JP2004002071A - Manufacturing method and manufacturing apparatus of fertilizer raw material - Google Patents

Manufacturing method and manufacturing apparatus of fertilizer raw material Download PDF

Info

Publication number
JP2004002071A
JP2004002071A JP2002156801A JP2002156801A JP2004002071A JP 2004002071 A JP2004002071 A JP 2004002071A JP 2002156801 A JP2002156801 A JP 2002156801A JP 2002156801 A JP2002156801 A JP 2002156801A JP 2004002071 A JP2004002071 A JP 2004002071A
Authority
JP
Japan
Prior art keywords
crystal particles
raw material
fertilizer raw
producing
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002156801A
Other languages
Japanese (ja)
Inventor
Itaru Sakai
坂井 至
Keisuke Nakahara
中原 啓介
Masami Ono
小野 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002156801A priority Critical patent/JP2004002071A/en
Publication of JP2004002071A publication Critical patent/JP2004002071A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of fertilizer raw material which enables the reutilizing as a fertilizer raw material with high purity and low pathogenicity by recovering phosphate ions included in sewage and waste water as crystal particles of ammonium magnesium phosphate and to provide manufacturing an apparatus therefor. <P>SOLUTION: The manufacturing method of fertilizer raw material has a preparation process 13 of preparing the crystal particles of ammonium magnesium phosphate by adding a magnesium compound to phosphorus and ammonia-containing waste water and a recovery process 14 of recovering the crystal particles. In the manufacturing method of the fertilizer raw material , a washing process 18 of washing the crystal particles from the preparation process 13 or the recovery process 14 is further provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、肥料原料の製造方法および製造装置、特に、下水、排水に含まれるリン酸イオンをリン酸マグネシウムアンモニウムの結晶粒子として回収して、高純度で且つ病原性の低い肥料原料を得ることができる、肥料原料の製造方法および製造装置に関するものである。
【0002】
【従来の技術】
従来の下水処理方法を図3に示す。
【0003】
図示されるように、流入下水1は、最初沈殿池2、生物反応工程3および最終沈殿池4からなる標準活性汚泥処理工程によって処理される。標準活性汚泥処理工程によって発生する初沈汚泥5および余剰汚泥6は、混合され、混合汚泥7として濃縮工程8および脱水工程9を経て減容化される。脱水工程9からの脱水ケーキ10は、焼却処理もしくは埋立処分される。濃縮工程8および脱水工程9において分離された返流水(汚水)11は、固液分離工程12に送られ、ここで重力沈降によって濁質分が除かれる。濁質分が除かれた返流水11中には、下水由来のアンモニウムイオンの他に、濃縮工程8や脱水工程9での汚泥貯留時に汚泥から放出されたリン酸(オルトリン酸イオン)が多量に含まれている。
【0004】
返流水11は、この中のリン酸イオンを除去するために導入手段16を介して生成工程(生成設備)13に送られる。生成工程13においては、マグネシウム化合物添加手段17から返流水11中にマグネシウム塩が添加され、これにより、返流水11中のリン酸イオンを、リン酸マグネシウムアンモニウムの結晶粒子として析出させる。
【0005】
生成工程13によって生成されたリン酸マグネシウムアンモニウムの結晶粒子を含む濁質液は、排出手段21を介して回収工程(回収設備)14に送られ、ここで、リン酸マグネシウムアンモニウムの結晶粒子が濁質分から分離される。
【0006】
一方、生成工程13において、リン酸イオンが除かれた後の返流水11は、上記活性汚泥処理工程へ戻され、再処理される。
【0007】
そして、回収工程14において回収されたリン酸マグネシウムアンモニウムの結晶粒子15は、肥料原料として利用される。
【0008】
【発明が解決しようとする課題】
リン酸マグネシウムアンモニウムの結晶粒子15は、例えば、緩効性肥料としてそのまま使用することが考えられ、さらにカリウム塩を混合して造粒等の加工を施すことにより、植物の三大栄養素を含む窒素、燐酸、カリ肥料として有効に利用することが可能である。
【0009】
しかしながら、回収工程14により回収されるリン酸マグネシウムアンモニウムの結晶粒子中には、有機物を主体とする濁質分が混在しているので、大腸菌等、病原性細菌の繁殖の原因となるといった問題があった。
【0010】
従って、この発明の目的は、下水、排水に含まれるリン酸イオンをリン酸マグネシウムアンモニウムの結晶粒子として回収して、高純度で且つ病原性の低い肥料原料を得ることができる、肥料原料の製造方法および製造装置を提供することにある。
【0011】
【課題を解決するための手段】
請求項1記載の発明は、リンおよびアンモニア含有汚水にマグネシウム化合物を添加して、リン酸マグネシウムアンモニウムの結晶粒子を生成させる生成工程と、前記結晶粒子を回収する回収工程とを備えた、肥料原料の製造方法において、前記生成工程または前記回収工程からの前記結晶粒子を水洗する水洗工程を設けたことに特徴を有するものである。
【0012】
請求項2記載の発明は、請求項1記載の発明において、結晶粒子を分級する分級工程を設けたことに特徴を有するものである。
【0013】
請求項3記載の発明は、請求項1または2記載の発明において、結晶粒子を消毒する消毒工程を設けたことに特徴を有するものである。
【0014】
請求項4記載の発明は、リン酸マグネシウムアンモニウムの結晶粒子を生成する生成設備と、前記結晶粒子を回収する回収設備とを備え、前記生成設備は、リンおよびアンモニア含有返流水の導入手段、マグネシウム化合物の添加手段、および、前記結晶粒子の排出手段を有している、肥料原料の製造装置において、前記生成設備または前記回収設備からの前記結晶粒子を水洗する水洗設備を設けたことに特徴を有するものである。
【0015】
請求項5記載の発明は、請求項4記載の発明において、結晶粒子を分級する分級手段を設けたことに特徴を有するものである。
【0016】
請求項6記載の発明は、請求項4または5記載の発明において、結晶粒子を消毒する消毒設備を設けたことに特徴を有するものである。
