にPP系樹脂とオレフィン系熱可塑性エラストマーを同時に粉砕して再生することができる。またPP系樹脂の相溶性の優れたオレフィン系熱可塑性エラストマーとを一体化し、接合面の接着力も十分確保される。高剛性のPP系の合成樹脂とは、曲げ弾性率で樹脂製軸受部と樹脂製外周筒部とが8000MPa以上、樹脂製本体部が4000MPa以上のものにするとよい。
【0012】
第2の本発明は、前記樹脂製軸受部と前記樹脂製外周筒部が、PPとポリアミド(以下PAと略称する)とグラスファイバー(以下GFと略称する)を主体とした合成樹脂で構成され、前記樹脂製本体部がGFとマイカとを混入したPP系の合成樹脂製とし、前記防振部材の熱可塑性エラストマーがエチレン−プロピレン−ジエンマテリアル(以下EPDMと略称する)を分散させたオレフィン系エラストマー製としたものである。この構成によれば、送風機の連続運転時における熱変形や、繰り返し運転時における軸部の空回りなどがなく、剛性・耐熱性・耐候性・制振性のバランスに優れた送風機用羽根車を形成することができる。
【0013】
第3の本発明は、前記樹脂製軸受部と前記樹脂製外周筒部が、PPとPAとGFとタルク或いはマイカを主体とした合成樹脂で構成され、前記樹脂製本体部がGFとマイカとを混入したPP系の合成樹脂製とし、前記防振部材の熱可塑性エラストマーがEPDMを分散させたオレフィン系エラストマー製としたものである。この構成によれば、送風機の連続運転時における熱変形や、繰り返し運転時における軸部の空回りなどがなく、剛性・耐熱性・耐候性・制振性のバランスに優れ、GF単独時よりもボス部9の芯振れが小さくなり初期バランスの調整がしやすい送風機用羽根車を形成することができる。
【0014】
第4の本発明は、前記樹脂製軸受部と前記樹脂製外周筒部に、GF或いはタルク或いはマイカの1種または2種を30〜50%混入し、前記樹脂製本体部の樹脂にはGFと、マイカとを20〜40%混入したものである。この構成によれば、樹脂製軸受部と樹脂製外周筒部に曲げ弾性率が9000MPa以上、また樹脂製本体部には曲げ弾性率が4000MPa以上の剛性・耐熱性に優れた特性の樹脂を用いることができ、樹脂製軸受部のモータ軸のネジ止めをした時にへたり量の小さい送風機用羽根車を形成することができる。またこれらの樹脂は耐候処理することが容易であり、屋外条件でも10年以上の耐久性を確保することができる。
【0015】
第5の本発明は、前記熱可塑性エラストマーの硬度は、JIS−K−6301、A形が、45〜90として構成したものである。この硬度によって長期にバランス変化量の小さい送風機用羽根車を形成することができる。
【0016】
第6の本発明は、前記樹脂製軸受部と樹脂製外周筒部が同一グレードの合成樹脂材料としたものである。この構成によれば、同一グレードの材料であるためリサイクル時の物性低下が小さく安定する。また、加工時の材料数が少なくなり管理しやすい。この発明に云う同一グレードとは、樹脂製軸受部と樹脂製外周筒部に使用する樹脂材料が引張り強度や曲げ弾性率や密度が同じ物性を示す樹脂とする。
【0017】
第7の本発明は、樹脂製軸受部と樹脂製外周筒部とは連結された射出成形品としたものである。この構成によれば、成形回数も少なく効率良く生産できる。また、熱可塑性エラストマーを射出成形後の樹脂製軸受部の中心ズレを軽減できる。
【0018】
第8の本発明は、樹脂製外周筒部の端には穴部を有するツバ部あるいは外周部に凸状または凹状のリブを設けたものである。この構成によれば、樹脂製本体部と強く一体化して強固に接合できる。
【0019】
第9の本発明は、樹脂製軸受部の外周部に凸状あるいは凹状のリブを設けたものである。この構成によれば、形状面でのアンカー効果と熱可塑性エラストマーとの接着面積も増え接着力が向上し、送風機運転時の熱やモータ回転時の繰り返し応力による接着剥がれ・空回りなどが無くなる。
【0020】
第10の本発明は、ハブと前記ハブの周囲に複数の羽根を備えた送風用羽根車の製造方法であって、送風用羽根車は、前記ハブの中心にはモータ軸の軸受けとなる円筒状の樹脂製軸受部を、前記樹脂製軸受部の外周に熱可塑性エラストマーの防振部材を、前記防振部材の外周には樹脂製外周筒部を、前記樹脂製外周筒部の外周にはハブと羽根を構成する樹脂製本体部を配設する機構とし、前記樹脂製軸受部と防振部材と樹脂製外周筒部で構成する三層部材をボス部とし、前記樹脂製本体部を射出成形する時に、予め前記樹脂製軸受部と樹脂製外周筒部を射出成形し、前記防振部材を射出成形したボス部をインサートして、前記樹脂製本体部にボス部を一体化したものである。この製造方法によれば、現状の金型を維持して金属ボス部品と樹脂ボス部品を交換してインサート成形することができ、効率よく生産できる。また、ボス単体でのセンターズレなど中芯度が事前に分かりバランス変化量の少ないものを製造できる。
【0021】
【実施例】
以下、本発明の一実施例について図面及び表を参照して説明する。図1は、本発明の一実施例における空気調和機用の送風機用羽根車の縦断面図、図2は、同送風機用羽根車のボス部の外観斜視図、図3は、同送風機用羽根車のモータ軸の軸受けとなる円筒状の樹脂製軸受部の外観斜視図、図4は、同送風機用羽根車のボス部の成形時の外観斜視図、図5は、同送風機用羽根車全体の外観斜視図である。
【0022】
実施例1〜8は、構成材料は異なるが構造は同じである。図1〜5に示すように、送風機用羽根車3は、円筒形状のハブ1の周囲に複数個の翼型の羽根2を設けて形成され、モータ軸の軸受けとなる円筒状の樹脂製軸受部4にモータ軸を固定してファンを回転させて送風させるものである。
【0023】
図1に示すように、送風機用羽根車3の構成は、ハブ1の中心から羽根2の先端方向に向けて、円筒状の樹脂製軸受部4と、その外周に形成される熱可塑性エラストマーの円筒状の防振部材5と、その防振部材5の外周部にツバのついた円筒状の樹脂製外周筒部6と、前記樹脂製外周筒部6が嵌めこまれたハブ1と羽根2とを一体に成形した樹脂製本体部7とから構成されている。
【0024】
尚、樹脂製軸受部4には、円筒状の外周部の長手方向に凸状の4本のリブ8が設けられ、中央部にはモータの軸を挿入する貫通孔が形成されている。送風機用羽根車3はφ410mmの3枚羽根のもので、羽根中央部の断面部の最大肉厚は約6mmにしたものである。
【0025】
防振部材5に熱可塑性エラストマーを用いた実施例においては、熱可塑性エラストマーの円筒状の防振部材5の肉厚Aは従来品の5mmから7mmとして接着性と制振性の向上を図っている。尚、樹脂製軸受部4と防振部材5と樹脂製外周筒部6で構成する二層部材をボス部9とした。
【0026】
実施例の送風機用羽根車3の製造方法は、予め樹脂製軸受部4と樹脂製外周筒部6を射出成形する。金型内に前記の樹脂製軸受部4と樹脂製外周筒部6とをセットして、防振部材5を射出成形して成形品のボス部9を製作する。このボス部9を金型内にインサートしてハブ1と羽根2を一体に構成する樹脂製本体部7を射出成形して送風機用羽根車3が完成する。
【0027】
尚、ボス部9の成形時には図4に示すように樹脂製軸受部4と樹脂製外周筒部6を同時成形するために、樹脂が分流して流れるチャンネル部10を設けた。このチャンネル部10は、使用時振動が伝達しやすくなり制振特性が低下することからボス部9を作製した時点でカットして取り除くものである。チャンネル部10の位置は成形時に問題がない箇所であれば良い。また外周部にツバのない反対側にチャンネル部を設けても良い。
【0028】
また、防振部材5は樹脂製軸受部4と樹脂製外周筒部6を同時成形後に二色成形してもよい。二色成形は、二色の樹脂又は二種類の異なる合成樹脂から一体の製品を作る際の成形法であるが、このボス部9を製作する場合は、熱可塑性エラストマーと、PP,PA等の異なる樹脂でボス部9を成形することを意味する。例えば、成型金型がキャビティを表裏に二面備えているものを用いるとすると、先ず第1面側にPP,PA,GFを混合した合成樹脂で樹脂製軸受部4と樹脂製外周筒部6を同時成形する。図2、図3のPはピンポイントゲートの位置を示し、樹脂製軸受部4と樹脂製外周筒部6に各3箇所設けられていることを示している。もちろんこのピンポイントゲートの数は適宜変更してもよいことは言うまでもない。そして、樹脂製軸受部4と樹脂製外周筒部6の成形が終わった後に、一度金型を開いて、樹脂製軸受部4と樹脂製外周筒部6を金型に付着させたまま、内側の金型を180度回転して第2面側から熱可塑性エラストマーを射出して防振部材5を樹脂製軸受部4と樹脂製外周筒部6間に充填する。このように二色成形すると、前記のようなチャンネル部10は必要ではなくなり、チャンネル部10をカットして取り除く作業もなくなるので、作業の効率化が図れる。
【0029】
各実施例と従来例の実用性評価に関しては、次のように実施した。
リサイクル性は、ボス部9と樹脂製本体部7を粉砕・混練した場合の再生可能性から、相溶性が良く再生可能なものを○、従来例のように樹脂とゴムと金属とは相溶性が悪く分離再生しないと再生できないものは×とした。
【0030】
接着性は、樹脂製軸受部4と樹脂製外周筒部6と防振部材5の接合面の接着状態において、容易に界面剥離しないかどうかを確認し、回転トルクで50kgf/cm以上の接着強度があり強固に接着されている状態を○とした。
