JP2004002696A - Grease composition - Google Patents

Grease composition Download PDF

Info

Publication number
JP2004002696A
JP2004002696A JP2003046004A JP2003046004A JP2004002696A JP 2004002696 A JP2004002696 A JP 2004002696A JP 2003046004 A JP2003046004 A JP 2003046004A JP 2003046004 A JP2003046004 A JP 2003046004A JP 2004002696 A JP2004002696 A JP 2004002696A
Authority
JP
Japan
Prior art keywords
grease
inorganic compound
metal
amount
grease composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003046004A
Other languages
Japanese (ja)
Inventor
Atsushi Yokouchi
横内 敦
Hideki Koizumi
小泉 秀樹
Kenichi Iso
磯 賢一
Michiharu Naka
中 道治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003046004A priority Critical patent/JP2004002696A/en
Publication of JP2004002696A publication Critical patent/JP2004002696A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grease composition having peeling resistance superior to those of conventional grease compositions. <P>SOLUTION: The grease composition is obtained by blending a base oil having a dynamic viscosity at 40°C of 10-400 mm<SP>2</SP>/s with 10-35 wt.%, based on the total grease, a thickening agent comprising a metal soap compound or a urea compound and 0.05-15 wt.%, based on the total grease, and an inorganic compound filler selected from a metal oxide, a clay mineral, a metal nitride and a metal carbide, having a particle diameter of 2 μm or smaller. The composition forms a grease film having a damping effect enhanced as compared with compositions wherein the amount of the inorganic compound blended is less than 0.05 wt.% based on the total grease. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はグリース組成物に関し、特にオルタネータ、カーエアコン用電磁クラッチ、中間プーリ、電動ファンモータ、水ポンプ等の自動車電装部品、エンジン補機等の転がり軸受に好適な耐はくり性を向上させたグリース組成物に関する。
【0002】
【従来の技術】
自動車や各種動力装置の回転運動箇所、例えばオルタネータ、カーエアコン用電磁クラッチ、中間プーリ、電動ファンモータ、水ポンプ等の自動車電装部品やエンジン補機等には、一般に転がり軸受が使用される。
図1は転がり軸受の一種である接触ゴムシール付密閉深溝玉軸受を示す要部断面図であるが、図示されるように、外周面に内輪軌道1を有する内輪2と、内周面に外輪軌道3を有する外輪4とを同心に配置し、内輪軌道1と外輪軌道3との間に保持器7を会して複数個の転動体(玉)5を転動自在に設けることで構成される。また、外輪4の両端部内周面には、それぞれ円輪状のシール6の外周縁を係止し、両シール6によってグリース(図示省略)を封じ込めるとともに、外部からの塵芥の進入や、軸受内部で発生したダストが外部に漏洩するのを防止している。
【0003】
また、自動車は小型軽量化を目的としたFF車の普及により、更には居住空間拡大の要望により、エンジンルーム空間の減少を余儀なくされ、前記に挙げたような電装部品、エンジン補機の小型、軽量化がよりいっそう進められている。加えて、前記各部品にも高性能、高出力化がますます求められている。しかし、小型化により出力の低下は避けられず、例えばオルタネータやカーエアコン用電磁クラッチでは、高速化することにより出力の低下分を補っており、それに伴って中間プーリーも同様に高速化することになる。
更に、静粛性向上の要望によりエンジンルームの密閉化が進み、エンジンルーム内の高温化が促進されるため、前記各部品には高温に耐え得ることも必要となっている。
【0004】
一方、自動車用転がり軸受に使用されるグリースには、従来より軸受潤滑寿命が長いこと、グリース漏れが少ないこと、低温性能に優れること、錆止め性能に優れること、軸受音響性能に優れること等主として潤滑性に関する要求がなされてきている。この点に関して、例えば特開平3−79698号、特開平5−140576号および特開平6−17079号各公報には、高温・高速条件下における軸受潤滑寿命に優れる増ちょう剤として末端がシクロヘキシル基主体のジウレア化合物が開示されている。
しかし、前述したような高速化や高性能化に伴い、転がり軸受の軌道面(図1参照;符号1、3)には高荷重が周期的に加わることとなり、それによるはくり防止が新たな重要課題となっている。このはくり防止効果に関して、前記各公報に開示された末端がシクロヘキシル基主体のジウレア化合物を増ちょう剤とするグリース組成物は、何れも早期にはくりを起こし、実用には至っていない。
これに対して、はくり防止を目的とした高速転がり軸受用長寿命グリースの開発も行われており、例えば特開平5−98280号、特開平5−194979号および特開平5−263091号各公報には、増ちょう剤として末端が芳香族系炭化水素基主体のジウレア化合物を用いたグリース組成物が開示されているが、更なる耐はくり性の向上が望まれている。
【0005】
【発明が解決しようとする課題】
上記のように、従来のグリース組成物は増ちょう剤を選定することにより耐はくり性を得ているが、増ちょう剤の選定だけでは自ずと限界があり、更なる向上には応え得るものではない。
本発明は上記事情に鑑みてなされたものであり、従来以上に優れた耐はくり性を備えたグリース組成物を提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、はくりが発生する機構に関して研究を重ねた結果、はくりは軸受の共振等による負荷の増加と外輪が変形することによって発生する曲げ応力との相乗作用によって起こり、グリースによる軸受はくり寿命の延長は、転動体と軌道面に十分保持されたグリース膜がダンピング効果を示し、その結果共振時の振動レベルや最大転動体荷重が軽減されることによるものと考察した(NSKテクニカルジャーナルNo.656,1ページ、’93)。そして、グリース膜のダンピング効果を増大させることで、はくり防止効果を向上させることができることに着目した。