【0017】
請求項7記載の発明は、請求項6記載の発明において、消毒設備は、ハロゲン系化合物添加、紫外線照射、オゾン添加および加熱の内の少なくとも一つの手段を使用する設備であることに特徴を有するものである。
【0018】
請求項8記載の発明は、請求項5から7の内の何れか1つに記載の発明において、分級手段により分級された結晶粒子の内、小径のものを生成設備へ循環する循環手段を設けたことに特徴を有するものである。
【0019】
【発明の実施の形態】
次に、この発明の肥料原料の製造方法の一実施様態を、図面を参照しながら説明する。
【0020】
図1は、この発明の肥料原料の製造方法を示す工程図である。
【0021】
図1に示すように、流入下水1は、最初沈殿池2、生物反応工程3および最終沈殿池4からなる標準活性汚泥工程によって処理される。標準活性汚泥工程によって発生する初沈汚泥5および余剰汚泥6は、混合され、混合汚泥7として濃縮工程8および脱水工程9を経て減容化される。脱水工程9からの脱水ケーキ10は、焼却処理もしくは埋立処分される。濃縮工程8および脱水工程9において分離された返流水11(汚水)は、固液分離工程12において重力沈降により濁質分が除かれる。
【0022】
このようにして、濁質分が除かれた返流水11は、導入手段16を介して、リン酸マグネシウムアンモニウムの結晶粒子の生成工程(生成設備)13に送られ、ここで、マグネシウム化合物添加手段17からマグネシウム塩が添加される。これによって、リン酸マグネシウムアンモニウムの結晶が析出し、成長して、リン酸マグネシウムアンモニウムの結晶粒子が生成される。
【0023】
リン酸マグネシウムアンモニウムの結晶粒子を含む汚濁液は、排出手段21を介して水洗工程(水洗設備)18に供給され、ここで濁質分が除去される。水洗されて、濁質分が除去されたリン酸マグネシウムアンモニウムの結晶粒子は、回収工程(回収設備)14に送られ、ここで、水切りされ、液分が除去される。
【0024】
一方、リン酸イオンが除かれた返流水11は、生成工程13から上記活性汚泥処理工程へ戻され、再処理される。
【0025】
回収されたリン酸マグネシウムアンモニウムの結晶粒子15は、水洗によって濁質分が除かれているために、大腸菌などの病原性細菌が繁殖する恐れがなく、高純度なリン酸マグネシウムアンモニウムとして肥料原料に再利用される。
【0026】
図2に、この発明の別の実施態様を示す。
【0027】
これは、水洗工程18によりリン酸マグネシウムアンモニウムの結晶粒子を水洗した後、消毒工程(消毒設備)19によって結晶粒子を消毒するものであり、その他の構成は、図1の実施態様の場合と同様である。結晶粒子を消毒することによって、大腸菌などの病原性細菌が繁殖する恐れがさらに減少する。
【0028】
消毒手段としては、塩素、臭素などのハロゲン系化合物を利用する手段、紫外線照射を利用する手段、オゾンを利用する手段、加熱処理を施す手段等が有効である。消毒手段としては、通常、これらの内の1つの手段を用いるが、これらの手段を組み合わせても良い。
【0029】
消毒工程19の後に回収工程14と分級工程(分級手段)20とがこの順序で配されている。分級手段は、特に限定されないが、篩や振動を利用する分級手段が特に有効である。分級工程19において分離された粒子径の小さいリン酸マグネシウムアンモニウムの結晶粒子は、循環手段22によって生成工程13に返送されて、リン酸マグネシウムアンモニウム析出の種結晶として再利用される。
【0030】
この発明における生成工程13、水洗工程18、消毒工程19、回収工程14および分級工程20の組み合わせは、図1および図2の組み合わせを含めて、下記の組み合わせであっても良い。
【0031】
(1)生成工程13→水洗工程18→回収工程14(図1)
(2)生成工程13→回収工程14→水洗工程18
(3)生成工程13→水洗工程18→回収工程14→分級工程20
(4)生成工程13→回収工程14→水洗工程18→分級工程20
(5)生成工程13→水洗工程18→消毒工程19→回収工程14
(6)生成工程13→水洗工程18→回収工程14→消毒工程19
(7)生成工程13→水洗工程18→消毒工程19→回収工程14→分級工程20(図2)
(8)生成工程13→水洗工程18→回収工程14→消毒工程19→分級工程20
【0032】
【発明の効果】
以上、説明したように、この発明によれば、下水、排水に含まれるリン酸イオンを、リン酸マグネシウムアンモニウムの結晶粒子として回収する工程に水洗工程を設けているので、高純度で且つ病原性の低いリン酸マグネシウムアンモニウムの製造が可能である。従って、窒素、リンを含む緩効性肥料の原料として有効に再利用が可能である。また、消毒工程を設けることによって、大腸菌等の病原性細菌が繁殖する恐れがさらに減少するので、前記効果はさらに高められる。さらに、分級工程を設けることによって、粒度のそろったリン酸マグネシウムアンモニウムの結晶粒子の製造が可能となる等、種々の有用な効果がもたらされる。
【図面の簡単な説明】
【図1】この発明の肥料原料の製造方法の一実施態様を示す工程図である。
【図2】この発明の肥料原料の製造方法の他の実施態様を示す工程図である。
【図3】従来の肥料原料の製造方法を示す工程図である。
【符号の説明】
1:流入下水
2:最初沈殿池
3:生物反応工程
4:最終沈殿池
5:初沈汚泥
6:余剰汚泥
7:混合汚泥
8:濃縮工程
9:脱水工程
10:脱水ケーキ
11:返流水
12:固液分離工程
13:生成工程
14:回収工程
15:リン酸マグネシウムアンモニウムの結晶粒子
16:導入手段
17:マグネシウム化合物の添加手段
18:水洗工程
19:消毒工程
20:分級工程
21:排出手段
22:循環手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a method and an apparatus for producing a fertilizer raw material, in particular, recovering phosphate ions contained in sewage and wastewater as crystal particles of magnesium ammonium phosphate to obtain a high-purity and low-pathogenic fertilizer raw material. And a method and apparatus for producing a fertilizer raw material.
[0002]
[Prior art]
FIG. 3 shows a conventional sewage treatment method.
[0003]
As shown, the incoming sewage 1 is treated by a standard activated sludge treatment process consisting of a first settling basin 2, a biological reaction step 3 and a final settling basin 4. Initial sludge 5 and excess sludge 6 generated in the standard activated sludge treatment step are mixed and reduced in volume as mixed sludge 7 through concentration step 8 and dehydration step 9. The dewatered cake 10 from the dewatering step 9 is incinerated or landfilled. The return water (sewage) 11 separated in the concentration step 8 and the dehydration step 9 is sent to a solid-liquid separation step 12, where turbid components are removed by gravity sedimentation. In the return water 11 from which the turbid matter has been removed, in addition to ammonium ions derived from sewage, a large amount of phosphoric acid (orthophosphate ion) released from sludge during sludge storage in the concentration step 8 and the dehydration step 9 is contained. include.