【0031】
耐熱性は、実施例および従来例の送風用羽根車を空気調和機の室外機にセットし、モータ回転数を約1300rpmとして回転させ70℃の恒温槽に24時間放置し、回転前後のバランス変化量を検討した。バランス変化量は、専用のバランス変化量測定器を用いて測定した。
【0032】
また、初期の芯振れは成形後のボス部9の中心に回転軸となる軸を挿入して軸芯に対する振れの大きさをツバ面から約7mm垂直下方向に入った胴部の箇所でボス部9を回転させながらダイアルゲージで振れ量を測定した。評価は、振れ量が特に少ないもの◎、良好なもの○〜◎、現行品○とした。◎は0.1mm以下、○〜◎は0.15mm以下、○は0.2mm以下が目安となる。
【0033】
【表1】

Figure 2004003464
そして、実施例1では、樹脂製軸受部4および樹脂製外周筒部6は、PPとPAにGFを充填材として約30重量%混入した合成樹脂を用いた。PPとPAの比率は3:7〜4:6程度である。以下の実施例でもPPとPAの比率は略同じである。この実施例1の樹脂製軸受部4と樹脂製外周筒部6の使用樹脂の曲げ弾性率は、共に試験法JIS−K−7203で約9700MPaである。また実施例1の樹脂製軸受部4と樹脂製外周筒部6の使用樹脂の荷重たわみ温度はJIS−K−7206・荷重1.813MPaで約140℃以上であり、実施例1〜実施例8においても全て140℃以上である。
【0034】
樹脂製本体部7には、PPにマイカとGFを約30重量%混入した密度1.14のPP系樹脂を用いた。この樹脂製本体部7の使用樹脂の曲げ弾性率は、約4500MPaで、密度は1.14ある。
【0035】
防振部材5にはEPDMを分散させたオレフィン系エラストマー(一例としてあげれば、PPとEPDMとの重合体)を用いて構成した。熱可塑性エラストマーは、硬度45(JIS−K−6301、A形)を使用している。また、特に、実使用の高温時、長期放置時の耐熱性、柔軟性、機械的強度等を考慮して25%の圧縮永久歪は100℃・22時間で35%以下のものを使用している。以下の実施例2〜実施例8も同様の100℃・22時間で35%以下の圧縮永久歪の熱可塑性エラストマーを使用している。
【0036】
この実施例1の実用性評価において、リサイクル性は、PPとPAにGFを合せて充填材として約30重量%混入した合成樹脂とマイカとGFを約30重量%混入したPP系樹脂とEPDMを分散させたオレフィン系エラストマーの相溶性が良く、粉砕・混練・再生するときに分離もなく良好な状態である。接着性においては、前記PP系樹脂とオレフィン系エラストマーの相溶性が良いため接着部が強固に接着され一体化している。ボス部9の初期の芯振れは良好であった。また、実施例1のバランス変化量は3.5g・cmであり、従来例と同程度である。
【0037】
尚、実施例1において送風機用羽根車3のリサイクル材を粉砕後、樹脂製本体部7のバージン材に10%混入した場合の、樹脂製本体部7の物性保持率は90%以上である。曲げ弾性率は、バージン材は約4500MPaで、10%混入したリサイクル材は約4300MPaである。耐熱特性は、荷重たわみ温度でバージン材はJIS−K−7206・荷重1.813MPaで約146℃で、10%混入したリサイクル材は約145℃で同程度である。以下、実施例2〜実施例8においてもバージン材と比較して曲げ弾性率が90%以上で荷重たわみ温度が同等である合成樹脂がリサイクル材として使用できる。
【0038】
実施例2は、樹脂製軸受部4および樹脂製外周筒部6の構成樹脂にPPとPAにGFを充填材として約30重量%混入した合成樹脂を用い、樹脂製本体部7には、PPにマイカとGFを約30重量%混入した密度1.14のPP系樹脂を用い、防振部材5にEPDMを分散させたオレフィン系エラストマーを用いて構成した。
【0039】
この実施例2の熱可塑性エラストマーは、硬度60(JIS−K−6301、A形)を使用している。この実施例2の樹脂製軸受部4と樹脂製外周筒部6の使用樹脂の曲げ弾性率は、実施例1と同じもので約9700MPaである。樹脂製本体部7の使用樹脂の曲げ弾性率は、約4500MPaで、密度は1.14ある。
【0040】
この実施例2は、実用性評価において、バランス変化量が3.0g・cmであって、他は実施例1と同じであった。
実施例3は、樹脂製軸受部4および樹脂製外周筒部6の構成樹脂にPPとPAにGFを充填材として約50重量%混入したPP系樹脂を用いた。この樹脂製軸受部4と樹脂製外周筒部6の使用樹脂の曲げ弾性率は約13500MPaである。樹脂製本体部7には、PPにマイカとGFを約40重量%混入した密度1.25のPP系樹脂を用いた。防振部材5にEPDMを分散させたオレフィン系エラストマーを用いて構成した。熱可塑性エラストマーは、硬度45(JIS−K−6301、A形)を使用している。
【0041】
この実施例3は、実用性評価において、バランス変化量は2.7g・cmであり、他は実施例1と同じであった。
実施例4は、樹脂製軸受部4および樹脂製外周筒部6の構成樹脂にPPとPAにGFを充填材として約50重量%混入したPP系樹脂を用いた。樹脂製本体部7には、マイカとGFを約40重量%混入した密度1.25のPP系樹脂を用いた。防振部材5にEPDMを分散させたオレフィン系エラストマーを用いて構成した。実施例4の樹脂製軸受部4と樹脂製外周筒部6の使用樹脂の曲げ弾性率は約13500MPaである。熱可塑性エラストマーは、硬度90(JIS−K−6301、A形)を使用している。
【0042】
この実施例4は、実用性評価において、バランス変化量は2.5g・cmであり、他は実施例1と同じであった。
実施例5は、樹脂製軸受部4および樹脂製外周筒部6の構成樹脂にPPとPAにGFとタルクを合せて充填材として約40重量%(GF30%、タルク10%) 混入したPP系樹脂を用いた。この実施例5の樹脂製軸受部4と樹脂製外周筒部6の使用樹脂の曲げ弾性率は約10500MPaである。樹脂製本体部7には、マイカとGFを約30重量%混入した密度1.14のPP系樹脂を用いた。防振部材5にEPDMを分散させたオレフィン系エラストマーを用いて構成した。熱可塑性エラストマーは、硬度55(JIS−K−6301、A形)を使用している。
【0043】
この実施例5は、実用性評価において、ボス部9の初期の芯振れは特に少なく、バランス変化量は2.7g・cmであった。その他は実施例1と同じであった。
【0044】
実施例6は樹脂製軸受部4および樹脂製外周筒部6の構成樹脂にPPとPAにGFを30重量%、マイカ20重量%を混入した。この実施例6の樹脂製軸受部4と樹脂製外周筒部6の使用樹脂の曲げ弾性率は約14500MPaである。樹脂製本体部7は前記実施例5と同じものを使用している。熱可塑性エラストマーは、硬度60(JIS−K−6301、A形)を使用している。
【0045】
この実施例6は、実用性評価において、ボス部9の初期の芯振れは特に少なく、バランス変化量は2.9g・cmであった。その他は実施例1と同じであった。
【0046】
実施例7は樹脂製軸受部4および樹脂製外周筒部6の構成樹脂にPPとPAにマイカ40重量%を混入した。この実施例7の樹脂製軸受部4と樹脂製外周筒部6の使用樹脂の曲げ弾性率は約13000MPaである。樹脂製本体部7には、PPにマイカとGFを約20重量%混入した密度1.04のPP系樹脂を用いた。防振部材5にEPDMを分散させたオレフィン系エラストマーを用いて構成した。熱可塑性エラストマーは、硬度55(JIS−K−6301、A形)を使用している。
【0047】
この実施例7は、実用性評価において、ボス部9の初期の芯振れは特に少なく、バランス変化量は3.8g・cmであった。その他は実施例1と同じであった。
【0048】
実施例8は樹脂製軸受部4および樹脂製外周筒部6の構成樹脂にPPとPAとタルクを40重量%を混入した。この実施例8の樹脂製軸受部4と樹脂製外周筒部6の使用樹脂の曲げ弾性率は約11000MPaである。樹脂製本体部7には、PPにマイカとGFを約40重量%混入した密度1.14のPP系樹脂を用いた。防振部材5にEPDMを分散させたオレフィン系エラストマーを用いて構成した。熱可塑性エラストマーは、硬度55(JIS−K−6301、A形)を使用している。
【0049】
この実施例8は、実用性評価において、ボス部9の初期の芯振れは特に少なく、バランス変化量は2.7g・cmであった。その他は実施例1と同じであった。
【0050】
以上のように、実施例2〜8においても、表1に示すようにリサイクル性において相溶性がよく、オレフィン系エラストマーと樹脂製軸受部4と樹脂製外周筒部6の接着性も良好で強固に接着している。
【0051】
尚、実施例1と2或いは実施例3と4に示すように各々樹脂製軸受部4および樹脂製外周筒部6と樹脂製本体部7を同一グレードの樹脂を使用した場合、60度以上での高温雰囲気では、熱可塑性エラストマーの硬度が低い方がバランス変化量は大きくなりやすい。
【0052】
