JP2004001577A - Compression oriented molded product and its manufacturing method - Google Patents

Compression oriented molded product and its manufacturing method Download PDF

Info

Publication number
JP2004001577A
JP2004001577A JP2003317332A JP2003317332A JP2004001577A JP 2004001577 A JP2004001577 A JP 2004001577A JP 2003317332 A JP2003317332 A JP 2003317332A JP 2003317332 A JP2003317332 A JP 2003317332A JP 2004001577 A JP2004001577 A JP 2004001577A
Authority
JP
Japan
Prior art keywords
oriented
compression
molded body
billet
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003317332A
Other languages
Japanese (ja)
Other versions
JP4068035B2 (en
Inventor
Yasuo Shikinami
敷波 保夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2003317332A priority Critical patent/JP4068035B2/en
Publication of JP2004001577A publication Critical patent/JP2004001577A/en
Application granted granted Critical
Publication of JP4068035B2 publication Critical patent/JP4068035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine compression oriented molded product which is almost free from anisotropy in terms of strength and has large strength on the whole compared with a thick molded product monoaxially stretched in the major axial direction and no voids even in the form of a composite body containing powder filler, and a manufacturing method for the molded product. <P>SOLUTION: This compression oriented molded product l is obtained by compressing a crystalline thermoplastic polymer material, and has a molecular chain(crystal) M substantially oriented obliquely toward the axis L of the molded product or a face including the axis L. A billet obtained by melt-molding the crystalline thermoplastic polymer material is forcibly packed at the crystallization temperature of the polymer material into a molding cavity with a small cross-section area from the billet storage cavity of a molding die through a drawing part with a tapered inner peripheral face or a drawing part at least with both sloping inner faces and the molecular chain(crystal) is oriented. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、結晶性の熱可塑性高分子材料からなる機械的強度が大きい圧縮配向成形体と、その製造方法に関する。 {Circle over (1)} The present invention relates to a compression-oriented molded article made of a crystalline thermoplastic polymer material and having high mechanical strength, and a method for producing the same.

 従来から、合成樹脂繊維の分野では、延伸により分子を軸配向させて引張強度を向上させる技術が採用されている。また、合成樹脂フィルムの分野でも、一軸又は二軸延伸により分子を軸配向又は面配向させて、フィルム面内での一方向又は多方向の引張強度を向上させる技術が採用されている。 Conventionally, in the field of synthetic resin fibers, a technique has been employed in which molecules are axially oriented by stretching to improve tensile strength. Also, in the field of synthetic resin films, a technique is employed in which molecules are axially or planarly oriented by uniaxial or biaxial stretching to improve unidirectional or multidirectional tensile strength in the film plane.

 けれども、厚みが大きい板状ないしブロック状の合成樹脂成形体や、太い棒状ないし柱状の合成樹脂成形体においては、分子配向を利用して機械的強度を向上させる研究があまり行われていない。最近になってその必要性から、例えば生体内分解吸収性高分子材料の溶融成形物を加熱下に長軸方向に延伸して曲げ強度の大きい骨接合ピンを得る方法が提案されたが、これは希な例といえる。 However, in a plate-shaped or block-shaped synthetic resin molded article having a large thickness or a thick rod-shaped or column-shaped synthetic resin molded article, much research has not been conducted to improve mechanical strength by using molecular orientation. Recently, there has been proposed a method of obtaining a osteosynthesis pin having a large bending strength by, for example, stretching a melt-molded product of a biodegradable and absorbable polymer material in a long axis direction while heating. Is a rare example.

 しかしながら、上記の骨接合ピンのように長軸方向に延伸した棒状成形体は、分子が長軸方向[延伸軸である機械方向,MD;machine(drawn) direction]に平行に一軸配向(uniaxal orientation) しているので、この長軸方向に対して直角の方向である横方向(TD;transversal
direction) との間の分子鎖(結晶)配向の異方性が大きい。そのため長軸方向の引張強度は顕著に向上するけれども、長軸方向からの引裂き力が低下し、横(斜)方向からの剪断力もまた著しく改善されることはなく、更には長軸を回転軸とする捻りの力(torque
force)に比較的弱いという問題がある。
However, in the rod-shaped molded body elongated in the long axis direction like the above-mentioned osteosynthesis pin, molecules are uniaxially oriented in a direction parallel to the long axis direction [machine direction (drawing direction; MD; machine (drawn) direction]). ), The transverse direction (TD; transversal direction) perpendicular to the long axis direction.
direction) and the molecular chain (crystal) orientation is large. Therefore, although the tensile strength in the long axis direction is remarkably improved, the tearing force in the long axis direction is reduced, and the shearing force in the transverse (oblique) direction is not significantly improved. Torsion force (torque
force) is relatively weak.

 このような問題は、長軸方向に延伸した丸棒に限らず、多角形の断面をもつ柱状成形体あるいは板状成形体についても同様に言えることである。特に、延伸の度合を上げることによって高分子材料が球晶構造から繊維構造に移ってフィブリル化の度合が進むほど、その傾向が顕著になる。 問題 Such a problem is not limited to a round bar extending in the long axis direction, but can be similarly applied to a columnar molded product or a plate-shaped molded product having a polygonal cross section. In particular, the higher the degree of stretching, the more the polymer material shifts from the spherulite structure to the fibrous structure and the degree of fibrillation progresses, and the tendency becomes more remarkable.

 また、高分子材料中に粉体フィラーが含有されていると、延伸の際に、延伸軸に沿った粉体フィラーの前部と後部に空隙部(ボイド)が生じ、成形体の密度が低下して稀薄体となるために強度が低くなるという問題もある。 In addition, if the polymer material contains a powder filler, voids (voids) are formed at the front and rear portions of the powder filler along the stretching axis during stretching, and the density of the compact decreases. In addition, there is a problem that the strength is reduced due to the thin body.

 本発明は上記の問題に鑑みてなされたもので、その目的とするところは、強度的に異方性が少なく、長軸方向に一軸延伸した厚みのある成形体よりも総体的に大きな強度を有し、それが粉体フィラーを含んだ複合体(paticule reinforced composites)であってもボイドが存在しない緻密な(dense) 圧縮配向成形体を提供すること、及び、その製造方法を提供することにある。 The present invention has been made in view of the above-described problem, and has as its object the purpose of the present invention to have a small anisotropy in strength, and to provide a greater overall strength than a thick molded body uniaxially stretched in the major axis direction. To provide a dense compression-oriented molded article having no voids even if it is a composite containing powder filler (paticule reinforced composites), and to provide a method for producing the same. is there.

 前記目的を達成するため、本発明の圧縮配向成形体は、結晶性の熱可塑性高分子材料からなる圧縮された高い強度をもつ成形体であって、分子鎖あるいは結晶が実質的に成形体の軸又は該軸を含む面に向かって斜めに配向していることを特徴とするものである。この成形体を構成する熱可塑性高分子材料は本質的に結晶性のポリマーであるから、上記のように分子鎖が配向することによって生じる結晶も同様に配向し、その形態もまた強度に関与する。本発明の圧縮配向成形体によれば、非晶領域においては分子鎖が部分的に配向し、また、結晶領域においては分子鎖(主鎖)を含む結晶が圧縮方向に配向するので、以下に分子鎖配向は結晶配向と同義語として用いるものとする。 In order to achieve the object, the compression-oriented molded article of the present invention is a compacted article having a high strength that is made of a crystalline thermoplastic polymer material, and the molecular chains or crystals are substantially formed of the molded article. It is characterized by being obliquely oriented toward the axis or a plane containing the axis. Since the thermoplastic polymer material constituting this molded article is essentially a crystalline polymer, the crystals generated by the orientation of the molecular chains as described above are similarly oriented, and the form also contributes to the strength. . According to the compression-orientation molded product of the present invention, in the amorphous region, the molecular chains are partially oriented, and in the crystal region, the crystals containing the molecular chains (main chains) are oriented in the compression direction. Molecular chain orientation is used as a synonym for crystal orientation.

 本発明の圧縮配向成形体において、斜めに配向した分子鎖(結晶)が向かう軸は成形体の力学的な芯となる軸、つまり、成形時に加えられた外力の集中する点が材料進行方向に連続して構成される軸であり、この軸は成形体の中心又は中心をはずれた位置にある。そして、分子鎖(結晶)が向かう面は該軸を含む面であり、その両側で外力が均衡する境界面である。 In the compression-oriented molded article of the present invention, the axis to which the obliquely oriented molecular chains (crystals) are directed is the axis that becomes the mechanical core of the molded article, that is, the point where the external force applied during molding is concentrated in the material advancing direction. A continuously configured axis, which is at the center or off-center of the compact. The plane to which the molecular chain (crystal) is directed is a plane including the axis, and is a boundary plane where external forces are balanced on both sides.

 本発明の圧縮配向成形体の主な態様としては、(1)分子鎖(結晶)が実質的に円柱状成形体の外周面から中心又は中心をはずれた位置にある軸に向かって斜めに配向しているもの、(2)分子鎖(結晶)が実質的に角柱状成形体の各側面から中心又は中心をはずれた位置にある軸あるいは該軸を含む面に向かって斜めに配向しているもの、(3)分子鎖(結晶)が実質的に板状成形体の両面から、中心又は中心をはずれた位置にある軸を含み且つ成形体両面と平行な面に向かって斜めに配向しているもの等を挙げることができる。また、本発明の圧縮配向成形体には、必要に応じて粉体フィラー(物性強化のための微細な短繊維を含む系であってもよい)が含有される。粉体フィラーとしては、成形体の用途に応じたものが使用され、例えば用途が生体材料である場合にはバイオセラミックスの粉体等が好適に使用される。 The main aspects of the compression-oriented molded article of the present invention include (1) molecular chains (crystals) oriented obliquely toward an axis located at the center or off-center from the outer peripheral surface of the substantially cylindrical shaped article. (2) The molecular chains (crystals) are oriented obliquely toward the axis or the plane containing the center at or off the center from each side surface of the prismatic shaped body. (3) the molecular chains (crystals) are oriented obliquely from both sides of the plate-like molded body toward a plane including a center or an off-centered axis and parallel to both surfaces of the molded body. And the like. Further, the compression-oriented molded article of the present invention contains a powder filler (may be a system containing fine short fibers for enhancing physical properties) as necessary. As the powder filler, one suitable for the use of the molded body is used. For example, when the use is a biomaterial, a bioceramic powder or the like is preferably used.

 本発明の圧縮配向成形体のように、分子鎖(結晶)が実質的に成形体の力学的な芯となる軸又は該軸を含む面に向かって斜めに配向したものは、軸方向とこれに直角な横方向との間の分子鎖(結晶)配向の異方性が、長軸方向に延伸された所謂一軸延伸物に比べて少ない。そのため、曲げ強度や軸方向の引張強度だけでなく、軸方向からの引裂強度(耐縦割れ強度)、横(斜)方向からの剪断強度(耐横割れ強度)、軸を中心とする捻り強度など、種々の方向の力に対する強度が総体的に向上し、強度的に異方性の少ないものとなる。 As in the case of the compression-oriented molded article of the present invention, those in which molecular chains (crystals) are substantially obliquely oriented toward an axis or a plane containing the axis which is a mechanical core of the molded article are referred to as an axial direction. The anisotropy of the molecular chain (crystal) orientation between the transverse direction perpendicular to the film is smaller than that of a so-called uniaxially stretched product stretched in the major axis direction. Therefore, not only bending strength and tensile strength in the axial direction, but also tear strength in the axial direction (longitudinal cracking resistance), shear strength in the lateral (oblique) direction (horizontal cracking resistance), and torsional strength around the axis For example, the strength against forces in various directions is improved as a whole, and the strength is less anisotropic.

 特に、分子鎖(結晶)が中心の軸に向かって斜めに配向した円柱状又は角柱状の圧縮配向成形体は、横断面において分子鎖(結晶)が放射状の配列形態をとるので、捻り強度が顕著に向上する。そして、板状の圧縮配向成形体のなかでも、その中心をはずれた位置にある軸を含む面(成形体の両面と平行な面)に向かって分子鎖(結晶)が斜めに配向したものは、該面を挟んで両側の分子の配向角が異なるため機械的物性が両側で相違し、あたかも二枚の物性が異なる板をラミネートしたかのような板状成形体となるので、該面の偏りの位置を変化させることにより板状成形体の全体的な機械的物性を用途に応じて種々調整することができる。 In particular, a columnar or prismatic compression-orientation molded body in which molecular chains (crystals) are oriented obliquely toward a central axis has a torsion strength because the molecular chains (crystals) take a radially arranged form in a cross section. Notably improved. And, among the plate-shaped compression-oriented molded products, those in which molecular chains (crystals) are obliquely oriented toward a plane including an axis at a position off the center (a plane parallel to both surfaces of the molded product) Since the orientation angles of the molecules on both sides of the surface are different, the mechanical properties are different on both sides, and a plate-like molded body as if two sheets having different physical properties were laminated is obtained. By changing the position of the bias, the overall mechanical properties of the plate-shaped molded body can be variously adjusted according to the application.

