JP2004002979A - Hydrogen/oxygen generator - Google Patents

Hydrogen/oxygen generator Download PDF

Info

Publication number
JP2004002979A
JP2004002979A JP2003082700A JP2003082700A JP2004002979A JP 2004002979 A JP2004002979 A JP 2004002979A JP 2003082700 A JP2003082700 A JP 2003082700A JP 2003082700 A JP2003082700 A JP 2003082700A JP 2004002979 A JP2004002979 A JP 2004002979A
Authority
JP
Japan
Prior art keywords
hydrogen
path
oxygen
electrolytic cell
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003082700A
Other languages
Japanese (ja)
Inventor
Yorihisa Yasunaga
泰永 順久
Akiko Miyake
三宅 明子
Koichi Wada
和田 耕一
Atsushi Tada
多田 篤志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2003082700A priority Critical patent/JP2004002979A/en
Publication of JP2004002979A publication Critical patent/JP2004002979A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein there is a need of increasing the gastightness of an electrolytic cell for obtaining high purity gas, and there is a need of increasing electrolyzing efficiency in each electrolytic cell from the viewpoint of improving energy efficiency. <P>SOLUTION: In the generator, water feed ports of feeding water to the anode chamber of an electrolytic cell are provided on a plurality of places so as to be distributed at almost equal intervals to one end side of the anode chamber, preferably by three or more places. There are advantages that the leakage of water or gas and the burning loss of the electrolytic face are prevented, the purity of gas is improved, and energy efficiency in the electrolysis is increased. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主として、水等を電気分解して水素および酸素を発生させる水素酸素発生装置に関する。
【0002】
【従来の技術】
従来、例えば水等を電気分解して水素および酸素を発生させる水素酸素発生装置(以下、単に「装置」ともいう)は、水等の電気分解を行うための電解セルが複数組積層されてなるものが知られている。
【0003】
斯かる水素酸素発生装置の一例について図7および8を参照しつつより具体的に説明すると、その一構成単位である電解セルは、電解質として機能する固体電解質膜101と、この固体電解質膜101を挟持すべく設けられた電極板103(陽極側および陰極側電極板)と、前記固体電解質膜101と前記電極板103との間に設けられた給電体102(陽極側および陰極側給電体)と、その他ガスケット104等(以下、これらを総称して「セル部材」ともいう)を備えて構成されている。
【0004】
また、該水素酸素発生装置100には、積層された全ての電解セルに水を供給するための水供給用流路121と、電解セルにて発生した酸素および水素を取り出すための酸素取出用流路122および水素取出用流路123(以下、これらを総称して単に流路ともいう)が備えられている。これらの流路は、積層された各セル部材を貫通するように形成され、全ての電解セルに沿うようにして所謂マニホールド式に構成されている。また、斯かる流路は、ガスケット104等によって電解セルの電極室(陽極室又は陰極室)とは水密に区画されているため、該流路と電極室とを必要に応じて部分的に導通させる必要がある。そのため、電極板103又はガスケット104等のセル部材には、水を流路から電極室へ、酸素および水素を電極室から流路へと案内するための経路が形成されている。
【0005】
例えば図7に示した従来技術の水素酸素発生装置では、斯かる経路は、電極板103に形成されている。具体的には、図7および図8に示したように、水を水供給用流路から陽極室へ案内するための経路141は、電極板103の陽極面103aにおいて、水供給用流路121となる水供給用貫通孔131より電極板103の中央へ向かって延びるように、溝状に形成されている。また、酸素を陽極室から酸素取出用流路122へ案内するための経路142についても、同じく電極板103の陽極面103aにおいて、酸素取出用流路122となる酸素取出用貫通孔132より電極板103の中央へ向かって延びるように、溝状に形成されている。
さらに、水素を陰極室から水素取出用流路123へ案内するための経路143については、電極板103の陰極面103bにおいて、水素取出用流路123となる水素取出用貫通孔133より電極板103の中央へ向かって延びる、溝状のものとして形成されている。
【0006】
そして、該水素酸素発生装置100を運転する際には、水を、水供給用流路121および水供給用経路141を介して陽極室へ供給しつつ電圧を印加することにより、陽極室で発生した酸素を、酸素取出用経路142および酸素取出用流路122を介して装置外へ取り出すとともに、陰極室で発生した水素を、水素取出用経路143および水素取出用流路123を介して装置外へ取り出すことができる。
【0007】
【発明が解決しようとする課題】
しかしながら、このような従来の水素酸素発生装置では、運転の際に内部が高圧となり、ガス排出用経路を覆う部材が撓むために電極板103とガスケット104との間などから水又は発生ガスが漏洩するおそれがある。とりわけ高純度(例えば、水素純度99.999%以上、酸素純度99.9%以上)の発生ガスを得ようとするためには、微量のガスの漏洩をも防止する必要があり、より一層電解セルの気密性の向上が求められている。
【0008】
また、該水素酸素発生装置のエネルギー効率を向上させる観点から、各電解セルにおける電気分解効率を高める必要があり、よって、水の電気分解反応を促進させる必要がある。
【0009】
従って、陽極室と陰極室との境界となる固体電解質膜101についても、その一部が焼損すれば各室で発生したガスが混じり合いガス純度を低下させるだけでなく、電気分解効率も低下させることとなるため、このような焼損を有効に防止する必要がある。
【0010】
そこで本発明は、水素酸素発生装置における流体(水又はガス)の漏洩や電解面の焼損を防止するとともに、該水素酸素発生装置のエネルギー効率を高めることを課題とする。
【0011】
【課題を解決するための手段】
前記課題を解決すべく、本発明は、電解セルの陽極室へ水を供給する水供給口が、該陽極室の一端側に略均等間隔に分布するように複数箇所、好ましくは3箇所以上に設けられてなることを特徴とする水素酸素発生装置を提供する。
【0012】
斯かる構成の水素酸素発生装置によれば、電解セルの陽極室への水の供給が均一化され、電解セル全体での水の電気分解反応が促進され、電解面の焼損を防止することができる。また、水が電解セル全体に均等に分散し、電解セル全体が効率的に冷却されるという効果がある。
【0013】
また、本発明は、電解セルの陽極室へ水を供給するための水供給口が、該陽極室の端部に沿って長状に形成されてなることを特徴とする水素酸素発生装置を提供する。
【0014】
水供給口が陽極室の端部に沿って長状に形成されたことにより、電解セルの陽極室への水の供給が均一化され、上記と同様の効果を得ることができる。
【0015】
また、本発明は、周縁部に貫通孔が穿設されたセル部材を備えてなり、セル部材が積層されて電解セルが構成され、且つ前記貫通孔により該電解セルの電極室とは区画された流路が電解セルの積層方向に形成されてなる水素酸素発生装置において、セル部材には、水供給用の流路から陽極室へ水を導く水供給用の経路が形成され、該経路先端の水供給口が陽極室の一端側に略均等間隔に分布するように複数箇所、好ましくは3箇所以上に設けられてなることを特徴とする水素酸素発生装置を提供する。
【0016】
斯かる構成の水素酸素発生装置によれば、陽極室の一端側に略均等間隔で分布するように設けられた複数箇所の水供給口から電解セル全体へ水が均一に供給されることとなり、水の電気分解反応を電解セル全体で均一に行わせることができ、膜の部分焼損をも防止することができる。
【0017】
また、水供給用の経路を複数箇所に設けることにより、一の経路で導くべき水量が減り一の経路にかかる水圧が低下することとなる。よって、水の供給に必要な水圧が低下し、その結果、陽極室内の圧力を低下させて水や酸素の漏洩をより確実に防止することができる。
【0018】
また、本発明は、周縁部に貫通孔が穿設されたセル部材を備えてなり、セル部材が積層されて電解セルが構成され、且つ前記貫通孔により電解セルの電極室とは区画された流路が電解セルの積層方向に形成されてなる水素酸素発生装置において、セル部材には、水供給用の流路から陽極室へ水を導く水供給用の経路が形成され、該経路先端の水供給口が陽極室の一端に沿って長状に形成されてなることを特徴とする水素酸素発生装置にある。
【0019】
斯かる構成の水素酸素発生装置によれば、長状に形成された水供給口より水が電解セル全体に均一に供給されることとなり、水の電気分解反応が電解セル全体で促進されると同時に電解セルの冷却効果も改善されることとなる。
【0020】
また、本発明は、前記水素酸素発生装置において、セル部材には、陽極室から酸素取出用の流路へ酸素を導く酸素取出用の経路が形成され、該経路基端の酸素取出口が陽極室の他端側に略均等間隔に分布するように複数箇所、好ましくは3箇所以上に設けられてなることを特徴とする。
【0021】