グリース膜の形成能力を大きくし、衝撃荷重に対するダンピング効果を増大させるためには、増ちょう剤が形成するゲル構造を強化すればよく、そのための手段として、無機系化合物充填剤をグリース組成物に配合して前記ゲル構造を補強する方法が効果的であるとの結論を得た。
【0007】
本発明は、このような知見に基づくものである。即ち、上記の目的は、本発明の、
(1)40℃における動粘度が10〜400mm/sである基油に、金属石けん系化合物またはウレア化合物からなる増ちょう剤をグリース全量の10〜35wt%及び金属酸化物、粘土鉱物、金属窒化物、金属炭化物から選択される粒径2μm以下の無機系化合物充填剤をグリース全量の0.05〜15wt%となるようにそれぞれ配合してなり、前記無機系化合物充填剤の配合量がグリース全量の0.05wt%未満の場合よりもダンピング効果が増大したグリース膜を形成することを特徴とするグリース組成物
(2)40℃における動粘度が10〜400mm/sである基油に、金属石けん系化合物またはウレア化合物からなる増ちょう剤をグリース全量の10〜35wt%及び金属酸化物、粘土鉱物、金属窒化物、金属炭化物から選択される粒径2μm以下の無機系化合物充填剤をグリース全量の0.05〜15wt%となるようにそれぞれ配合してなり、前記無機系化合物充填剤の配合量がグリース全量の0.05wt%未満の場合よりもはくり防止性能を向上させたことを特徴とするグリース組成物
により達成される。
【0008】
【発明の実施の形態】
以下、本発明のグリース組成物に関してより詳細に説明する。
〔無機系化合物充填剤〕
(組成)
上述の通り、増ちょう剤が形成するゲル構造を補強する材料となれば良く、特に制約はない。望ましくは、それ自身増ちょう効果を示す化合物であれば、補強効果はより大きい。
具体的には、SiO2 、Al2 3 、MgO、TiO2 、PZT等の金属酸化物や、ベントナイト、スメクタイト、雲母等の(合成)粘土鉱物、Si3 4 、ZrN、CrN、TiAlN等の金属窒化物、SiC、TiC、WC等の金属炭化物を挙げることができる。また、これらは基油や増ちょう剤との親和性を改善するため、表面を親油性に改質したものを用いても良い。上記に挙げた無機系化合物の中では、それ自身増ちょう作用を備える金属酸化物や粘土鉱物が好ましい。
【0009】
(粒子径)
転がり軸受用グリース組成物として、支障をきたさない程度の粒径である。転がり軸受では、一般的に粒子径がおよそ2μmを超える粒子は異物(ゴミ)として作用し、硬い粒子の場合には軸受軌道や転動体表面の摩耗を促進し、軸受の早期損傷の原因となる。また、軸受音響特性を悪くする場合がある。従って、粒子径2μm以下が望ましい。
さらに、軸受潤滑寿命を考慮すれば、用いる粒子径が基油の油膜より小さいことが望ましい。一般的に、軸受が使用される条件で形成される基油の油膜厚さは約0.2μmであるため、より好ましくはこれ以下の粒径が望ましい。また、形状は球形に近いほど好ましいが、上記の大きさの範囲であれば、多面体(立方体や直方体等)や極端には針状でも構わない。
【0010】
(濃度)
本発明のグリース組成物は、密封転がり軸受に使用されることを考慮すれば、その混和ちょう度としてNLGIでNo3からNo1に調整されることが望ましく、増ちょう剤量はグリース全量に対して10〜35wt%配合される。これに対して無機系化合物充填剤は、グリース全量に対して0.05〜15wt%配合される。
これより少ないと補強効果が十分得られないし、これより多いと充填剤の粒子数が増大し、軸受音響特性や、摩耗が増大して軸受潤滑寿命へ悪影響を及ぼすことが懸念される。さらに、補強効果をより確かにし、潤滑寿命への悪影響を考慮するなら、0.1〜10wt%が望ましい。
【0011】
〔金属石けん系、ウレア化合物系増ちょう剤〕
ゲル構造を形成し、基油をゲル構造中に保持する能力があれば、特に制約はない。例えばLi、Na等からなる金属石けん、Li、Na、Ba、Ca等から選ばれる複合化金属石けん等の金属石けん類、ジウレアやポリウレア等のウレア化合物を適宜選択して使用できる。金属石けんは音響特性は良好であるが、漏洩性を考慮すれば、複合化金属石けんが好ましい。また、特に耐熱性を必要とする場合には、ウレア化合物が好ましい。
増ちょう剤はその分子または結晶が鎖状に連なってグリース組成物中に一様に分散してゲル構造を形成するが、更に無機系化合物充填剤がこれら増ちょう剤分子や結晶間に入り込むことで、ゲル構造を強化するものと考えられる。従って、はくり防止効果を備える増ちょう剤(例えば、前記特開平5−98280号、特開平5−194979号および特開平5−263091号各公報の末端が芳香族系炭化水素基主体のジウレア化合物)を配合したグリース組成物では、はくり防止効果が更に向上し、はくり防止効果は無いものの、潤滑性に優れた増ちょう剤(例えば、前記特開平3−79698号、特開平5−140576号および特開平6−17079号各公報の末端がシクロヘキシル基主体のジウレア化合物)を配合したグリース組成物では、潤滑性に加えてはくり防止効果が付与される。
【0012】
〔基油〕
特に限定されず、通常、潤滑油の基油として使用されている油は全て使用することができる。好ましくは、低温流動性不足による起動トルクの増大や、高温で油膜が形成され難いために起こる焼付きを割けるために、40℃における動粘度が、好ましくは10〜400mm2 /s、特に好ましくは20〜250mm2 /s、さらに好ましくは40〜150mm2 /sである基油が望ましい。
この動粘度は、通常ガラス式毛管式粘度計により測定した際の値を基準とすることができる。また、軸受潤滑寿命の延長を計るためには、エステル油、特にポリオールエステル油を基油の10wt%以上含有させることが望ましい。
【0013】
具体例としては、鉱油系、合成油系または天然油系の潤滑基油などが挙げられる。前記鉱油系潤滑基油としては、鉱油を減圧蒸留、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、硫酸洗浄、白土精製、水素化精製等を、適宜組み合わせて精製したものを用いることができる。前記合成油系潤滑基油としては、炭化水素系油、芳香族系油、エステル系油、エーテル系油等が挙げられる。前記炭化水素系油としては、ノルマルパラフィン、イソパラフィン、ポリブテン、ポリイソブチレン、1−デセンオリゴマー、1−デセンとエチレンとのコオリゴマーなどのポリ−α−オレフィンまたはこれらの水素化物などが挙げられる。前記芳香族系油としては、モノアルキルベンゼン、ジアルキルベンゼン、ポリアルキルベンゼンなどのアルキルベンゼン、あるいはモノアルキルナフタレン、ジアルキルナフタレン、ポリアルキルナフタレンなどのアルキルナフタレンなどが挙げられる。前記エステル系油としては、ジブチルセバケート、ジ−2−エチルヘキシルセバケート、ジオクチルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジトリデシルグルタレート、メチル・アセチルリシノレートなどのジエステル、あるいはトリオクチルトリメリテート、トリデシルトリメリテート、テトラオクチルピロメリテートなどの芳香族エステル油、さらにはトリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール−2−エチルヘキサノエート、ペンタエリスリトールベラルゴネートなどのポリオールエステル、さらにまた、多価アルコールと二塩基酸・一塩基酸の混合脂肪酸とのオリゴエステルであるコンプレックスエステルなどが挙げられる。前記エーテル系油としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールモノエーテル、ポリプロピレングリコールモノエーテルなどのポリグリコール、あるいはモノアルキルトリフェニルエーテル、アルキルジフェニルエーテル、ジアルキルジフェニルエーテル、ペンタフェニルエーテル、テトラフェニルエーテル、モノアルキルテトラフェニルエーテル、ジアルキルテトラフェニルエーテルなどのフェニルエーテルなどが挙げられる。その他の合成潤滑基油としてはトリクレジルフォスフェート、シリコーン油、パーフルオロアルキルエーテル油などが挙げられる。これらの基油は、単独または混合物として用いることができ、上述した好ましい動粘度に調製される。