 また、本発明の成形体は圧縮されているので、従来の一軸延伸された非圧縮の成形体に比べると密度が高く、機械的強度が総じて大きく、表面硬度も大きい。そして、粉体フィラーを含有している成形体でも、延伸の場合のようにボイドを生じることがないので、ボイドによる強度低下を招くことはない。 Because the molded article of the present invention is compressed, it has a higher density, a higher mechanical strength and a larger surface hardness than conventional uniaxially stretched uncompressed molded articles. Further, even in the molded body containing the powder filler, voids are not generated unlike in the case of stretching, so that the strength is not reduced by the voids.

 上記のような圧縮配向成形体を製造する本発明の製造方法は、横断面の面積が大きいビレット収容キャビティと横断面の面積が小さい有底の成形キャビティとの間に、内周面が截頭円錐状のテーパー面とされた絞り部又は少なくとも両側内面が平面状の斜面とされた絞り部を有する成形型を使用し、この成形型のビレット収容キャビティに、結晶性の熱可塑性高分子材料を溶融成形した本質的に非晶質であるビレットを収容して、熱可塑性高分子材料のガラス転移点よりも高く溶融温度よりも低い結晶化温度で、該ビレットを絞り部を通して有底の成形キャビティに所謂冷間にて圧入充填することを特徴とするものである。 According to the production method of the present invention for producing the above-described compression-oriented molded body, the inner peripheral surface is truncated between the billet accommodating cavity having a large cross-sectional area and the bottomed molding cavity having a small cross-sectional area. Using a mold having a constricted constricted portion or a constricted portion in which at least both inner surfaces are flat inclined surfaces, and using a crystalline thermoplastic polymer material in a billet accommodating cavity of the formed die. A melt-molded essentially amorphous billet is accommodated, and the billet is passed through a constriction at a crystallization temperature higher than the glass transition point of the thermoplastic polymer material and lower than the melting temperature. And press-fit filling in a so-called cold state.

 本発明の製造方法のように、結晶性の熱可塑性高分子材料を溶融成形したビレットを、成形型のビレット収容キャビティから結晶化温度で絞り部を通して有底の成形キャビティに圧入充填すると、ビレットが絞り部を通過する際に絞り部のテーパー面又は斜面との摩擦抵抗によって大きな剪断力が生じ、これが分子を配向させる材料進行方向(MD:Mechanical Direction)及び横方向(TD:Transversal Direction) の外力として作用するため、分子鎖(結晶)がビレットのMD軸又は該軸を含む面に向かって斜めに配向しつつ圧縮される。そして、成形キャビティに充填された後も、成形キャビティの内面や底面により背圧を受けるので、成形体は上記の分子鎖(結晶)配向及び圧縮状態を維持したまま固定される。従って、得られる成形体は圧縮されて緻密質になり、分子鎖(結晶)が成形体の軸又は該軸を含む面に向かって斜めの角度をもった配向体の形状を維持することになる。その場合、分子鎖(結晶)の配向角[成形体の軸又は該軸を含む面に対する分子鎖(結晶)の配向角]は、絞り部のテーパー面又は斜面の傾斜角と、双方のキャビティの横断面の面積比に近似して本質的に定まる。この点については後で詳しく説明する。 As in the production method of the present invention, when a billet obtained by melt-molding a crystalline thermoplastic polymer material is press-filled from a billet accommodating cavity of a mold through a narrowing portion at a crystallization temperature into a bottomed cavity, the billet is formed. When passing through the constricted portion, a large shear force is generated due to frictional resistance between the tapered surface or the inclined surface of the constricted portion, and this is an external force in a material traveling direction (MD: Mechanical Direction) and a transverse direction (TD: Transversal Direction) for orienting molecules. Therefore, the molecular chain (crystal) is compressed while being obliquely oriented toward the MD axis of the billet or a plane including the axis. Then, even after being filled in the molding cavity, a back pressure is applied by the inner surface and the bottom surface of the molding cavity, so that the molded body is fixed while maintaining the molecular chain (crystal) orientation and the compressed state. Therefore, the obtained molded body is compressed to be dense, and the molecular chains (crystals) maintain the shape of the oriented body having an oblique angle toward the axis of the molded body or a plane including the axis. . In this case, the orientation angle of the molecular chain (crystal) [the orientation angle of the molecular chain (crystal) with respect to the axis of the molded body or a plane including the axis] is determined by the inclination angle of the tapered surface or the inclined surface of the narrowed portion, and the inclination angle of both cavities. It is essentially determined by approximating the area ratio of the cross section. This will be described in detail later.

 また、上記のようにビレットを結晶化温度で圧入充填すると、圧入充填性が良好で、分子の配向が効果的に行われ、結晶化度も意のままに調整することができる。 Further, when the billet is press-filled at the crystallization temperature as described above, the press-filling property is good, the molecules are effectively oriented, and the crystallinity can be adjusted as desired.

 本発明の製造方法では、成形型の中心の軸に対する絞り部のテーパー面又は斜面の傾斜角を10〜60°に設定し、且つ、ビレット収容キャビティの横断面の面積を成形キャビティの横断面の面積の1.5〜6倍に設定することが望ましい。傾斜角が10°未満であると、ビレットとテーパー面又は傾斜面との摩擦抵抗による大きな剪断力が生じにくく、ビレットの外周部が滑べりやすくなるため、成形体内部まで分子鎖(結晶)の配向が効果的に達成できない。また、傾斜角が60°より大きくなると、ビレットの圧入に高圧力が必要となるため圧入充填作業が困難となり、あえて圧入しても、スティックスリップ(stick slip)現象による分子鎖配向の不均質化や充填不良によるクラック等が発生しやすくなるので、満足な圧縮配向成形体を得ることが容易でない。 In the manufacturing method of the present invention, the inclination angle of the tapered surface or the inclined surface of the drawn portion with respect to the center axis of the molding die is set to 10 to 60 °, and the area of the cross section of the billet accommodating cavity is set to the cross sectional area of the molding cavity. It is desirable to set 1.5 to 6 times the area. When the inclination angle is less than 10 °, a large shearing force due to frictional resistance between the billet and the tapered surface or the inclined surface is less likely to occur, and the outer peripheral portion of the billet is liable to slide. Orientation cannot be achieved effectively. On the other hand, if the inclination angle is greater than 60 °, high pressure is required for press-fitting the billet, making press-fitting and filling work difficult, and even if press-fitting, the molecular chain orientation becomes non-uniform due to the stick slip phenomenon. It is not easy to obtain a satisfactory compression-oriented molded article because cracks and the like due to poor filling and the like tend to occur.

 一方、ビレット収容キャビティーの横断面の面積が成形キャビティーの横断面の面積の1.5倍より小さい場合は、得られる圧縮配向成形体の変形比R=So/S(但し、Soはビレットの断面積、Sは圧縮配向成形体の断面積)が実質的に1.5より小さくなるものであり、分子鎖(結晶)の配向性や材料の圧縮率が低いので、機械的強度を大幅に向上させることが難しくなる。逆に、6倍より大きくしても、樹脂の流れがそれに見合った程度に良くないので、ビレットの圧入充填が困難であり、また、分子鎖の配向が過度になってフィブリル化現象をおこし、フィブリル間で裂けやすい成形体となる。 On the other hand, when the area of the cross section of the billet accommodating cavity is smaller than 1.5 times the area of the cross section of the molding cavity, the deformation ratio R = So / S (where So is the billet) (S is the cross-sectional area of the compression-oriented molded body) is substantially smaller than 1.5, and the orientation of molecular chains (crystals) and the compressibility of the material are low. It becomes difficult to improve. Conversely, even if it is larger than 6 times, the flow of the resin is not good enough to match it, so it is difficult to press-fit and fill the billet, and the orientation of the molecular chains becomes excessive, causing a fibrillation phenomenon, The molded product is easily torn between fibrils.

 特に、絞り部のテーパー面又は斜面の傾斜角を15〜45°に設定し、ビレット収容キャビティの横断面の面積を成形キャビティの横断面の面積の2〜3.5倍に設定すると、ビレットの圧入充填が効果的であり、分子鎖(結晶)の圧縮配向性及び配向角度、圧縮の程度が良好なものが得られ、MDとTDの異方性が少なく機械的強度が総体的に優れた圧縮配向成形体を得ることができる。 In particular, when the inclination angle of the tapered surface or the inclined surface of the narrowed portion is set to 15 to 45 ° and the area of the cross section of the billet accommodating cavity is set to 2 to 3.5 times the area of the cross section of the molding cavity, The press-filling is effective, and the molecular chains (crystals) having good compression orientation, orientation angle, and degree of compression are obtained, and MD and TD have little anisotropy and mechanical strength is excellent overall. A compression-oriented molded article can be obtained.

 また、絞り部のテーパー面の傾斜角がテーパー面の全周に亘ってもしくは任意の部分で漸次変化した成形型を使用すると、成形体の中心を外れた位置にある軸に向かって分子鎖(結晶)が斜めに配向している円柱状の圧縮成形体が得られ、絞り部の少なくとも一つの斜面の傾斜角が他の斜面の傾斜角と異なっている成形型を使用すると、成形体の中心を外れた位置にある軸に向かって分子鎖(結晶)が斜めに配向している角柱状の圧縮配向成形体が得られる。特に、絞り部の相対向する斜面の一方の傾斜角が他方の傾斜角と異なる成形型を使用する場合は、前述した板状成形体のように両側で分子鎖(結晶)の配向角度及びそれに伴う機械的物性が異なる圧縮配向成形体を得ることができる。 In addition, when a molding die in which the inclination angle of the tapered surface of the narrowed portion gradually changes over the entire circumference of the tapered surface or at an arbitrary portion is used, the molecular chain ( (Crystal) is obtained in the form of a columnar compression-formed body that is obliquely oriented, and the use of a mold in which the slope angle of at least one slope of the drawn portion is different from the slope angle of the other slopes results in the center of the formed body. Thus, a prism-shaped compression-orientation molded body in which molecular chains (crystals) are obliquely oriented toward an axis at a position deviated from the above. In particular, when using a mold in which one inclined angle of the opposed slopes of the narrowed portion is different from the other inclined angle, the orientation angle of the molecular chains (crystals) and the Accordingly, it is possible to obtain a compression-oriented molded article having different mechanical properties.

 更に、本発明の製造方法では、粉体フィラーを配合した結晶性の熱可塑性高分子材料を溶融成形したビレットを用いても、上記のように圧縮できるので、粉体フィラーの周囲に本質的にボイドのない圧縮配向成形体を得ることができる。 Furthermore, in the production method of the present invention, even if a billet obtained by melt-molding a crystalline thermoplastic polymer material containing a powder filler is used, the billet can be compressed as described above. It is possible to obtain a compression-oriented molded article without voids.

 尚、従来の固体押出法のように、ダイスの絞り口からビレットを冷間で押出す方法の場合は、絞り口を通過する際にビレットが圧縮され分子鎖が配向するが、絞り口を出た時点で材料周囲からの圧力が解除されるので、バラス効果などの影響によって圧縮による拘束力が緩和する所謂戻り現象が生じ、押出成形物の圧縮率が低下し、分子配向が乱れる。従って、本発明の圧縮配向成形体と同様に配向した成形体は得られず、高い機械的強度を有する押出成形物を得ることはできない。 In the case of a method in which a billet is coldly extruded from a squeeze port as in the conventional solid extrusion method, the billet is compressed and molecular chains are oriented when passing through the squeeze port. At this point, the pressure from around the material is released, so that a so-called return phenomenon occurs in which the restraining force due to the compression is relaxed due to the effect of the ballast effect and the like, and the compression ratio of the extruded product is reduced, and the molecular orientation is disturbed. Therefore, a molded article oriented similarly to the compression-oriented molded article of the present invention cannot be obtained, and an extruded article having high mechanical strength cannot be obtained.