熱可塑性エラストマーの硬度は、90よりも45の低い方が材料単品の制振特性において損失係数(tanδ)は良く(高く)なるが、送風機用羽根車3にした場合は、静止時の熱クリープ変形や運転時の熱変形が問題となり、羽根を回転させた時バランス変化が大きくなる。実施例から、硬度45以下では、バランス変化量が大きくなる。また硬度90度以上にすると柔軟性が低下し、送風機用羽根車3を回転させた時の騒音特性が悪くなる傾向があるため硬度90度以上は望ましくない。従って硬度45〜90の範囲が望ましい。
【0053】
また、実施例1〜8の樹脂製本体部7の制振性と寸法安定性は、マイカの混入率が多いほど良いが、マイカのみではウエルド部の強度が低く衝撃性に弱いことや、高温回転時の熱変形も大きくなりやすいため、GFを適度に混入して耐熱変形性や衝撃性の向上を図っている。
【0054】
また、樹脂製軸受部4および樹脂製外周筒部6に実施例1〜4のGFの充填材単独よりも実施例5のGFとタルク、実施例6のGFとマイカ、実施例7のマイカや実施例8のタルクの方が寸法安定性が良くなり芯振れが少なく、従来例の構成よりも送風機用羽根車3の初期のバランス調整がしやすい。
【0055】
また屋外に使用する場合、このPP系樹脂材料は耐候処理することが容易であり、屋外条件でも10年以上の耐久性を確保することができる。
また、送風機用羽根車3のバランス調整は、図1のハブ1の内側の円周方向に設けたねじ固定用ボス11に、バランスをとるための適当な重さのねじを選定し取り付けて行なう。バランス調整は送風機用羽根車3用のバランス調整機を用いて実施し、通常は5g・cm以下で管理する。備肉がなく、重量バランスが取れ安定した形状の成形品では、ねじの取り付けが必要でなくなる。固定用ボス11は、金型にピンを立てることによって射出成形時に同時にできる。このねじは、高密度のPP系樹脂を用いることでリサイクル時に選別しなくても良くなる。
【0056】
熱可塑性エラストマーの硬度調整は、EPDMの混入分散量や柔軟剤などの比率を変性させ調整される。また、樹脂製軸受部4にはモータの軸を固定するため円筒状の内部をDカット形状にしている。
【0057】
また本発明は、樹脂製軸受部4および樹脂製外周筒部6の構成樹脂にPPとPAにGF或いはタルク或いはマイカを充填材として約30〜50重量%混入したPP系樹脂を用いたが、珪酸カルシウムや炭素繊維も同様に剛性・耐熱性を向上させることができる。
【0058】
また、樹脂製軸受部4には円筒状の外周部には凸状のリブ8を設けているが、凹状にしても防振部材5の熱可塑性エラストマーとの接着面積が大きくなり接着力が向上する。また、樹脂製外周筒部6の円周状に凸状または凹状のリブを形成しても、同様に接着力が向上する。
【0059】
従来例は、図7に示すような中心部にモータ軸を固定するためのアルミ製軸受部71と金属製外周円筒部72にゴム製の防振部73を圧縮成形したものが使用された送風用羽根車60である。防振部73のゴムとしてはCRゴムが使用されている。従来例をリサイクルする場合は、金属とゴムを含むボス70をプレスなどで打ち抜いて取り除く別途工程が必要となる。
【0060】
また、本発明の各実施例は前述したようにボスに金属やゴムを使用しないため、送風機用羽根車として約20グラム程度の軽量化が図れる。
上記の送風機用羽根車は、特に空気調和機用の室外機に用いた場合、従来のゴム、金属を用いた送風用羽根車より軽量化やボス部の材料コストダウンなどが図れる。また、同時にリサイクル時のボス部脱着作業の削減などが図れ省エネや環境面で貢献することができる。
【0061】
また、本発明は予めエラストマーを成形したボス部9を金型内にインサートしてハブ1と羽根2を構成する樹脂製本体部7を射出成形して一体構造としたが、まず樹脂製外周筒部がない構成の羽根車で樹脂製軸受部と熱可塑性エラストマー部を除いたハブと羽根の樹脂部品を射出成形し、予め成形した円筒状の樹脂製軸受部のみを金型内にインサートしてからエラストマーを射出成形して一体構成することも可能であり、上記同様に選別なしで同時粉砕ができリサイクル性の優れた送風機用羽根車を提供できる。
【0062】
前述した実施例ではDCモータを使用して省エネ化を図っている空気調和機用の送風機用羽根車について説明したが、本発明の技術は樹脂製の羽根車が使用される他の送風機分野で広く利用できる。
【0063】
【発明の効果】
上記の説明から明らかなように、第1の本発明によれば、金属とゴムを含まない構成でありリサイクル時に特に選別の必要がなく、PP系の合成樹脂とオレフィン系の熱可塑性エラストマーを同時に粉砕して再生することができる。また熱可塑性エラストマーも樹脂と相溶性の優れたものを選択することで曲げ弾性率や荷重たわみ温度の低下が小さく、リサイクル時の物性もほとんど低下しない。またPP系樹脂と相溶性の良いオレフィン系の熱可塑性エラストマーが一体化して、接合面の接着性も十分確保される。またこれらの樹脂は耐候処理することが容易であり、屋外でも10年以上の耐久性を確保することができる。また、PP系樹脂は制振性にも優れている。
【0064】
第2の本発明によれば、送風機の連続運転時の熱変形や、繰り返し運転時の軸部の空回りなどなく、剛性・耐熱性・耐候性・制振性のバランスに優れた送風機用羽根車を形成することができる。
【0065】
第3の本発明によれば、送風機の連続運転時の熱変形や、繰り返し運転時の軸部の空回りなどなく、剛性・耐熱性・耐候性・制振性のバランスに優れ、さらにGFの充填材1種よりも寸法安定性の高い充填材を用いるとボス部の芯振れが小さく、初期のバランス調整が容易となる送風機用羽根車を形成することができる。
【0066】
第4の本発明によれば、樹脂製軸受部と樹脂製外周筒部に曲げ弾性率が高い剛性・耐熱性に優れた特性の樹脂を用いることができ、樹脂製軸受部のモータ軸のネジ止めをした時にへたりの少ない送風機用羽根車を形成することができる。また、樹脂製本体部に曲げ弾性率が強くて耐熱性の優れた樹脂を用いることができ送風機用羽根車の剛性が高くバランス変化量が少なくなる。
【0067】
第5の本発明によれば、この硬度範囲によって長期にバランス変化量の少ない送風機用羽根車を形成することができる。
第6の本発明によれば、樹脂部が同一グレードの材料であるためリサイクル時の物性低下が小さく安定する。また、加工時の材料数が少なくなり管理しやすい。
【0068】
第7の本発明によれば、成形回数も少なく効率良く生産できる。また、熱可塑性エラストマーの射出成形後の樹脂製軸受部の中芯ズレも軽減できる。
第8の本発明によれば、樹脂製本体部とより一層一体化して位置ずれなどがなく強固に接合できる。
【0069】
第9の本発明によれば、熱可塑性エラストマーとの接着面積も増え接着力が向上し、送風機運転時の熱やモータ回転時の繰り返し応力による接着剥がれ・空回りなどが無くなる。
【0070】
第10の本発明によれば、現在にある金型を維持して金属ボス部品と樹脂ボス部品を交換してインサート成形することができ、効率よく生産できる。また、ボス単体でのセンターズレなど中芯度が事前に分かりバランス変化量の少ないものを加工できる。
【図面の簡単な説明】
【図1】本発明の一実施例における送風機用羽根車の断面図
【図2】同送風機用羽根車のボス部の外観斜視図
【図3】本発明の一実施例における同送風機用羽根車のモータ軸の軸受けとなる円筒状の樹脂製軸受部の外観斜視図
【図4】同送風機用羽根車のボス部の成形時の外観斜視図
【図5】図1に示す送風機用羽根車の外観斜視図
【図6】従来の送風機用羽根車の外観斜視図
【図7】従来の送風機用羽根車のボスの外観斜視図
【符号の説明】
1 ハブ
2 羽根
3 送風機用羽根車
4 樹脂製軸受部
5 防振部材
6 樹脂製外周筒部
7 樹脂製本体部
8 リブ
9 ボス部
10 チャンネル部
11 ねじ固定用ボス[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impeller for a blower, which can be crushed and regenerated, in consideration of recyclability, and a method for manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as this type of impeller for a blower, for example, as disclosed in Patent Document 1 and the like, a configuration as shown in FIGS. 6 and 7 is generally known. FIG. 6 is an external perspective view of a conventional fan impeller 60. That is, the impeller 60 for the blower is formed by providing a plurality of blade-shaped blades 62 around a cylindrical resin hub 61, and a central fan boss 70 (for fixing the motor) is connected to the motor shaft. And the impeller 60 is rotated to blow air.