【0014】
〔その他の添加剤〕
本発明のグリース組成物は、前記無機系化合物充填剤、増ちょう剤及び基油を必須成分とするものであるが、必要に応じて以下の添加剤を単独または複数組み合わせて含有させても良い。その配合量は、全体としてグリース全量の20wt%以下である。

Figure 2004002696
【0015】
〔製法〕
本発明のグリース組成物を調製するには、基油中で増ちょう剤を反応させて得られる。無機系化合物充填剤は、前記の反応時に配合することが好ましい。
また、予め増ちょう剤でグリース組成物を得た後、無機系化合物充填剤を混合して得ることも可能である。ただし、ニーダやロール等で無機系化合物充填剤を添加した後十分攪拌し、均一分散させる必要がある。この処理を行う時は、加熱するのも有効である。
尚、上記製法において、無機系化合物充填剤以外の添加剤は、無機系化合物充填剤と同時に添加することが工程上好ましい。
【0016】
〔実施例〕
以下に、実施例および比較例によりさらに具体的に説明するが、本発明はこれらによりなんら限定されるものではない。
グリース組成を表4に示す。また、増ちょう剤、基油、無機系化合物充填剤の各組成を表1〜表3に示す。
表1においてMDIは4,4’−ジフェニルメタンジイソシアネートの略であり、ウレア化合物は該MDI1モルに対して表中のアミンを合計で2モル反応させたものである。また、配合番号の小さいものほど、耐はくり性に優れる傾向にある。
また、表3中の無機系化合物充填剤の平均粒径は、それぞれ種類1(Al2 3 )は13nm、種類2(MgO−1)は10nm、種類3(MgO−2)は200nm、種類4(TiO2 )は21nm、種類5(スメクタイト)は約50nmである。
増ちょう剤、無機系化合物充填剤及び基油の種類を表4及び表5に示す如く変えてグリース組成物を作成した。尚、配合量は、増ちょう剤、無機系化合物充填剤及び基油の総量を970gとし、その他アミン系酸化防止剤、スルフォネート系錆止め剤を総量で30g加え、総量1000gのグリース組成物とした。そして、これらのグリース組成物につき、以下に示す試験を行い、その結果を表4及び表5に示した。
【0017】
(音響試験)
接触ゴムシール付き密封深溝玉軸受(内径17mm、外径47mm、幅14mm)内に2.4gの試験グリース組成物を封入し、1800rpmで30秒間回転させた後の音響を測定した。測定結果をアンデロン値(数値)で表4に示すと共に、通常の判定基準である6アンデロン値以下を合格とした。ここで6アンデロン以下を合格としたのは、ウレア系市販グリースの音響レベルと同等以上との判断からである。試験回数は2回である。
【0018】
(軸受はくり寿命試験)
はくり寿命試験は、軸受を急加減速させることで評価した。即ち、接触ゴムシール付き密封深溝玉軸受(内径12mm、外径37mm、幅12mm、プラスチック保持器付き)に試験グリース組成物を1.0g封入し、外輪回転速度1000rpm〜6000rpmの繰り返し、室温雰囲気下、ラジアル荷重120kgfの条件で軸受を連続回転させ、軸受内輪転走面に剥離が生じ、振動が増大して停止するまでの時間を測定した。試験回数は4回である。
本試験は、振動が発生するまでの時間が500hr以上であれば良好とみなし、試験は500hrで中止した。
【0019】
〔高温・高速焼付き試験〕
(軸受潤滑寿命試験)
実施例1〜4及び比較例1〜4に関して、更に軸受潤滑寿命を調べるために高温・高速焼付き試験を行った。
試験方法は、接触ゴムシール付き密封深溝玉軸受(内径17mm、外径47mm、幅14mm、プラスチック保持器付き)に試験グリース組成物2.3gを封入し、内輪回転速度22000rpm、軸受外輪温度150℃、ラジアル荷重10kgf、アキシアル荷重20kgfの条件で軸受を連続回転させた。1000hrを耐久試験の指標とし、軸受外輪温度が165℃以上まで上昇した時を焼付きとし、焼付きまでの時間を測定した。なお、1000hr経過したものは良好とみなし、試験を中止した。試験回数は3回である。
【0020】
【表1】
Figure 2004002696
【0021】
【表2】
Figure 2004002696
【0022】
【表3】
Figure 2004002696
【0023】
【表4】
Figure 2004002696
【0024】
【表5】
Figure 2004002696
【0025】
以上の試験結果から、下記の考察が得られた。
比較例のグリース組成物は、増ちょう剤の配合番号の小さいものほど耐はくり性に優れる。これらに本発明の無機系化合物充填剤を配合すると、何れの場合も初期音響に悪影響を及ぼすことなく、軸受はくり寿命が延長することが確認された。更に、軸受潤滑寿命に関しても、実施例1〜4のグリース組成物は無機系化合物充填剤を配合しない場合(比較例1〜4)に比べ、同等以上の結果が得られた。
また、比較例6から、無機系化合物充填剤の配合量が本発明で特定した範囲よりも多いと音響特性が極端に悪くなり、比較例7から、無機系化合物充填剤の配合量が本発明で特定した範囲よりも少ないと軸受はくり寿命に効果が無いことが確認された。
更に、比較例8として、粒径が本発明で特定した範囲外である平均粒径5μmのマグネタイト(Fe3 4 )粒子を用いて表5に示す如くグリース組成物を作成し、上記と同様の音響試験及び軸受はくり寿命試験を行ったところ、初期音響特性及び軸受はくり寿命とも満足できる結果が得られなかった。
【0026】
【発明の効果】
以上説明したように、本発明によれば、はくり防止効果を備える増ちょう剤を配合したグリース組成物では、はくり防止効果が更に向上し、はくり防止効果は無いものの、潤滑性に優れた増ちょう剤を配合したグリース組成物では、潤滑性に加えてはくり防止効果が付与される。
このように、グリース組成物が元来備える性能に、はくり防止作用を付加させることができ、特にオルタネータ、カーエアコン用電磁クラッチ、中間プーリ、電動ファンモータ、水ポンプ等の自動車電装部品、エンジン補機等の転がり軸受に好適に使用できる。
【図面の簡単な説明】
【図1】転がり軸受の一種である接触ゴムシール付密閉深溝玉軸受を示す要部断面図である。
【符号の説明】
1内輪軌道
2内輪
3外輪軌道
4外輪4
5転動体(玉)
6シール板
7保持器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a grease composition, and particularly to an alternator, an electromagnetic clutch for a car air conditioner, an intermediate pulley, an electric fan motor, an automobile electrical component such as a water pump, and improved peeling resistance suitable for a rolling bearing of an engine auxiliary machine. It relates to a grease composition.
[0002]
[Prior art]