斯かる構成の水素酸素発生装置によれば、水供給口と酸素取出口とが、それぞれ陽極室の一端側と他端側に対向した状態で配されることとなるため、水供給用の経路より導かれた水が水供給口より陽極室全体に隈なく均一に供給され、そして酸素取出口より余剰水としてスムーズに排出されることとなるため、水の供給と排出がより一層円滑に行われることとなる。また、発生した酸素についても、このような水の流れとともに酸素取出口に向かってスムーズに流れることとなる。従って、斯かる構成の水素酸素発生装置によれば、陽極室内の圧力低下に大きく寄与し、電解セルの密封性をさらに向上させることができる。また、電解面全体に於ける電気分解が促進され、電解効率が高くなるという効果がある。
【0022】
また、本発明は、前記水素酸素発生装置において、セル部材には、陽極室から酸素取出用の流路へ酸素を導く酸素取出用の経路が形成され、該経路基端の酸素取出口が陽極室の他端に沿って長状に形成されてなることを特徴とする。
【0023】
斯かる構成の水素酸素発生装置によれば、陽極室の他端に沿って長状に形成された酸素取出口より余剰水や発生した酸素の取出しがスムーズに行われ、上記と同様に、電解セルの密封性や電解効率が向上するという効果がある。
【0024】
また、本発明は、前記水素酸素発生装置において、セル部材には、陰極室から水素取出用の流路へ水素を導く水素取出用の経路が形成され、前記水供給用の経路、前記酸素取出用の経路および該水素取出用の経路が、電解セルの周方向に略均等間隔で配されてなることを特徴とする。
【0025】
斯かる構成の水素酸素発生装置によれば、全ての経路が電解セルの周方向に略均等間隔に配されてなるため、該セル部材を締め付けた際の締付圧力がこれら全ての経路にも均等に分散して加わることとなり、電解セルの密封性を向上させることができる。
【0026】
また、本発明は、周縁部に貫通孔が穿設された電極板を備えてなり、該電極板が他のセル部材とともに積層されて電解セルが構成され、且つ前記貫通孔により電解セルの電極室とは区画された流路が電解セルの積層方向に形成されてなる水素酸素発生装置において、前記電極板には流路と電極室とを流通可能とする経路が凹設され、且つ該経路には複数の溝が凹設された受圧材が装着されたことにより、該電極板と、隣接する他のセル部材とが面一に接するように構成されたことを特徴とする水素酸素発生装置を提供する。
【0027】
斯かる構成の水素酸素発生装置によれば、経路を介して行われる流路と電解室との流体の流通をスムーズなものとしつつ、電解セルの締付圧力をセル部材全面で均一なものとすることができ、電解セルの密封性向上を図ることができる。
【0028】
また、本発明は、周縁部に貫通孔が穿設された電極板を備えてなり、該電極板が他のセル部材とともに積層されて電解セルが構成され、且つ前記貫通孔により電解セルの電極室とは区画された流路が電解セルの積層方向に形成されてなる水素酸素発生装置において、前記電極板には流路と電極室とを流通可能とする経路が凹設され、且つ該経路には、プレス加工により突出部の形成された受圧材が装着されたことにより、該電極板と、隣接する他のセル部材とが面一に接するように構成されたことを特徴とする水素酸素発生装置を提供する。
【0029】
プレス加工により突出部の形成された受圧材を用いれば、圧縮に対する強度がさらに高いものとなるため、より一層圧力の均一化と流通性の向上を図ることができる。
【0030】
【発明の実施の形態】
以下、本発明に係る水素酸素発生装置の実施の形態について、図面に基づいて詳細に説明する。
【0031】
図1は、本発明に係る水素酸素発生装置の実施形態を示した分解斜視図である。ここで、水素酸素発生装置1は、電解質として機能する固体電解質膜11と、この固体電解質膜11を挟持すべく陽極側および陰極側に設けられた一対の電極板13、13と、前記固体電解質膜11と該電極板13との間にそれぞれ設けられた給電体12、12(陽極側および陰極側)と、給電体の外周において、電極室を水密に保つための軟質のガスケット14と、固体電解質膜を保護するための保護シート15等(以下、これらを総称して「セル部材」ともいう)よりなる電解セルを一つの構成単位として構成され、前記電極板13を複極電極板として該電解セルが所定数量積層されて構成されている。また、該積層された電解セルの両端には、これら複数の電解セルを所定の圧力で締め付けるための端板16、16が備えられている。
【0032】
また、該水素酸素発生装置1には、積層された複数の電解セルの陽極側へ純水を供給するための3本の水供給用流路21、21、21が、該電解セルの積層方向(軸方向)に連通するように、マニホールド式に形成されている。即ち、例えば電極板13には、その周縁部一端側(図1において下方側)に3箇所の半弧状の延設部13c、…が形成され、個々の延設部13cには水供給用流路を成すための水供給用貫通孔31が穿設されている。
【0033】
同様にして、積層された複数の電解セルの陽極側より酸素を取り出すための3本の酸素取出用流路22、22、22が、該電解セルの積層方向(軸方向)に連通するように、マニホールド式に形成されている。即ち、例えば電極板13には、その周縁部一端側(図1において上方側)に3箇所の半弧状の延設部13c、…が形成され、個々の延設部13cには酸素取出用流路22を成すための酸素取出用貫通孔32が穿設されている。
【0034】
また、同様にして、積層された複数の電解セルの陰極側より水素を取り出すための2本の水素取出用流路23、23が、該電解セルの積層方向(軸方向)に連通するように、マニホールド式に形成されている。即ち、例えば、電極板13には、その周縁部両端(図1において、左右両端)に2箇所の半弧状の延設部13c、13cが形成され、個々の延設部13cには水素取出用流路23を成すための水素取出用貫通孔33が穿設されている。
【0035】
こうして、電極板13、ガスケット14および固体電解質膜11等のセル部材には、それぞれ合計8箇所の半弧状の延設部がセル部材の周縁を8等分するように約45°間隔で形成され、個々の延設部には流路を成すための貫通孔が穿設されている。
また、斯かる貫通孔のうち、3箇所の水供給用貫通孔は、セル部材の一端側(図1下方側)に並んで配され、一方、3箇所の酸素取出用貫通孔は、セル部材の他端側(図1上方側)に並んで配され、両者は互いに対向するように配置されている。
また、2個の水素取出用貫通孔は、それぞれ該水供給用貫通孔と該酸素取出用貫通孔との間において、両側(図1において左右両側)に離間した状態で配置されている。
【0036】
ところで、本実施形態に係る水素酸素発生装置1では、電極板13として複極式のものが採用されている。即ち、該電極板13は、その一面13aが一の電解セルの陽極室に面し、他面が隣接する他の電解セルの陰極室に面するように配されている。
【0037】
そして、本実施形態では、このような複極式の電極板13に、前記各々の流路と電極室(陽極室および陰極室)とを連通する経路が形成されている。
即ち、図2(a)に示すように、該電極板13の陽極室側の面13a(以下、陽極面という)には、3本の水供給用流路を成すための3つの水供給用貫通孔31から、電解セル中心方向へ向かう溝状の経路41がそれぞれ凹設されている。
また、該電極板の同じく陽極面13aには、3本の酸素取出用流路を成すための3つの酸素取出用貫通孔32から、電解セル中心方向へ向かって溝状の経路42がそれぞれ凹設されている。さらに、該電極板13の陰極室側の面13b(以下、陰極面という)には、図2(b)に示すように、2本の水素取出用流路を成すための2つの水素取出用貫通孔33から、電解セル中心方向へ向かって溝状の経路43がそれぞれ凹設されている。こうして、該電極板13には、これらの貫通穴(31、32、33)および経路(41、42、43)が、電極板13の周縁部(即ち、電解セルの周縁部)において電極板13の周方向に約45°の均等間隔で配されている。
【0038】
さらに、これら全ての経路の途中には、受圧材50が装着されている。
図3は、流路および第1実施形態としての受圧材の拡大図を示したものであり、図4は、図3におけるX−X線断面図、Y−Y線断面図を示したものである。図3および図4に示したように、本実施形態の受圧材50の底面には同一形状よりなる多数の山型溝51が経路と平行に形成されており、山型溝51の隙間52、52…を介して水や水素、酸素が貫通孔と流路先端との間を流通可能となるように構成されている。また、該受圧材50の上面は、電極板13の表面と面一となるように形成されている。
【0039】
受圧材50としては、電極板と同材質のものを用いるか、又は圧縮強度が電極板と同程度以上(ヤング率10×10kgf/mm以上)の部材を用いることが好ましい。具体的には、例えば電極板の材質がチタンである場合には、チタン、SUS、ジルコニウムなどが使用可能である。また、電極板と同材質のものを用いた場合、電気的特性や機械的特性が同一となるため特に好ましい。
【0040】
一方、ガスケット14は、シリコン、フッ素ゴムなどの軟質の材料で形成され、周縁部に前記電極板と同形状の延設部および貫通孔を備えて構成されている。
【0041】
また、端板16は、1箇所の水供給ノズル16aより3箇所の水供給用流路21、…へ水を分配するための水路がその内部に形成されたものである。同じく、酸素および水素等の発生ガスについても、複数の流路22、23を経て取り出された該発生ガスが、端板16の内部で合流され、1箇所の酸素取出ノズル16bおよび1箇所の水素取出ノズル16cより取り出されるように構成されている。
【0042】
そして、これらのセル部材を積層して水素酸素発生装置1を構成する場合、図1に示したように、前記電極板13の両面には、該電極板よりも小径の給電体12と、該給電体12の周囲を区画するガスケット14とを配し、さらに、その両側には保護シート15および固体電解質膜11を配し、これらのセル部材を端板16によって所定の加圧力で積層方向に締め付ける。
この場合、ガスケット14は、電極板13と保護シート15とに挟まれた状態となり、固体電解質膜11と電極板13との間に、外部より区画された電極室(陽極室および陰極室)が構成される。
【0043】
ガスケット14が電極板13に圧接される際には、電極板13に凹設した経路とガスケット14とが交わる部分においては、該ガスケット14は経路に装着した受圧材50の上面に圧接されることとなる。
【0044】
図5は、両面にガスケット14が圧接された状態の電極板13を示したものであり、図5(a)は、陽極面側より見た図、図5(b)は陰極面側より見た図を示したものである。
図5に示したように、電極板13の陽極面13a上に凹設された3つの水供給用経路41は、3つの水供給用流路21(水供給用貫通孔)から該ガスケット14をくぐって電極板13の中心方向へ延び、その先端が陽極室の一端側に達して水供給口となる。即ち、該水供給口は、陽極室の一端側において約45°の均等間隔で合計約90°の幅にわたって分布したものとなる。
【0045】
同様に、電極板13の陽極面13a上に凹設された3つの酸素取出用経路42は、3つの酸素取出用流路22(酸素取出用貫通孔)から該ガスケット14をくぐって電極板13の中心方向へ延び、その先端が陽極室の一端側に達して酸素取出口となる。即ち、該酸素取出口は、陽極室の他端側において約45°の均等間隔で合計約90°の幅にわたって分布したものとなる。
【0046】