[0003]
FIG. 7 is a perspective view of the fan boss 70. The fan boss of the impeller for a blower generally provides a vibration proof property to the natural vibration of the motor when a DC transistor motor is used. An aluminum bearing portion 71 for fixing the motor shaft is disposed at the center, and a metal outer cylindrical portion 72 is fitted around the outer peripheral portion of the bearing portion 71. A compression-molded anti-vibration part 73 is fitted. Note that CR (chloroprene rubber) was used as the rubber of the vibration isolator 73.
[0004]
[Patent Document 1]
JP-A-9-228993
[0005]
[Problems to be solved by the invention]
However, in the conventional fan impeller 60 as described above, since synthetic resin, metal, and rubber are used as constituent materials, the synthetic resin, rubber, and metal are separated when recycling discarded household appliances. Otherwise, reproduction is difficult. Therefore, the impeller 60 for a blower made of such a constituent material has a problem of poor recyclability. Further, the boss member made of rubber and metal is expensive, and a low-cost alternative material has been demanded. Further, as a constituent resin of the boss member, there is a material having good recyclability in which a polyolefin resin mixed with glass fiber or mica, for example, a polypropylene (hereinafter referred to as PP) and a styrene elastomer added with an olefin block are integrated. . However, considering the severe operating conditions of continuous and repeated high temperature of the impeller for a blower, a constituent resin having further excellent rigidity, heat resistance and adhesiveness is required.
[0006]
In view of the above-mentioned technical problems of the conventional example, the problem to be solved by the present invention is to provide a fan blade fan with good recyclability that can simultaneously crush and regenerate the resin and the thermoplastic elastomer of the constituent materials during recycling. To provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an impeller having a plurality of blades around a hub, wherein a resin bearing portion serving as a bearing of a motor shaft is provided at a center of the hub, and an outer periphery of the resin bearing portion is provided. A vibration-absorbing member, a resin-made outer peripheral cylinder portion provided on the outer periphery of the vibration-proof member, and a resin-made main body portion constituting a hub and blades on the outer periphery of the resin outer peripheral tube portion, Is an impeller for a blower made of a thermoplastic elastomer, wherein the resin bearing portion, the resin outer cylinder portion, and the resin body portion are all made of high-rigidity polypropylene-based synthetic resin, and the Is an olefin-based thermoplastic elastomer compatible with a polypropylene-based synthetic resin.
[0008]
With the above configuration, a resin bearing portion, a resin outer cylindrical portion, a resin body portion, a vibration isolating member, that is, a cylindrical resin portion serving as a bearing of a motor shaft at the time of recycling, and a cylindrical vibration isolating member of a thermoplastic elastomer, The resin portion on the outer periphery of the vibration isolating member and the resin portions of the hub and the blade can be simultaneously crushed and regenerated. In addition, by using a thermoplastic elastomer having excellent compatibility with the constituent resin used, the resin can be recycled as a resin having a small decrease in physical properties such as flexural modulus and deflection temperature under load.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Since the above-mentioned object of the present invention can be achieved by making the configuration and the manufacturing method described in each claim an embodiment, the following describes the configuration of each claim and the operation by the manufacturing method together with the description of the claims. Of the specific terms that need to be explained, a detailed explanation is added to the description of the embodiment of the present invention.
[0010]
A first aspect of the present invention is an impeller provided with a plurality of blades around a hub, wherein a resin bearing portion serving as a bearing of a motor shaft is provided at a center of the hub, and a vibration isolating member is provided on an outer periphery of the resin bearing portion. A resin outer cylindrical portion is provided on the outer periphery of the vibration isolating member, and a resin main body portion constituting a hub and a blade is provided on the outer periphery of the resin outer cylindrical portion, and the vibration isolating member is made of a thermoplastic elastomer. Wherein the resin bearing portion, the resin outer cylinder portion, and the resin body portion are all made of a high-rigidity polypropylene (hereinafter abbreviated as PP) -based synthetic resin, and The thermoplastic elastomer is an olefin-based thermoplastic elastomer compatible with a polypropylene-based synthetic resin.
[0011]
According to this configuration, the configuration does not include metal and rubber, and the PP resin and the olefin-based thermoplastic elastomer can be simultaneously pulverized and recycled at the time of recycling. Further, the olefinic thermoplastic elastomer having excellent compatibility with the PP-based resin is integrated with the olefinic thermoplastic elastomer, so that the adhesive strength of the joint surface is sufficiently ensured. The high-rigidity PP-based synthetic resin is preferably such that the resin bearing portion and the resin outer cylindrical portion have a flexural modulus of 8000 MPa or more and the resin body portion has a 4000 MPa or more.
[0012]
In a second aspect of the present invention, the resin bearing portion and the resin outer cylindrical portion are made of a synthetic resin mainly composed of PP, polyamide (hereinafter abbreviated as PA), and glass fiber (hereinafter abbreviated as GF). An olefin resin in which the resin body is made of a PP synthetic resin in which GF and mica are mixed, and the thermoplastic elastomer of the vibration damping member is a dispersion of ethylene-propylene-diene material (hereinafter abbreviated as EPDM). It is made of elastomer. According to this configuration, there is no thermal deformation during continuous operation of the blower, no idle rotation of the shaft portion during repeated operation, etc., and an impeller for a blower excellent in balance of rigidity, heat resistance, weather resistance and vibration damping is formed. can do.
[0013]
In a third aspect of the present invention, the resin-made bearing portion and the resin-made outer cylindrical portion are made of PP, PA, GF, and synthetic resin mainly composed of talc or mica, and the resin-made main body is made of GF and mica. And a thermoplastic elastomer of the vibration damping member is made of an olefin elastomer in which EPDM is dispersed. According to this configuration, there is no thermal deformation during continuous operation of the blower, no idling of the shaft portion during repeated operation, etc., the balance of rigidity, heat resistance, weather resistance and vibration damping is excellent, and the boss is better than GF alone. It is possible to form an impeller for a blower in which the center runout of the portion 9 is reduced and the initial balance can be easily adjusted.
[0014]
According to a fourth aspect of the present invention, 30% to 50% of GF, talc, or mica is mixed in the resin bearing portion and the resin outer cylindrical portion in an amount of 30 to 50%. And mica with 20 to 40%. According to this configuration, a resin having a flexural modulus of 9000 MPa or more is used for the resin bearing portion and the resin outer cylindrical portion, and a resin having excellent rigidity and heat resistance having a flexural modulus of 4000 MPa or more is used for the resin body. This makes it possible to form an impeller for a blower having a small amount of set when the motor shaft of the resin bearing portion is screwed. In addition, these resins can be easily subjected to weathering treatment, and can have durability of 10 years or more even under outdoor conditions.
[0015]
In a fifth aspect of the present invention, the thermoplastic elastomer has a hardness of JIS-K-6301, and the hardness of the A type is 45 to 90. Due to this hardness, an impeller for a blower having a small balance change amount can be formed for a long period of time.
[0016]
In a sixth aspect of the present invention, the resin bearing portion and the resin outer cylindrical portion are made of the same grade synthetic resin material. According to this configuration, since the materials are of the same grade, deterioration in physical properties during recycling is small and stable. In addition, the number of materials during processing is reduced, and management is easy. In the present invention, the same grade refers to a resin in which the resin material used for the resin-made bearing portion and the resin-made outer cylindrical portion have the same physical properties such as tensile strength, flexural modulus and density.
[0017]
According to a seventh aspect of the present invention, an injection-molded product in which a resin-made bearing portion and a resin-made outer peripheral cylindrical portion are connected to each other. According to this configuration, the number of molding times is small and the production can be performed efficiently. In addition, the center deviation of the resin bearing portion after injection molding of the thermoplastic elastomer can be reduced.
[0018]
According to an eighth aspect of the present invention, a flange having a hole or a convex or concave rib is provided at an end of a resin outer cylindrical portion. According to this configuration, it can be strongly integrated with the resin main body to be strongly joined.
[0019]
According to a ninth aspect of the present invention, a convex or concave rib is provided on an outer peripheral portion of a resin bearing portion. According to this configuration, the anchor effect on the shape surface and the bonding area between the thermoplastic elastomer and the thermoplastic elastomer are increased, and the bonding strength is improved, and the adhesive peeling and idling due to the heat during the operation of the blower and the repeated stress during the rotation of the motor are eliminated.