2. Description of the Related Art Rolling bearings are generally used for rotating parts of automobiles and various power devices, for example, automotive electrical components such as alternators, electromagnetic clutches for car air conditioners, intermediate pulleys, electric fan motors, water pumps, and engine auxiliary equipment.
FIG. 1 is a sectional view of a principal part showing a sealed deep groove ball bearing with a contact rubber seal, which is a kind of a rolling bearing. As shown, an inner ring 2 having an inner ring raceway 1 on an outer peripheral surface and an outer ring raceway on an inner peripheral surface are shown. An outer race 4 having a plurality of rolling elements (balls) 3 is provided concentrically with an inner raceway 1 and an outer raceway 3 and a plurality of rolling elements (balls) 5 are rotatably provided. . In addition, the outer peripheral edge of a ring-shaped seal 6 is engaged with the inner peripheral surface of both ends of the outer ring 4 to seal grease (not shown) by the two seals 6, and to prevent dust from entering from the outside and the inside of the bearing. The generated dust is prevented from leaking to the outside.
[0003]
In addition, the spread of FF vehicles for the purpose of reducing the size and weight of automobiles, and furthermore, the demand for expansion of living space has necessitated a reduction in engine room space. Weight reduction is being further promoted. In addition, the above components are increasingly required to have high performance and high output. However, a reduction in output is inevitable due to miniaturization.For example, in an alternator or an electromagnetic clutch for a car air conditioner, the reduction in output is compensated for by increasing the speed, and the intermediate pulley is also increased accordingly. Become.
Furthermore, since the demand for improved quietness increases the hermeticity of the engine room and promotes the increase in the temperature in the engine room, it is necessary that each of the components can withstand high temperatures.
[0004]
On the other hand, grease used for rolling bearings for automobiles mainly has lubrication life such as longer bearing lubrication life, less grease leakage, excellent low temperature performance, excellent rust prevention performance, and excellent bearing acoustic performance. Demands on gender have been made. Regarding this point, for example, JP-A-3-79698, JP-A-5-140576 and JP-A-6-17079 each disclose a thickening agent having a terminal of cyclohexyl group as a thickener having an excellent bearing lubrication life under high temperature and high speed conditions. Are disclosed.
However, with the increase in speed and performance as described above, a high load is periodically applied to the raceway surface of the rolling bearing (see FIG. 1; reference numerals 1 and 3), thereby preventing the peeling. It is an important issue. Regarding the effect of preventing peeling, any of the grease compositions disclosed in the above publications using a diurea compound having a cyclohexyl-terminated terminal as a thickener causes peeling at an early stage and has not been put to practical use.
On the other hand, long-life greases for high-speed rolling bearings for the purpose of preventing peeling have also been developed. For example, JP-A-5-98280, JP-A-5-1941979 and JP-A-5-263091 disclose such greases. Discloses a grease composition using a diurea compound mainly composed of an aromatic hydrocarbon group at the end as a thickener, but further improvement in peeling resistance is desired.