[0004]
The return water 11 is sent to a production step (production facility) 13 via an introduction means 16 to remove phosphate ions therein. In the generation step 13, a magnesium salt is added to the return water 11 from the magnesium compound adding means 17, whereby the phosphate ions in the return water 11 are precipitated as magnesium ammonium phosphate crystal particles.
[0005]
The turbid liquid containing crystal particles of magnesium ammonium phosphate generated in the generation step 13 is sent to the recovery step (recovery equipment) 14 via the discharge means 21, where the crystal particles of magnesium ammonium phosphate are turbid. Separated from the mass.
[0006]
On the other hand, the return water 11 from which the phosphate ions have been removed in the generation step 13 is returned to the activated sludge treatment step and re-treated.
[0007]
The magnesium ammonium phosphate crystal particles 15 recovered in the recovery step 14 are used as a fertilizer raw material.
[0008]
[Problems to be solved by the invention]
The magnesium ammonium phosphate crystal particles 15 may be used, for example, as a slow-release fertilizer as they are, and may be further mixed with a potassium salt and subjected to processing such as granulation to produce nitrogen containing three major nutrients of a plant. , Phosphoric acid and potassium fertilizer can be effectively used.
[0009]
However, the crystal particles of magnesium ammonium phosphate recovered in the recovery step 14 contain a turbid component mainly composed of organic matter, which causes a problem of causing propagation of pathogenic bacteria such as Escherichia coli. there were.
[0010]
Accordingly, an object of the present invention is to produce a fertilizer raw material capable of recovering phosphate ions contained in sewage and wastewater as crystal particles of magnesium ammonium phosphate to obtain a high-purity and low-pathogenic fertilizer raw material. It is to provide a method and a manufacturing device.
[0011]
[Means for Solving the Problems]
The invention according to claim 1, comprising a production step of adding a magnesium compound to phosphorus and ammonia-containing wastewater to generate crystal particles of magnesium ammonium phosphate, and a recovery step of recovering the crystal particles, the fertilizer raw material. The production method of the above, characterized in that a washing step of washing the crystal particles from the production step or the recovery step with water is provided.
[0012]
The invention according to claim 2 is characterized in that, in the invention according to claim 1, a classification step for classifying crystal particles is provided.
[0013]
The invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, a disinfection step for disinfecting crystal particles is provided.
[0014]
The invention according to claim 4 includes a production facility for producing crystal particles of magnesium ammonium phosphate, and a recovery facility for recovering the crystal particles, the production facility comprising: a means for introducing phosphorus and ammonia-containing return water; A fertilizer raw material manufacturing apparatus having a compound adding means, and a means for discharging the crystal particles, wherein a washing facility for washing the crystal particles from the production facility or the recovery facility with water is provided. Have
[0015]