[0020]
According to a tenth aspect of the present invention, there is provided a method of manufacturing a blower impeller including a hub and a plurality of blades around the hub, wherein the blower impeller has a cylinder at a center of the hub, the bearing serving as a motor shaft. -Shaped resin bearing portion, a thermoplastic elastomer vibration isolating member on the outer periphery of the resin bearing portion, a resin outer cylindrical portion on the outer periphery of the vibration isolating member, and a resin outer cylindrical portion on the outer periphery of the resin outer cylindrical portion. A mechanism for arranging a resin main body constituting a hub and a blade, a three-layer member composed of the resin bearing, a vibration isolating member, and a resin outer cylinder as a boss, and injecting the resin main body. At the time of molding, the resin bearing portion and the resin outer cylindrical portion are injection molded in advance, and the boss portion obtained by injection molding the vibration isolating member is inserted, and the boss portion is integrated with the resin body portion. is there. According to this manufacturing method, insert molding can be performed by exchanging the metal boss parts and the resin boss parts while maintaining the current mold, and efficient production can be achieved. In addition, it is possible to manufacture a boss having a small amount of change in the balance, such as a center shift of the boss alone, whose center core is known in advance.
[0021]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings and tables. FIG. 1 is a longitudinal sectional view of an air conditioner impeller for an air conditioner according to one embodiment of the present invention, FIG. 2 is an external perspective view of a boss portion of the air impeller impeller, and FIG. FIG. 4 is an external perspective view of a cylindrical resin bearing portion serving as a bearing for a motor shaft of a car, FIG. 4 is an external perspective view of the boss portion of the blower impeller at the time of molding, and FIG. 5 is an entire impeller for the blower. It is an external appearance perspective view of.
[0022]
Examples 1 to 8 have the same structure although the constituent materials are different. As shown in FIGS. 1 to 5, a blower impeller 3 is formed by providing a plurality of blade-shaped blades 2 around a cylindrical hub 1 and serves as a bearing for a motor shaft. The motor shaft is fixed to the section 4 and the fan is rotated to blow air.
[0023]
As shown in FIG. 1, the configuration of the impeller 3 for the blower includes a cylindrical resin bearing portion 4 and a thermoplastic elastomer formed on the outer periphery thereof, from the center of the hub 1 toward the tip of the blade 2. A cylindrical vibration isolating member 5, a cylindrical resin outer cylindrical portion 6 having a flange on an outer peripheral portion thereof, a hub 1 and a blade 2 in which the resin outer cylindrical portion 6 is fitted; And a resin main body 7 formed integrally with the above.
[0024]
The resin bearing portion 4 is provided with four ribs 8 which are convex in the longitudinal direction of a cylindrical outer peripheral portion, and a through hole for inserting a motor shaft is formed in a central portion. The impeller 3 for a blower has three blades with a diameter of 410 mm, and has a maximum thickness of about 6 mm at the cross section of the center of the blade.
[0025]
In the embodiment using the thermoplastic elastomer for the vibration isolating member 5, the thickness A of the cylindrical vibration isolating member 5 made of the thermoplastic elastomer is increased from 5 mm of the conventional product to 7 mm to improve the adhesiveness and the vibration damping property. I have. The boss 9 is a two-layered member composed of the resin bearing 4, the vibration isolator 5, and the resin outer cylinder 6.
[0026]
In the method for manufacturing the fan impeller 3 of the embodiment, the resin bearing portion 4 and the resin outer cylindrical portion 6 are injection-molded in advance. The resin bearing portion 4 and the resin outer cylindrical portion 6 are set in a mold, and the vibration isolating member 5 is injection-molded to produce a boss 9 of a molded product. The boss 9 is inserted into a mold, and the resin body 7 that integrally forms the hub 1 and the blade 2 is injection-molded to complete the impeller 3 for the blower.
[0027]
At the time of molding the boss 9, as shown in FIG. 4, in order to simultaneously mold the resin-made bearing portion 4 and the resin-made outer cylindrical portion 6, a channel portion 10 through which the resin flows in a divided manner is provided. The channel portion 10 is cut and removed when the boss portion 9 is manufactured because the vibration is easily transmitted during use and the vibration damping characteristics deteriorate. The position of the channel section 10 may be any location that does not cause any problem during molding. Also, a channel portion may be provided on the opposite side of the outer peripheral portion without a brim.
[0028]
Further, the vibration isolating member 5 may be formed by two-color molding after the resin-made bearing portion 4 and the resin-made outer peripheral cylindrical portion 6 are simultaneously molded. The two-color molding is a molding method for producing an integrated product from two-color resin or two kinds of different synthetic resins. When the boss portion 9 is manufactured, a thermoplastic elastomer and PP, PA or the like are used. This means that the boss 9 is formed of a different resin. For example, assuming that a molding die having two cavities on the front and back sides is used, first, a resin bearing portion 4 and a resin outer cylindrical portion 6 made of a synthetic resin mixed with PP, PA and GF are provided on the first surface side. At the same time. P in FIGS. 2 and 3 indicates the position of the pinpoint gate, and indicates that the resin bearing portion 4 and the resin outer cylindrical portion 6 are provided at three locations. Of course, it goes without saying that the number of the pinpoint gates may be changed as appropriate. After the molding of the resin-made bearing portion 4 and the resin-made outer cylindrical portion 6 is finished, the mold is opened once, and the resin-made bearing portion 4 and the resin-made outer cylindrical portion 6 are adhered to the inside of the mold. Is rotated by 180 degrees to inject the thermoplastic elastomer from the second surface side to fill the vibration isolating member 5 between the resin bearing portion 4 and the resin outer cylindrical portion 6. When the two-color molding is performed in this manner, the above-described channel portion 10 is not necessary, and the operation of cutting and removing the channel portion 10 is also eliminated, so that the efficiency of the operation can be improved.
[0029]
The practicality evaluation of each example and the conventional example was performed as follows.
As for the recyclability, from the reproducibility when the boss portion 9 and the resin main body portion 7 are pulverized and kneaded, those having good compatibility and recyclable are indicated by "O". Is poor, and cannot be reproduced unless separated and reproduced.
[0030]
The adhesion was checked by checking whether or not the interface was easily peeled off in the bonded state between the resin bearing portion 4, the resin outer cylindrical portion 6, and the vibration isolating member 5, and the rotational torque was 50 kgf / cm. 2 The state of having the above-mentioned adhesive strength and being firmly adhered was evaluated as ○.
[0031]
The heat resistance was determined by setting the impeller of the embodiment and the conventional example to the outdoor unit of the air conditioner, rotating the motor at about 1300 rpm, leaving it in a constant temperature bath at 70 ° C. for 24 hours, and changing the balance before and after the rotation. The amount was considered. The balance change amount was measured using a dedicated balance change amount measuring device.
[0032]
In addition, the initial run-out of the shaft is performed by inserting a shaft serving as a rotation axis into the center of the formed boss portion 9 and adjusting the run-out magnitude with respect to the shaft center by about 7 mm vertically downward from the flange surface at the body portion where the boss runs downward. The run-out amount was measured with a dial gauge while rotating the part 9. The evaluation was evaluated as ◎ with a particularly small amount of run-out, 〜- ◎ with good quality, and ○ with current product. ◎ is 0.1 mm or less, 〜 to ◎ is 0.15 mm or less, and ○ is 0.2 mm or less.
[0033]
[Table 1]
Figure 2004003464
In the first embodiment, the resin bearing portion 4 and the resin outer cylindrical portion 6 are made of a synthetic resin in which PP and PA are mixed with about 30% by weight of GF as a filler. The ratio between PP and PA is about 3: 7 to 4: 6. In the following examples, the ratio between PP and PA is substantially the same. The flexural modulus of the resin used in the resin bearing portion 4 and the resin outer cylindrical portion 6 in Example 1 is about 9700 MPa according to the test method JIS-K-7203. The deflection temperature under load of the resin used in the resin bearing portion 4 and the resin outer cylindrical portion 6 in Example 1 was about 140 ° C. or more under JIS-K-7206 and 1.813 MPa load, and Examples 1 to 8 were performed. Are all 140 ° C. or higher.
[0034]
For the resin main body 7, a PP-based resin having a density of 1.14 in which mica and GF were mixed at about 30% by weight in PP was used. The flexural modulus of the resin used for the resin body 7 is about 4500 MPa and the density is 1.14.
[0035]
The vibration isolating member 5 was made of an olefin elastomer in which EPDM was dispersed (for example, a polymer of PP and EPDM). The thermoplastic elastomer uses a hardness of 45 (JIS-K-6301, A type). Also, in consideration of heat resistance, flexibility, mechanical strength, and the like at the time of actual use at a high temperature and for a long period of time, a compression set of 25% should be 35% or less at 100 ° C. for 22 hours. I have. The following Examples 2 to 8 also use the same thermoplastic elastomer having a compression set of 35% or less at 100 ° C. for 22 hours.
[0036]
In the practicality evaluation of Example 1, the recyclability was determined by comparing PP and PA with GF and a synthetic resin mixed with about 30% by weight as a filler, a mica and GF with a PP-based resin mixed with about 30% by weight, and EPDM. The dispersed olefin-based elastomer has good compatibility, and is in a good state without separation during pulverization, kneading and regeneration. As for the adhesiveness, since the PP-based resin and the olefin-based elastomer have good compatibility, the bonded portion is firmly bonded and integrated. The initial runout of the boss 9 was good. The amount of change in the balance in the first embodiment is 3.5 g · cm, which is almost the same as that in the conventional example.