[0005]
[Problems to be solved by the invention]
As described above, the conventional grease composition has obtained peeling resistance by selecting a thickener, but the selection of the thickener alone has its own limit, and it cannot respond to further improvement. Absent.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a grease composition having more excellent peeling resistance than before.
[0006]
[Means for Solving the Problems]
The present inventors have conducted research on the mechanism of peeling, and as a result, the peeling is caused by a synergistic effect of an increase in load due to resonance of the bearing and a bending stress generated by deformation of the outer ring, and due to grease. It was considered that the extension of the bearing stripping life was due to the fact that the rolling elements and the grease film sufficiently held on the raceway surface exhibited a damping effect, and as a result, the vibration level at resonance and the maximum rolling element load were reduced (NSK). Technical Journal No. 656, page 1, '93). And it paid attention to the fact that the peeling prevention effect can be improved by increasing the damping effect of the grease film.
In order to increase the ability to form a grease film and increase the damping effect against an impact load, the gel structure formed by the thickener may be strengthened.As a means for that, an inorganic compound filler is added to the grease composition. It was concluded that the method of blending to reinforce the gel structure was effective.
[0007]
The present invention is based on such findings. That is, the above object is achieved by the present invention,
(1) To a base oil having a kinematic viscosity at 40 ° C of 10 to 400 mm 2 / s, a thickener composed of a metal soap compound or a urea compound is added in an amount of 10 to 35 wt% of the entire grease, and a metal oxide, a clay mineral, or a metal is used. An inorganic compound filler having a particle size of 2 μm or less selected from nitrides and metal carbides is blended so as to be 0.05 to 15 wt% of the total amount of the grease, and the amount of the inorganic compound filler is grease. A grease composition (2) characterized in that a grease film having an increased damping effect is formed as compared with a case in which the total amount is less than 0.05 wt%, to a base oil having a kinematic viscosity at 40 ° C of 10 to 400 mm 2 / s, A thickener consisting of a metallic soap-based compound or a urea compound is used in an amount of 10 to 35% by weight based on the total amount of grease, and metal oxides, clay minerals, metal nitrides, and metal carbides. An inorganic compound filler having a particle diameter of 2 μm or less selected from the group consisting of 0.05 to 15 wt% of the total amount of the grease, and the compounding amount of the inorganic compound filler is 0.05 wt% of the total amount of the grease. %, Which is achieved by a grease composition characterized in that the anti-peeling performance is improved as compared with the case of less than 10%.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the grease composition of the present invention will be described in more detail.
(Inorganic compound filler)
(composition)
As described above, any material may be used as long as it is a material for reinforcing the gel structure formed by the thickener, and there is no particular limitation. Desirably, a compound exhibiting a thickening effect by itself has a larger reinforcing effect.
Specifically, metal oxides such as SiO 2 , Al 2 O 3 , MgO, TiO 2 , PZT, (synthetic) clay minerals such as bentonite, smectite, mica, Si 3 N 4 , ZrN, CrN, TiAlN, etc. And metal carbides such as SiC, TiC, and WC. These may be those whose surface is modified to be lipophilic in order to improve the affinity with the base oil and the thickener. Among the inorganic compounds mentioned above, metal oxides and clay minerals having a thickening action by themselves are preferred.
[0009]
(Particle size)
The particle size of the grease composition for a rolling bearing does not cause any trouble. In a rolling bearing, generally, particles having a particle diameter of more than about 2 μm act as foreign matter (dust). In the case of hard particles, wear of the bearing raceway and the surface of the rolling element is promoted, causing early damage to the bearing. . Further, the acoustic characteristics of the bearing may be deteriorated. Therefore, the particle diameter is desirably 2 μm or less.
Further, in consideration of the bearing lubrication life, it is desirable that the particle size used is smaller than the oil film of the base oil. Generally, the oil film thickness of the base oil formed under the conditions in which the bearing is used is about 0.2 μm, so that a particle diameter smaller than this is more desirable. The shape is preferably closer to a spherical shape, but may be a polyhedron (cube, rectangular parallelepiped, or the like) or extremely needle-like as long as the size is within the above range.
[0010]
(concentration)
Considering that the grease composition of the present invention is used for a sealed rolling bearing, it is desirable that the mixing consistency is adjusted from No. 3 to No. 1 by NLGI, and the thickener amount is 10 to the total amount of the grease. 3535 wt% is blended. On the other hand, the inorganic compound filler is incorporated in an amount of 0.05 to 15% by weight based on the total amount of the grease.
If the amount is less than this, a sufficient reinforcing effect cannot be obtained, and if it is more than this, there is a concern that the number of particles of the filler increases, the bearing's acoustic characteristics and wear increase, and the bearing lubrication life is adversely affected. Further, if the reinforcing effect is further ensured and the adverse effect on the lubrication life is taken into consideration, 0.1 to 10% by weight is desirable.
[0011]
(Metal soap, urea compound thickener)
There is no particular limitation as long as it has the ability to form a gel structure and retain the base oil in the gel structure. For example, metal soaps such as Li, Na, etc., metal soaps such as composite metal soaps selected from Li, Na, Ba, Ca, etc., and urea compounds such as diurea and polyurea can be appropriately selected and used. Metallic soap has good acoustic properties, but in view of leakiness, composite metal soap is preferable. In particular, when heat resistance is required, a urea compound is preferable.
The thickener has its molecules or crystals connected in a chain and is uniformly dispersed in the grease composition to form a gel structure.However, the inorganic compound filler may enter between these thickener molecules and crystals. Thus, it is considered that the gel structure is strengthened. Accordingly, thickeners having an effect of preventing peeling (for example, diurea compounds having an aromatic hydrocarbon group-terminated terminal as disclosed in JP-A-5-98280, JP-A-5-194977 and JP-A-5-263091) ) Is further improved in peeling-preventing effect and has no lubricating effect, but a thickener excellent in lubricity (for example, the above-mentioned JP-A-3-79698 and JP-A-5-140576). A grease composition containing a diurea compound mainly composed of a cyclohexyl group as described in JP-A-6-17079 and JP-A-6-17079 has a lubricating property and an effect of preventing peeling.