以上の説明から明らかなように、本発明の圧縮配向成形体は、分子鎖(結晶)が実質的に成形体の軸又は該軸を含む面に向かって斜めに配向しているので、軸方向とこれに直角な横方向との分子鎖(結晶)配向の異方性が少なく、そのため曲げ強度、引張強度、引裂強度、剪断強度、捻り強度など、種々の方向の力に対する機械的強度が全般的に顕著に向上し、緻密質で表面硬度も向上するといった優れた効果を奏する。 As is apparent from the above description, in the compression-oriented molded article of the present invention, since the molecular chains (crystals) are substantially obliquely oriented toward the axis of the molded article or a plane including the axis, the axial orientation And low transverse anisotropy of the molecular chain (crystal) orientation to the transverse direction perpendicular to this, so that the overall mechanical strength against forces in various directions such as bending strength, tensile strength, tear strength, shear strength and torsional strength In addition, it has an excellent effect of being densely improved and having a high surface hardness.

 そして、本発明の製造方法は、上記のように機械的強度に優れた圧縮配向成形体を容易に製造することができ、分子鎖(結晶)の配向角の調節やそれに基づく成形体の機械的物性の調節も簡単に行うことができるといった顕著な効果を奏する。 Further, the production method of the present invention can easily produce a compression-oriented molded article having excellent mechanical strength as described above, and can adjust the orientation angle of molecular chains (crystals) and perform mechanical This has a remarkable effect that physical properties can be easily adjusted.

以下、図面を参照して本発明の具体的な実施形態を詳述する。 Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

 図1は本発明の一実施形態に係る円柱状の圧縮配向成形体について、その縦断面における分子鎖(結晶)の配向状態を示す概念図、図2は同円柱状の圧縮配向成形体について、その横断面おける分子鎖(結晶)の配向状態を示す概念図である。 FIG. 1 is a conceptual diagram showing an orientation state of molecular chains (crystals) in a longitudinal section of a cylindrical compression-oriented molded product according to an embodiment of the present invention, and FIG. It is a conceptual diagram which shows the orientation state of the molecular chain (crystal) in the cross section.

 この圧縮配向成形体1は、結晶性の熱可塑性高分子材料からなる圧縮された円柱状の成形体であって、図示のように分子鎖Mが実質的に成形体1の外周面から中心の軸Lに向かって斜め下方に配向したものであり、この分子鎖配向に伴って結晶も同様に配向したものである。換言すれば、この成形体1は、中心の軸Lの周りに放射状の配列形態をとる分子鎖(結晶)Mの多数の配向の基準軸が連結して略円錐状の面を構成し、この略円錐状の面が成形体中心の軸L方向に配向したものであり、かかる結晶はまた円柱体の長さの方向(TD)にも並んでいるものと見ることもできる。 The compression-oriented molded body 1 is a compressed cylindrical molded body made of a crystalline thermoplastic polymer material, and the molecular chain M is substantially at the center from the outer peripheral surface of the molded body 1 as shown in the figure. The crystal is oriented obliquely downward toward the axis L, and the crystal is similarly oriented along with the molecular chain orientation. In other words, the molded body 1 forms a substantially conical surface by connecting a number of reference axes of molecular chains (crystals) M having a radial arrangement around the central axis L. The substantially conical surface is oriented in the direction of the axis L at the center of the compact, and such crystals can also be seen to be aligned in the direction of the length of the column (TD).

 このように分子鎖(結晶)が軸Lに対して斜め下方に配向した円柱状の圧縮配向成形体1は、緻密質で密度や表面硬度が高く、軸L方向とこれに直角な横方向との間の分子鎖(結晶)配向の異方性が少ないため、曲げ強度や引張強度だけでなく、引裂強度や剪断強度など、種々の方向の機械的強度が全般に向上し、しかも、横断面において分子鎖(結晶)Mが軸Lの周りに放射状の配列形態をとるため、捻り強度もまた向上する。 As described above, the columnar compression-oriented molded body 1 in which the molecular chains (crystals) are oriented obliquely downward with respect to the axis L is dense, has a high density and a high surface hardness, and has an axis L direction and a lateral direction perpendicular thereto. The anisotropy of the molecular chain (crystal) orientation between them is small, so not only the bending strength and tensile strength but also the mechanical strength in various directions such as tear strength and shear strength are generally improved. Since the molecular chains (crystals) M take a radial arrangement around the axis L, the torsional strength is also improved.

 この圧縮配向成形体1の中心の軸Lに対する分子鎖(結晶)Mの配向角は、10〜60°程度に調節することが重要である。傾斜角が10°より小さくなると、中心の軸Lに平行な一軸配向に近い分子鎖(結晶)配向形態となり、軸L方向とこれに直角な横方向との分子鎖(結晶)配向の異方性が大きくなるので、種々の方向の機械的強度を全般に向上させることが難しくなる。また、分子鎖(結晶)Mの配向角が60°より大きい成形体は、後述するように圧入が困難であるために製造が容易でなく、クラック等が発生するので均一な成形体が得難い。特に、分子鎖(結晶)Mの配向角を10〜35°程度に調節した成形体1は、分子鎖(結晶)配向の異方性が小さく、種々の方向の機械的強度が全般に顕著に向上するので極めて好ましい。なお、分子鎖(結晶)Mの配向角は、後述するように成形型の絞り部のテーパー面の傾斜角と、ビレット収容キャビティと成形キャビティの横断面の面積比率を変えることによって容易に調整できる。 配 向 It is important to adjust the orientation angle of the molecular chain (crystal) M with respect to the center axis L of the compression-orientation molded product 1 to about 10 to 60 °. When the tilt angle is smaller than 10 °, the molecular chain (crystal) orientation is nearly uniaxial orientation parallel to the central axis L, and the molecular chain (crystal) orientation is anisotropic in the direction of the axis L and in the lateral direction perpendicular thereto. Therefore, it is difficult to generally improve the mechanical strength in various directions. In addition, a molded product having an orientation angle of the molecular chain (crystal) M of more than 60 ° is difficult to press-fit as described below, so that it is not easy to manufacture and a crack or the like is generated, so that it is difficult to obtain a uniform molded product. In particular, in the molded article 1 in which the orientation angle of the molecular chain (crystal) M is adjusted to about 10 to 35 °, the anisotropy of the molecular chain (crystal) orientation is small, and the mechanical strength in various directions is generally remarkable. It is very preferable because it improves. The orientation angle of the molecular chain (crystal) M can be easily adjusted by changing the inclination angle of the tapered surface of the narrowed portion of the mold and the area ratio of the cross section of the billet housing cavity and the mold cavity as described later. .

 この圧縮配向成形体1の原料となる熱可塑性高分子材料は、結晶性で直鎖状のポリマーであれば全て使用可能であり、成形体の用途に応じて種々のものが選択使用される。例えば、その用途が骨接合用のピン、ロッド、スクリューなどである場合には、初期の粘度平均分子量が10万〜70万程度、好ましくは15万〜60万程度の生体内分解吸収性のポリ乳酸や各種のポリ乳酸共重合体(例えば乳酸−グリコール酸共重合体等)が好適に使用され、また、用途が工業用のスクリューなどである場合には、超高分子量ポリエチレンが好適に使用される。また、これ以外にも、結晶相とガラス相からなるポリエチレンテレフタレート(Tg:69℃、Tm:230℃)、ポリアミド(Tg:40〜50℃、Tm:225〜265℃)、結晶相とゴム相からなるポリプロピレン(Tg:−20℃、Tm:165℃)、ポリ4メチルペンテン−1(Tg:29℃、Tm:250℃)などが挙げられる。 As the thermoplastic polymer material as the raw material of the compression-orientation molded product 1, any crystalline and linear polymer can be used, and various types are selected and used depending on the use of the molded product. For example, when the application is a pin, rod, screw or the like for osteosynthesis, a biodegradable and absorbable polymer having an initial viscosity average molecular weight of about 100,000 to 700,000, preferably about 150,000 to 600,000. Lactic acid and various polylactic acid copolymers (eg, lactic acid-glycolic acid copolymer) are preferably used, and when the application is an industrial screw or the like, ultrahigh molecular weight polyethylene is preferably used. You. In addition, polyethylene terephthalate (Tg: 69 ° C., Tm: 230 ° C.), polyamide (Tg: 40 to 50 ° C., Tm: 225 to 265 ° C.), crystal phase and rubber phase Polypropylene (Tg: −20 ° C., Tm: 165 ° C.), poly-4-methylpentene-1 (Tg: 29 ° C., Tm: 250 ° C.).

 圧縮配向加工が適用できる樹脂は、基本的に常温でのポリマーの相が結晶相とゴム相、結晶相とガラス相から成るものであり、その加工温度は通常の溶融成形の温度よりも低いガラス転移点(Tg)と融点(Tm)の中間の軟化温度(Ts)よりもやや低い温度を選択して行うことができる。常温にてかかる相をもつ樹脂は、本成形法にて成形された後に適度な分子間力によって各々の該相を形成して形状を保持することができる。但し、結晶相のみ、ガラス相のみからなるポリマーも、この方法を適用できないことはないが、成形体は剛(硬)いけれども粘弾性が不足するため変形に対して脆いので、容易に欠けたり、割れたりする欠点を有し、用途によって望ましくないことが多い。尚、圧縮配向成形体1に靭性をもたせるため、或は、製造時の塑性変形を容易にするために、非晶性の熱可塑性高分子材料を適量混合して使用してもよい。 Resins to which compression orientation processing can be applied are basically those in which the polymer phase at normal temperature is composed of a crystal phase and a rubber phase, and a crystal phase and a glass phase, and the processing temperature is lower than that of ordinary melt molding. The temperature can be selected by selecting a temperature slightly lower than the softening temperature (Ts) between the transition point (Tg) and the melting point (Tm). A resin having such a phase at room temperature can form each of the phases by an appropriate intermolecular force after being molded by the present molding method, and can maintain the shape. However, this method cannot be applied to a polymer consisting of only a crystal phase or a glass phase. However, a molded product is hard (hard) but lacks viscoelasticity and is brittle against deformation. Has the disadvantage of cracking and is often undesirable in some applications. In order to impart toughness to the compression-oriented molded body 1 or to facilitate plastic deformation at the time of production, an appropriate amount of an amorphous thermoplastic polymer material may be mixed and used.

 また、この圧縮配向成形体1には、用途に応じて粉体フィラー(不図示)を均一に含有させてもよい。このように粉体フィラーを含有させても、成形体1は圧縮されているので粉体フィラーの周りに空隙部(ボイド)が存在せず、機械的強度の低下は生じない。粉体フィラーとしては、その粒子又は粒子の集合塊の大きさが0.1〜300μm程度であるものを使用することができるが、圧縮成形体を切削加工などの後加工により細部が薄い部分をもつような精緻な加工物(例えば骨接合用スクリュー)に仕上げ、これが高い機械的強度をもつことを要求する場合には0.1〜50μm程度の細かい粒子又はその集合塊を選択して用いる必要がある。しかし、細部をもたず、頗る高い強度を要求されない成形体の場合は、50〜300μm程度の粒子又はその集合塊を均一に分散して用いることができる。 圧 縮 The compression-oriented molded product 1 may contain a powder filler (not shown) uniformly depending on the use. Even if the powder filler is contained in this way, since the compact 1 is compressed, no voids (voids) exist around the powder filler, and the mechanical strength does not decrease. As the powder filler, those having a size of the particles or aggregates of the particles of about 0.1 to 300 μm can be used. It is necessary to select and use fine particles of about 0.1 to 50 μm or aggregates when it is required to have a high mechanical strength. There is. However, in the case of a compact having no details and not requiring extremely high strength, particles of about 50 to 300 μm or aggregates thereof can be uniformly dispersed and used.

 粉体フィラーの含有量は10〜70wt%程度とすることが望ましい。10wt%未満では粉体フィラーを入れた効果が少なく、70wt%を越えると量が多すぎるので、得られる成形体は脆弱なものとなる。 (4) The content of the powder filler is desirably about 10 to 70 wt%. If it is less than 10 wt%, the effect of adding the powder filler is small, and if it exceeds 70 wt%, the amount is too large, and the obtained molded body is brittle.