The invention according to claim 5 is characterized in that, in the invention according to claim 4, a classification means for classifying crystal grains is provided.
[0016]
The invention according to claim 6 is characterized in that, in the invention according to claim 4 or 5, a disinfection facility for disinfecting crystal particles is provided.
[0017]
The invention according to claim 7 is characterized in that, in the invention according to claim 6, the disinfection equipment is equipment using at least one of halogen-based compound addition, ultraviolet irradiation, ozone addition and heating. Things.
[0018]
According to an eighth aspect of the present invention, in any one of the fifth to seventh aspects of the present invention, a circulating means for circulating a crystal particle having a small diameter among the crystal particles classified by the classifying means to a production facility is provided. It is characterized by the fact that
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the method for producing a fertilizer raw material according to the present invention will be described with reference to the drawings.
[0020]
FIG. 1 is a process chart showing a method for producing a fertilizer raw material according to the present invention.
[0021]
As shown in FIG. 1, incoming sewage 1 is treated in a standard activated sludge process consisting of a first settling basin 2, a biological reaction step 3 and a final settling basin 4. Initial sludge 5 and surplus sludge 6 generated in the standard activated sludge process are mixed and reduced in volume as mixed sludge 7 through a concentration process 8 and a dehydration process 9. The dewatered cake 10 from the dewatering step 9 is incinerated or landfilled. The return water 11 (sewage) separated in the concentration step 8 and the dehydration step 9 is subjected to gravity sedimentation in the solid-liquid separation step 12 to remove turbid components.
[0022]
The return water 11 from which the turbid matter has been removed is sent to the magnesium ammonium phosphate crystal particle generation step (generation equipment) 13 through the introduction means 16, where the magnesium compound addition means is used. From 17 the magnesium salt is added. As a result, magnesium ammonium phosphate crystals precipitate and grow, and crystal particles of magnesium ammonium phosphate are generated.
[0023]
The contaminated liquid containing crystal particles of magnesium ammonium phosphate is supplied to the water washing step (water washing equipment) 18 via the discharging means 21, where the suspended matter is removed. The crystal particles of magnesium ammonium phosphate that have been washed with water and from which turbid components have been removed are sent to a recovery step (recovery equipment) 14, where they are drained to remove liquid components.
[0024]
On the other hand, the return water 11 from which the phosphate ions have been removed is returned from the production step 13 to the activated sludge treatment step, and is re-treated.
[0025]
The recovered magnesium ammonium phosphate crystal particles 15 are free from the possibility of propagation of pathogenic bacteria such as Escherichia coli because the suspended matter is removed by washing with water. Reused.
[0026]
FIG. 2 shows another embodiment of the present invention.
[0027]
This is to wash the crystal particles of magnesium ammonium phosphate in a water washing step 18 and then disinfect the crystal particles in a disinfection step (disinfection equipment) 19, and the other configuration is the same as that of the embodiment of FIG. It is. Disinfection of the crystal particles further reduces the risk of propagation of pathogenic bacteria such as E. coli.