[0012]
(Base oil)
There is no particular limitation, and all oils that are usually used as base oils for lubricating oils can be used. Preferably, the kinematic viscosity at 40 ° C. is preferably 10 to 400 mm 2 / s, particularly preferably 10 to 400 mm 2 / s, in order to increase the starting torque due to lack of low-temperature fluidity and to break the seizure caused by the difficulty of forming an oil film at high temperatures. The base oil is preferably 20 to 250 mm 2 / s, more preferably 40 to 150 mm 2 / s.
This kinematic viscosity can be based on a value usually measured by a glass capillary viscometer. Further, in order to extend the bearing lubrication life, it is desirable that the ester oil, particularly the polyol ester oil, be contained at 10 wt% or more of the base oil.
[0013]
Specific examples include mineral, synthetic or natural oil-based lubricating base oils. As the mineral oil-based lubricating base oil, a refined one obtained by appropriately combining mineral oil under reduced pressure distillation, solvent removal, solvent extraction, hydrocracking, solvent dewaxing, sulfuric acid washing, clay purification, hydrorefining, and the like is used. Can be. Examples of the synthetic oil-based lubricating base oil include a hydrocarbon-based oil, an aromatic-based oil, an ester-based oil, and an ether-based oil. Examples of the hydrocarbon-based oil include normal paraffin, isoparaffin, polybutene, polyisobutylene, 1-decene oligomer, poly-α-olefin such as co-oligomer of 1-decene and ethylene, and hydrides thereof. Examples of the aromatic oil include alkylbenzene such as monoalkylbenzene, dialkylbenzene and polyalkylbenzene, and alkylnaphthalene such as monoalkylnaphthalene, dialkylnaphthalene and polyalkylnaphthalene. Examples of the ester-based oil include dibutyl sebacate, di-2-ethylhexyl sebacate, dioctyl adipate, diisodecyl adipate, ditridecyl adipate, ditridecyl glutarate, diesters such as methyl acetyl ricinolate, or trioctyl trimellitate, Aromatic ester oils such as tridecyl trimellitate and tetraoctyl pyromellitate, and polyols such as trimethylolpropane caprylate, trimethylolpropaneperargonate, pentaerythritol-2-ethylhexanoate, and pentaerythritol belargonate Esters, and complex esters, which are oligoesters of a polyhydric alcohol and a mixed fatty acid of a dibasic acid / monobasic acid, and the like are also included. Examples of the ether-based oil include polyglycols such as polyethylene glycol, polypropylene glycol, polyethylene glycol monoether, and polypropylene glycol monoether, or monoalkyl triphenyl ether, alkyl diphenyl ether, dialkyl diphenyl ether, pentaphenyl ether, tetraphenyl ether, monoalkyl And phenyl ethers such as tetraphenyl ether and dialkyltetraphenyl ether. Other synthetic lubricating base oils include tricresyl phosphate, silicone oil, perfluoroalkyl ether oil and the like. These base oils can be used alone or as a mixture, and are adjusted to the preferable kinematic viscosity described above.
[0014]
[Other additives]
The grease composition of the present invention contains the above-mentioned inorganic compound filler, thickener and base oil as essential components, but may contain the following additives alone or in combination as necessary. . The compounding amount is 20 wt% or less of the total amount of the grease as a whole.
Figure 2004002696
[0015]
(Production method)
The grease composition of the present invention is prepared by reacting a thickener in a base oil. It is preferable to mix the inorganic compound filler during the above-mentioned reaction.
Further, it is also possible to obtain the grease composition in advance with a thickener, and then to mix and obtain an inorganic compound filler. However, after adding the inorganic compound filler with a kneader or a roll, it is necessary to sufficiently stir and uniformly disperse the filler. When performing this process, heating is also effective.
In addition, in the said manufacturing method, it is preferable in a process that an additive other than an inorganic compound filler is added simultaneously with an inorganic compound filler.
[0016]
〔Example〕
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
Table 4 shows the grease composition. Tables 1 to 3 show the compositions of the thickener, the base oil, and the inorganic compound filler.
In Table 1, MDI is an abbreviation for 4,4'-diphenylmethane diisocyanate, and the urea compound is obtained by reacting a total of 2 moles of the amines in the table with 1 mole of the MDI. Also, the smaller the compound number, the better the peeling resistance.
The average particle diameters of the inorganic compound fillers in Table 3 are 13 nm for Type 1 (Al 2 O 3 ), 10 nm for Type 2 (MgO-1), 200 nm for Type 3 (MgO-2), and 200 nm for Type 3, respectively. 4 (TiO 2 ) is 21 nm, and type 5 (smectite) is about 50 nm.
Grease compositions were prepared by changing the types of the thickener, the inorganic compound filler and the base oil as shown in Tables 4 and 5. The total amount of the thickener, the inorganic compound filler, and the base oil was 970 g, and other amine-based antioxidants and sulfonate-based rust inhibitors were added in a total amount of 30 g to give a grease composition having a total amount of 1000 g. The following tests were performed on these grease compositions, and the results are shown in Tables 4 and 5.
[0017]
(Acoustic test)
2.4 g of the test grease composition was sealed in a sealed deep groove ball bearing with a contact rubber seal (inner diameter 17 mm, outer diameter 47 mm, width 14 mm), and the sound after being rotated at 1800 rpm for 30 seconds was measured. The measurement results are shown in Table 4 in terms of anderon values (numerical values), and a value of 6 or less, which is a normal criterion, was regarded as acceptable. Here, the reason why the pass was 6 anderons or less was determined because the acoustic level of the urea-based commercial grease was equal to or higher than that. The number of tests is two.