 粉体フィラーは圧縮配向成形体1の用途に適したものを選択して含有させればよく、例えば用途が骨接合材やその他のインプラント材料である場合には、骨との結合性を有するバイオセラミックスの粉体を含有させることが望ましい。また耐熱性の向上が要求される用途にはシリカ、ベントナイト、炭酸カルシウム等を、導電性が要求される用途にはカーボンブラック、ポリアニリン等を、熱伝導性が要求される用途にはアルミナ等を、耐摩耗性が要求される用途にはグラファイト等を、それぞれ含有させるのが良い。 What is necessary is just to select and contain a powder filler suitable for the use of the compression-orientation molded product 1. For example, when the use is an osteosynthesis material or other implant material, a bio-bonding material having a binding property to bone is used. It is desirable to include ceramic powder. For applications requiring improved heat resistance, use silica, bentonite, calcium carbonate, etc., for applications requiring conductivity, use carbon black, polyaniline, etc., and for applications requiring thermal conductivity, use alumina, etc. For applications requiring abrasion resistance, graphite or the like is preferably contained.

 上記の円柱状圧縮配向成形体1は、図7に示すような成形型2、即ち、大径円筒状のビレット収容キャビティ2aと、小径の有底円筒状の成形キャビティ2cとの間に、内周面が下窄まりのテーパー面に形成された絞り部2bを同軸的に設け、加圧用の雄型2dをビレット収容キャビティ2a(以下、収容キャビティという)に挿入するようにした成形型2を使用して、以下の要領で製造される。 The above-mentioned cylindrical compression-oriented molded body 1 is provided between a molding die 2 as shown in FIG. 7, that is, a large-diameter cylindrical billet accommodating cavity 2a and a small-diameter cylindrical molding cavity 2c with a bottom. A molding die 2 having a constricted portion 2b whose peripheral surface is formed in a tapered surface with a constriction provided coaxially, and a male mold 2d for pressurization inserted into a billet accommodating cavity 2a (hereinafter referred to as an accommodating cavity). Used and manufactured in the following manner.

 まず、結晶性の熱可塑性高分子材料を溶融成形して、収容キャビティ2aの内径と略同一の直径を有する円柱状のビレット10を造り、図7に示すように該ビレット10を収容キャビティ2aに収容する。ビレット10を造る方法としては溶融押出成形法が好ましく採用されるが、射出成形法や圧縮成形法などの他の成形法を採用してもよい。但し、これらの予備成形体はTm以下、Tg以上の温度で加工しやすくするために、基本的に非晶質体となるような条件で成形される必要がある。これらの方法は、生体内分解吸収性の熱可塑性高分子材料の場合は、分子量低下を抑えるために、その融点より少し高い温度条件と、押出可能な最小限の圧力条件を採用することが重要である。例えば、高分子材料として既述した10万〜70万程度の粘度平均分子量を有するポリ乳酸(PLLA)を溶融押出成形してビレットを造る場合には、融点以上で220℃以下、好ましくは200℃以下の温度条件と、260kg/cm^2 以下、好ましくは170〜210kg/cm^2 程度の圧力条件を採用するのがよい。また、粉体フィラーを含有する圧縮配向成形体を製造する場合は、粉体フィラーを均一に配合した熱可塑性高分子材料を同様に溶融成形して、予備成形体であるビレット10を造り、これを収容キャビティ2aに収容すればよい。 First, a crystalline thermoplastic polymer material is melt-molded to form a cylindrical billet 10 having a diameter substantially equal to the inner diameter of the housing cavity 2a, and the billet 10 is placed in the housing cavity 2a as shown in FIG. To accommodate. As a method for producing the billet 10, a melt extrusion molding method is preferably employed, but another molding method such as an injection molding method or a compression molding method may be employed. However, these preforms must be formed under conditions that are basically amorphous so that they can be easily processed at temperatures of Tm or lower and Tg or higher. In the case of these biodegradable and absorbable thermoplastic polymer materials, it is important to adopt a temperature condition slightly higher than their melting point and a minimum extrudable pressure condition in order to suppress molecular weight reduction. It is. For example, when a polylactic acid (PLLA) having a viscosity-average molecular weight of about 100,000 to 700,000 as described above as a polymer material is melt-extruded to form a billet, a billet is formed at a melting point or higher and 220 ° C. or lower, preferably 200 ° C. or lower. It is preferable to employ the following temperature conditions and pressure conditions of 260 kg / cm ^ 2 or less, preferably about 170 to 210 kg / cm ^ 2. In the case of manufacturing a compression-oriented molded body containing a powder filler, a thermoplastic polymer material in which the powder filler is uniformly blended is similarly melt-molded to produce a billet 10 which is a pre-molded body. May be accommodated in the accommodation cavity 2a.

 次いで、雄型2dを連続的又は断続的に加圧しながら収容キャビティ2aに圧挿することによって、ビレット10を熱可塑性高分子材料のガラス転移点より高く溶融温度より低い結晶化温度で図8に示すように絞り部2bを通して有底の成形キャビティ2cに連続的又は断続的に圧入充填する。このとき、成形キャビティ2c内部の空気は、成形キャビティ2cの底部に形成した微小孔(不図示)から自然に抜くようにする。 Next, the billet 10 is pressed at a crystallization temperature higher than the glass transition point of the thermoplastic polymer material and lower than the melting temperature by press-fitting the male mold 2d into the receiving cavity 2a while continuously or intermittently applying pressure. As shown, the molding cavity 2c with the bottom is continuously and intermittently press-filled through the narrowing portion 2b. At this time, the air inside the molding cavity 2c is naturally drawn out from a minute hole (not shown) formed at the bottom of the molding cavity 2c.

 このように圧入充填すると、ビレット10が絞り部2bを通過する際に、絞り部2bのテーパー面との間に摩擦抵抗による大きな剪断力が生じ、これが分子鎖(結晶)を配向させるMD方向及びTD方向の外力として作用するため、分子鎖(結晶)が成形型2の中心の軸Lcに向かって斜め下方に配向しながら圧縮され、結晶化が進行する。そして、成形キャビティ2cに充填された後も、成形キャビティ2cの内面や底面により背圧を受け、上記の分子鎖(結晶)配向及び圧縮状態を維持したまま成形体1が固定される。従って、得られる円柱状の成形体1は圧縮されて緻密質になり、既述したように分子鎖(結晶)Mが外周面から成形体の中心の軸Lに向かって斜め下方に配向することになる。 When press-fitting is performed in this manner, when the billet 10 passes through the constricted portion 2b, a large shearing force is generated between the billet 10 and the tapered surface of the constricted portion 2b due to frictional resistance. Since it acts as an external force in the TD direction, the molecular chains (crystals) are compressed while being oriented obliquely downward toward the axis Lc at the center of the mold 2, and crystallization proceeds. After being filled in the molding cavity 2c, the molding 1 is fixed while receiving the back pressure from the inner surface and the bottom surface of the molding cavity 2c and maintaining the molecular chain (crystal) orientation and the compressed state. Accordingly, the obtained columnar molded body 1 is compressed to be dense, and the molecular chains (crystals) M are oriented obliquely downward from the outer peripheral surface toward the center axis L of the molded body as described above. become.

 その場合、分子鎖(結晶)の配向角(成形体の力学的な芯となる軸に対する分子鎖(結晶)の配向軸の角度)は、絞り部2bのテーパー面の傾斜角(成形型2の中心の軸に対する傾斜角)と、双方のキャビティ2a,2cの横断面の面積比によって近似的に定まる。即ち、図9に示すように、収容キャビティ2aの半径をR、成形キャビティ2cの半径をr、成形型の中心の軸Lcに対する絞り部2bのテーパー面の傾斜角をθ、双方のキャビティ2a,2bの横断面の面積比をA=R^2 /r^2 とし、ビレットの外周部の点Xがテーパー面に沿って軸Lc方向に距離dだけ圧入される間に中心の軸Lc上の点Yが圧入される距離をDとすると、分子鎖(結晶)は線分lmの方向に配向すると考えられる。この線分lmの方向に配向した分子鎖(結晶)の配向角(軸Lcに対する配向角)をθmとすると、 tanθm=r/D−dとなり、 D−d=A・dであるから、tanθm=r/A・d[式1]となる。d=(R−r)/tan
θであるから、これを[式1]に代入すると、tan θm=rtan θ/A(R−r)[式2]となり、R=r・A^0.5 であるから、これを[式2]に代入すると、
tan θm=tan θ/A(A^0.5 −1)[式3]となる。
In this case, the orientation angle of the molecular chain (crystal) (the angle of the orientation axis of the molecular chain (crystal) with respect to the axis serving as the mechanical center of the molded body) is determined by the inclination angle of the tapered surface of the narrowed portion 2b (the inclination angle of the mold 2). (The inclination angle with respect to the center axis) and the area ratio of the cross section of both cavities 2a and 2c. That is, as shown in FIG. 9, the radius of the receiving cavity 2a is R, the radius of the molding cavity 2c is r, the inclination angle of the tapered surface of the narrowed portion 2b with respect to the center axis Lc of the molding die is θ, and both cavities 2a, The area ratio of the cross section of 2b is A = R ^ 2 / r ^ 2, and the point X on the outer peripheral portion of the billet is pressed along the tapered surface in the direction of the axis Lc by the distance d while the center X is on the center axis Lc. Assuming that the distance at which the point Y is pressed is D, the molecular chains (crystals) are oriented in the direction of the line segment lm. Assuming that the orientation angle (the orientation angle with respect to the axis Lc) of the molecular chain (crystal) oriented in the direction of the line segment lm is θm, tan θm = r / D−d, and since D−d = A · d, tan θm = R / A · d [Equation 1]. d = (R−r) / tan
Since θ is substituted into [Equation 1], tan θm = rtan θ / A (R−r) [Equation 2], and R = r · A0.50.5. Substituting into
tan θm = tan θ / A (A ^ 0.5 -1) [Equation 3].

 即ち、分子鎖(結晶)は上記の[式3]が成立する配向角θmで軸に対して斜めに配向することになり、テーパー面の傾斜角θが大きくなるほど、分子鎖(結晶)の配向角θmは大きくなり、双方のキャビティの横断面の面積比Aが大きくなるほど、分子鎖(結晶)の配向角が小さくなる。従って、テーパー面の傾斜角θと面積比Aを変えることによって、分子鎖(結晶)を所望の配向角θmに調節することができる。 That is, the molecular chains (crystals) are oriented obliquely with respect to the axis at the orientation angle θm that satisfies the above [Equation 3]. As the inclination angle θ of the tapered surface increases, the orientation of the molecular chains (crystals) increases. As the angle θm increases and the area ratio A of the cross section of both cavities increases, the orientation angle of the molecular chain (crystal) decreases. Therefore, by changing the inclination angle θ of the tapered surface and the area ratio A, the molecular chain (crystal) can be adjusted to a desired orientation angle θm.

 しかし、ビレット10の圧入充填作業のしやすさ、分子鎖(結晶)の配向性等を考慮すると、絞り部2bのテーパー面の傾斜角θを10〜60°に設定し、且つ、収容キャビティ2aの横断面の面積を成形キャビティー2cの横断面の面積の1.5〜6倍に設定して、得られる圧縮配向成形体1の変形比R=So/S(但し、Soはビレット10の断面積、Sは圧縮配向成形体1の断面積)を実質的に1.5〜6.0とすることが望ましい。テーパー面の傾斜角θが10°未満であると、ビレット10とテーパー面との摩擦抵抗による大きな剪断力が生じにくく、ビレット10の外周部が滑べりやすくなり、成形体1内部まで効率良く分子鎖(結晶)を配向させることが困難となる。逆に、傾斜角θが60°より大きくなると、ビレット10の圧入に高圧力が必要となるため圧入充填作業が困難となり、あえて圧入しても、スティックスリップ(stick slip)現象による分子鎖(結晶)配向の不均質化やクラック等が発生しやすくなるので、満足な圧縮配向成形体1を得ることが容易でない。また、収容キャビティー2aの横断面の面積が成形キャビティー2cの横断面の面積の1.5倍より小さい場合は、圧縮率が低いため分子鎖(結晶)の配向性が乏しくなり、機械的強度を大幅に向上させることが難しくなる。逆に、6倍より大きくすると、ビレット10の圧入充填が困難になり、しかも配向が過度になってフィブリル化するため、フィブリル間で裂けやすい成形体1となる。 However, considering the ease of press-fitting work of the billet 10 and the orientation of molecular chains (crystals), the inclination angle θ of the tapered surface of the narrowed portion 2b is set to 10 to 60 °, and the accommodation cavity 2a Is set to 1.5 to 6 times the area of the cross section of the molding cavity 2c, and the deformation ratio R of the obtained compression-oriented molded product 1 is R = So / S (where So is the billet 10 It is desirable that the cross-sectional area, S, is substantially 1.5 to 6.0. When the inclination angle θ of the tapered surface is less than 10 °, a large shearing force due to the frictional resistance between the billet 10 and the tapered surface is less likely to occur, the outer peripheral portion of the billet 10 is easily slid, and the molecules can efficiently reach the inside of the molded body 1. It is difficult to orient the chains (crystals). On the other hand, if the inclination angle θ is larger than 60 °, high pressure is required for press-fitting the billet 10 and press-fitting work becomes difficult. ) It is not easy to obtain a satisfactory compression-oriented molded product 1 because the orientation tends to be inhomogeneous and cracks are likely to occur. If the area of the cross section of the housing cavity 2a is smaller than 1.5 times the area of the cross section of the molding cavity 2c, the orientation of molecular chains (crystals) is poor due to low compressibility, and mechanical It becomes difficult to greatly improve the strength. Conversely, if it is larger than 6 times, it becomes difficult to press-fit and fill the billet 10, and the orientation becomes excessive and fibrillates, so that the molded article 1 is easily torn between fibrils.