また、同様にして、電極板13の陰極面13b上に凹設された2つの水素取出用経路43は、2つの水素取出用流路23(水素取出用貫通孔)から該ガスケット14をくぐって延び、その先端が陰極室の両端に達して水素取出口となる。即ち、該水素取出口は、陰極室の両端に離間した状態で設けられることとなる。
【0047】
斯かる構成の水素酸素発生装置1によれば、図5に示したように、装置に供給された水は、水供給用流路21および水供給用経路41を介して水供給口より電解セルの陽極室へ供給されることとなる。そして、水の電気分解反応により発生した酸素とともに陽極室の内部を移動し、水供給口に対向して設けられた酸素取出口より、酸素取出用経路42および酸素取出用流路22を介して取り出されることとなる。
【0048】
本実施形態に係る水素酸素発生装置1によれば、水供給口が陽極室の一端側に略均等間隔に分布して3箇所に設けられていると同時に、酸素取出口が陽極室の他端側に略均等間隔に分布して3箇所に設けられているため、陽極室内における水および酸素の流れが、図5の矢印に示したように電解面全面体へ流れるようになる。これにより、電気分解反応に必要な水が水供給口から陽極室全体にスムーズに行き渡ると同時に、水および発生した酸素が酸素取出口からスムーズに排出されることとなり、陽極室内の水やガスの滞留を防止して電解効率の改善を図ることができる。
【0049】
また、水等の流れをスムーズにすることにより、水供給用流路や水供給口等における局所的な水圧の上昇を防止でき、電極板13とガスケット14との間からの水等の漏洩を防止することができる。
【0050】
また、電極板13に形成された各経路41、42、43には、それぞれ受圧材50が装着されているため、電極板13とガスケット14とを圧接する際には、ガスケット14の全面が均一に圧縮されることとなり、密封性の向上を図ることができる。
特に、該受圧材50に同一形状の山型溝51が多数形成されている場合には、水やガスが流通し易くなると同時に、該受圧材50は比較的撓み難いものとなる。よって、水の供給とガスの取り出しをより一層円滑に行うとともに、ガスケット14と電極板13との密着性をより一層向上させ、電解セルの密封性をさらに改善することができる。
【0051】
また、前記実施形態によれば、水素取出用貫通孔が水供給用貫通孔と酸素取出用貫通孔との間に配置され、これらの貫通孔および該貫通孔から延びる経路が電解セルの周縁部においてその周方向に略均等間隔で配置されたものとなっているため、端板による加圧力が電解セル全体および各経路毎に均一となり易く、また、水素酸素発生装置のコンパクト化を図ることができる。
【0052】
尚、上記実施形態のように溝の形成された受圧材を用いる場合、その溝の形状としては、連続した山型形状以外の、例えば連続した凹凸形状、連続した半円形状、連続した台形状としてもよい。
【0053】
図6は、経路に装着する受圧材の第2実施形態を示したものであり、図6(a)は平面図、図6(b)は(a)のZ−Z断面図を表している。図6に示したように、該実施形態の受圧材50’は、平板状の平面部55と、該平面部55から同一面側に突出するように形成された複数の突出部56とを備えている。
また、該突出部56の形状は略球面状に形成されている。
【0054】
さらに、前記第1実施形態の受圧材50の山型溝51は、通常、旋盤等によって切削加工することによって形成されるものであるのに対し、この第2実施形態の受圧材50’の突出部56は、平面部55をプレス加工することによって成形されたものである。
【0055】
また、本実施形態の受圧材50’では、電極板13の経路に装着された際の流体の流れ方向(図6において、矢印で示す)と略平行となるように、複数の突出部56が配列されている。
【0056】
尚、受圧材50’の材質としては、前記第1実施形態の受圧材50と同様のものを使用することができる。
【0057】
斯かる構成の第2実施形態の受圧材50’によれば、プレス加工によって複数の突出部56を一度に形成することが可能であるため、第1実施形態の受圧材50と比べて加工が容易であり、製造コストを大きく低減できるという効果がある。
【0058】
また、突出部56をプレス加工することによって材料の不連続性を少なくし、しかも、該突出部56の形状を球面状とすることにより、該突出部56は極めて圧縮強度の高いものとなる。
よって、圧縮に対する強度が増せば、該突出部56同士の間隔を広げることができるため、山型溝51を設ける場合と比べて水等の流通がより一層円滑なものとなる。複数の突出部56が水等の流通方向と略平行となるように形成されていれば、その流通がさらに円滑なものとなる。
【0059】
また、該第2実施形態の受圧材50’によれば、突出部56をプレス加工によって膨出させることにより、その反対面側には凹部57が形成されることとなる。この反対面側には、電解セルを構成する際にガスケット14が圧接されることとなるため、該ガスケット14の表面が該凹部57内に迫り出し、受圧材50’の位置ズレを防止するという効果もあると考えられる。
【0060】
尚、前記実施形態においては、各セル部材は略円形に形成されたものであったが、本発明はこれに限定されず、矩形状や多角形状の任意の形状のセル部材を用いることができる。
【0061】
また、前記実施形態では、水用の供給口および酸素用の取出口がそれぞれ3箇所に設けられ、水素用の取出口が2箇所に設けられているが、本発明はこれに限定されるものではない。
即ち、水および酸素用の流路については、複数箇所に設けられていることが好ましく、3箇所以上であることがより好ましい。また、水素用の流路については1箇所でもよいが、2箇所以上であればガス抜け性がよりスムーズとなる。
【0062】
さらに、上記実施形態では、流路と電極室とを流通させるための経路を電極板に形成した場合のものであるが、本発明はこれに限定されるものではなく、電極室(陽極室あるいは陰極室)と流路との両方に面して配される他のセル部材に経路を形成することができる。
従って、例えば、硬質の樹脂よりなるガスケットを用い、斯かるガスケットに流路を形成することも可能である。
【0063】
また、前記実施形態においては、経路は、略同一幅の溝が貫通孔からガスケットの内側へ向かって直線状に凹設されたものであるが、本発明は、このような経路の形状には限定されるものではない。よって、例えば、経路先端の供給口又は経路基端の取出口(即ち、ガスケットよりも内側へ達した部分)を幅広に形成するか、又は該経路の先端を分岐させることにより、水の供給やガス抜け性をより一層高めるようにしても良い。
特に、水供給口や酸素取出口を電極室の一端に沿って長状に形成することが好ましく、例えば、円盤状の電極板の円周に沿うように円弧状の溝を形成し、これを水供給口、あるいは酸素取出口とすることができる。これによって水の供給とガスおよび水の取り出しが、より一層均一且つスムーズとなる。
【0064】
【発明の効果】
以上のように、本発明に係る水素酸素発生装置によれば、発生する酸素および水素、あるいは供給する水の漏洩を防止するとともに、電解セルにおける電気分解反応の促進と冷却効率の改善を図り、水素酸素発生装置のエネルギー効率を高めることができる。
【図面の簡単な説明】
【図1】本発明に係る水素酸素発生装置の一実施形態について、電解セルを構成するセル部材を積層方向に分解して示した斜視図。
【図2】本発明に係る水素酸素発生装置の一実施形態において、複極式の電極板に形成した流路の一例を示した平面図であり、(a)は陽極面側、(b)は陰極面側を示した図。
【図3】電極板に形成した流路と、該流路に装着した受圧材を示した斜視図。
【図4】(a)図3におけるX−X線断面図。
(b)図3におけるY−Y線断面図。
【図5】電極板にガスケットを圧接した状態を示した平面図であり、(a)は陽極面側、(b)は陰極面側を示した図。
【図6】(a)受圧材の他の実施形態を示した平面図。
(b)(a)のZ−Z線断面図。
【図7】従来の水素酸素発生装置の一例を示した分解斜視図。
【図8】(a)図7のA−A線断面図。
(b)図7のB−B線断面図。
【符号の説明】
1…水素酸素発生装置、11…固体電解質膜、12…給電体、13…電極板、
14…ガスケット、15…保護シート、16…端板
21…水供給用流路、22…酸素取出用流路、23…水素取出用流路、
31…水供給用貫通孔、32…酸素取出用貫通孔、33…水素取出用貫通孔、
41…水供給用経路、42…酸素取出用経路、43…水素取出用経路、
50、50’…受圧材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention mainly relates to a hydrogen-oxygen generator that generates hydrogen and oxygen by electrolyzing water or the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, a hydrogen-oxygen generator (hereinafter, also simply referred to as an “apparatus”) that electrolyzes water or the like to generate hydrogen and oxygen is formed by stacking a plurality of electrolytic cells for electrolyzing water or the like. Things are known.
[0003]
An example of such a hydrogen-oxygen generator will be described more specifically with reference to FIGS. 7 and 8. An electrolytic cell, which is a constituent unit of the hydrogen-oxygen generator, includes a solid electrolyte membrane 101 functioning as an electrolyte, and the solid electrolyte membrane 101. An electrode plate 103 (anode-side and cathode-side electrode plates) provided to be sandwiched, and a power supply 102 (anode-side and cathode-side power supply) provided between the solid electrolyte membrane 101 and the electrode plate 103; , And other gaskets 104 (hereinafter, these are also collectively referred to as “cell members”).
[0004]