[0018]
(Bearing life test)
The peeling life test was evaluated by rapidly accelerating and decelerating the bearing. That is, 1.0 g of the test grease composition is sealed in a sealed deep groove ball bearing with a contact rubber seal (inner diameter 12 mm, outer diameter 37 mm, width 12 mm, with a plastic retainer), and the outer ring rotation speed is repeated at 1000 rpm to 6000 rpm under room temperature atmosphere. The bearing was continuously rotated under the condition of a radial load of 120 kgf, and the time required for the bearing inner ring rolling surface to peel off, increase in vibration, and stop was measured. The number of tests is four.
In this test, if the time until the occurrence of vibration was 500 hours or more, the test was regarded as good, and the test was stopped at 500 hours.
[0019]
[High-temperature, high-speed seizure test]
(Bearing lubrication life test)
With respect to Examples 1 to 4 and Comparative Examples 1 to 4, a high-temperature and high-speed seizure test was performed to further examine the bearing lubrication life.
The test method was as follows: 2.3 g of the test grease composition was sealed in a sealed deep groove ball bearing with a contact rubber seal (inner diameter 17 mm, outer diameter 47 mm, width 14 mm, with plastic retainer), inner ring rotation speed 22,000 rpm, bearing outer ring temperature 150 ° C. The bearing was continuously rotated under the conditions of a radial load of 10 kgf and an axial load of 20 kgf. 1000 hr was used as an index of the durability test, and when the temperature of the bearing outer ring rose to 165 ° C. or higher, seizure was determined, and the time until seizure was measured. The test after 1000 hours was regarded as good, and the test was stopped. The number of tests is three.
[0020]
[Table 1]
Figure 2004002696
[0021]
[Table 2]
Figure 2004002696
[0022]
[Table 3]
Figure 2004002696
[0023]
[Table 4]
Figure 2004002696
[0024]
[Table 5]
Figure 2004002696
[0025]
The following considerations were obtained from the above test results.
In the grease composition of the comparative example, the smaller the compounding number of the thickener, the better the peeling resistance. It was confirmed that when the inorganic compound filler of the present invention was added thereto, the bearing life was prolonged without adversely affecting the initial sound in any case. Furthermore, with respect to the lubrication life of the bearings, the grease compositions of Examples 1 to 4 obtained results equal to or higher than those obtained when no inorganic compound filler was added (Comparative Examples 1 to 4).
Also, from Comparative Example 6, when the blending amount of the inorganic compound filler is larger than the range specified in the present invention, the acoustic characteristics become extremely poor. From Comparative Example 7, the blending amount of the inorganic compound filler is It was confirmed that if the amount was less than the range specified in, the bearing had no effect on the boring life.
Further, as Comparative Example 8, a grease composition as shown in Table 5 was prepared using magnetite (Fe 3 O 4 ) particles having an average particle size of 5 μm having a particle size outside the range specified in the present invention, and the same as above. As a result of performing the acoustic test and the bearing life test, no satisfactory results were obtained for the initial acoustic characteristics and the bearing life.
[0026]
【The invention's effect】
As described above, according to the present invention, the grease composition containing a thickener having a peeling-preventing effect further improves the peeling-preventing effect, but has no lubricating effect, but has excellent lubricity. The grease composition containing the thickener has a lubricating property and an effect of preventing peeling.
As described above, the grease composition can be provided with a peeling-preventive action to the inherent performance thereof. It can be suitably used for rolling bearings such as accessories.
[Brief description of the drawings]
FIG. 1 is a sectional view of a main part showing a sealed deep groove ball bearing with a contact rubber seal, which is a kind of a rolling bearing.
[Explanation of symbols]
1 inner raceway 2 inner race 3 outer raceway 4 outer race 4
5 rolling elements (balls)
6 seal plate 7 retainer

Claims (3)

40℃における動粘度が10〜400mm/sである基油に、金属石けん系化合物またはウレア化合物からなる増ちょう剤をグリース全量の10〜35wt%及び金属酸化物、粘土鉱物、金属窒化物、金属炭化物から選択される粒径2μm以下の無機系化合物充填剤をグリース全量の0.05〜15wt%となるようにそれぞれ配合してなり、前記無機系化合物充填剤の配合量がグリース全量の0.05wt%未満の場合よりもダンピング効果が増大したグリース膜を形成することを特徴とするグリース組成物。To a base oil having a kinematic viscosity at 40 ° C. of 10 to 400 mm 2 / s, a thickener composed of a metal soap compound or a urea compound is added in an amount of 10 to 35 wt% of the entire grease, and a metal oxide, a clay mineral, a metal nitride, An inorganic compound filler having a particle size of 2 μm or less selected from metal carbides is blended so as to be 0.05 to 15 wt% of the total amount of the grease, and the blending amount of the inorganic compound filler is 0% of the total amount of the grease. A grease composition which forms a grease film having an increased damping effect as compared with less than 0.05 wt%. 40℃における動粘度が10〜400mm/sである基油に、金属石けん系化合物またはウレア化合物からなる増ちょう剤をグリース全量の10〜35wt%及び金属酸化物、粘土鉱物、金属窒化物、金属炭化物から選択される粒径2μm以下の無機系化合物充填剤をグリース全量の0.05〜15wt%となるようにそれぞれ配合してなり、前記無機系化合物充填剤の配合量がグリース全量の0.05wt%未満の場合よりもはくり防止性能を向上させたことを特徴とするグリース組成物。To a base oil having a kinematic viscosity at 40 ° C. of 10 to 400 mm 2 / s, a thickener composed of a metal soap compound or a urea compound is added in an amount of 10 to 35 wt% of the entire grease, and a metal oxide, a clay mineral, a metal nitride, An inorganic compound filler having a particle size of 2 μm or less selected from metal carbides is blended so as to be 0.05 to 15 wt% of the total amount of the grease, and the blending amount of the inorganic compound filler is 0% of the total amount of the grease. A grease composition having improved anti-peeling performance as compared with less than 0.05 wt%. 基油が、エステル油を基油全量の10wt%以上含有し、かつ40℃における動粘度が40〜100mm/sであり、増ちょう剤がウレア化合物であることを特徴とする請求項1または2記載のグリース組成物。The base oil contains an ester oil in an amount of 10 wt% or more of the total amount of the base oil, has a kinematic viscosity at 40 ° C. of 40 to 100 mm 2 / s, and the thickener is a urea compound. 3. The grease composition according to 2.