 特に、絞り部2bのテーパー面の傾斜角θを15〜45°に設定し、且つ、収容キャビティー2aの横断面の面積を成形キャビティー2cの横断面の面積の2〜3.5倍に設定する場合は、ビレット10の圧入充填性、分子鎖(結晶)の配向性及び配向角、圧縮性等が良好となり、異方性が少なく機械的強度に優れた圧縮配向成形体1を容易に得ることができるので極めて好ましい。 In particular, the inclination angle θ of the tapered surface of the narrowed portion 2b is set to 15 to 45 °, and the area of the cross section of the receiving cavity 2a is set to 2 to 3.5 times the area of the cross section of the molding cavity 2c. In the case of setting, the press-fitting fillability of the billet 10, the orientation and orientation angle of the molecular chains (crystals), the compressibility, and the like are improved, and the compression-oriented molded body 1 having less anisotropy and excellent mechanical strength can be easily obtained. It is very preferable because it can be obtained.

 ビレット1の圧入充填は、熱可塑性高分子材料の種類によってはガラス転移点(Tg)より低い室温(Tgが室温よりも高いポリマーの場合)で行うこともできるが、圧入充填性の容易さ、分子鎖(結晶)の配向の効果、および結晶化度の調整等を図るためには、収容キャビティ2a内でビレット1をガラス転移温度(Tg)から溶融温度(Tm)までの間の結晶化温度(Tc)を選んで加熱して、キャビティ2b内へ圧入充填することが肝要である。従って、熱可塑性高分子材料がポリ乳酸あるいは乳酸とグリコール酸の共重合体のような結晶性ポリマーである場合には、効果的な結晶化温度域である80〜110℃の範囲の任意の温度を選んで圧入充填するのが適当である。 Depending on the type of the thermoplastic polymer material, the billet 1 can be press-filled at room temperature lower than the glass transition point (Tg) (when the polymer has a Tg higher than room temperature). In order to achieve the effect of molecular chain (crystal) orientation and the adjustment of the degree of crystallinity, the crystallization temperature of the billet 1 in the accommodation cavity 2a from the glass transition temperature (Tg) to the melting temperature (Tm). It is important to select (Tc), heat, and press-fit the cavity 2b. Therefore, when the thermoplastic polymer material is a crystalline polymer such as polylactic acid or a copolymer of lactic acid and glycolic acid, any temperature within the effective crystallization temperature range of 80 to 110 ° C. It is appropriate to select and press-fit.

 また、この場合のビレット1を圧入充填するための圧力はポリマーによって異なるが、通常は4000kgf/cm^2以下、好ましくは2000kgf/cm^2以下である。4000kgf/cm^2
を超えて過激に圧入すると、剪断力とそれによる発熱によって分子量が大幅に低下すること、結晶化が充分に行われず、その配向相も安定な系を形成しないことなどから、かえって高強度の圧縮配向成形体1が得難くなる。
In this case, the pressure for press-fitting the billet 1 varies depending on the polymer, but is usually 4000 kgf / cm ^ 2 or less, preferably 2000 kgf / cm ^ 2 or less. 4000kgf / cm ^ 2
If the pressure is excessively exceeded, the shear force and the resulting heat will cause a significant decrease in the molecular weight, crystallization will not be performed sufficiently, and the oriented phase will not form a stable system. It becomes difficult to obtain the oriented molded body 1.

 圧入速度は、成形型の内面に滑りを良くする特殊な表面処理を施さない場合は8〜80mm/minが適当である。これより遅い速度で圧入すると、ビレット10の未だ成形キャビティ2cに圧入されていない部分までが結晶化の進行によって硬化し、圧入が困難となる。一方、上記より速い速度で圧入充填すると、スティックスリップが生じ、不均質な成形体1が得られるので良くない。 The press-fitting speed is suitably from 8 to 80 mm / min when a special surface treatment for improving the slip is not applied to the inner surface of the mold. If the press-fitting is performed at a lower speed than this, the portion of the billet 10 that has not yet been press-fitted into the molding cavity 2c is hardened by the progress of crystallization, making it difficult to press-fit. On the other hand, if the press-fitting is performed at a speed higher than the above, stick-slip occurs and an inhomogeneous molded body 1 is obtained, which is not good.

 得られる圧縮配向成形体1の結晶化度は、該成形体1の変形比R、圧入時の温度、圧力、時間(圧入速度)等によって変化し、一般に変形比Rが大きく、温度が高く、圧力が大きく、時間が長くなるほど、結晶化度は高くなる。ポリ乳酸およびその共重合体の場合の圧縮配向成形体1の結晶化度は30〜60%の範囲にあることが望ましく、このような結晶化度の圧縮配向成形体1は、高分子の結晶相と非晶相の比率のバランスが良好で、結晶相による強度及び硬度の向上と、非晶相による柔軟性とがよく調和されるため、結晶相のみの場合のような脆さがなく、非晶相のみの場合のような強度のない弱い性質も現れない。そのため、靭性があり、総合的に強度が充分高い成形体となる。結晶化度が30%未満では、一般に結晶による強度の向上が期待できない。一方、結晶化度が高くなればそれに応じて強度は向上するが、60%より高くなると却って靭性の欠如により衝撃等を受けたときに容易に破壊するという脆い性質が著しく発現する。また、生体内での分解が遅くなり、これはインプラントの分解特性としては好ましいものではない。このような理由から、ポリ乳酸およびその共重合体のような生体内分解吸収性の熱可塑性ポリマーの場合は、圧縮配向成形体1の変形比Rや圧入時の温度、圧力、時間などを前記の範囲内でコントロールしたり、圧入充填後に結晶化温度で短時間熱処理することによって、圧縮配向成形体1の結晶化度を30〜60%に調節することが望ましいのである。そして、それらの圧縮配向成形体1のより望ましい結晶化度の範囲は40〜50%である。 The degree of crystallinity of the obtained compression-oriented molded product 1 varies depending on the deformation ratio R of the molded product 1, the temperature, pressure, time (pressing speed) at the time of press-fitting, and generally, the deformation ratio R is large and the temperature is high. The higher the pressure and the longer the time, the higher the crystallinity. The degree of crystallinity of the compression-oriented molded body 1 in the case of polylactic acid and its copolymer is desirably in the range of 30 to 60%. The balance between the ratio of the phase and the amorphous phase is good, and the improvement in strength and hardness by the crystalline phase and the flexibility by the amorphous phase are well harmonized, so that there is no brittleness as in the case of only the crystalline phase, A weak property without strength as in the case of only an amorphous phase does not appear. Therefore, a molded article having toughness and sufficiently high strength overall is obtained. When the degree of crystallinity is less than 30%, improvement in strength due to crystals cannot generally be expected. On the other hand, if the degree of crystallinity increases, the strength increases accordingly, but if the degree of crystallinity exceeds 60%, the brittle property of easily breaking when subjected to an impact or the like due to lack of toughness is remarkably exhibited. In addition, the degradation in the living body is slow, which is not preferable as the degradation characteristics of the implant. For this reason, in the case of a biodegradable and absorbable thermoplastic polymer such as polylactic acid and a copolymer thereof, the deformation ratio R of the compression-orientation molded product 1 and the temperature, pressure, time and the like at the time of press-fitting are set as described above. It is desirable to control the crystallinity of the compression-oriented molded product 1 to 30 to 60% by controlling the temperature within the range described above or performing a short-time heat treatment at the crystallization temperature after press-fitting. And the range of the more desirable crystallinity of those compression-orientation molded objects 1 is 40 to 50%.

 上述のようにして成形された円柱状の圧縮配向成形体1は、冷却後に成形型2から取出され、圧縮配向されていない余白材料部分1aが切除される。そして、無加工のまま、或はスクリュー、釘、円筒状物などの所望の形状に切削加工されて、種々の用途に使用される。 {Circle around (4)} The columnar compression-oriented molded body 1 molded as described above is removed from the mold 2 after cooling, and the blank material portion 1a that is not compression-oriented is cut off. Then, it is used in various applications as it is without processing, or after being cut into a desired shape such as a screw, a nail, or a cylindrical object.

 図3は本発明の他の実施形態に係る板状の圧縮配向成形体について、その縦断面における分子鎖(結晶)の配向状態を示す概念図、図4は同板状の圧縮配向成形体について、その横断面おける分子鎖(結晶)の配向状態を示す概念図である。 FIG. 3 is a conceptual diagram showing an orientation state of molecular chains (crystals) in a longitudinal section of a plate-shaped compression-oriented molded product according to another embodiment of the present invention, and FIG. FIG. 3 is a conceptual diagram showing an orientation state of a molecular chain (crystal) in the cross section.

 この板状の圧縮配向成形体1は、図示のように、結晶性の熱可塑性高分子材料の分子鎖(結晶)Mが成形体1の両面から中心の軸を含む面Pに向かって斜め下方に配向したものである。この面Pは板状成形体1の両面と平行で板状成形体1を厚み方向に二等分する位置にあり、面Pの両側の分子Mの配向角は互いに等しくなっている。かかる板状圧縮配向成形体1も、面P方向とこれに直角の横方向との分子配向の異方性が小さく、且つ、圧縮により緻密質になっているため、種々の方向の機械的強度が全般的に優れている。尚、この板状成形体1には粉体フィラーを含有させても勿論よい。 As shown in the figure, the plate-shaped compression-oriented molded body 1 has molecular chains (crystals) M of a crystalline thermoplastic polymer material obliquely downwardly from both sides of the molded body 1 toward a plane P including a central axis. Is oriented. This plane P is located at a position parallel to both surfaces of the plate-shaped molded body 1 and bisecting the plate-shaped molded body 1 in the thickness direction, and the orientation angles of the molecules M on both sides of the plane P are equal to each other. This plate-shaped compression-oriented molded product 1 also has small anisotropy in molecular orientation in the direction of the plane P and the transverse direction perpendicular thereto, and has a high density due to compression. Is generally better. The plate-shaped molded body 1 may of course contain a powder filler.

 このような板状の圧縮配向成形体1は、横断面の面積が大きい広幅の長方形の収容キャビティ2aと、横断面の面積が小さな狭幅の長方形の成形キャビティ2cとの間に、両側内面(相対向する両長辺側の内面)が等しい傾斜角の斜面とされた絞り部2bを有する成形型2を使用し、結晶性の熱可塑性高分子材料を溶融成形した厚肉板状のビレット10を収容キャビティ2aに収容して、雄型2dによりビレット10を結晶化温度で絞り部2bを通して成形キャビティ2cに連続的又は断続的に圧入充填すると製造することができる。このように圧縮配向された成形体1は、絞り部2bの両側の斜面によって材料が内側斜め下方に向かう力を受け、その両側からの力が均衡する部分が成形体両面と平行な上記の面Pとなる。 Such a plate-shaped compression-oriented molded body 1 has inner surfaces on both sides between a wide rectangular receiving cavity 2a having a large cross-sectional area and a narrow rectangular forming cavity 2c having a small cross-sectional area. A thick plate-shaped billet 10 obtained by melt-molding a crystalline thermoplastic polymer material using a molding die 2 having a narrowed portion 2b having inclined surfaces having the same inclined angle at both long sides facing each other. Is housed in the housing cavity 2a, and the billet 10 is continuously or intermittently press-fitted into the molding cavity 2c through the narrowed portion 2b at the crystallization temperature by the male mold 2d. In the compact 1 oriented in such a compression manner, the material is subjected to a force directed obliquely downward and inward by the slopes on both sides of the narrowed portion 2b, and the portions where the forces from both sides are balanced are parallel to the both faces of the compact. It becomes P.