The hydrogen-oxygen generator 100 has a water supply channel 121 for supplying water to all the stacked electrolytic cells, and an oxygen extraction flow for extracting oxygen and hydrogen generated in the electrolytic cells. A path 122 and a hydrogen extraction flow path 123 (hereinafter, collectively referred to simply as a flow path) are provided. These flow paths are formed so as to penetrate the stacked cell members, and are configured in a so-called manifold type along all the electrolytic cells. In addition, since such a flow path is watertightly partitioned from an electrode chamber (anode chamber or cathode chamber) of the electrolytic cell by a gasket 104 or the like, the flow path and the electrode chamber are partially electrically connected as necessary. Need to be done. Therefore, a channel for guiding water from the channel to the electrode chamber and oxygen and hydrogen from the electrode chamber to the channel is formed in the cell member such as the electrode plate 103 or the gasket 104.
[0005]
For example, in the conventional hydrogen oxygen generator shown in FIG. 7, such a path is formed in the electrode plate 103. Specifically, as shown in FIGS. 7 and 8, the path 141 for guiding water from the water supply channel to the anode chamber is provided on the anode surface 103 a of the electrode plate 103 by the water supply channel 121. The groove is formed so as to extend from the water supply through hole 131 to the center of the electrode plate 103. In addition, a path 142 for guiding oxygen from the anode chamber to the oxygen extraction channel 122 also has an electrode plate through an oxygen extraction through-hole 132 serving as the oxygen extraction channel 122 on the anode surface 103 a of the electrode plate 103. The groove 103 is formed to extend toward the center of the groove 103.
Further, regarding a path 143 for guiding hydrogen from the cathode chamber to the hydrogen extraction channel 123, the electrode plate 103 is formed on the cathode surface 103 b of the electrode plate 103 through the hydrogen extraction through hole 133 serving as the hydrogen extraction channel 123. Is formed as a groove extending toward the center.
[0006]
When the hydrogen oxygen generator 100 is operated, water is supplied to the anode chamber through the water supply channel 121 and the water supply path 141 while applying a voltage to generate water in the anode chamber. The extracted oxygen is taken out of the apparatus through the oxygen extraction path 142 and the oxygen extraction channel 122, and hydrogen generated in the cathode chamber is removed from the apparatus through the hydrogen extraction path 143 and the hydrogen extraction channel 123. Can be taken out.
[0007]
[Problems to be solved by the invention]
However, in such a conventional hydrogen oxygen generator, the internal pressure becomes high during operation, and the member covering the gas discharge path is bent, so that water or generated gas leaks from between the electrode plate 103 and the gasket 104 or the like. There is a risk. Particularly, in order to obtain a generated gas having a high purity (for example, a hydrogen purity of 99.999% or more and an oxygen purity of 99.9% or more), it is necessary to prevent the leakage of a very small amount of gas, and to further improve the electrolysis. There is a demand for improved airtightness of cells.
[0008]
Further, from the viewpoint of improving the energy efficiency of the hydrogen oxygen generator, it is necessary to increase the electrolysis efficiency in each electrolytic cell, and therefore, it is necessary to promote the electrolysis reaction of water.
[0009]
Therefore, if a part of the solid electrolyte membrane 101 serving as a boundary between the anode chamber and the cathode chamber is burned out, the gases generated in the respective chambers are mixed and the gas purity is reduced, and the electrolysis efficiency is also reduced. Therefore, it is necessary to effectively prevent such burning.
[0010]
Therefore, an object of the present invention is to prevent leakage of fluid (water or gas) and burning of an electrolytic surface in a hydrogen oxygen generator, and to increase the energy efficiency of the hydrogen oxygen generator.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides a water supply port for supplying water to an anode chamber of an electrolytic cell at a plurality of locations, preferably at three or more locations so as to be distributed at substantially equal intervals on one end side of the anode chamber. A hydrogen oxygen generator characterized by being provided.
[0012]
According to the hydrogen oxygen generator having such a configuration, the supply of water to the anode chamber of the electrolytic cell is made uniform, the electrolysis reaction of water in the entire electrolytic cell is promoted, and the burning of the electrolytic surface can be prevented. it can. In addition, there is an effect that water is evenly dispersed throughout the electrolytic cell and the entire electrolytic cell is efficiently cooled.