JP2003046004A 2003-02-24 2003-02-24 Grease composition Pending JP2004002696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046004A JP2004002696A (en) 2003-02-24 2003-02-24 Grease composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046004A JP2004002696A (en) 2003-02-24 2003-02-24 Grease composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP34852095A Division JP3422347B2 (en) 1995-12-20 1995-12-20 Grease composition for rolling bearings

Publications (1)

Publication Number Publication Date
JP2004002696A true JP2004002696A (en) 2004-01-08

Family

ID=30437887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046004A Pending JP2004002696A (en) 2003-02-24 2003-02-24 Grease composition

Country Status (1)

Country Link
JP (1) JP2004002696A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394500B2 (en) 2006-02-16 2016-07-19 Ntn Corporation Grease composition, grease-enclosed bearing, and one-way clutch
JP2018119090A (en) * 2017-01-27 2018-08-02 ミネベアミツミ株式会社 Grease composition, rolling bearing and motor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113804A (en) * 1977-03-16 1978-10-04 Hitachi Ltd Grease composition
JPS5682894A (en) * 1979-12-11 1981-07-06 Toshiba Silicone Co Ltd Silicone grease for electrical contact
JPS6474294A (en) * 1987-09-17 1989-03-20 Nippon Steel Corp Production of lubricating grease
JPH01502272A (en) * 1986-12-03 1989-08-10 ペンウォルト コーポレーション Lubricant additive mixture of antimony thioantimonate and antimony trioxide
JPH03106996A (en) * 1989-09-20 1991-05-07 Hitachi Ltd Thermally conductive grease composition and computer cooling structure made by using it
JPH03217497A (en) * 1990-01-24 1991-09-25 Tokai Rika Co Ltd Grease composition
JPH044297A (en) * 1990-04-23 1992-01-08 Tokai Rika Co Ltd Lubricant for electric sliding contact device
JPH0463895A (en) * 1990-07-02 1992-02-28 Tokai Rika Co Ltd Tacky grease
JPH04279698A (en) * 1991-03-07 1992-10-05 Nippon Oil Co Ltd Grease composition for synchromesh joint
JPH05179274A (en) * 1991-12-27 1993-07-20 Tokai Rika Co Ltd Grease for sliding contact
JPH09169989A (en) * 1995-12-20 1997-06-30 Nippon Seiko Kk Grease composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113804A (en) * 1977-03-16 1978-10-04 Hitachi Ltd Grease composition
JPS5682894A (en) * 1979-12-11 1981-07-06 Toshiba Silicone Co Ltd Silicone grease for electrical contact
JPH01502272A (en) * 1986-12-03 1989-08-10 ペンウォルト コーポレーション Lubricant additive mixture of antimony thioantimonate and antimony trioxide
JPS6474294A (en) * 1987-09-17 1989-03-20 Nippon Steel Corp Production of lubricating grease
JPH03106996A (en) * 1989-09-20 1991-05-07 Hitachi Ltd Thermally conductive grease composition and computer cooling structure made by using it
JPH03217497A (en) * 1990-01-24 1991-09-25 Tokai Rika Co Ltd Grease composition
JPH044297A (en) * 1990-04-23 1992-01-08 Tokai Rika Co Ltd Lubricant for electric sliding contact device
JPH0463895A (en) * 1990-07-02 1992-02-28 Tokai Rika Co Ltd Tacky grease
JPH04279698A (en) * 1991-03-07 1992-10-05 Nippon Oil Co Ltd Grease composition for synchromesh joint
JPH05179274A (en) * 1991-12-27 1993-07-20 Tokai Rika Co Ltd Grease for sliding contact
JPH09169989A (en) * 1995-12-20 1997-06-30 Nippon Seiko Kk Grease composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394500B2 (en) 2006-02-16 2016-07-19 Ntn Corporation Grease composition, grease-enclosed bearing, and one-way clutch
JP2018119090A (en) * 2017-01-27 2018-08-02 ミネベアミツミ株式会社 Grease composition, rolling bearing and motor

Similar Documents

Publication Publication Date Title
JP3337593B2 (en) Grease composition for rolling bearings
JP4054923B2 (en) GREASE COMPOSITION FOR ROLLING BEARING AND ROLLING BEARING
US5840666A (en) Grease composition
JP2979274B2 (en) Grease composition for high-speed rolling bearings
CN1214193C (en) Rolling bearing
US6020290A (en) Grease composition for rolling bearing
JPH08113793A (en) Grease composition
JPH0379698A (en) Grease composition for high-speed rolling bearing
JP4401642B2 (en) Rolling bearings for automotive cooling fans
JP4957245B2 (en) Rolling bearing
JP2001234935A (en) Rolling bearing
JPH10273690A (en) Grease composition for rolling bearing
JP2009108263A (en) Grease composition and rolling bearing
JP3422347B2 (en) Grease composition for rolling bearings
JPH09217752A (en) Rolling bearing
JP4306650B2 (en) Rolling bearings for automotive electrical components or engine accessories
JP4188056B2 (en) Grease composition and grease-filled rolling bearing
JP2004002696A (en) Grease composition
JP2003306687A (en) Biodegradable grease composition
JP2003193080A (en) Grease composition for rolling bearing and rolling bearing
JP2006265343A (en) Antifriction bearing
JP5189273B2 (en) One-way clutch
JP2004323586A (en) Grease composition and grease-sealed rolling bearing
JP4877343B2 (en) Rolling bearing
JP2004124050A (en) Grease composition and roller ball bearing for alternator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060712