 以上の実施形態は、円柱状と板状の圧縮配向成形体を製造する場合についてのものであるが、角柱状の圧縮配向成形体を製造する場合は、横断面の面積が大きい角筒状の収容キャビティ2aと、横断面の面積が小さい有底角筒状の成形キャビティ2cとの間に、側面が下窄まりの斜面に形成された絞り部2bを同軸的に設けた成形型2を使用して、角柱状のビレット10を収容キャビティ2aに収容し、同様に雄型2dを圧入することにより、ビレット10を結晶化温度で絞り部2bを通して成形キャビティ2cに連続的又は断続的に圧入充填すれば良い。このように圧入充填すると、分子が実質的に成形体の各側面から成形体の力学的な芯をなす中心の軸あるいは該軸を含む面に向かって斜めに配向している角柱状の圧縮配向成形体が得られる。尚、角柱状成形体は四角柱状のものに限らず、三角柱状のものや五角以上の多角柱状のものとしてもよいことは言うまでもない。 The above embodiment is about manufacturing a columnar and plate-shaped compression-oriented molded body, but when manufacturing a prism-shaped compression-oriented molded body, a rectangular cylindrical shape having a large cross-sectional area is used. A molding die 2 is used which is coaxially provided with a narrowed portion 2b whose side surface is formed on a slope having a downward constriction, between a housing cavity 2a and a molding cavity 2c having a rectangular cross section with a small cross section. Then, the prismatic billet 10 is housed in the housing cavity 2a, and the male mold 2d is similarly press-fitted, so that the billet 10 is continuously or intermittently press-filled into the molding cavity 2c through the drawing portion 2b at the crystallization temperature. Just do it. When pressed and filled in this manner, the molecules are substantially prism-shaped compression orientations in which molecules are oriented obliquely from each side surface of the molded body toward the center axis or the plane including the axis, which forms the mechanical center of the molded body. A molded article is obtained. It is needless to say that the prism-shaped molded body is not limited to a quadrangular prism, but may be a triangular prism or a pentagon or more polygonal prism.

 図5は本発明の更に他の実施形態に係る板状の圧縮配向成形体について、その縦断面における分子の配向状態を示す概念図、図6は同板状の圧縮配向成形体について、その横断面おける分子の配向状態を示す概念図である。 FIG. 5 is a conceptual diagram showing a molecular orientation state in a longitudinal section of a plate-shaped compression-oriented molded product according to still another embodiment of the present invention, and FIG. It is a conceptual diagram which shows the orientation state of the molecule | numerator in a surface.

 この板状の圧縮配向成形体1は、図示のように、結晶性の熱可塑性高分子材料の分子鎖(結晶)Mが成形体1の両面から、中心より片面側へ偏位した面Pに向かって斜め下方に配向したものである。この面Pは、成形体1の中心をはずれた位置にある軸を含み且つ板状成形体1の両面と平行な面であり、この面Pの両側の分子鎖(結晶)Mの配向角は互いに異なっている。 As shown in the figure, the plate-shaped compression-oriented molded body 1 has a molecular chain (crystal) M of a crystalline thermoplastic polymer material on both sides of the molded body 1 and on a plane P deviated from the center to one side. It is oriented obliquely downward. This plane P is a plane that includes an axis at a position off the center of the molded body 1 and is parallel to both surfaces of the plate-shaped molded body 1. The orientation angles of the molecular chains (crystals) M on both sides of the plane P are Different from each other.

 かかる板状の圧縮配向成形体1は、面P方向とこれに直角の横方向との分子鎖(結晶)配向の異方性が小さく、且つ、圧縮により緻密質になっているため、種々の方向の機械的強度が全般的に優れていることは勿論であるが、更に、面Pを挟んで両側の分子鎖(結晶)Mの配向角が異なるため機械的物性が両側で相違し、あたかも二枚の物性が異なる板をラミネートしたかのような板状成形体となるので、面Pの偏りの位置を変化させることにより板状成形体1の全体的な機械的物性を用途に応じて種々調整することが可能である。尚、この板状成形体1には粉体フィラーを含有させても勿論よい。 Such a plate-like compression-oriented molded product 1 has a small anisotropy of molecular chain (crystal) orientation in the plane P direction and the transverse direction perpendicular thereto, and is dense by compression. Of course, the mechanical strength in the direction is excellent in general, but furthermore, since the orientation angles of the molecular chains (crystals) M on both sides of the plane P are different, the mechanical properties are different on both sides. Since the plate-like molded body is obtained as if two sheets having different physical properties are laminated, the overall mechanical physical properties of the plate-like molded body 1 can be changed according to the application by changing the position of the deviation of the plane P. Various adjustments are possible. The plate-shaped molded body 1 may of course contain a powder filler.

 このような板状の圧縮配向成形体1は、横断面の面積が大きい長方形の収容キャビティ2aと、横断面の面積が小さな狭幅の長方形の成形キャビティ2cとの間に、両側内面(相対向する両長辺側の内面)が互いに異なる傾斜角の斜面とされた絞り部2bを有する成形型2を使用し、前記の板状圧縮配向成形体の場合と同様に、厚肉板状のビレット10を結晶化温度で絞り部2bを通して成形キャビティ2cへ圧入充填することにより製造することができる。そして、絞り部2bの両側の斜面の傾斜角を変えることにより、面Pの偏りの位置と分子鎖(結晶)Mの配向角を任意に調節することができる。 Such a plate-shaped compression-oriented molded body 1 has a pair of inner surfaces (opposite to each other) between a rectangular housing cavity 2a having a large cross-sectional area and a narrow rectangular molding cavity 2c having a small cross-sectional area. Using a forming die 2 having a narrowed portion 2b whose inner surfaces on both long sides are inclined at different inclination angles, and a thick plate-shaped billet is formed in the same manner as in the case of the plate-shaped compression-oriented molded body. 10 can be manufactured by press-fitting into the molding cavity 2c through the drawing portion 2b at the crystallization temperature. By changing the inclination angles of the inclined surfaces on both sides of the narrowed portion 2b, the position of the deviation of the plane P and the orientation angle of the molecular chain (crystal) M can be arbitrarily adjusted.

 同様に、成形型として、図7及び図8に示す成形型2の絞り部2bのテーパー面の傾斜角がテーパー面の全周に亘ってもしくは任意の部分で漸次変化した成形型を使用して円柱状の圧縮配向成形体を製造すると、成形体の中心を外れた位置にある軸に向かって分子鎖(結晶)が斜め下方に配向し、その配向角が成形体全周に亘って又は部分的に漸次変化した円柱状成形体が得られる。そして、成形型として絞り部の少なくとも一つの斜面の傾斜角が他の斜面の傾斜角と異なる成形型を使用して角柱状の圧縮配向成形体を製造すると、分子鎖(結晶)が成形体の各側面から、中心を外れた位置にある軸又は該軸を含む面(横断面が横長の多角形である角柱状成形体の場合)に向かって斜めに配向し、その配向角が絞り部の各斜面の傾斜角に応じて異なる角柱状の圧縮配向成形体が得られる。 Similarly, as the forming die, a forming die in which the inclination angle of the tapered surface of the drawn portion 2b of the forming die 2 shown in FIGS. 7 and 8 gradually changes over the entire circumference of the tapered surface or at an arbitrary portion is used. When a columnar compression-oriented molded article is manufactured, the molecular chains (crystals) are oriented obliquely downward toward an axis located at a position off the center of the molded article, and the orientation angle is set over the entire circumference of the molded article or in part. As a result, a columnar molded body that gradually changes is obtained. Then, when a prismatic compression-oriented molded body is manufactured by using a molding mold in which at least one slope of the drawn portion has a different inclination angle from the other slopes, the molecular chains (crystals) of the molded body are reduced. Each of the side surfaces is obliquely oriented toward an axis located at an off-center position or a plane including the axis (in the case of a prism-shaped molded body having a horizontally long polygonal cross section), and the orientation angle of the drawn portion is A different prism-shaped compression-orientation molded product is obtained according to the inclination angle of each slope.

 以下、本発明の更に具体的な実施例を説明する。 Hereinafter, more specific examples of the present invention will be described.

粘度平均分子量が40万のポリL乳酸を押出機にて190℃で溶融押出し、直径が13mm、長さが50mm、粘度平均分子量が30万の円柱状のビレットを得た。 Poly-L-lactic acid having a viscosity average molecular weight of 400,000 was melt-extruded at 190 ° C. using an extruder to obtain a cylindrical billet having a diameter of 13 mm, a length of 50 mm, and a viscosity average molecular weight of 300,000.

 このビレットを成形型の13mmの直径を有する円筒状の収容キャビティに入れて110℃に加熱し、テーパー面の傾斜角が45°の絞り部を通して、直径が8.5mm、長さが92mmの円筒状の成形キャビティに圧入充填することにより、成形キャビティと同様のサイズを有する円柱状の圧縮配向成形体(変形比R=2.3)を得た。 This billet is placed in a cylindrical receiving cavity of a molding die having a diameter of 13 mm, heated to 110 ° C., and passed through a narrowed portion having a taper surface inclination angle of 45 °, a cylinder having a diameter of 8.5 mm and a length of 92 mm. By press-fitting and filling into a cylindrical molding cavity, a cylindrical compression-oriented molded body (deformation ratio R = 2.3) having the same size as the molding cavity was obtained.

 そして、この圧縮配向成形体を切削加工することにより、直径が3.2mm、長さが40mmの骨接合ピンを製造し、その曲げ強度、密度、結晶化度、破壊トルク値を測定した。その結果を下記の表1に示す。尚、曲げ強度は三点曲げ試験法[JIS K 7203(1982)]によって測定し、密度は成形体の大きさと重量から算出し、結晶化度は示差走査型熱量計(DSC)による分析結果から算出し、破壊トルク値はトルク試験機(ネジテスター、シンポ工業株式会社製)で測定したものである。 Then, the compression-oriented molded product was cut to produce an osteosynthesis pin having a diameter of 3.2 mm and a length of 40 mm, and the bending strength, density, crystallinity, and fracture torque value were measured. The results are shown in Table 1 below. The bending strength was measured by a three-point bending test method [JIS K 7203 (1982)], the density was calculated from the size and weight of the compact, and the crystallinity was determined from the results of analysis by a differential scanning calorimeter (DSC). The calculated and the breaking torque values were measured with a torque tester (Screw Tester, manufactured by Shinpo Kogyo Co., Ltd.).

 また、比較のために、長軸方向に延伸加工した延伸倍率が2.3倍のポリL乳酸の同形状の骨接合ピンについて同様の物性を測定し、その結果を表1に併記した。
For comparison, the same physical properties were measured for osteosynthesis pins of the same shape made of poly-L-lactic acid having a draw ratio of 2.3 times and stretched in the major axis direction, and the results are also shown in Table 1.

 表1に示すように、本発明の圧縮配向された骨接合ピンは、延伸による骨接合ピンと比較して曲げ強度が高く、密度も大きい緻密なものであった。また、破壊トルク値についても、本発明の骨接合ピンの方が延伸による骨接合ピンより大きく、このことから本発明の骨接合ピンは捻り強度が向上していることが明らかとなった。 As shown in Table 1, the compression-oriented osteosynthesis pin of the present invention had a higher bending strength and a higher density than the osteosynthesis pin formed by stretching. In addition, the fracture torque value of the osteosynthesis pin of the present invention is larger than that of the osteosynthesis pin of the present invention, which indicates that the osteosynthesis pin of the present invention has improved torsional strength.

分子の配向状態を調べるために、図10に示すように、実施例1で溶融成形した円柱状ビレット10にその中心軸と直交する貫通孔を穿孔し、着色した同ポリ乳酸の細い線材11を該貫通孔に挿入した。そして、このビレット10を成形型の収容キャビティ内にて110℃で加熱し、テーパー面の傾斜角が45°の絞り部を通して、直径が7.8mm、長さが95mmの円筒状の成形キャビティに圧入充填することにより、成形キャビティと同様のサイズを有する円柱状の圧縮配向成形体(変形比R=2.8)を得た。 In order to examine the orientation state of the molecules, as shown in FIG. 10, a through hole perpendicular to the center axis of the cylindrical billet 10 melt-formed in Example 1 was drilled, and a thin wire 11 of the same polylactic acid was colored. It was inserted into the through hole. Then, the billet 10 is heated at 110 ° C. in the cavity of the molding die, and is passed through a narrowed portion having a taper surface inclination angle of 45 ° into a cylindrical molding cavity having a diameter of 7.8 mm and a length of 95 mm. By press-fitting, a columnar compression-oriented molded body (deformation ratio R = 2.8) having the same size as the molding cavity was obtained.