[0013]
Further, the present invention provides a hydrogen oxygen generator, wherein a water supply port for supplying water to an anode chamber of an electrolytic cell is formed to be long along an end of the anode chamber. I do.
[0014]
Since the water supply port is formed long along the end of the anode chamber, the supply of water to the anode chamber of the electrolytic cell is made uniform, and the same effect as described above can be obtained.
[0015]
Further, the present invention includes a cell member having a through-hole formed in a peripheral portion thereof, the cell member is stacked to form an electrolytic cell, and the through-hole is separated from an electrode chamber of the electrolytic cell. In the hydrogen-oxygen generator in which the flow path is formed in the lamination direction of the electrolytic cell, a water supply path for guiding water from the water supply flow path to the anode chamber is formed in the cell member, Are provided at a plurality of locations, preferably at three or more locations, such that the water supply ports are distributed at substantially equal intervals on one end side of the anode chamber.
[0016]
According to the hydrogen oxygen generator having such a configuration, water is uniformly supplied to the entire electrolytic cell from a plurality of water supply ports provided so as to be distributed at substantially equal intervals on one end side of the anode chamber, The electrolysis reaction of water can be performed uniformly in the entire electrolytic cell, and partial burning of the membrane can be prevented.
[0017]
Further, by providing the water supply paths at a plurality of locations, the amount of water to be guided in one path is reduced, and the water pressure applied to one path is reduced. Therefore, the water pressure required for supplying water is reduced, and as a result, the pressure in the anode chamber is reduced, so that leakage of water or oxygen can be more reliably prevented.
[0018]
Further, the present invention includes a cell member having a through-hole formed in a peripheral portion thereof, the cell member is laminated to form an electrolytic cell, and the through-hole is separated from an electrode chamber of the electrolytic cell. In the hydrogen / oxygen generator in which the flow path is formed in the stacking direction of the electrolytic cells, a water supply path for guiding water from the water supply flow path to the anode chamber is formed in the cell member, The hydrogen oxygen generator is characterized in that the water supply port is formed in a long shape along one end of the anode chamber.
[0019]
According to the hydrogen oxygen generator having such a configuration, water is uniformly supplied to the entire electrolytic cell from the water supply port formed in a long shape, and the electrolysis reaction of water is promoted throughout the electrolytic cell. At the same time, the cooling effect of the electrolytic cell is improved.
[0020]
Further, in the hydrogen-oxygen generator according to the present invention, the cell member may be provided with an oxygen extraction path for guiding oxygen from the anode chamber to the oxygen extraction flow path, and the oxygen outlet at the base end of the path may be an anode. It is characterized by being provided at a plurality of places, preferably at three or more places, so as to be distributed at substantially equal intervals on the other end side of the chamber.
[0021]
According to the hydrogen-oxygen generator having such a configuration, the water supply port and the oxygen outlet are disposed so as to face one end and the other end of the anode chamber, respectively. The guided water is supplied uniformly from the water supply port to the entire anode chamber, and is discharged smoothly from the oxygen outlet as surplus water, so that the supply and discharge of water can be performed more smoothly. Will be done. Also, the generated oxygen flows smoothly toward the oxygen outlet together with such a flow of water. Therefore, according to the hydrogen-oxygen generator having such a configuration, it is possible to greatly contribute to a decrease in pressure in the anode chamber and further improve the sealing performance of the electrolytic cell. In addition, there is an effect that electrolysis is promoted on the entire electrolysis surface and electrolysis efficiency is increased.
[0022]
Further, in the hydrogen-oxygen generator according to the present invention, the cell member may be provided with an oxygen extraction path for guiding oxygen from the anode chamber to the oxygen extraction flow path, and the oxygen outlet at the base end of the path may be an anode. It is characterized by being formed in a long shape along the other end of the chamber.
[0023]
According to the hydrogen oxygen generator having such a configuration, surplus water and generated oxygen are smoothly taken out from the oxygen outlet formed in a long shape along the other end of the anode chamber. There is an effect that the cell sealing performance and the electrolytic efficiency are improved.
[0024]
Further, in the hydrogen-oxygen generator according to the present invention, the cell member may be provided with a hydrogen extraction path for guiding hydrogen from a cathode chamber to a hydrogen extraction path, and the water supply path and the oxygen extraction path may be formed. And a path for removing hydrogen are arranged at substantially equal intervals in the circumferential direction of the electrolytic cell.
[0025]
According to the hydrogen-oxygen generator having such a configuration, since all the paths are arranged at substantially equal intervals in the circumferential direction of the electrolytic cell, the tightening pressure when the cell member is tightened is also applied to all of these paths. Since it is uniformly dispersed and added, the sealing performance of the electrolytic cell can be improved.
[0026]
Further, the present invention includes an electrode plate having a through hole formed in a peripheral portion thereof, the electrode plate is laminated with another cell member to form an electrolytic cell, and the electrode of the electrolytic cell is formed by the through hole. In the hydrogen / oxygen generator in which the flow path partitioned from the chamber is formed in the stacking direction of the electrolytic cells, a path that allows the flow path and the electrode chamber to flow through the electrode plate is recessed, and A hydrogen-oxygen generating device, wherein a pressure receiving material having a plurality of grooves formed therein is mounted so that the electrode plate and another adjacent cell member are in flush contact with each other. I will provide a.
[0027]
According to the hydrogen-oxygen generator having such a configuration, the pressure of the electrolytic cell is made uniform over the entire surface of the cell member while smoothing the flow of the fluid between the flow path and the electrolytic chamber through the path. And the sealing performance of the electrolytic cell can be improved.
[0028]
Further, the present invention includes an electrode plate having a through hole formed in a peripheral portion thereof, the electrode plate is laminated with another cell member to form an electrolytic cell, and the electrode of the electrolytic cell is formed by the through hole. In the hydrogen / oxygen generator in which the flow path partitioned from the chamber is formed in the stacking direction of the electrolytic cells, a path that allows the flow path and the electrode chamber to flow through the electrode plate is recessed, and Wherein the pressure receiving member formed with the protruding portion by press working is mounted so that the electrode plate and another adjacent cell member are in flush contact with each other. A generator is provided.
[0029]
If a pressure-receiving material having a protruding portion formed by press working is used, the strength against compression is further increased, so that the pressure can be made more uniform and the flowability can be further improved.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a hydrogen oxygen generator according to the present invention will be described in detail with reference to the drawings.
[0031]
FIG. 1 is an exploded perspective view showing an embodiment of the hydrogen oxygen generator according to the present invention. Here, the hydrogen oxygen generator 1 includes a solid electrolyte membrane 11 functioning as an electrolyte, a pair of electrode plates 13 provided on an anode side and a cathode side to sandwich the solid electrolyte membrane 11, and the solid electrolyte membrane. Feeders 12 and 12 (anode side and cathode side) provided between the membrane 11 and the electrode plate 13 respectively; a soft gasket 14 for keeping the electrode chamber watertight around the feeder; An electrolytic cell including a protective sheet 15 for protecting the electrolyte membrane and the like (hereinafter, also collectively referred to as a “cell member”) is configured as one constituent unit, and the electrode plate 13 is used as a bipolar electrode plate. Electrolysis cells are configured by being stacked in a predetermined number. At both ends of the stacked electrolytic cells, end plates 16, 16 for fastening the plurality of electrolytic cells at a predetermined pressure are provided.
[0032]
In the hydrogen oxygen generator 1, three water supply flow paths 21, 21, 21 for supplying pure water to the anode side of the plurality of stacked electrolytic cells are provided in the stacking direction of the electrolytic cells. It is formed in a manifold type so as to communicate in the (axial direction). That is, for example, three semi-arc-shaped extending portions 13c,... Are formed on one end side (lower side in FIG. 1) of a peripheral edge portion of the electrode plate 13, and each of the extending portions 13c has a water supply flow. A water supply through hole 31 for forming a path is provided.
[0033]
Similarly, three oxygen extraction channels 22, 22, 22 for extracting oxygen from the anode side of the plurality of stacked electrolytic cells are connected to each other in the stacking direction (axial direction) of the electrolytic cells. , Formed in a manifold type. That is, for example, three semi-arc-shaped extending portions 13c,... Are formed on one end side (upper side in FIG. 1) of the peripheral edge portion of the electrode plate 13, and each of the extending portions 13c has a flow for oxygen extraction. An oxygen extraction through hole 32 for forming the passage 22 is provided.