[0037]
In the first embodiment, when the recycled material of the impeller 3 for the blower is crushed and then mixed with 10% of the virgin material of the resin body 7, the physical property retention of the resin body 7 is 90% or more. The flexural modulus of the virgin material is about 4500 MPa, and that of the recycled material mixed at 10% is about 4300 MPa. The heat resistance characteristics of the virgin material are about 146 ° C. under JIS-K-7206 and a load of 1.813 MPa at a deflection temperature under load, and about 145 ° C. for a recycled material mixed with 10%. Hereinafter, in Examples 2 to 8, a synthetic resin having a flexural modulus of 90% or more and an equivalent deflection temperature under load as compared with a virgin material can be used as a recycled material.
[0038]
The second embodiment uses a synthetic resin obtained by mixing about 30% by weight of PP and PA with GF as a filler material for the constituent resin of the resin bearing part 4 and the resin outer cylindrical part 6. The vibration damping member 5 was made of an olefin elastomer having EPDM dispersed therein, using a PP resin having a density of 1.14 in which mica and GF were mixed at about 30% by weight.
[0039]
The thermoplastic elastomer of Example 2 has a hardness of 60 (JIS-K-6301, A type). The bending elastic modulus of the resin used in the resin bearing portion 4 and the resin outer cylindrical portion 6 of the second embodiment is the same as that of the first embodiment, and is about 9700 MPa. The bending elastic modulus of the resin used for the resin body 7 is about 4500 MPa, and the density is 1.14.
[0040]
In Example 2, in the evaluation of practicality, the amount of change in balance was 3.0 g · cm, and the other conditions were the same as Example 1.
In Example 3, a PP-based resin in which about 50% by weight of PP and PA was mixed with GF as a filler was used as the constituent resin of the resin-made bearing portion 4 and the resin-made outer peripheral cylindrical portion 6. The bending elastic modulus of the resin used in the resin bearing portion 4 and the resin outer cylindrical portion 6 is about 13500 MPa. For the resin main body 7, a PP-based resin having a density of 1.25, which is obtained by mixing mica and GF into PP by about 40% by weight, was used. The vibration isolating member 5 was formed using an olefin-based elastomer in which EPDM was dispersed. The thermoplastic elastomer uses a hardness of 45 (JIS-K-6301, A type).
[0041]
In Example 3, the balance variation was 2.7 g · cm in the evaluation of practicality, and the other conditions were the same as Example 1.
In Example 4, PP resin mixed with about 50% by weight of GF in PP and PA was used as the constituent resin of the resin bearing part 4 and the resin outer peripheral cylinder part 6. For the resin body 7, a PP-based resin having a density of 1.25 and containing about 40% by weight of mica and GF was used. The vibration isolating member 5 was formed using an olefin-based elastomer in which EPDM was dispersed. The bending elastic modulus of the resin used in the resin bearing portion 4 and the resin outer cylindrical portion 6 of the fourth embodiment is about 13500 MPa. The thermoplastic elastomer has a hardness of 90 (JIS-K-6301, A type).
[0042]
In Example 4, in the evaluation of practicality, the amount of change in the balance was 2.5 g · cm, and the rest was the same as Example 1.
In the fifth embodiment, the PP resin in which PP, PA, GF, and talc are combined with the constituent resin of the resin-made bearing portion 4 and the resin-made outer peripheral cylindrical portion 6 to be mixed with about 40% by weight (GF 30%, talc 10%) as a filler. Resin was used. The bending elastic modulus of the resin used in the resin bearing portion 4 and the resin outer cylindrical portion 6 of the fifth embodiment is about 10500 MPa. The resin body 7 was made of a PP resin having a density of 1.14 in which mica and GF were mixed at about 30% by weight. The vibration isolating member 5 was formed using an olefin-based elastomer in which EPDM was dispersed. The thermoplastic elastomer has a hardness of 55 (JIS-K-6301, A type).
[0043]
In Example 5, in the practicality evaluation, the initial runout of the boss portion 9 was particularly small, and the balance change amount was 2.7 g · cm. Others were the same as Example 1.
[0044]
In Example 6, 30% by weight of GF and 20% by weight of mica were mixed into PP and PA in the constituent resin of the resin bearing portion 4 and the resin outer cylindrical portion 6. The bending elastic modulus of the resin used in the resin bearing portion 4 and the resin outer cylindrical portion 6 of the sixth embodiment is about 14500 MPa. The same resin body 7 as that of the fifth embodiment is used. The thermoplastic elastomer has a hardness of 60 (JIS-K-6301, A type).
[0045]
In Example 6, in the evaluation of practicality, the initial runout of the boss portion 9 was particularly small, and the balance change amount was 2.9 g · cm. Others were the same as Example 1.
[0046]
In Example 7, 40% by weight of mica was mixed with PP and PA in the resin constituting the resin bearing portion 4 and the resin outer cylindrical portion 6. The flexural modulus of the resin used in the resin bearing portion 4 and the resin outer cylindrical portion 6 of the seventh embodiment is about 13000 MPa. For the resin main body 7, a PP-based resin having a density of 1.04, which is obtained by mixing mica and GF into PP by about 20% by weight, was used. The vibration isolating member 5 was formed using an olefin-based elastomer in which EPDM was dispersed. The thermoplastic elastomer has a hardness of 55 (JIS-K-6301, A type).
[0047]
In Example 7, in the practicality evaluation, the initial run-out of the boss 9 was particularly small, and the balance change amount was 3.8 g · cm. Others were the same as Example 1.
[0048]
In Example 8, 40% by weight of PP, PA and talc were mixed in the resin constituting the resin bearing portion 4 and the resin outer peripheral cylinder portion 6. The flexural modulus of the resin used in the resin bearing portion 4 and the resin outer cylindrical portion 6 of the eighth embodiment is about 11000 MPa. For the resin body 7, a PP-based resin having a density of 1.14 in which mica and GF were mixed into PP at about 40% by weight was used. The vibration isolating member 5 was formed using an olefin-based elastomer in which EPDM was dispersed. The thermoplastic elastomer has a hardness of 55 (JIS-K-6301, A type).
[0049]
In Example 8, in the practicality evaluation, the initial runout of the boss portion 9 was particularly small, and the balance change amount was 2.7 g · cm. Others were the same as Example 1.
[0050]
As described above, in Examples 2 to 8, as shown in Table 1, the compatibility is good in recyclability, and the adhesion between the olefin elastomer, the resin bearing portion 4 and the resin outer cylindrical portion 6 is also good and strong. Glued to.
[0051]
As shown in the first and second embodiments or the third and fourth embodiments, when the resin bearing portion 4, the resin outer cylindrical portion 6, and the resin main body portion 7 are made of the same grade resin, the resin bearing portion 4 and the resin main body portion 7 are formed at 60 degrees or more. In the high-temperature atmosphere, the balance change amount tends to increase as the hardness of the thermoplastic elastomer decreases.
[0052]
When the hardness of the thermoplastic elastomer is lower than 45 than 90, the loss coefficient (tan δ) is better (higher) in the vibration damping characteristics of a single material. Deformation and thermal deformation during operation become a problem, and the balance change becomes large when the blade is rotated. According to the embodiment, when the hardness is 45 or less, the amount of change in balance is large. When the hardness is 90 degrees or more, the flexibility is reduced, and the noise characteristic when the impeller 3 for the blower is rotated tends to be deteriorated. Therefore, the hardness is preferably in the range of 45 to 90.
[0053]
In addition, the vibration damping property and the dimensional stability of the resin-made main body 7 of Examples 1 to 8 are better as the mixing ratio of mica is larger, but the strength of the weld portion is low and the impact strength is weak with mica alone. Since thermal deformation during rotation is likely to be large, GF is appropriately mixed in to improve heat-resistant deformation and impact resistance.
[0054]
Further, the resin bearing portion 4 and the resin outer peripheral cylindrical portion 6 were made by using GF and talc of Example 5, GF and mica of Example 6, mica of Example 7, The talc according to the eighth embodiment has better dimensional stability and less runout, and the initial balance adjustment of the impeller 3 for the blower is easier than the configuration of the conventional example.
[0055]
When used outdoors, the PP-based resin material can be easily subjected to weathering treatment, and can have a durability of 10 years or more even under outdoor conditions.
The balance adjustment of the impeller 3 for the blower is performed by selecting and attaching a screw having an appropriate weight for balancing to the screw fixing boss 11 provided in the circumferential direction inside the hub 1 in FIG. . The balance is adjusted using a balance adjuster for the impeller 3 for the blower, and is usually controlled to 5 g · cm or less. In the case of a molded product having no meat, having a stable weight and a stable shape, it is not necessary to attach screws. The fixing boss 11 can be formed at the same time as injection molding by setting a pin on a mold. This screw does not need to be sorted at the time of recycling by using a high-density PP-based resin.
[0056]
The hardness of the thermoplastic elastomer is adjusted by modifying the mixing and dispersion amount of EPDM and the ratio of a softener and the like. In addition, the cylindrical interior of the resin bearing portion 4 has a D-cut shape for fixing the shaft of the motor.