 得られた圧縮配向成形体1は、図11に示すように線材11が略V字状に屈曲し、線の巾が軸L方向に拡大されていた。これにより、分子鎖(結晶)が成形体の外周面側から中心の軸Lに向かって斜めに配向していることが裏付けられた。 は As shown in FIG. 11, in the obtained compression-oriented molded body 1, the wire 11 was bent in a substantially V shape, and the width of the wire was expanded in the axis L direction. This confirmed that the molecular chains (crystals) were obliquely oriented from the outer peripheral surface side of the molded body toward the central axis L.

 次に、この圧縮配向成形体1の分子の配向角を、前記の[式3]を用いて、面積比A=2.8、テーパー面の傾斜角θ=45°として算出し、実際に得られた圧縮配向成形体1の線材11の傾斜角θの実測値と対比したところ、計算値は約28°、実測値は約30°であり、両者はほぼ一致していた。 Next, the orientation angle of the molecules of the compression-orientation molded product 1 was calculated using the above-mentioned [Equation 3], assuming that the area ratio A = 2.8 and the inclination angle θ of the tapered surface = 45 °. The calculated value was about 28 ° and the measured value was about 30 °, as compared with the actually measured value of the inclination angle θ of the wire 11 of the compression-orientation molded body 1, which was almost the same.

粘度平均分子量が40万のポリL乳酸を押出機にて190℃で溶融押出しすることにより、巾10mm、厚み4mm、長さ50mmのプレート状のビレットを得た。 A poly-L-lactic acid having a viscosity average molecular weight of 400,000 was extruded at 190 ° C. by an extruder to obtain a plate-shaped billet having a width of 10 mm, a thickness of 4 mm and a length of 50 mm.

 このビレットを成形型の幅10mm、厚み4mmの矩形筒状の収容キャビティに入れて110℃に加熱し、相対向する両側(両長辺側)斜面の一方の斜面の傾斜角が45°、他方の斜面の傾斜角が15°である絞り部を通して、幅10mm、厚み1.6mm、長さ110mmの矩形筒状の成形キャビティに圧入充填することにより、成形キャビティと同様のサイズを有するプレート状の圧縮配向成形体(変形比R=2.5)を得た。 This billet is placed in a rectangular cylindrical receiving cavity having a width of 10 mm and a thickness of 4 mm of a molding die and heated to 110 ° C., and one of two opposite slopes (both long sides) has a slope angle of 45 ° and the other slope angle is 45 °. Is press-fitted into a rectangular cylindrical molding cavity having a width of 10 mm, a thickness of 1.6 mm, and a length of 110 mm through a narrowed portion having an inclination angle of 15 °, thereby forming a plate-shaped member having the same size as the molding cavity. A compression-oriented molded product (deformation ratio R = 2.5) was obtained.

 そして、この圧縮配向成形体を長さ50mmに切断して、幅10mm、厚み1.6mmの骨接合プレートを製造し、その曲げ強度を、前記の傾斜角が15°の斜面より絞った面と、傾斜角が45°の斜面より絞った面に力を加えてそれぞれ測定した。その結果、傾斜角15°の斜面より絞った面に力を加えて測定した場合は234MPaの曲げ強度であったのに対して、傾斜角45°の斜面より絞った面に力を加えて測定した場合は248MPaであった。 Then, the compression-oriented molded body is cut into a length of 50 mm to produce an osteosynthesis plate having a width of 10 mm and a thickness of 1.6 mm, and the bending strength of the plate is reduced from the slope having the inclination angle of 15 °. The force was applied to a surface narrowed from the inclined surface having an inclination angle of 45 °, and the measurement was performed. As a result, when a force was applied to a surface narrowed from a slope having a tilt angle of 15 °, the bending strength was 234 MPa, whereas a force applied to a surface narrowed from a slope having a tilt angle of 45 ° was measured. In this case, it was 248 MPa.

 このことは、斜面の傾斜角の違いによって、圧入充填時の摩擦により受ける剪断力が異なるため、プレート内部のポリマーの分子鎖配向が15°側と45°側で異なる配向となり、あたかも物性の異なる2種類のプレートがラミネートされたような構造を持っていると考えられる。つまり、45°側は圧入充填時に受ける剪断力、及び圧入圧力が大きいため、15°側と比較してより緻密になっていると思われる。このように両面の物性が異なるプレートは、ポリL乳酸のガラス転移温度以上の温度(例えば80℃の熱水)で曲線に変形して任意の生体の部位に合った形状をつくる際に、変形側を選択することでより精巧な加工を容易にするので効果的である。 This is because, due to the difference in the inclination angle of the slope, the shear force received by friction at the time of press-fitting is different, so that the molecular chain orientation of the polymer inside the plate is different between the 15 ° side and the 45 ° side, as if the physical properties are different. It is considered that the two types of plates have a laminated structure. In other words, it is considered that the 45 ° side is denser than the 15 ° side because the shearing force and the press-in pressure received during press-fitting and filling are large. Such a plate having different physical properties on both sides is deformed into a curve at a temperature higher than the glass transition temperature of poly-L-lactic acid (for example, hot water of 80 ° C.) to form a shape suitable for an arbitrary living body part. It is effective to select a side to facilitate more elaborate processing.

 次に、絞り部の斜面の傾斜角が二面とも45°である成形型を用いて同様の変形度、サイズを有する骨接合用プレートを製造し、その曲げ強度を測定した。その結果、曲げ強度は256MPaであり、上記のプレートの強度を上回った。従って、プレートの両面より均一に配向し、緻密質な圧縮配向成形体となっている。 Next, a plate for osteosynthesis having the same degree of deformation and size was manufactured using a molding die in which the inclination angles of the inclined surfaces of the drawn portions were both 45 °, and the bending strength was measured. As a result, the bending strength was 256 MPa, which exceeded the strength of the plate. Accordingly, the plate is uniformly oriented from both sides of the plate, and is a dense compression-oriented molded body.

粘度平均分子量が8.5万の高密度ポリエチレン(三菱油化(株)製)を押出機にて230℃で溶融押出し、横断面が一辺10mm角の正方形で長さが50mmの角柱状の低結晶化ビレットを得た。 A high-density polyethylene having a viscosity-average molecular weight of 85,000 (manufactured by Mitsubishi Yuka Co., Ltd.) is melt-extruded at 230 ° C. using an extruder, and has a square cross section of 10 mm square and 50 mm length. A crystallized billet was obtained.

 次いで、このビレットを一辺が10mmの角筒状の収容キャビティに入れて95℃に加熱し、四方の斜面の傾斜角が15°の絞り部を通して、横断面が一辺5.8mm角の正方形で長さ120mmの角筒状の成形キャビティに圧入充填することにより、成形キャビティと同様のサイズを有する角柱状の圧縮配向成形体(変形比R=3.0)を得た。 Next, this billet was placed in a square cylindrical receiving cavity having a side of 10 mm, heated to 95 ° C., and passed through a narrowed portion having a slope of 15 ° with a slope of 15 °. By press-fitting into a 120 mm square cylindrical molding cavity, a prismatic compression-oriented molded body (deformation ratio R = 3.0) having the same size as the molding cavity was obtained.

 そして、この圧縮配向成形体の引張り強度を測定した。但し、引張り試験方法はJIS K 7113(1981)に準じて行った。 Then, the tensile strength of this compression-oriented molded product was measured. However, the tensile test method was performed according to JIS K 7113 (1981).

 また、上記ビレットを圧縮配向成形体と同様のサイズの角柱状に切削加工し、同様に引張り強度を測定した。 Further, the billet was cut into a prism having the same size as that of the compression-orientation molded product, and the tensile strength was measured in the same manner.

 その結果、切削加工したビレットが19.6MPaであったのに対し、圧縮配向成形体は32.4MPaに向上していた。 As a result, the billet after cutting was 19.6 MPa, whereas the compression-oriented molded product was improved to 32.4 MPa.

粘度平均分子量40万のPLLAを実施例1と同様の方法と条件で押出して、粘度平均分子量が30万のビレットを得た。次いで、このビレットを成形型の直径13mmの円筒状の収容キャビティに入れ、テーパー面の傾斜角が45°の絞り部を通して、直径10.6mm、長さ60mmの円筒状の成形キャビティに実施例1と同様の条件で圧入充填し、変形比Rが1.5の円柱状の圧縮配向成形体を得た。この成形体から切削加工により直径3.2mm、長さ40mmのピンを作製し、実施例1と同様の物性試験(破壊トルク試験を除く)を行った。その結果、曲げ強度は168MPa、密度は1.250g/cm^2 、結晶化度は44.7%であり、変形比Rと同じ延伸倍率で一軸延伸した延伸物よりも曲げ強度や密度が向上していた。 PLLA having a viscosity average molecular weight of 400,000 was extruded by the same method and under the same conditions as in Example 1 to obtain a billet having a viscosity average molecular weight of 300,000. Next, this billet was put into a cylindrical receiving cavity of a molding die having a diameter of 13 mm, and was passed through a narrowed portion having a taper surface inclination angle of 45 ° to a cylindrical molding cavity having a diameter of 10.6 mm and a length of 60 mm. Under the same conditions as described above, press-fitting was performed to obtain a columnar compression-oriented molded body having a deformation ratio R of 1.5. A pin having a diameter of 3.2 mm and a length of 40 mm was prepared from this molded body by cutting, and subjected to the same physical property test (excluding the fracture torque test) as in Example 1. As a result, the flexural strength was 168 MPa, the density was 1.250 g / cm ^ 2, the crystallinity was 44.7%, and the flexural strength and density were higher than those of the uniaxially stretched product at the same stretching ratio as the deformation ratio R. Was.

実施例5で得たPLLAのビレットを、成形型の直径13.0mmの円筒状の収容キャビティに入れ、テーパー面の傾斜角が15°の絞り部を通して、直径5.3mm、長さ220mmの成形キャビティに実施例1と同様の条件で圧入充填し、変形比Rが6.0のPLLA圧縮配向成形体を得ることを試みた。しかし、圧入充填には10000kgf/cm^2 の非常に高い圧力を必要とし、得られた成形体はクラックを有していた。 The billet of PLLA obtained in Example 5 was put into a cylindrical accommodation cavity having a diameter of 13.0 mm of a molding die, and was formed into a 5.3 mm diameter, 220 mm length molding through a narrowed portion having a taper surface with a tilt angle of 15 °. The cavity was press-filled under the same conditions as in Example 1, and an attempt was made to obtain a PLLA compression-oriented molded body having a deformation ratio R of 6.0. However, press-fitting required a very high pressure of 10,000 kgf / cm ^ 2, and the resulting molded article had cracks.

 同様に加工度Rが5.5の場合の試作を行ったが、クラックは部分的に存在するのみであった。しかし、金型の表面を滑りやすくする処理を施すと良質の圧縮配向成形体が得られた。 Similarly, a trial production was conducted when the degree of processing R was 5.5, but cracks were only partially present. However, when a treatment for making the surface of the mold slippery was performed, a high-quality compression-oriented molded product was obtained.

平均粒径1.84μmのハイドロキシアパタイト(900℃焼成)が均一に30重量%分散された粘度平均分子量40万のポリL−乳酸を押出機にて185℃で溶融押出して、直径13.0mm、長さ40mm、粘度平均分子量が25万の円柱状のビレットを得た。 Polya-L-lactic acid having a viscosity average molecular weight of 400,000 in which hydroxyapatite (calcined at 900 ° C.) having an average particle size of 1.84 μm (dispersed at 900 ° C.) is uniformly dispersed is melt-extruded at 185 ° C. by an extruder to obtain a diameter of 13.0 mm. A cylindrical billet having a length of 40 mm and a viscosity average molecular weight of 250,000 was obtained.

 このビレットを成形型の13.0mmの直径を有する円筒状の収容キャビティに入れて107℃に加熱し、テーパー面の傾斜角が15°の絞り部を通して、直径が7.8mm、長さが90mmの円筒状の成形キャビティに圧入充填することにより、成形キャビティと同様のサイズを有する粉体フィラー入りの円柱状圧縮配向成形体(変形比R=2.8)を得た。この成形体について実施例1と同様にして曲げ強度、密度、結晶化度を測定したところ、曲げ強度は280MPa、密度は1.50g/cm^3 、結晶化度は42.5%であり、優れた曲げ強度を有していた。 This billet is put into a cylindrical receiving cavity having a diameter of 13.0 mm of a mold, heated to 107 ° C., and passed through a narrowed portion having a taper surface with a tilt angle of 15 °, and has a diameter of 7.8 mm and a length of 90 mm. By press-fitting into the cylindrical molding cavity, a cylindrical compression-oriented molded body (deformation ratio R = 2.8) containing a powder filler and having the same size as the molding cavity was obtained. When the bending strength, density and crystallinity of this molded body were measured in the same manner as in Example 1, the bending strength was 280 MPa, the density was 1.50 g / cm ^ 3, and the crystallinity was 42.5%. It had excellent bending strength.