[0034]
Similarly, two hydrogen extraction channels 23 for extracting hydrogen from the cathode side of a plurality of stacked electrolytic cells communicate with each other in the stacking direction (axial direction) of the electrolytic cells. , Formed in a manifold type. That is, for example, two semi-arc-shaped extending portions 13c, 13c are formed at both ends (right and left ends in FIG. 1) of a peripheral edge portion of the electrode plate 13, and each of the extending portions 13c has a A through-hole 33 for extracting hydrogen for forming the flow path 23 is provided.
[0035]
Thus, the cell members such as the electrode plate 13, the gasket 14, and the solid electrolyte membrane 11 are each formed with a total of eight semi-arc-shaped extending portions at approximately 45 ° intervals so as to divide the periphery of the cell member into eight equal parts. Each of the extending portions is provided with a through hole for forming a flow path.
In addition, among such through holes, three water supply through holes are arranged side by side on one end side (the lower side in FIG. 1) of the cell member, while three oxygen extraction through holes are provided in the cell member. Are arranged side by side on the other end side (the upper side in FIG. 1), and both are arranged to face each other.
Further, the two hydrogen extraction through-holes are disposed between the water supply through-hole and the oxygen extraction through-hole, and are separated on both sides (left and right sides in FIG. 1).
[0036]
By the way, in the hydrogen oxygen generator 1 according to the present embodiment, a bipolar type is used as the electrode plate 13. That is, the electrode plate 13 is arranged such that one surface 13a faces the anode compartment of one electrolytic cell and the other surface faces the cathode compartment of another adjacent electrolytic cell.
[0037]
In the present embodiment, such a bipolar electrode plate 13 is formed with a path that communicates the flow paths with the electrode chambers (anode chamber and cathode chamber).
That is, as shown in FIG. 2A, three water supply channels for forming three water supply channels are formed on a surface 13a of the electrode plate 13 on the anode chamber side (hereinafter, referred to as an anode surface). Groove-shaped paths 41 extending from the through-holes 31 toward the center of the electrolytic cell are respectively recessed.
Also, in the same anode surface 13a of the electrode plate, groove-like paths 42 are respectively recessed from three oxygen extraction through holes 32 for forming three oxygen extraction channels toward the center of the electrolytic cell. Is established. Further, as shown in FIG. 2 (b), a surface 13b on the cathode chamber side of the electrode plate 13 (hereinafter referred to as a cathode surface) is provided with two hydrogen extraction channels for forming two hydrogen extraction channels. Groove-shaped paths 43 are respectively recessed from the through holes 33 toward the center of the electrolytic cell. Thus, the through holes (31, 32, 33) and the paths (41, 42, 43) are formed in the electrode plate 13 at the periphery of the electrode plate 13 (that is, at the periphery of the electrolytic cell). Are arranged at equal intervals of about 45 ° in the circumferential direction.
[0038]
Further, a pressure receiving member 50 is mounted in the middle of all these paths.
FIG. 3 is an enlarged view of the flow path and the pressure receiving material as the first embodiment, and FIG. 4 is a cross-sectional view taken along line XX and YY in FIG. is there. As shown in FIGS. 3 and 4, on the bottom surface of the pressure-receiving member 50 of the present embodiment, a large number of angled grooves 51 having the same shape are formed in parallel with the path. 52, water, hydrogen, and oxygen can flow between the through-hole and the flow channel tip. The upper surface of the pressure receiving member 50 is formed so as to be flush with the surface of the electrode plate 13.
[0039]
The pressure receiving member 50 is made of the same material as the electrode plate, or has a compressive strength equal to or higher than that of the electrode plate (Young's modulus 10 × 10 3 kgf / mm 2 It is preferable to use the members described above. Specifically, for example, when the material of the electrode plate is titanium, titanium, SUS, zirconium, or the like can be used. It is particularly preferable to use the same material as the electrode plate because the same electrical and mechanical characteristics are obtained.
[0040]
On the other hand, the gasket 14 is formed of a soft material such as silicon or fluorine rubber, and is provided with an extended portion having the same shape as the electrode plate and a through hole at a peripheral portion.
[0041]
Further, the end plate 16 has a water passage formed therein for distributing water from one water supply nozzle 16a to three water supply passages 21,.... Similarly, for the generated gases such as oxygen and hydrogen, the generated gases taken out through the plurality of flow paths 22 and 23 are merged inside the end plate 16 to form one oxygen extraction nozzle 16b and one hydrogen It is configured to be taken out from the take-out nozzle 16c.
[0042]
In the case where the hydrogen oxygen generator 1 is configured by stacking these cell members, as shown in FIG. 1, on both surfaces of the electrode plate 13, a power feeder 12 having a smaller diameter than the electrode plate, A gasket 14 that partitions the periphery of the power supply 12 is provided, and further, a protective sheet 15 and a solid electrolyte membrane 11 are provided on both sides of the gasket 14. tighten.
In this case, the gasket 14 is sandwiched between the electrode plate 13 and the protective sheet 15, and an electrode chamber (anode chamber and cathode chamber) partitioned from the outside is provided between the solid electrolyte membrane 11 and the electrode plate 13. Be composed.
[0043]
When the gasket 14 is pressed against the electrode plate 13, the gasket 14 is pressed against the upper surface of the pressure receiving member 50 attached to the path at the intersection of the gasket 14 and the path recessed in the electrode plate 13. It becomes.
[0044]
5A and 5B show the electrode plate 13 in a state where the gasket 14 is pressed against both surfaces. FIG. 5A is a view from the anode side, and FIG. 5B is a view from the cathode side. FIG.
As shown in FIG. 5, three water supply paths 41 recessed on the anode surface 13a of the electrode plate 13 form the gasket 14 through the three water supply passages 21 (water supply through holes). The electrode plate 13 extends in the direction of the center of the electrode plate, and its tip reaches one end of the anode chamber to serve as a water supply port. That is, the water supply ports are distributed over the width of about 90 ° at equal intervals of about 45 ° at one end of the anode chamber.
[0045]
Similarly, three oxygen extraction passages 42 recessed on the anode surface 13a of the electrode plate 13 pass through the gasket 14 from the three oxygen extraction passages 22 (oxygen extraction through-holes) and pass through the electrode plate 13 , And its tip reaches one end of the anode chamber to serve as an oxygen outlet. That is, the oxygen outlets are distributed over the width of about 90 ° at equal intervals of about 45 ° on the other end side of the anode chamber.
[0046]
Similarly, the two hydrogen extraction paths 43 recessed on the cathode surface 13b of the electrode plate 13 pass through the gasket 14 from the two hydrogen extraction channels 23 (hydrogen extraction through holes). It extends and its tip reaches both ends of the cathode chamber to form a hydrogen outlet. That is, the hydrogen outlets are provided at both ends of the cathode chamber so as to be separated from each other.
[0047]
According to the hydrogen / oxygen generator 1 having such a configuration, as shown in FIG. 5, water supplied to the device is supplied from the water supply port to the electrolytic cell through the water supply channel 21 and the water supply path 41. To the anode chamber. Then, it moves inside the anode chamber together with the oxygen generated by the electrolysis reaction of water, and from the oxygen outlet provided opposite to the water supply port, through the oxygen extracting channel 42 and the oxygen extracting channel 22. It will be taken out.
[0048]
According to the hydrogen / oxygen generator 1 according to the present embodiment, the water supply ports are provided at three locations at one end of the anode chamber at substantially equal intervals, and the oxygen outlet is provided at the other end of the anode chamber. Since the water and oxygen flow in the anode chamber are distributed at substantially equal intervals on the side, the flow of water and oxygen in the anode chamber flows to the entire surface of the electrolytic surface as shown by the arrow in FIG. As a result, the water required for the electrolysis reaction smoothly spreads from the water supply port to the entire anode chamber, and at the same time, water and generated oxygen are smoothly discharged from the oxygen outlet. The stagnation can be prevented, and the electrolytic efficiency can be improved.
[0049]
In addition, by smoothing the flow of water and the like, it is possible to prevent a local increase in water pressure in a water supply channel, a water supply port, and the like, and to prevent leakage of water and the like from between the electrode plate 13 and the gasket 14. Can be prevented.
[0050]
Further, since the pressure receiving members 50 are attached to the respective paths 41, 42, 43 formed in the electrode plate 13, when the electrode plate 13 is pressed against the gasket 14, the entire surface of the gasket 14 is uniform. Therefore, the sealing performance can be improved.