[0028]
As the disinfecting means, means using a halogen-based compound such as chlorine or bromine, means using ultraviolet irradiation, means using ozone, means for performing a heat treatment, and the like are effective. Usually, one of these means is used as the disinfecting means, but these means may be combined.
[0029]
After the disinfection step 19, the recovery step 14 and the classification step (classification means) 20 are arranged in this order. The classification means is not particularly limited, but a classification means using a sieve or vibration is particularly effective. The crystal particles of magnesium ammonium phosphate having a small particle diameter separated in the classification step 19 are returned to the generation step 13 by the circulation means 22 and reused as seed crystals for precipitation of magnesium ammonium phosphate.
[0030]
The combination of the generation step 13, the washing step 18, the disinfection step 19, the recovery step 14 and the classification step 20 in the present invention may be the following combination including the combination of FIG. 1 and FIG.
[0031]
(1) Generation step 13 → Washing step 18 → Recovery step 14 (FIG. 1)
(2) Generation step 13 → Recovery step 14 → Washing step 18
(3) Generation step 13 → Washing step 18 → Recovery step 14 → Classification step 20
(4) Generation step 13 → Recovery step 14 → Washing step 18 → Classification step 20
(5) Generation step 13 → Washing step 18 → Disinfection step 19 → Recovery step 14
(6) Generation step 13 → Washing step 18 → Recovery step 14 → Disinfection step 19
(7) Generation step 13 → Washing step 18 → Disinfection step 19 → Recovery step 14 → Classification step 20 (FIG. 2)
(8) Generation step 13 → Washing step 18 → Recovery step 14 → Disinfection step 19 → Classification step 20
[0032]
【The invention's effect】
As described above, according to the present invention, since the washing step is provided in the step of recovering phosphate ions contained in sewage and wastewater as crystal particles of magnesium ammonium phosphate, high purity and pathogenicity are obtained. It is possible to produce magnesium ammonium phosphate having a low concentration. Therefore, it can be effectively reused as a raw material of a slow-release fertilizer containing nitrogen and phosphorus. In addition, by providing a disinfection step, the risk of propagation of pathogenic bacteria such as Escherichia coli is further reduced, so that the above effect is further enhanced. Further, by providing the classification step, various useful effects such as the production of crystal particles of magnesium ammonium phosphate having a uniform particle size can be obtained.
[Brief description of the drawings]
FIG. 1 is a process chart showing one embodiment of a method for producing a fertilizer raw material of the present invention.
FIG. 2 is a process chart showing another embodiment of the method for producing a fertilizer raw material of the present invention.
FIG. 3 is a process chart showing a conventional method for producing a fertilizer raw material.
[Explanation of symbols]
1: Inflow sewage 2: First settling tank 3: Biological reaction step 4: Final settling tank 5: Initial settled sludge 6: Excess sludge 7: Mixed sludge 8: Concentration step 9: Dewatering step 10: Dewatered cake 11: Return water 12: Solid-liquid separation step 13: production step 14: recovery step 15: crystal particles of magnesium ammonium phosphate 16: introduction means 17: addition means of magnesium compound 18: washing step 19: disinfection step 20: classification step 21: discharge means 22: Circulation means