本発明の一実施形態に係る円柱状の圧縮成形体において、その縦断面における分子鎖(結晶)の配向状態を示す概念図である。FIG. 3 is a conceptual diagram showing an orientation state of molecular chains (crystals) in a vertical cross section of a columnar compression molded body according to one embodiment of the present invention. 同実施形態の円柱状の圧縮成形体において、その横断面における分子鎖(結晶)の配向状態を示す概念図である。FIG. 3 is a conceptual diagram showing an orientation state of molecular chains (crystals) in a cross section of the columnar compression molded body of the embodiment. 本発明の他の実施形態に係る板状の圧縮成形体において、その縦断面における分子鎖(結晶)の配向状態を示す概念図である。FIG. 4 is a conceptual diagram showing an orientation state of molecular chains (crystals) in a longitudinal section of a plate-shaped compression molded body according to another embodiment of the present invention. 同実施形態の板状の圧縮成形体において、その横断面における分子鎖(結晶)の配向状態を示す概念図である。FIG. 3 is a conceptual diagram showing an orientation state of molecular chains (crystals) in a cross section of the plate-shaped compression molded body of the embodiment. 本発明の更に他の実施形態に係る板状の圧縮成形体において、その縦断面における分子鎖(結晶)の配向状態を示す概念図である。It is a key map showing the orientation state of the molecular chain (crystal) in the longitudinal section in the plate-shaped compression molding concerning other embodiments of the present invention. 同実施形態の板状の圧縮成形体において、その横断面における分子鎖(結晶)の配向状態を示す概念図である。FIG. 3 is a conceptual diagram showing an orientation state of molecular chains (crystals) in a cross section of the plate-shaped compression molded body of the embodiment. 本発明の製造方法の一実施形態において、ビレットを成形型の成形キャビティに圧入充填する前の状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state before press-fitting and filling a billet into a molding cavity of a mold in one embodiment of the production method of the present invention. 同実施形態において、ビレットを成形型の成形キャビティに圧入充填した後の状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state after the billet is press-fitted into a molding cavity of a molding die in the same embodiment. 分子鎖(結晶)の配向角を求めるための説明図である。FIG. 3 is an explanatory diagram for obtaining an orientation angle of a molecular chain (crystal). 分子鎖(結晶)の配向状態を調べるために製作した円柱状のビレットの断面図である。It is sectional drawing of the column-shaped billet manufactured in order to investigate the orientation state of a molecular chain (crystal). 同ビレットを用いて得られた円柱状の圧縮成形体の断面図である。It is sectional drawing of the columnar compression molding obtained using the same billet.

符号の説明Explanation of reference numerals

 1  圧縮配向成形体
 2  成形型
 2a 収容キャビティ
 2b 絞り部
 2c,成形キャビティ
 2d 雄型
 10 ビレット
 θm 分子鎖(結晶)の配向角
 θ  絞り部のテーパー面又は斜面の傾斜角
 L  成形体の軸(中心の軸)
 Lc 成形型の中心の軸
 M  分子鎖(結晶)
 P  成形型の軸を含む面
Reference Signs List 1 compression-oriented molded body 2 molding die 2a receiving cavity 2b drawing part 2c, molding cavity 2d male die 10 billet θm orientation angle of molecular chain (crystal) θ inclination angle of tapered surface or inclined surface of drawing part L axis of molding (center Axis)
Lc Center axis of mold M Molecular chain (crystal)
P Surface including the axis of the mold

Claims (13)

結晶性の熱可塑性高分子材料からなる圧縮された成形体であって、分子鎖あるいは結晶が実質的に成形体の軸又は該軸を含む面に向かって斜めに配向していることを特徴とする圧縮配向成形体。 A compressed molded body made of a crystalline thermoplastic polymer material, wherein molecular chains or crystals are substantially obliquely oriented toward an axis of the molded body or a plane including the axis. Compression-oriented moldings. 成形体の軸が成形体の力学的な芯となる軸であって、成形体の中心又は中心をはずれた位置にあることを特徴とする請求項1に記載の圧縮配向成形体。 The compression-oriented molded body according to claim 1, wherein the axis of the molded body is an axis serving as a mechanical core of the molded body, and is located at the center or at a position off the center of the molded body. 分子鎖あるいは結晶が、実質的に円柱状成形体の外周面から中心又は中心をはずれた位置にある軸に向かって斜めに配向していることを特徴とする請求項2に記載の圧縮配向成形体。 3. The compression-oriented molding according to claim 2, wherein the molecular chains or crystals are obliquely oriented toward an axis located at a center or an off-center position from the outer peripheral surface of the substantially columnar molded body. body. 分子鎖あるいは結晶が、実質的に角柱状成形体の各側面から中心又は中心をはずれた位置にある軸あるいは該軸を含む面に向かって斜めに配向していることを特徴とする請求項2に記載の圧縮配向成形体。 3. The method according to claim 2, wherein the molecular chains or crystals are oriented obliquely toward an axis or a plane containing the axis at a center or off-center from each side face of the substantially prismatic shaped body. 3. The compression-oriented molded product according to item 1. 分子鎖あるいは結晶が、実質的に板状成形体の両面から、該成形体の中心又は中心をはずれた位置にある軸を含み且つ成形体両面と平行な面に向かって斜めに配向していることを特徴とする請求項2に記載の圧縮配向成形体。 The molecular chains or crystals are oriented obliquely from both sides of the substantially plate-like molded body toward a plane including an axis at the center or an off-center position of the molded body and parallel to both surfaces of the molded body. The compression-oriented molded product according to claim 2, wherein: 成形体に粉体フィラーが含有されていることを特徴とする請求項1ないし請求項5のいずれかに記載の圧縮配向成形体。 The compression-oriented molded product according to any one of claims 1 to 5, wherein the molded product contains a powder filler. 粉体フィラーがバイオセラミックスの粉体であることを特徴とする請求項6に記載の圧縮配向成形体。 The compression-oriented molded product according to claim 6, wherein the powder filler is a bioceramic powder. 横断面の面積が大きいビレット収容キャビティと横断面の面積が小さい有底の成形キャビティとの間に、内周面がテーパー面とされた絞り部又は少なくとも両側内面が斜面とされた絞り部を有する成形型を使用し、この成形型のビレット収容キャビティに、結晶性の熱可塑性高分子材料を溶融成形した本質的に非晶質であるビレットを収容して、熱可塑性高分子材料のガラス転移点よりも高く溶融温度よりも低い結晶化温度にて、該ビレットを絞り部を通して有底の成形キャビティに圧入充填することを特徴とする圧縮配向成形体の製造方法。 Between the billet accommodating cavity having a large cross-sectional area and a molding cavity having a bottom having a small cross-sectional area, there is a constricted portion whose inner peripheral surface is a tapered surface or a constricted portion in which at least both inner surfaces are inclined surfaces. Using a mold, an essentially amorphous billet obtained by melt-molding a crystalline thermoplastic polymer material is accommodated in a billet accommodating cavity of the mold, and a glass transition point of the thermoplastic polymer material is stored. A method of press-fitting the billet into a molding cavity having a bottom through a drawing portion at a crystallization temperature higher than the melting temperature. 絞り部のテーパー面又は斜面の傾斜角が10〜60°であり、ビレット収容キャビティの横断面の面積が成形キャビティの横断面の面積の1.5〜6倍であることを特徴とする請求項8に記載の製造方法。 The inclination angle of the tapered surface or the inclined surface of the narrowed portion is 10 to 60 °, and the area of the cross section of the billet accommodating cavity is 1.5 to 6 times the area of the cross section of the molding cavity. 9. The production method according to 8. 絞り部のテーパー面又は斜面の傾斜角が15〜45°であり、ビレット収容キャビティの横断面の面積が成形キャビティの横断面の面積の2〜3.5倍であることを特徴とする請求項8に記載の製造方法。 The tapered surface or the inclined surface of the narrowed portion has an inclination angle of 15 to 45 degrees, and the area of the cross section of the billet receiving cavity is 2 to 3.5 times the area of the cross section of the molding cavity. 9. The production method according to 8. 絞り部のテーパー面の傾斜角がテーパー面の全周に亘ってもしくは任意の部分で漸次変化し、又は、絞り部の少なくとも一つの斜面の傾斜角が他の斜面の傾斜角と異なっていることを特徴とする請求項8ないし請求項10のいずれかに記載の製造方法。 The inclination angle of the tapered surface of the constricted portion changes gradually over the entire circumference of the tapered surface or at an arbitrary portion, or the inclination angle of at least one inclined surface of the constricted portion is different from the inclination angles of the other inclined surfaces. The method according to any one of claims 8 to 10, wherein: ビレットが粉体フィラーを配合した結晶性の熱可塑性高分子材料を溶融成形したものであることを特徴とする請求項8ないし請求項11のいずれかに記載の製造方法。 The method according to any one of claims 8 to 11, wherein the billet is obtained by melt-molding a crystalline thermoplastic polymer material containing a powder filler. 粉体フィラーがバイオセラミックスの粉体であることを特徴とする請求項12に記載の製造方法。 The method according to claim 12, wherein the powder filler is a bioceramic powder.
JP2003317332A 2003-09-09 2003-09-09 Compression oriented molded body and method for producing the same Expired - Lifetime JP4068035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317332A JP4068035B2 (en) 2003-09-09 2003-09-09 Compression oriented molded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317332A JP4068035B2 (en) 2003-09-09 2003-09-09 Compression oriented molded body and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7966596A Division JP4009916B2 (en) 1996-03-06 1996-03-06 Compression oriented molded body and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007023143A Division JP4068126B2 (en) 2007-02-01 2007-02-01 Compression-oriented molded body

Publications (2)

Publication Number Publication Date
JP2004001577A true JP2004001577A (en) 2004-01-08
JP4068035B2 JP4068035B2 (en) 2008-03-26

Family

ID=30439029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317332A Expired - Lifetime JP4068035B2 (en) 2003-09-09 2003-09-09 Compression oriented molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4068035B2 (en)

Also Published As

Publication number Publication date
JP4068035B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
NO310136B1 (en) Material for osteosynthesis and method of preparation thereof, as well as implant material and method for preparation thereof
CA2282132C (en) Biodegradable and bioabsorbable implant material and method for adjusting shape thereof
JPH05168647A (en) Bone treating implement and its production
JPH0338971B2 (en)
JP3571560B2 (en) Concentration gradient material
Yang et al. Mechanical properties and morphologies of polypropylene/single‐filler or hybrid‐filler calcium carbonate composites
JP4068126B2 (en) Compression-oriented molded body
JP4009916B2 (en) Compression oriented molded body and method for producing the same
JP4068035B2 (en) Compression oriented molded body and method for producing the same
JP4905759B2 (en) Bone treatment molded body and method for producing the same
JP5067957B2 (en) Complementary reinforced composite and method for producing the same
JPH09234243A (en) Composite higher strength implant material and its production method
JP3215047B2 (en) Manufacturing method of osteosynthesis material
JP5218951B2 (en) High strength and high modulus biodegradable bone anchoring material
KR100429937B1 (en) Bone Bonding Materials, High Strength Graft Materials and Their Manufacturing Methods
JP3215046B2 (en) Osteosynthesis material
JPH0737577B2 (en) Self-reinforcing polymer composite and method for producing the same
JP3597716B2 (en) Amorphous biodegradable and absorbable implant material
Velasco et al. Milled glass fiber filled-poly (ethylene terephthalate-co-isophthalate) composites-thermal and mechanical properties
Pielichowska Preparation of polyoxymethylene/hydroxyapatite nanocomposites by melt processing
JP2005066354A (en) Composite osteosynthesis material
WO1991006410A1 (en) Composite material
Bontha Development of Hdpe Composite for Biomedical Application Using 3d Printing
WO2006022018A1 (en) Process for producing bone treatment implement and bone treatment implement
Reis et al. Non-conventional processing routes on the development of anisotropic and biodegradable composites of starch based thermoplastics reinforced with bone-like ceramics

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term