In particular, when the pressure receiving member 50 has a large number of mountain-shaped grooves 51 having the same shape, water and gas can easily flow, and the pressure receiving member 50 is relatively hard to bend. Therefore, water can be supplied and gas can be taken out more smoothly, the adhesion between the gasket 14 and the electrode plate 13 can be further improved, and the sealing performance of the electrolytic cell can be further improved.
[0051]
According to the above embodiment, the hydrogen extraction through-hole is disposed between the water supply through-hole and the oxygen extraction through-hole, and these through-holes and a path extending from the through-hole are formed at the peripheral portion of the electrolytic cell. Are arranged at substantially equal intervals in the circumferential direction, so that the pressing force by the end plate is easily uniform throughout the entire electrolytic cell and each path, and the hydrogen oxygen generator can be made compact. it can.
[0052]
In the case of using a pressure-receiving material having a groove as in the above embodiment, the shape of the groove is not limited to a continuous chevron shape, for example, a continuous uneven shape, a continuous semicircular shape, a continuous trapezoidal shape. It may be.
[0053]
6A and 6B show a second embodiment of the pressure-receiving member mounted on the path. FIG. 6A is a plan view, and FIG. 6B is a sectional view taken along the line Z-Z in FIG. . As shown in FIG. 6, the pressure receiving member 50 ′ of this embodiment includes a flat plate-shaped portion 55 and a plurality of protrusions 56 formed to protrude from the flat portion 55 to the same surface side. ing.
Further, the shape of the protrusion 56 is formed in a substantially spherical shape.
[0054]
Further, the angled groove 51 of the pressure receiving member 50 of the first embodiment is usually formed by cutting with a lathe or the like, whereas the projection of the pressure receiving member 50 'of the second embodiment is formed. The portion 56 is formed by pressing the flat portion 55.
[0055]
Further, in the pressure receiving member 50 ′ of the present embodiment, the plurality of protrusions 56 are arranged so as to be substantially parallel to the flow direction of the fluid (indicated by an arrow in FIG. 6) when mounted on the path of the electrode plate 13. Are arranged.
[0056]
Note that, as the material of the pressure receiving member 50 ', the same material as the pressure receiving member 50 of the first embodiment can be used.
[0057]
According to the pressure receiving member 50 ′ of the second embodiment having such a configuration, since the plurality of protrusions 56 can be formed at once by pressing, the processing can be performed in comparison with the pressure receiving member 50 of the first embodiment. This is easy and has the effect of greatly reducing the manufacturing cost.
[0058]
In addition, the discontinuity of the material is reduced by pressing the protruding portion 56, and the protruding portion 56 has extremely high compressive strength by making the shape of the protruding portion 56 spherical.
Therefore, if the strength against compression is increased, the interval between the protruding portions 56 can be widened, so that the flow of water and the like becomes more smooth as compared with the case where the angled groove 51 is provided. If the plurality of protrusions 56 are formed so as to be substantially parallel to the flow direction of water or the like, the flow becomes even smoother.
[0059]
Further, according to the pressure receiving member 50 ′ of the second embodiment, the concave portion 57 is formed on the opposite surface side by expanding the protruding portion 56 by press working. Since the gasket 14 is pressed against the opposite surface side when forming the electrolytic cell, the surface of the gasket 14 protrudes into the concave portion 57 to prevent displacement of the pressure receiving member 50 '. It is considered effective.
[0060]
In the above-described embodiment, each cell member is formed in a substantially circular shape. However, the present invention is not limited to this, and any rectangular or polygonal cell member can be used. .
[0061]
Further, in the above embodiment, the supply port for water and the outlet for oxygen are provided at three places, respectively, and the outlet for hydrogen is provided at two places, but the present invention is not limited to this. is not.
That is, the flow paths for water and oxygen are preferably provided at a plurality of locations, and more preferably at three or more locations. In addition, the hydrogen flow path may be provided at one location, but if it is provided at two or more locations, the outgassing properties will be more smooth.
[0062]
Further, in the above-described embodiment, the path for flowing the flow path and the electrode chamber is formed in the electrode plate. However, the present invention is not limited to this, and the electrode chamber (the anode chamber or the A path can be formed in another cell member disposed so as to face both the cathode chamber) and the flow path.
Therefore, for example, it is possible to use a gasket made of a hard resin and form a flow path in such a gasket.
[0063]
Further, in the above-described embodiment, the path is a groove in which a groove having substantially the same width is linearly recessed from the through hole toward the inside of the gasket. It is not limited. Therefore, for example, the supply of water at the leading end of the passage or the outlet at the base end of the passage (that is, the portion reaching the inside of the gasket) is formed wide, or the leading end of the passage is branched to supply water. Outgassing properties may be further enhanced.
In particular, it is preferable that the water supply port and the oxygen outlet be formed in an elongated shape along one end of the electrode chamber.For example, an arc-shaped groove is formed along the circumference of a disk-shaped electrode plate, and this is formed. It can be a water supply port or an oxygen outlet. This makes the supply of water and the removal of gas and water more uniform and smooth.
[0064]
【The invention's effect】
As described above, according to the hydrogen-oxygen generator according to the present invention, while preventing leakage of generated oxygen and hydrogen, or supplied water, the electrolysis reaction in the electrolytic cell is promoted and the cooling efficiency is improved, The energy efficiency of the hydrogen oxygen generator can be increased.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a hydrogen oxygen generator according to the present invention, in which cell members constituting an electrolytic cell are disassembled in a laminating direction.
FIG. 2 is a plan view showing an example of a flow path formed in a bipolar electrode plate in one embodiment of the hydrogen oxygen generator according to the present invention, wherein (a) is an anode surface side, and (b) is a plan view. FIG. 2 is a diagram showing a cathode surface side.
FIG. 3 is a perspective view showing a flow path formed in an electrode plate and a pressure receiving material attached to the flow path.
FIG. 4A is a sectional view taken along line XX in FIG.
(B) A sectional view taken along line YY in FIG.
FIGS. 5A and 5B are plan views showing a state in which a gasket is pressed against an electrode plate; FIG. 5A is a diagram showing an anode surface side, and FIG.
FIG. 6A is a plan view showing another embodiment of the pressure receiving member.
(B) The ZZ line sectional view of (a).
FIG. 7 is an exploded perspective view showing an example of a conventional hydrogen oxygen generator.
FIG. 8A is a sectional view taken along line AA of FIG. 7;
(B) A sectional view taken along line BB of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hydrogen oxygen generator, 11 ... Solid electrolyte membrane, 12 ... Power supply, 13 ... Electrode plate
14 gasket, 15 protection sheet, 16 end plate
21: water supply channel, 22: oxygen extraction channel, 23: hydrogen extraction channel
31: through hole for water supply, 32: through hole for oxygen extraction, 33 ... through hole for hydrogen extraction,
41: water supply path, 42: oxygen extraction path, 43: hydrogen extraction path
50, 50 '... pressure receiving material

Claims (12)

電解セルの陽極室へ水を供給する水供給口が、該陽極室の一端側に略均等間隔に分布するように複数箇所に設けられてなることを特徴とする水素酸素発生装置。A hydrogen / oxygen generator wherein a plurality of water supply ports for supplying water to an anode chamber of an electrolytic cell are provided at one end of the anode chamber so as to be distributed at substantially equal intervals. 前記水供給口が3箇所以上であることを特徴とする請求項1記載の水素酸素発生装置。2. The hydrogen oxygen generator according to claim 1, wherein the number of the water supply ports is three or more. 電解セルの陽極室へ水を供給する水供給口が、該陽極室の端部に沿って長状に形成されてなることを特徴とする水素酸素発生装置。A hydrogen oxygen generator, wherein a water supply port for supplying water to an anode chamber of an electrolytic cell is formed in a long shape along an end of the anode chamber. 周縁部に貫通孔が穿設されたセル部材を備えてなり、セル部材が積層されて電解セルが構成され、且つ前記貫通孔により該電解セルの電極室とは区画された流路が電解セルの積層方向に形成されてなる水素酸素発生装置において、
セル部材には、水供給用の流路から陽極室へ水を導く水供給用の経路が形成され、
該経路先端の水供給口が陽極室の一端側に略均等間隔に分布するように複数箇所に設けられてなることを特徴とする水素酸素発生装置。
A cell member having a through-hole formed in a peripheral portion thereof is provided, the cell member is laminated to form an electrolytic cell, and a flow path partitioned from the electrode chamber of the electrolytic cell by the through-hole is an electrolytic cell. In the hydrogen oxygen generator formed in the stacking direction of
In the cell member, a water supply path for guiding water from the water supply flow path to the anode chamber is formed,
A hydrogen oxygen generator, wherein a water supply port at the end of the passage is provided at a plurality of locations so as to be distributed at substantially equal intervals on one end side of the anode chamber.