Claims (8)

リンおよびアンモニア含有汚水にマグネシウム化合物を添加して、リン酸マグネシウムアンモニウムの結晶粒子を生成させる生成工程と、前記結晶粒子を回収する回収工程とを備えた、肥料原料の製造方法において、
前記生成工程または前記回収工程からの前記結晶粒子を水洗する水洗工程を設けたことを特徴とする、肥料原料の製造方法。
A production step of adding magnesium compounds to phosphorus and ammonia-containing sewage to produce crystal particles of magnesium ammonium phosphate, and a collection step of collecting the crystal particles, in the method for producing a fertilizer raw material,
A method for producing a fertilizer raw material, comprising a washing step of washing the crystal particles from the generation step or the recovery step with water.
前記結晶粒子を分級する分級工程を設けたことを特徴とする、請求項1記載の、肥料原料の製造方法。The method for producing a fertilizer raw material according to claim 1, further comprising a classification step of classifying the crystal particles. 前記結晶粒子を消毒する消毒工程を設けたことを特徴とする、請求項1または2記載の、肥料原料の製造方法。3. The method for producing a fertilizer raw material according to claim 1, further comprising a disinfection step of disinfecting the crystal particles. リン酸マグネシウムアンモニウムの結晶粒子を生成する生成設備と、前記結晶粒子を回収する回収設備とを備え、前記生成設備は、リンおよびアンモニア含有返流水の導入手段、マグネシウム化合物の添加手段、および、前記結晶粒子の排出手段を有している、肥料原料の製造装置において、
前記生成設備または前記回収設備からの前記結晶粒子を水洗する水洗設備を設けたことを特徴とする、肥料原料の製造装置。
A production facility for producing crystal particles of magnesium ammonium phosphate, and a recovery facility for recovering the crystal particles, wherein the production facility is a means for introducing phosphorus and ammonia-containing return water, a means for adding a magnesium compound, and In a fertilizer raw material manufacturing apparatus having a means for discharging crystal particles,
An apparatus for producing a fertilizer raw material, comprising a washing facility for washing the crystal particles from the production facility or the recovery facility with water.
前記結晶粒子を分級する分級手段を設けたことを特徴とする、請求項4記載の、肥料原料の製造装置。The apparatus for producing a fertilizer raw material according to claim 4, wherein a classification means for classifying the crystal particles is provided. 前記結晶粒子を消毒する消毒設備を設けたことを特徴とする、請求項4または5記載の、肥料原料の製造装置。The apparatus for producing a fertilizer raw material according to claim 4 or 5, further comprising a disinfection facility for disinfecting the crystal particles. 前記消毒設備は、ハロゲン系化合物添加、紫外線照射、オゾン添加および加熱の内の少なくとも一つの手段を使用する設備であることを特徴とする、請求項6記載の、肥料原料の製造装置。7. The apparatus for producing a fertilizer raw material according to claim 6, wherein the disinfection equipment is equipment using at least one of halogen-based compound addition, ultraviolet irradiation, ozone addition, and heating. 前記分級手段により分級された前記結晶粒子の内、小径のものを前記生成設備へ循環する循環手段を設けたことを特徴とする、請求項5から7の内の何れか1つに記載の、肥料原料の製造装置。The crystal particles classified by the classification unit, wherein a circulating unit that circulates a small-diameter particle to the production facility is provided, according to any one of claims 5 to 7, Equipment for producing fertilizer raw materials.
JP2002156801A 2002-05-30 2002-05-30 Manufacturing method and manufacturing apparatus of fertilizer raw material Pending JP2004002071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156801A JP2004002071A (en) 2002-05-30 2002-05-30 Manufacturing method and manufacturing apparatus of fertilizer raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156801A JP2004002071A (en) 2002-05-30 2002-05-30 Manufacturing method and manufacturing apparatus of fertilizer raw material