[0057]
Further, in the present invention, a PP resin in which about 30 to 50% by weight of GF, talc or mica is mixed into PP and PA as a filler is used as a constituent resin of the resin bearing portion 4 and the resin outer cylindrical portion 6. Similarly, calcium silicate and carbon fiber can improve rigidity and heat resistance.
[0058]
Although the resin-made bearing portion 4 is provided with a convex rib 8 on the cylindrical outer peripheral portion, even if it is concave, the adhesive area of the vibration isolating member 5 with the thermoplastic elastomer is increased and the adhesive force is improved. I do. Further, even if a convex or concave rib is formed in the circumference of the resin outer cylindrical portion 6, the adhesive force is similarly improved.
[0059]
In the conventional example, an air bearing is used in which an aluminum bearing portion 71 for fixing a motor shaft to a center portion as shown in FIG. 7 and a rubber vibration isolating portion 73 are compression-molded on a metal outer cylindrical portion 72. Impeller 60. CR rubber is used as the rubber of the vibration isolator 73. In the case of recycling the conventional example, a separate step of punching out the boss 70 containing metal and rubber with a press or the like is necessary.
[0060]
Further, in each embodiment of the present invention, as described above, since metal or rubber is not used for the boss, the weight of the impeller for the blower can be reduced by about 20 grams.
When the above impeller for a blower is used in an outdoor unit for an air conditioner in particular, the weight and the material cost of the boss portion can be reduced compared to a conventional impeller for a blower using rubber and metal. At the same time, the work of attaching and detaching the boss at the time of recycling can be reduced, thereby contributing to energy saving and environmental protection.
[0061]
Further, in the present invention, the hub body 9 made of the hub 1 and the blade 2 is injection-molded by inserting the boss portion 9 in which an elastomer is molded in advance into a mold to form an integral structure. Injection molding of the hub and blade resin parts excluding the resin bearing part and thermoplastic elastomer part using an impeller with no part, and inserting only the preformed cylindrical resin bearing part into the mold It is also possible to form an integral body by injection-molding an elastomer, and it is possible to provide an impeller for a blower which can be simultaneously pulverized without selection and has excellent recyclability as described above.
[0062]
In the above-described embodiment, the impeller for the air conditioner for the air conditioner, which saves energy by using the DC motor, has been described. However, the technology of the present invention is applied to other fan fields in which a resin impeller is used. Widely available.
[0063]
【The invention's effect】
As is apparent from the above description, according to the first aspect of the present invention, the metal and rubber are not included, so that there is no need to sort in particular during recycling, and the PP-based synthetic resin and the olefin-based thermoplastic elastomer can be used simultaneously. Can be crushed and regenerated. Also, by selecting a thermoplastic elastomer having excellent compatibility with the resin, a decrease in the flexural modulus and a deflection temperature under load is small, and the physical properties at the time of recycling hardly decrease. Further, the olefin-based thermoplastic elastomer having good compatibility with the PP-based resin is integrated, and the adhesiveness of the joint surface is sufficiently ensured. In addition, these resins can be easily subjected to weathering treatment, and can have durability of 10 years or more even outdoors. Further, the PP-based resin also has excellent vibration damping properties.
[0064]
ADVANTAGE OF THE INVENTION According to the 2nd invention, the impeller for a blower excellent in rigidity, heat resistance, weather resistance, and vibration damping property balance without the thermal deformation at the time of continuous operation of a blower, and the idling of a shaft part at the time of repetitive operation. Can be formed.
[0065]
According to the third aspect of the present invention, there is no thermal deformation during continuous operation of the blower and no rotation of the shaft during repeated operation, the balance of rigidity, heat resistance, weather resistance and vibration damping properties is excellent, and GF is filled. When a filler having higher dimensional stability than one kind of material is used, a center runout of the boss portion is small, and an impeller for a blower in which initial balance adjustment is easy can be formed.
[0066]
According to the fourth aspect of the present invention, the resin bearing portion and the resin outer cylindrical portion can be made of resin having high bending elastic modulus and excellent rigidity and heat resistance. An impeller for a blower with less set when stopped can be formed. Further, a resin having a high flexural modulus and excellent heat resistance can be used for the resin main body, so that the rigidity of the impeller for a blower is high and the amount of change in balance is small.
[0067]
According to the fifth aspect of the present invention, it is possible to form an impeller for a blower having a small amount of change in balance over a long period of time due to this hardness range.
According to the sixth aspect of the present invention, since the resin parts are made of the same grade, the deterioration in physical properties during recycling is small and stable. In addition, the number of materials during processing is reduced, and management is easy.
[0068]
According to the seventh aspect of the present invention, the number of molding times is small and the production can be performed efficiently. In addition, the center displacement of the resin bearing after injection molding of the thermoplastic elastomer can be reduced.
According to the eighth aspect of the present invention, it is possible to further firmly join with the resin body part without displacement and the like.
[0069]
According to the ninth aspect of the present invention, the bonding area with the thermoplastic elastomer is increased, the bonding strength is improved, and the peeling of the bonding and idling due to the heat during the operation of the blower and the repetitive stress during the rotation of the motor are eliminated.
[0070]
According to the tenth aspect of the present invention, it is possible to perform insert molding by exchanging the metal boss parts and the resin boss parts while maintaining the existing mold, thereby enabling efficient production. In addition, it is possible to process the material having a small balance change amount, such as the center deviation of the boss alone, which is known in advance of the core density.
[Brief description of the drawings]
FIG. 1 is a sectional view of an impeller for a blower according to an embodiment of the present invention.
FIG. 2 is an external perspective view of a boss portion of the impeller for the blower.
FIG. 3 is an external perspective view of a cylindrical resin bearing portion serving as a bearing for a motor shaft of the impeller for the blower according to one embodiment of the present invention.
FIG. 4 is an external perspective view of the impeller for the blower when a boss is formed.
5 is an external perspective view of the impeller for the blower shown in FIG.
FIG. 6 is an external perspective view of a conventional fan impeller.
FIG. 7 is an external perspective view of a boss of a conventional impeller for a blower.
[Explanation of symbols]
1 hub
2 feathers
3 Impeller for blower
4 Resin bearing
5 Anti-vibration members
6 resin outer cylinder
7 Resin body
8 ribs
9 Boss
10 Channel section
11 Screw fixing boss

Claims (10)

ハブの周囲に複数の羽根を備えた羽根車において、
前記ハブの中心にはモータ軸の軸受けとなる樹脂製軸受部を、前記樹脂製軸受部の外周に防振部材を、前記防振部材の外周には樹脂製外周筒部を、前記樹脂製外周筒部の外周にはハブと羽根を構成する樹脂製本体部を配設し、
前記防振部材が熱可塑性エラストマーとした送風機用羽根車であって、前記樹脂製軸受部と樹脂製外周筒部と樹脂製本体部はいずれも高剛性のポリプロピレン系の合成樹脂とし、かつ防振部材の熱可塑性のエラストマーはポリプロピレン系の合成樹脂と相溶性のあるオレフィン系熱可塑性エラストマーとしたことを特徴とする送風機用羽根車。
In an impeller having a plurality of blades around a hub,
In the center of the hub, a resin bearing portion serving as a bearing for a motor shaft, a vibration isolating member on the outer periphery of the resin bearing portion, a resin outer cylindrical portion on the outer periphery of the vibration isolating member, On the outer periphery of the cylindrical part, a resin body that constitutes the hub and the blades is arranged,
An impeller for a blower, wherein the vibration isolating member is a thermoplastic elastomer, wherein the resin bearing portion, the resin outer cylindrical portion, and the resin main body portion are all made of high-rigidity polypropylene-based synthetic resin, and An impeller for an air blower, wherein the thermoplastic elastomer of the member is an olefin-based thermoplastic elastomer compatible with a polypropylene-based synthetic resin.