前記水供給口が3箇所以上であることを特徴とする請求項4記載の水素酸素発生装置。5. The hydrogen oxygen generator according to claim 4, wherein the number of the water supply ports is three or more. 周縁部に貫通孔が穿設されたセル部材を備えてなり、セル部材が積層されて電解セルが構成され、且つ前記貫通孔により該電解セルの電極室とは区画された流路が電解セルの積層方向に形成されてなる水素酸素発生装置において、
セル部材には、水供給用の流路から陽極室へ水を導く水供給用の経路が形成され、
該経路先端の水供給口が陽極室の一端に沿って長状に形成されてなることを特徴とする水素酸素発生装置。
A cell member having a through-hole formed in a peripheral portion thereof is provided, the cell member is laminated to form an electrolytic cell, and a flow path partitioned from the electrode chamber of the electrolytic cell by the through-hole is an electrolytic cell. In the hydrogen oxygen generator formed in the stacking direction of
In the cell member, a water supply path for guiding water from the water supply flow path to the anode chamber is formed,
A hydrogen oxygen generator, wherein a water supply port at the end of the passage is formed in a long shape along one end of the anode chamber.
セル部材には、陽極室から酸素取出用の流路へ酸素を導く酸素取出用の経路が形成され、
該経路基端の酸素取出口が陽極室の他端側に略均等間隔に分布するように複数箇所に設けられてなることを特徴とする請求項4〜6の何れかに記載の水素酸素発生装置。
In the cell member, a path for oxygen extraction that guides oxygen from the anode chamber to a flow path for oxygen extraction is formed,
The hydrogen oxygen generation according to any one of claims 4 to 6, wherein oxygen outlets at the base end of the passage are provided at a plurality of locations so as to be distributed at substantially equal intervals on the other end side of the anode chamber. apparatus.
前記酸素取出口が3箇所以上であることを特徴とする請求項7記載の水素酸素発生装置。The hydrogen oxygen generator according to claim 7, wherein the number of the oxygen outlets is three or more. セル部材には、陽極室から酸素取出用の流路へ酸素を導く酸素取出用の経路が形成され、
該経路基端の酸素取出口が陽極室の他端に沿って長状に形成されてなることを特徴とする請求項4〜8の何れかに記載の水素酸素発生装置。
In the cell member, a path for oxygen extraction that guides oxygen from the anode chamber to a flow path for oxygen extraction is formed,
The hydrogen oxygen generator according to any one of claims 4 to 8, wherein the oxygen outlet at the base end of the passage is formed in a long shape along the other end of the anode chamber.
セル部材には、陰極室から水素取出用の流路へ水素を導く水素取出用の経路が形成され、
前記水供給用の経路、前記酸素取出用の経路および該水素取出用の経路が、電解セルの周方向に略均等間隔で配されてなることを特徴とする請求項7〜9の何れかに記載の水素酸素発生装置。
In the cell member, a path for extracting hydrogen that guides hydrogen from the cathode chamber to a flow path for extracting hydrogen is formed,
The path for water supply, the path for oxygen extraction, and the path for hydrogen extraction are arranged at substantially equal intervals in the circumferential direction of the electrolytic cell, according to any one of claims 7 to 9, wherein The hydrogen oxygen generator according to claim 1.
周縁部に貫通孔が穿設された電極板を備えてなり、該電極板が他のセル部材とともに積層されて電解セルが構成され、且つ前記貫通孔により電解セルの電極室とは区画された流路が電解セルの積層方向に形成されてなる水素酸素発生装置において、
前記電極板には流路と電極室とを流通可能とする経路が凹設され、
且つ該経路には複数の溝が形成された受圧材が装着されたことにより、
該電極板と、隣接する他のセル部材とが面一に接するように構成されたことを特徴とする水素酸素発生装置。
An electrode plate having a through hole formed in a peripheral portion thereof is provided, and the electrode plate is laminated with another cell member to form an electrolytic cell, and is separated from an electrode chamber of the electrolytic cell by the through hole. In the hydrogen oxygen generator in which the flow path is formed in the lamination direction of the electrolytic cell,
A path that allows the flow path and the electrode chamber to flow through the electrode plate is recessed,
And, by installing a pressure receiving material having a plurality of grooves in the path,
A hydrogen oxygen generator, wherein the electrode plate and another adjacent cell member are configured to be in contact with each other.
周縁部に貫通孔が穿設された電極板を備えてなり、該電極板が他のセル部材とともに積層されて電解セルが構成され、且つ前記貫通孔により電解セルの電極室とは区画された流路が電解セルの積層方向に形成されてなる水素酸素発生装置において、
前記電極板には流路と電極室とを流通可能とする経路が凹設され、
且つ該経路には、プレス加工により突出部の形成された受圧材が装着されたことにより、
該電極板と、隣接する他のセル部材とが面一に接するように構成されたことを特徴とする水素酸素発生装置。
An electrode plate having a through hole formed in a peripheral portion thereof is provided, and the electrode plate is laminated with another cell member to form an electrolytic cell, and is separated from an electrode chamber of the electrolytic cell by the through hole. In the hydrogen oxygen generator in which the flow path is formed in the lamination direction of the electrolytic cell,
A path that allows the flow path and the electrode chamber to flow through the electrode plate is recessed,
In addition, the pressure receiving member having the protruding portion formed by pressing is mounted on the path,
A hydrogen oxygen generator, wherein the electrode plate and another adjacent cell member are configured to be in contact with each other.
JP2003082700A 2002-03-25 2003-03-25 Hydrogen/oxygen generator Pending JP2004002979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082700A JP2004002979A (en) 2002-03-25 2003-03-25 Hydrogen/oxygen generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002083956 2002-03-25
JP2003082700A JP2004002979A (en) 2002-03-25 2003-03-25 Hydrogen/oxygen generator

Publications (1)

Publication Number Publication Date
JP2004002979A true JP2004002979A (en) 2004-01-08

Family

ID=30445916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082700A Pending JP2004002979A (en) 2002-03-25 2003-03-25 Hydrogen/oxygen generator

Country Status (1)

Country Link
JP (1) JP2004002979A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255029A (en) * 2009-04-22 2010-11-11 Honda Motor Co Ltd Electrolytic apparatus
JP2011149075A (en) * 2010-01-25 2011-08-04 Honda Motor Co Ltd Water electrolysis equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255029A (en) * 2009-04-22 2010-11-11 Honda Motor Co Ltd Electrolytic apparatus
JP2011149075A (en) * 2010-01-25 2011-08-04 Honda Motor Co Ltd Water electrolysis equipment

Similar Documents

Publication Publication Date Title
CA2497018C (en) Fuel cell
US7759014B2 (en) Fuel cell having a seal member
US6261711B1 (en) Sealing system for fuel cells
US7977003B2 (en) Fuel cell
JP2008536258A (en) Arrangement of flow field plate
US20090042075A1 (en) Fuel Cell Stack
GB2535242A (en) Fuel cell stack
JP2010009979A (en) Fuel cell stack
US7344794B2 (en) Fuel cell with deformable seal members
JP2003229144A (en) Fuel cell
KR20070086616A (en) Fuel cell system
JP2004002979A (en) Hydrogen/oxygen generator
US20120171592A1 (en) Unit cell of fuel cell stack and fuel cell stack having the unit cell
JP2009170286A (en) Fuel cell
JP2005108506A (en) Fuel cell
JP4981251B2 (en) Membrane electrochemical generator
JP2005071955A (en) Fuel cell
JP6204328B2 (en) Fuel cell stack
JP2004335179A (en) Fuel cell
JP6144647B2 (en) Fuel cell stack
JP2014086263A (en) Fuel cell module
JP2007234405A (en) Fuel cell stack
JP6204309B2 (en) Fuel cell
JP4701304B2 (en) Fuel cell
JP2006100087A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060331