Publications (1)

Publication Number Publication Date
JP2004002071A true JP2004002071A (en) 2004-01-08

Family

ID=30428356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156801A Pending JP2004002071A (en) 2002-05-30 2002-05-30 Manufacturing method and manufacturing apparatus of fertilizer raw material

Country Status (1)

Country Link
JP (1) JP2004002071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7889726B2 (en) 2004-06-11 2011-02-15 Nokia Corporation Communication system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262789A (en) * 1986-05-08 1987-11-14 Unitika Ltd Method for removing phosphorus
JPS63200888A (en) * 1987-02-16 1988-08-19 Unitika Ltd Removal of phosphorus contained in water
JPH08192198A (en) * 1995-01-19 1996-07-30 Meidensha Corp Method and device for preventing decomposition of sludge
JPH09117774A (en) * 1995-10-25 1997-05-06 Nippon Gesuido Jigyodan Granulating and dephosphorizing device
JPH09136091A (en) * 1995-11-14 1997-05-27 Isao Somiya Wastewater treatment apparatus
JPH10113673A (en) * 1996-10-14 1998-05-06 Isao Somiya Waste water treating device and method therefor
JP2000140894A (en) * 1998-11-06 2000-05-23 Nkk Corp Equipment for treatment of sludge
JP2000197873A (en) * 1998-11-06 2000-07-18 Yatsuka Bussan:Kk Treatment of organic waste
JP2001198582A (en) * 2000-01-19 2001-07-24 Kurita Water Ind Ltd Dephosphorizing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262789A (en) * 1986-05-08 1987-11-14 Unitika Ltd Method for removing phosphorus
JPS63200888A (en) * 1987-02-16 1988-08-19 Unitika Ltd Removal of phosphorus contained in water
JPH08192198A (en) * 1995-01-19 1996-07-30 Meidensha Corp Method and device for preventing decomposition of sludge
JPH09117774A (en) * 1995-10-25 1997-05-06 Nippon Gesuido Jigyodan Granulating and dephosphorizing device
JPH09136091A (en) * 1995-11-14 1997-05-27 Isao Somiya Wastewater treatment apparatus
JPH10113673A (en) * 1996-10-14 1998-05-06 Isao Somiya Waste water treating device and method therefor
JP2000140894A (en) * 1998-11-06 2000-05-23 Nkk Corp Equipment for treatment of sludge
JP2000197873A (en) * 1998-11-06 2000-07-18 Yatsuka Bussan:Kk Treatment of organic waste
JP2001198582A (en) * 2000-01-19 2001-07-24 Kurita Water Ind Ltd Dephosphorizing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7889726B2 (en) 2004-06-11 2011-02-15 Nokia Corporation Communication system

Similar Documents

Publication Publication Date Title
JP7018393B2 (en) Methods for producing phosphorus products from wastewater
Stratful et al. Conditions influencing the precipitation of magnesium ammonium phosphate
Su et al. Magnesium phosphate crystallization in a fluidized-bed reactor: effects of pH, Mg: P molar ratio and seed
JP7092683B2 (en) Manufacture of phosphate-containing fertilizers
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP2006255499A (en) Fluorine-containing wastewater treatment method and apparatus
Kalyuzhnyi et al. Integrated mechanical, biological and physico-chemical treatment of liquid manure streams
JPH10113673A (en) Waste water treating device and method therefor
JP2004002071A (en) Manufacturing method and manufacturing apparatus of fertilizer raw material
JP2004002072A (en) Manufacturing method and manufacturing apparatus of fertilizer raw material
JP2008073662A (en) Recycling method of hydroxyapatite crystal
JP3499151B2 (en) Sludge treatment method and organic wastewater treatment method including the treatment method
JP3646925B2 (en) Organic wastewater treatment method and treatment apparatus
JP4568391B2 (en) Fluidized bed crystallization reactor
JP4335065B2 (en) Organic wastewater or sludge treatment method and apparatus
JP4288336B2 (en) Method for producing calcium phosphate from wastewater
JPH10323677A (en) Waste water treatment device
JP2004160304A (en) Method and equipment for treating organic waste water and sludge
JP2018199101A (en) Sludge treatment system and sludge treatment method
JP5963656B2 (en) Sludge treatment apparatus and phosphorus production method
JP2004089931A (en) Dephosphorization and ammonia-removal method, manufacturing method for ammonia fertilizer and manufacturing method for molten solidified matter
JP4596897B2 (en) Anaerobic digestion of organic waste
JP4335354B2 (en) Wastewater treatment equipment
JPH07116683A (en) Silicate adding activated sludge method
JPH09299977A (en) Method for removing or recovering phosphorous in sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904