前記樹脂製軸受部と前記樹脂製外周筒部が、ポリプロピレンとポリアミドとグラスファイバーを主体とした合成樹脂で構成され、前記樹脂製本体部がグラスファイバーと、マイカとを混入したポリプロピレン系の合成樹脂製とし、前記防振部材の熱可塑性エラストマーがエチレン−プロピレン−ジエンマテリアルを分散させたオレフィン系エラストマー製としたことを特徴とする請求項1記載の送風機用羽根車。The resin bearing portion and the resin outer cylinder portion are made of a synthetic resin mainly composed of polypropylene, polyamide and glass fiber, and the resin body portion is made of a polypropylene synthetic resin mixed with glass fiber and mica. The impeller for a blower according to claim 1, wherein the thermoplastic elastomer of the vibration isolating member is made of an olefin-based elastomer in which ethylene-propylene-diene material is dispersed. 前記樹脂製軸受部と前記樹脂製外周筒部が、ポリプロピレンとポリアミドとグラスファイバーとタルク或いはマイカを主体とした合成樹脂で構成され、前記樹脂製本体部がグラスファイバーと、マイカとを混入したポリプロピレン系の合成樹脂製とし、前記防振部材の熱可塑性エラストマーがエチレン−プロピレン−ジエンマテリアルを分散させたオレフィン系エラストマー製としたことを特徴とする請求項1記載の送風機用羽根車。The resin-made bearing portion and the resin-made outer cylindrical portion are made of a synthetic resin mainly composed of polypropylene, polyamide, glass fiber, and talc or mica, and the resin-made main body portion is made of a mixture of glass fiber and mica. 2. The impeller for a blower according to claim 1, wherein the vibration isolator is made of an olefin elastomer in which ethylene-propylene-diene material is dispersed. 前記樹脂製軸受部と前記樹脂製外周筒部に、グラスファイバー或いはタルク或いはマイカの1種または2種を30〜50%混入し、前記樹脂製本体部にはグラスファイバーとマイカとを20〜40%混入したことを特徴とする請求項1〜3記載の送風機用羽根車。One or two kinds of glass fiber, talc, or mica are mixed in the resin bearing portion and the resin outer cylindrical portion in an amount of 30 to 50%, and the resin body portion is made of glass fiber and mica in an amount of 20 to 40%. The impeller for a blower according to any one of claims 1 to 3, wherein 前記熱可塑性エラストマーの硬度はJIS−K−6301、A形が、45〜90としたことを特徴とする請求項1〜4のいずれかに記載の送風機用羽根車。The impeller for a blower according to any one of claims 1 to 4, wherein the thermoplastic elastomer has a hardness of JIS-K-6301 and an A type of 45 to 90. 前記樹脂製軸受部と、前記樹脂製外周筒部とが同一グレードの合成樹脂材料としたことを特徴とする請求項1〜5のいずれかに記載の送風機用羽根車。The impeller for a blower according to any one of claims 1 to 5, wherein the resin-made bearing portion and the resin-made outer cylindrical portion are made of the same grade of synthetic resin material. 前記樹脂製軸受部と、前記樹脂製外周筒部とは連結された射出成形品としたことを特徴とする請求項1〜6のいずれかに記載の送風機用羽根車。The impeller for a blower according to any one of claims 1 to 6, wherein the resin-made bearing portion and the resin-made outer peripheral cylindrical portion are injection-molded products connected to each other. 前記樹脂製外周筒部の一端には穴部を有するツバ部、あるいは外周部に凸状または凹状のリブを設けたことを特徴とする請求項1〜7のいずれかに記載の送風機用羽根車。The impeller for a blower according to any one of claims 1 to 7, wherein a flange having a hole or a convex or concave rib is provided on one end of the outer peripheral cylindrical portion made of resin. . 前記樹脂製軸受部の外周部に凸状あるいは凹状のリブを設けたことを特徴とする請求項1〜8のいずれかに記載の送風機用羽根車。The impeller for a blower according to any one of claims 1 to 8, wherein a convex or concave rib is provided on an outer peripheral portion of the resin bearing portion. ハブと前記ハブの周囲に複数の羽根を備えた送風機用羽根車の製造方法であって、
送風機用羽根車は、前記ハブの中心にはモータ軸の軸受けとなる円筒状の樹脂製軸受部を、前記樹脂製軸受部の外周に熱可塑性エラストマーの防振部材を、前記防振部材の外周には樹脂製外周筒部を、前記樹脂製外周筒部の外周にはハブと羽根を構成する樹脂製本体部を配設する構成とし、前記樹脂製軸受部と防振部材と樹脂製外周筒部で構成する三層部材をボス部とし、
前記樹脂製本体部を射出成形する時に、予め前記樹脂製軸受部と樹脂製外周筒部を射出成形し、前記防振部材を射出成形したボス部をインサートして、前記樹脂製本体部に前記ボス部を一体化することを特徴とする送風機用羽根車の製造方法。
A method for manufacturing a fan and an impeller for a blower including a plurality of blades around the hub,
The impeller for a blower has a cylindrical resin bearing serving as a bearing for a motor shaft at the center of the hub, a thermoplastic elastomer vibration isolator on the outer periphery of the resin bearing, and an outer periphery of the vibration isolator. A resin outer cylinder portion, and a resin main body portion constituting a hub and a blade provided on the outer periphery of the resin outer cylinder portion. The resin bearing portion, the vibration isolating member, and the resin outer cylinder are provided. The three-layer member composed of the part is the boss part,
When the resin main body is injection molded, the resin bearing portion and the resin outer cylindrical portion are injection molded in advance, and the boss portion obtained by injection molding the vibration isolator is inserted into the resin main body. A method for manufacturing an impeller for a blower, comprising integrating a boss portion.
JP2003098699A 2002-04-25 2003-04-02 Impeller for blower and manufacturing method thereof Expired - Fee Related JP4311965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098699A JP4311965B2 (en) 2002-04-25 2003-04-02 Impeller for blower and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002123981 2002-04-25
JP2003098699A JP4311965B2 (en) 2002-04-25 2003-04-02 Impeller for blower and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004003464A true JP2004003464A (en) 2004-01-08
JP4311965B2 JP4311965B2 (en) 2009-08-12

Family

ID=30447426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098699A Expired - Fee Related JP4311965B2 (en) 2002-04-25 2003-04-02 Impeller for blower and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4311965B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179902A (en) * 2004-12-22 2006-07-06 Asml Netherlands Bv Ultrasonic distance sensor
JP2007071124A (en) * 2005-09-07 2007-03-22 Tokai Rubber Ind Ltd Fan boss
JP2007071123A (en) * 2005-09-07 2007-03-22 Tokai Rubber Ind Ltd Fan boss
JP2008196385A (en) * 2007-02-13 2008-08-28 Tokai Rubber Ind Ltd Fan boss
JP2008196386A (en) * 2007-02-13 2008-08-28 Tokai Rubber Ind Ltd Fan boss
JP2009250114A (en) * 2008-04-07 2009-10-29 Panasonic Corp Blade installing device of air blower
JP2009275608A (en) * 2008-05-15 2009-11-26 Nippon Kobunshi Kk Vibration isolator of air fan and air fan structure equipped with the same
JP2012092810A (en) * 2010-10-28 2012-05-17 Tokai Rubber Ind Ltd Method of producing rotation fan
JP2014065253A (en) * 2012-09-27 2014-04-17 Hitachi Appliances Inc Injection molding method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572246B2 (en) 2008-05-29 2010-11-04 シャープ株式会社 Toner, developer, developing device, and image forming apparatus
JP4512657B2 (en) 2008-05-30 2010-07-28 シャープ株式会社 Toner manufacturing method, toner, developer, developing device, and image forming apparatus
JP4903883B2 (en) 2010-01-08 2012-03-28 シャープ株式会社 Method for producing capsule toner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179902A (en) * 2004-12-22 2006-07-06 Asml Netherlands Bv Ultrasonic distance sensor
JP4485463B2 (en) * 2004-12-22 2010-06-23 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and element manufacturing method
JP2007071124A (en) * 2005-09-07 2007-03-22 Tokai Rubber Ind Ltd Fan boss
JP2007071123A (en) * 2005-09-07 2007-03-22 Tokai Rubber Ind Ltd Fan boss
JP2008196385A (en) * 2007-02-13 2008-08-28 Tokai Rubber Ind Ltd Fan boss
JP2008196386A (en) * 2007-02-13 2008-08-28 Tokai Rubber Ind Ltd Fan boss
JP2009250114A (en) * 2008-04-07 2009-10-29 Panasonic Corp Blade installing device of air blower
JP2009275608A (en) * 2008-05-15 2009-11-26 Nippon Kobunshi Kk Vibration isolator of air fan and air fan structure equipped with the same
JP2012092810A (en) * 2010-10-28 2012-05-17 Tokai Rubber Ind Ltd Method of producing rotation fan
JP2014065253A (en) * 2012-09-27 2014-04-17 Hitachi Appliances Inc Injection molding method

Also Published As

Publication number Publication date
JP4311965B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP2004003464A (en) Impeller for blowers, and its method of manufacture
EP0856390B1 (en) Method for producing a composite molded article of thermoplastic resins
US10995868B2 (en) Valve assembly for inflatable bladder and method of manufacturing the same
JP6344652B2 (en) Automotive wheel
WO2006118198A1 (en) Pneumatic tire and method for manufacturing same
JP2007071123A (en) Fan boss
JP2022530047A (en) Engine and / or aggregate capsule
JP2005299524A (en) Impeller for blower and method of manufacturing the same
JP2007125720A5 (en)
JP5085150B2 (en) Fan boss and its manufacturing method
CN101648504A (en) Automobile glass and manufacturing method thereof
JP4982204B2 (en) Fan boss
JP5598502B2 (en) Damping material formed by molding phenolic resin molding material for damping material
JP4453295B2 (en) Blower impeller
JP2007126584A (en) Phenolic resin molding material for vibration damper and vibration damper obtained by molding the same
US20020151642A1 (en) Damping resin composition and molded article using the same
KR100994966B1 (en) Fan
JP2003343488A (en) Impeller for air blower
JP3474762B2 (en) Resin duct
CN1268849C (en) Blowing-in impeller and its producing method
JP2003056492A (en) Impeller for blower and method of manufacturing the impeller
JP4334305B2 (en) Blower fan
US4184658A (en) Cushion mount for prime mover
JP5244009B2 (en) Fan boss
CN101768321A (en) Plastic buckle of automobile interior trim parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4311965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees