JP2005066354A - Composite osteosynthesis material - Google Patents
Composite osteosynthesis material Download PDFInfo
- Publication number
- JP2005066354A JP2005066354A JP2004290055A JP2004290055A JP2005066354A JP 2005066354 A JP2005066354 A JP 2005066354A JP 2004290055 A JP2004290055 A JP 2004290055A JP 2004290055 A JP2004290055 A JP 2004290055A JP 2005066354 A JP2005066354 A JP 2005066354A
- Authority
- JP
- Japan
- Prior art keywords
- strength
- polymer
- oriented
- bone
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、生体活性を持つ生体内吸収性のバイオセラッミックスと生体内分解吸収性である結晶性の熱可塑性ポリマーとの新規なる粒子及びマトリックスポリマー強化複合材料からなる、極めて強度の高いインプラント材料及びその製造方法に関する。
更に詳しくは、本発明は生体内分解吸収性であり、生体と置換可能であって、同時に生体との結合や組織の誘導性を備えて生体活性のある新規で且つ有用な人工骨、人工関節、人工歯根、骨充填材、骨接合材、骨補綴材などの用途に有用な、より理想的な生体材料に関する。
The present invention relates to an extremely high-strength implant comprising a novel particle and matrix polymer-reinforced composite material of a bioactive bioceramic having bioactivity and a crystalline thermoplastic polymer that is biodegradable and absorbable. The present invention relates to a material and a manufacturing method thereof.
More specifically, the present invention is a novel and useful artificial bone or joint that is biodegradable and absorbable and can be replaced with a living body, and at the same time has bioactivity and tissue inductivity. The present invention relates to a more ideal biomaterial useful for applications such as artificial tooth roots, bone fillers, bone cements, and bone prostheses.
毒性がなく安全であり、一時は生体中に在って、治癒までの期間は力学的、生理的にその機能、目的を達成し、その後は徐々に自らが分解・崩壊して生体に吸収され、生体の代謝回路を経て体外に排泄される材料から作られていて、究極的にはそれを埋入した部位が生体に入れ替わり、元の生体の状態が再建されるインプラントは理想的な生体材料の一つと言える。 It is non-toxic and safe, and is temporarily present in the living body. During the period until healing, it achieves its function and purpose mechanically and physiologically, and then gradually decomposes and disintegrates itself and is absorbed into the living body. An implant that is made from a material excreted outside the body through the metabolic circuit of the living body, and ultimately the site where it is embedded is replaced by the living body, and the original living state is reconstructed is an ideal biological material It can be said that.
近年、硬組織である生体骨や軟骨の代替を目的とした人工骨、人工関節、人工歯根、骨充填材、骨補綴材が、或いは各部位の軟骨又は硬骨の骨折固定を目的とした骨接合材が、種々の金属、セラミックス、及びポリマーを用いて作られている。
このうちで、金属製の骨接合材は、機械的強度及び弾性率が生体骨よりも遙かに高いため、治療後にストレス保護により周囲骨の強度を低下させる現象を招く等の問題がある。また、セラミックス製の骨接合材は硬さと剛性は優れているが、脆さがあるので容易に割れるという致命的欠陥がある。また、ポリマーは普通には骨よりも強度が低いので強度を上げる努力がなされている。
一方、骨と直接結合のできる生体活性なバイオセラッミックスは、生体機能の回復や増強を目的として、人体に直接埋入または接触させて使用される機会が多くなっている。
In recent years, artificial bones, artificial joints, artificial tooth roots, bone filling materials, bone prosthetic materials intended to replace living bones and cartilage, which are hard tissues, or bone joints aimed at fixing fractures of cartilage or bone in each part Materials are made using various metals, ceramics, and polymers.
Among these, the metal osteosynthesis has a problem that the mechanical strength and the elastic modulus are much higher than those of living bones, resulting in a phenomenon that the strength of the surrounding bone is reduced by stress protection after treatment. In addition, the ceramic bone bonding material is excellent in hardness and rigidity, but has a fatal defect that it easily breaks due to its brittleness. Also, since polymers are usually less strong than bone, efforts are being made to increase strength.
On the other hand, bioactive bioceramics that can be directly bonded to bone are increasingly used for direct implantation or contact with the human body for the purpose of recovery or enhancement of biological functions.
また、生体と直接に強く結合し、しかも、生体によって徐々に置換されていくバイオセラミックスは未知なる可能性を有するので、更なる研究が続けられている。
しかし、バイオセラミックスは一般に剛性と硬度は大きいけれども、金属に比べると瞬間的な力である衝撃力により容易に欠けたり、割れたりするという脆い性質があるので、インプラントとしての用途に限界があるから、脆さのない靱性を備えた材料の開発が望まれている。
Further, since bioceramics that are directly and strongly bonded to a living body and that are gradually replaced by the living body have the possibility of being unknown, further research is continued.
However, although bioceramics generally have high rigidity and hardness, they have the brittle nature of being easily chipped or cracked by an impact force, which is an instantaneous force, compared to metals, so there are limits to their use as implants. Development of a material having toughness without brittleness is desired.
他方、生体の硬組織周囲へのインプラントに用いられているポリマ−は、現在のところ、軟骨の代替に用いられるシリコ−ン系レジン、歯科用セメントとしての硬化性アクリル系レジン、靱帯用のポリエステルあるいはポリプロピレン繊維の組紐などのいくつかの例が知られている。
しかし、生体の硬組織の代替えに用いられる不活性で強度が大きい超高分子量ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレンなどは、それのみで生体骨を代替するには強度がかなり不足している。そのため、これらを単体で代替骨や骨を接合する目的のスクリュ−、ピン、プレ−トに用いれば、容易に折れたり、割れたり、捩り切れたりして破損する。
On the other hand, polymers used for implants around hard tissues of living bodies are currently silicone resins used as a substitute for cartilage, curable acrylic resins as dental cement, polyesters for ligaments Or some examples, such as a braid of a polypropylene fiber, are known.
However, inactive and high-strength ultrahigh molecular weight polyethylene, polypropylene, polytetrafluoroethylene, and the like that are used to replace hard tissues in living bodies, are insufficient in strength to replace living bones by themselves. Therefore, if these are used alone as a substitute bone or a screw, a pin, or a plate for the purpose of joining bones, they are easily broken, broken or twisted to break.
そこで、プラスチックスの複合化技術を用いて強度の高いインプラントを作る試みがなされている。
例えば、カ−ボン繊維強化プラスチックがその1例であるが、これは生体中に長期に埋入された場合に、繊維とマトリックスプラスチック間で剥離が生じたり、剥離したカーボン繊維が折れて生体を刺激し、炎症を起こす原因となるので実用に値しない。
近年、骨と結合すると言われているポリオルソエステル(ブチレンテレフタレート−ポリエチレングリコ−ル共重合体)が注目され始めているが、このポリマー自体の強度は生体骨と比べて低く、骨と結合した後の生体中での物理的挙動が生体骨と同調できるかどうかの問題が残されている。
生体内で非吸収性である上記ポリマ−と異なり、生体内分解吸収性であるポリ乳酸、ポリグリコ−ル酸、乳酸−グリコ−ル酸共重合体、ポリジオキサノンは、かなり以前より吸収性縫合糸として臨床的に実用されている。
この縫合糸に用いられられている各ポリマーを骨接合材として利用できれば、治癒後の再手術が必要でなく、ポリマーが吸収されて消失した後は生体組織の再建が行われる、という優れた性質を有する骨接合材が得られるという考えはかなり以前よりあった。
このような事情から、上記の生体内分解吸収性ポリマーを骨接合材としてを用いる研究が盛んに行われている。
Therefore, attempts have been made to make high-strength implants using plastics composite technology.
For example, carbon fiber reinforced plastic is an example of this, and when it is embedded in a living body for a long time, peeling occurs between the fiber and the matrix plastic, or the peeled carbon fiber breaks and the living body is broken. It is not practical because it can irritate and cause inflammation.
In recent years, polyorthoesters (butylene terephthalate-polyethylene glycol copolymer), which are said to bind to bone, have begun to attract attention, but the strength of this polymer itself is lower than that of living bone, and after bonding to bone The question remains whether the physical behavior of the body can be synchronized with the living bone.
Unlike the above polymers that are non-absorbable in vivo, polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, and polydioxanone, which are biodegradable and absorbable, have been used as absorbable sutures for a long time. It is clinically used.
If each polymer used in this suture can be used as an osteosynthesis material, it does not require re-operation after healing, and it is excellent in that the tissue is reconstructed after the polymer is absorbed and lost The idea that an osteosynthesis material having the following can be obtained has been quite long.
Under such circumstances, research using the above-described biodegradable absorbable polymer as an osteosynthesis material has been actively conducted.
例えば、ポリグルコール酸の繊維を融着した自己強化型の骨接合器具が提案されて(米国特許第4,968,317号明細書)、臨床に使用されたが、分解が早く、また融着した繊維間での剥離とその崩壊した繊維状の細片が周囲の生体をまれにではあるが刺激して炎症を惹起するという欠点が指摘された。また、特開昭59−97654号公報には、生体内分解吸収性の骨接合用具として使用できるポリ乳酸、乳酸−グリコ−ル酸共重合体の合成法が開示されているが、この場合に骨接合材として挙げられているのは重合生成物自身であり、この材料の成形加工については何も説明されておらず、その強度を人の骨程度に上げる試みは示されていない。 For example, a self-reinforced osteosynthesis device fused with polyglycolic acid fibers has been proposed (US Pat. No. 4,968,317) and used clinically, but it is rapidly degraded and fused. It was pointed out that the separation between the fibers and the disintegrated fibrous strips rarely stimulate the surrounding living body to cause inflammation. JP-A-59-97654 discloses a method for synthesizing polylactic acid and lactic acid-glycolic acid copolymer that can be used as a biodegradable and resorbable osteosynthesis device. It is the polymerization product itself that is mentioned as an osteosynthesis material, nothing is described about the molding process of this material, and no attempt is made to increase its strength to the level of human bones.
そこで、強度を上げるために、ハイドロキシアパタイト(以下、単にHAと略称する)の少量を含むポリ乳酸等の生体内分解吸収性の高分子材料を成形し、次いで長軸方向に加熱下に延伸・配向した骨接合ピンの製造方法(特開昭63−68155号公報)や、溶融成形後の粘度平均分子量が20万以上の高分子量のポリ乳酸、乳酸−グリコ−ル酸共重合体の成形体を延伸した骨接合材(特開平1−198553号公報)が提案された。
これらの製造方法によって得られる骨接合材又はピンは、本質的に高分子材料の結晶軸(分子軸)が長軸方向に一軸配向しているため、曲げ強度や長軸方向の引張強度が向上する。特に、後者のように溶融成形後の粘度平均分子量が20万以上である骨接合材の場合は、フィブリル化しない程度の低倍率の延伸においても強度が高いので実用的である。
Therefore, in order to increase the strength, a biodegradable / absorbable polymer material such as polylactic acid containing a small amount of hydroxyapatite (hereinafter simply referred to as HA) is molded, and then stretched under heating in the major axis direction. A method for producing an oriented osteosynthesis pin (Japanese Patent Laid-Open No. 63-68155), and a molded article of high molecular weight polylactic acid or lactic acid-glycolic acid copolymer having a viscosity average molecular weight of 200,000 or more after melt molding Has been proposed (Japanese Patent Laid-Open No. 1-198553).
The bone bonding materials or pins obtained by these manufacturing methods are essentially improved in bending strength and tensile strength in the long axis direction because the crystal axis (molecular axis) of the polymer material is uniaxially oriented in the long axis direction. To do. In particular, in the latter case, in the case of an osteosynthesis having a viscosity average molecular weight of 200,000 or more after melt molding, it is practical because the strength is high even at a low magnification that does not cause fibrillation.
しかし、本質的に長軸方向にのみ延伸して得られる骨接合材は、基本的に分子(結晶)が分子鎖軸(結晶軸)である長軸方向にのみ配向しているので、この長軸方向に対して直角の方向である横方向との配向の異方性が大きく、横方向の強度が相対的に弱くなる。
また、上記特開昭63−68155号公報によれば、HAを5重量%含む混合物を延伸することで漸く162MPaの最大曲げ強度を得ているが、20重量%のHAを含むと、却って曲げ強度が未延伸のときの値である63MPaよりもやや高い74MPaに低下するようになる。
However, the bone cement obtained by essentially stretching only in the major axis direction is basically oriented only in the major axis direction where the molecule (crystal) is the molecular chain axis (crystal axis). The anisotropy of orientation with the transverse direction, which is a direction perpendicular to the axial direction, is large, and the transverse strength is relatively weak.
Further, according to the above-mentioned JP-A-63-68155, the maximum bending strength of 162 MPa is gradually obtained by stretching a mixture containing 5% by weight of HA. The strength decreases to 74 MPa, which is slightly higher than 63 MPa which is a value when the strength is not stretched.
しかし、この最大強度値もやはり皮質骨のそれを十分に越えるものでなく、延伸によって生じたボイドがフィラ−とマトリックスポリマ−の界面に多数存在する多孔質の不均質体となるので、生体骨の代替や骨接合材のように高い強度を要するインプラントには到底使用できるものではない。
また、該公報には、HAの少量を含むポリ乳酸等の生体内分解吸収性の高分子材料粉体をプレス成形したプレートの製造方法も記載されているが、得られたプレートはHAとポリ乳酸の混合物を単に溶融プレスしたにすぎず、配向を考慮して強度を上げることを目的とした概念は見受けられない。
However, this maximum strength value also does not sufficiently exceed that of cortical bone, and voids generated by stretching become porous heterogeneous bodies that exist at the interface between the filler and the matrix polymer. However, it cannot be used for implants that require high strength such as bone substitutes or osteosynthesis.
The publication also describes a method for producing a plate obtained by press-molding a biodegradable and absorbable polymer material powder such as polylactic acid containing a small amount of HA. The lactic acid mixture is merely melt-pressed, and there is no concept for increasing the strength in consideration of the orientation.
本発明は、これらの課題を一挙に解決し得るインプラント材料を提供することを目的とする。 An object of this invention is to provide the implant material which can solve these subjects at once.
本発明者らは上記課題を種々検討した結果、(1)生体内分解吸収性であるポリ乳酸(以下、単にポリマーと略称する)マトリックス中に、一次粒子又は一次粒子の集合塊の大きさが0.2〜10μmの生体内吸収性のバイオセラミックスである未焼成ハイドロキシアパタイト粉体10〜60重量%を実質的に均一に分散させ、結晶化度が10〜70%であることを特徴とする骨接合材、更に、(2)該マトリックスポリマーが加圧により結晶化して配向している高密度の加圧配向成形体である、生体内吸収性のバイオセラミックスである未焼成ハイドロキシアパタイト粉体及びマトリックスポリマー強化による新規複合材料となし、これを使用したインプラント材料とすることにより、上記課題を解消することができることを見出し、本発明を完成するに至った。 As a result of various studies on the above problems, the present inventors have found that (1) the size of primary particles or aggregates of primary particles in a polylactic acid (hereinafter simply referred to as polymer) matrix that is biodegradable and absorbable. 10 to 60% by weight of non-fired hydroxyapatite powder, which is a bioabsorbable bioceramic of 0.2 to 10 μm, is dispersed substantially uniformly and has a crystallinity of 10 to 70%. And (2) a non-fired hydroxyapatite powder that is a bioresorbable bioceramic, which is a high-density pressure-oriented molded body in which the matrix polymer is crystallized and oriented by pressurization, and We found that the above problems can be solved by creating a new composite material with matrix polymer reinforcement and using it as an implant material. The has been completed.
即ち、本発明は:
(1)生体内分解吸収性であるポリ乳酸マトリックス中に、一次粒子又は一次粒子の集合塊の大きさが0.2〜10μmの生体内吸収性のバイオセラミックスである未焼成ハイドロキシアパタイト粉体10〜60重量%を実質的に均一に分散させた、結晶化度が10〜70%である、複合化された骨接合材を提供する。また、
(2) 生体内分解吸収性であるポリ乳酸マトリックス中に、一次粒子又は一次粒子の集合塊の大きさが0.2〜10μmの生体内吸収性のバイオセラミックスである未焼成ハイドロキシアパタイト粉体20〜50重量%を実質的に均一に分散させ、結晶化度が10〜70%であり、且つ密度が1.4〜1.8である、複合化された骨接合材を提供する。また、
(3)上記骨接合材の曲げ強度が150〜320MPa、曲げ弾性率が6〜15GPaである点にも特徴を有する。また、
(4)上記骨接合材の引張強度が80〜180MPa、せん断強度が100〜150MPa、圧縮強度が100〜150MPaである点にも特徴を有する。また、
(5)上記骨接合材がボイドを有していない点にも特徴を有する。また、
(6)上記骨接合材の残存モノマー量が0.5重量%以下である点にも特徴を有する。
That is, the present invention provides:
(1) An unsintered hydroxyapatite powder 10 which is a bioabsorbable bioceramic having a primary particle or an aggregate size of primary particles of 0.2 to 10 μm in a polylactic acid matrix which is biodegradable and absorbable Provided is a composite osteosynthesis having a crystallinity of 10-70% with approximately 60% by weight dispersed substantially uniformly. Also,
(2) Unsintered hydroxyapatite powder 20 which is a bioabsorbable bioceramic having a primary particle or an aggregate size of primary particles of 0.2 to 10 μm in a polylactic acid matrix which is biodegradable and absorbable A composite osteosynthesis is provided in which ~ 50 wt% is dispersed substantially uniformly, the crystallinity is 10-70%, and the density is 1.4-1.8. Also,
(3) It is also characterized in that the bone bonding material has a bending strength of 150 to 320 MPa and a bending elastic modulus of 6 to 15 GPa. Also,
(4) The bone bonding material is characterized in that the tensile strength is 80 to 180 MPa, the shear strength is 100 to 150 MPa, and the compressive strength is 100 to 150 MPa. Also,
(5) It is also characterized in that the bone cement does not have voids. Also,
(6) The present invention is also characterized in that the amount of residual monomer in the bone cement is 0.5% by weight or less.
以下、本発明を詳細に説明するが、その前に複合材料の面から本発明が新規な強化方式による複合材料であることを明らかにする。
<本発明の複合材料の特徴>
1)ある素材の特性を改良する目的で、その中に微小形の素材を多く分散させた場合、前者を母材(マトリックス)、後者を分散材という。この二種類の物質を分子レベルのミクロな混合ではなく、マクロに相混合することによって、単独の物質には見れなかった優れた性質を持つように作り出されたものが複合材料である。
Hereinafter, the present invention will be described in detail, but before that, it will be clarified from the aspect of the composite material that the present invention is a composite material by a novel reinforcing system.
<Characteristics of composite material of the present invention>
1) For the purpose of improving the characteristics of a certain material, when many fine materials are dispersed therein, the former is called a base material (matrix) and the latter is called a dispersion material. A composite material is created by mixing these two types of substances in a macro, rather than at a molecular level, so that they have excellent properties not found in a single substance.
このように異種材料を複合化して、より優れた性質(より高い強度)をもつ材料を作る方式は、マトリックスに入れる分散材(強化材)の形態によって、以下のように分類できる。
(1)分散強化複合材料(Dispersion-strengthened
composite materials)、
(2)粒子強化複合材料(Particle-reinforced
composite materials)、
(3)繊維強化複合材料(Fiber-reinforced
composite materials)。
本発明のインプラント材料は(2)の複合材料に属する。マトリックスとしてのポリマ−は、熱可塑性で結晶性の生体内分解吸収性ポリマ−であるポリ乳酸又はその共重合体であり、分散材は微粒子状粉体の先記のバイオセラミックスである。
The method of making a material having a better property (higher strength) by compounding different kinds of materials in this way can be classified as follows according to the form of the dispersing material (reinforcing material) to be put in the matrix.
(1) Dispersion-strengthened
composite materials),
(2) Particle-reinforced composite material
composite materials),
(3) Fiber-reinforced composite material
composite materials).
The implant material of the present invention belongs to the composite material (2). The polymer as the matrix is polylactic acid or a copolymer thereof which is a thermoplastic and crystalline biodegradable and absorbable polymer, and the dispersing material is the bioceramics described above in the form of fine particles.
2)ところで、従来は材料工学の立場から、(3)の組合せからできた複合材料であるインプラントが有力視され、一時期はそのような研究も多く試された。しかし、例えばバイオセラミックスの短繊維を分散材として充填して強化する方法は、繊維片が生体を刺激して、炎症の原因となるので良い結果が得られなかった。また、繊維強化されたものと同じ形態をもつポリ乳酸やポリグリコール酸の繊維を表面融着した先記の自己強化型の方法も考えられたが、フィブリル間の融着界面がミクロ的に不均質であり、容易に繊維間の剥離が生ずるので、その分解細片がまれに生体に刺激を与える原因となるという欠点があった。生体材料は生体に毒性(為害性)がなく、安全で、生体親和性のあるものでなければならないので、この点からすれば失格である。 2) By the way, from the viewpoint of material engineering, implants, which are composite materials made from the combination of (3), have been considered promising, and many such studies have been tried for a period of time. However, for example, the method of filling and reinforcing bioceramics short fibers as a dispersion material did not give good results because the fiber pieces stimulated the living body and caused inflammation. In addition, the above-mentioned self-reinforcing method in which fibers of polylactic acid or polyglycolic acid having the same form as those reinforced with fibers is surface-fused has been considered. Since it is homogeneous and easily peels between the fibers, there is a drawback that the decomposed strip rarely causes irritation to the living body. Biomaterials are disqualified in this respect because they must be non-toxic (harmful) and safe and biocompatible.
3)さて、(2)のフィラ−充填系複合材料であっても、単に常法に従ってバイオセラミックスの粉体とマトリックスポリマ−を混合すれば、本発明が目的とする程度の高強度の複合材料が簡単に得られるというものではない。
一般に、フィラ−充填系複合材料の性質は、フィラ−の形態[形状(粉末,球状,板状など)と粒子のサイズ、表面積]と、機能性(この場合は、骨との結合性、骨誘導性、骨伝導性などの硬組織誘導能力および生体内吸収性)、およびポリマ−の性質に本質的に依存する。力学的特性は、マトリックスであるポリマ−とフィラ−の含有量、形態、配向、界面力などの要因に大きく左右される。これらの多くの因子は複雑に互いに絡み合っているので、目的とする構造特性と機能特性を発現させるためには、ある一つの因子が全体の特性に与える影響を良く把握する必要がある。
3) Now, even if it is the filler-filled composite material of (2), the composite material with the high strength to the extent desired by the present invention can be obtained by simply mixing the bioceramics powder and the matrix polymer according to a conventional method. Is not easy to obtain.
In general, the properties of filler-filled composite materials include the form of the filler [shape (powder, sphere, plate, etc.), particle size, surface area] and functionality (in this case, bone binding, bone Inducibility, hard tissue inducing ability such as osteoconductivity and bioresorbability), and essentially the nature of the polymer. The mechanical properties greatly depend on factors such as the content, morphology, orientation, and interfacial force of the polymer and filler that are the matrix. Many of these factors are intricately intertwined with each other, so in order to develop the desired structural and functional properties, it is necessary to understand the effects of a single factor on the overall properties.
4)この点について少し詳しく記述する。
フィラ−を充填した複合材料において、顕著に効果が発現される特性は弾性率、引張強度、伸び特性、靱性、硬度などである。本発明の場合のフィラ−充填系複合材料の場合、生体内吸収性のバイオセラミックスのL/D(長さ/粒径)が極めて小さい粒子を選択しているので、該バイオセラミックスの高い剛性を反映する複合材料の弾性率は、フィラーの充填量を増すことによってマトリックスポリマ−自体の強度よりも効果的に増大させることができる。
しかし、充填量の増加につれて引張り強度、伸び、靱性などは低下する傾向を示す。従って、弾性率を上げ、他の特性もまた如何に元のマトリックスポリマ−の強度以上にするかが課題となる。
即ち、複合化は分散材とマトリックスの優れた特性を如何に相乗的に引出し、欠点を如何に相殺するかの技術であると言える。弾性率は、変形度合の小さい領域での値であるのに対して、引張強度、曲げ強度、捩り強度、伸び、靱性などの力学的特性は、相対的に変形度合の大きい領域で発現する。
従って、基本的に弾性率は粒子とマトリックス間の界面接着力の影響が小さく、後者の諸物性はその影響が大きく発現される。そこで、界面接着力を上げれば良好な後者の物性が得られることに気が付くであろう。
4) Describe this point in a little more detail.
In the composite material filled with the filler, the properties exhibiting remarkable effects are elastic modulus, tensile strength, elongation properties, toughness, hardness and the like. In the case of the filler-filled composite material in the case of the present invention, particles having extremely small L / D (length / particle size) of bioabsorbable bioceramics are selected. The elastic modulus of the reflecting composite material can be increased more effectively than the strength of the matrix polymer itself by increasing the filler loading.
However, the tensile strength, elongation, toughness, etc. tend to decrease as the filling amount increases. Therefore, the problem is how to increase the modulus of elasticity and make other properties more than the strength of the original matrix polymer.
In other words, the compounding can be said to be a technique for synergistically drawing out the excellent properties of the dispersion material and the matrix and how to offset the defects. The elastic modulus is a value in a region where the degree of deformation is small, whereas mechanical properties such as tensile strength, bending strength, torsional strength, elongation, and toughness are expressed in a region where the degree of deformation is relatively large.
Therefore, the elastic modulus is basically less affected by the interfacial adhesion between the particles and the matrix, and the latter properties are greatly affected. Therefore, it will be noticed that better latter physical properties can be obtained by increasing the interfacial adhesion.
5)界面接着力を上げる積極的な方法は、マトリックスであるポリマ−と、分散材であるバイオセラミックスを、カップリング剤で結合することである。カップリング剤は、シリコ−ン系とチタン系に代表されるいくつかのものが、工業用を目的にした複合材料に使われている。そこで、これらを用いれば良い。
しかし、現在のところ、この種の化合物の生体への安全性は深く検討されているとは言い難い。高充填材料である非吸収性の歯科用の骨セメントにこれらのカップリング剤は用いられているが、実際に生体内分解吸収性の医用材料に適用された例を知らないので、安全性が未知である現在のところは、本発明に用いるのは避けるべきである。
すなわち、マトリックスポリマ−とバイオセラミックス微粒子を化学的に結合して界面力を上げる方法は、本発明のように生体内で分解吸収されて組織置換するような硬組織用インプラントでは、非吸収性のインプラントの場合とは異なって、分解過程でカップリング剤が徐々に露呈されるので、安全性の問題が未解決である現時点では採用しないほうがよい。また、バイオセラミックスの表面活性が損なわれるので望ましくない。
5) An active method for increasing the interfacial adhesion is to bond a polymer as a matrix and a bioceramic as a dispersion material with a coupling agent. Several coupling agents represented by silicone and titanium are used in composite materials for industrial purposes. Therefore, these may be used.
However, at present, it is hard to say that the safety of this type of compound to the living body has been deeply studied. These coupling agents are used in non-absorbable dental bone cement, which is a highly filled material, but safety has not been known because no examples have been applied to biodegradable biomaterials. Currently unknown, it should be avoided to use in the present invention.
That is, the method of chemically bonding the matrix polymer and the bioceramic fine particles to increase the interfacial force is a non-absorbable method for hard tissue implants that are decomposed and absorbed in the living body as in the present invention. Unlike the case of implants, the coupling agent is gradually exposed during the degradation process, so it should not be used at the moment when safety issues are still unresolved. Moreover, it is not desirable because the surface activity of the bioceramics is impaired.
6)ところで、熱可塑性の結晶性ポリマ−に同一濃度の微粒子を混合した系では、一般に微粒子の分散度が向上すると、衝撃強度、引張強度、破断時の伸びが相対的に向上することが知られている。
同様に、微粒子のサイズは複合材料の物性を大きく左右するものであり、同一濃度においてサイズが小さくなると、一般に衝撃強度、引張強度、圧縮強度、弾性率などが相対的に増大する。
それは、サイズを小さくすると相対的に表面積が増大するので相対的に表面エネルギ−が増大し、また、ポリマーとの接触面積も大きくなること、及びポリマーの結晶化の核剤として有効に機能するからであり、その結果、分散剤とマトリックス間の物理的結合が強化されるのである。
以上の事実を勘案すれば、できるだけ小さいセラミックス微粉体を、ある濃度の範囲内で、できるだけ分散の良い状態で混合すれば良いことになる。
6) By the way, in a system in which fine particles of the same concentration are mixed with a thermoplastic crystalline polymer, it is generally known that if the dispersibility of the fine particles is improved, impact strength, tensile strength and elongation at break are relatively improved. It has been.
Similarly, the size of the fine particles greatly affects the physical properties of the composite material. When the size is reduced at the same concentration, generally the impact strength, tensile strength, compressive strength, elastic modulus and the like are relatively increased.
Since the surface area is relatively increased by reducing the size, the surface energy is relatively increased, the contact area with the polymer is also increased, and it effectively functions as a nucleating agent for polymer crystallization. As a result, the physical bond between the dispersant and the matrix is strengthened.
Considering the above facts, it is only necessary to mix as small a ceramic fine powder as possible within a certain concentration range and in a state of good dispersion as much as possible.
7)しかしながら、本発明のように生体内吸収性のバイオセラミックスを熱可塑性で結晶性の生体内分解吸収性のポリマ−に混合して、皮質骨と同等以上の極めて高い強度をもたせ、且つ、骨の誘導と伝導によって生体骨の早期治癒と置換ができるという複雑な機能をもつ複合材料を求める場合は、上記のような単純な混合のみによって、簡単にこれらの課題の解決がなされるものではない。 7) However, as in the present invention, bioabsorbable bioceramics are mixed with a thermoplastic and crystalline biodegradable absorbable polymer so as to have an extremely high strength equal to or higher than that of cortical bone, and When seeking a composite material with a complex function that enables early healing and replacement of living bone by bone induction and conduction, these problems cannot be easily solved by only simple mixing as described above. Absent.
8)以下に、本発明の課題を解決するための具体的方策について記す。
無機質の微粉体の粒子サイズが小さくなると、粒子の表面積はそれにともなって大きくなり、表面の小さな電荷の発生によってさえも粒子は容易に二次凝集して、単一粒子の径よりもはるかに大きい集合塊を形成するのが常である。
そのため、比較的フィラーの濃度が高い粒子強化複合材料において、大きな微粒子の集合塊が存在しない均一分散系を得ることは技術的に容易でない。二次集合塊の生成のし易さは微粒子の化学構造によって異なるものであるが、本発明に用いる生体内吸収性のバイオセラミックスの微粒子は、良く乾燥した状態で比較的容易に集合塊を形成する。平均粒径が数μmの粒子は100μm以上の径をなして凝集することは普通に見られる。
8) Hereinafter, specific measures for solving the problems of the present invention will be described.
As the particle size of the inorganic fine powder decreases, the surface area of the particle increases with it, and the particles easily secondary agglomerate even with the generation of small charges on the surface, much larger than the diameter of a single particle It is usual to form a clump.
Therefore, it is not technically easy to obtain a uniform dispersion system in which large aggregates of fine particles are not present in a particle-reinforced composite material having a relatively high filler concentration. The ease of formation of secondary aggregates varies depending on the chemical structure of the microparticles, but the bioabsorbable bioceramic microparticles used in the present invention form aggregates relatively easily in a well-dried state. To do. It is common to see particles having an average particle size of several μm agglomerate with a diameter of 100 μm or more.
9)ところで、ノッチシャルピ−衝撃のような大きな変形をともなわないときの強度は、集合塊の大きさに依存しないけれども、個々の粒子の最大径に依存することが知られている。
また、大きく変形して、遂には破壊に到らしめるような曲げ、引張り、捩りなどの力を受けると、複合材料はマトリックスであるポリマ−自体が変形して破壊するよりも小さな変形の時点で破壊するのが常である。
これらの現象は、マトリックス中に存在するポリマ−とは異質の比較的大きな粒子や集合塊が、変形にともなってマトリックスとは異なった物理的挙動をすることに原因する。
即ち、マトリックスと粒子の界面は、マトリックス中を伝播してきた外部の変形エネルギ−をそのまま移動することのできない不連続な部分であるために、この両者の界面を基点として破壊が生ずるためである。
9) By the way, it is known that the strength without large deformation such as notch Charpy impact does not depend on the size of the aggregate, but depends on the maximum diameter of each particle.
Also, when subjected to forces such as bending, pulling, and twisting that cause large deformation and eventually breakage, the composite material is at a point of small deformation than the matrix polymer itself deforms and breaks. It is normal to destroy.
These phenomena are caused by the fact that relatively large particles or aggregates different from the polymer present in the matrix behave differently from the matrix upon deformation.
That is, the interface between the matrix and the particles is a discontinuous portion where the external deformation energy propagating in the matrix cannot be transferred as it is, and therefore, the destruction occurs with the interface between the two as a base point.
10)ところが、粒子が細かく均一に分散されている場合は、大きな粒子や集合塊が存在する場合とは違って、このエネルギ−伝播のための障壁が小さいので、変形エネルギ−は抵抗が少なく系の全体に伝播されるから、複合材料のマトリックスポリマーはそれのみの場合にポリマーが変形破壊する時点により接近した変形量のところで破壊する。
換言すれば、大きな粒子が存在する(たとえ、それが均一に分散していても)か、小さな粒子が大きな集合塊を形成しているような分散不良の状態のフィラ−充填系複合材料が大きな変形を受けて破壊するときの強度は、むしろ分散粒子を含まないマトリックスポリマ−のみの破壊時点の強度よりも小さくなると言える。
10) However, when the particles are finely and uniformly dispersed, unlike the case where large particles and aggregates are present, the barrier for this energy propagation is small, so that the deformation energy has little resistance and the system The matrix polymer of the composite material breaks at a deformation amount closer to the point at which the polymer deforms and breaks.
In other words, large filler-filled composites with large particles are present (even if they are uniformly dispersed) or poorly dispersed such that small particles form large aggregates. It can be said that the strength at the time of breaking due to deformation is rather smaller than the strength at the time of breaking only of the matrix polymer containing no dispersed particles.
11)そのため、変形破壊時の変形量と強度にあまり影響しない程度の小さな粒径の粒子のみからなり、且つ、大きな集合塊を形成していないような均一な分散系をつくることが、高い機械的強度を求めるときには絶対に必要である。
即ち、本発明に用いる生体内吸収性のバイオセラミックス(である未焼成ハイドロキシアパタイト)の粒子は、0.2〜10μm、より好ましくは1〜数μmの粒子のものを選び、その集合塊も50μm以下の径となるようにして均一分散した系を用いる必要がある。
上記生体内吸収性のバイオセラミックスとしては、代表的には非焼成の湿式HA(wet HA)である。
該非焼成の湿式HAの場合は焼成・粉砕する必要がなく、合成時に沈殿して得たこの範囲の結晶粒子をそのまま用いることができる。この粒子の大きさは上述の物理的強度を満たすために必要であるばかりでなく、後述するように、周囲の骨芽細胞が示す反応性と重要な関係にある。斯かる条件を満たした系は小さな変形を受けた時の強さである衝撃強度、表面硬さ、弾性率などが向上しており、また大きな変形を受けた時の強さである曲げ、引張り、捩りなどの強度がマトリックスポリマ−のそれ自体を維持しており、より剛性を増した複合材料である。
11) For this reason, it is highly possible to create a uniform dispersion system consisting only of particles having a small particle size that does not significantly affect the amount and strength of deformation at the time of deformation and destruction so as not to form a large aggregate. It is absolutely necessary to obtain the desired strength.
That is, the bioabsorbable bioceramics (that is, unfired hydroxyapatite) used in the present invention is selected from 0.2 to 10 μm, more preferably 1 to several μm, and the aggregate is also 50 μm. It is necessary to use a system that is uniformly dispersed so as to have the following diameter.
The bioabsorbable bioceramics are typically non-fired wet HA (wet HA).
In the case of the non-fired wet HA, it is not necessary to fire and pulverize, and crystal particles in this range obtained by precipitation during synthesis can be used as they are. The size of the particles is not only necessary for satisfying the above-described physical strength, but also has an important relationship with the reactivity exhibited by surrounding osteoblasts, as will be described later. A system that satisfies such conditions has improved impact strength, surface hardness, elastic modulus, etc., which are strength when subjected to small deformation, and bending, tension, which is strength when subjected to large deformation. Further, the strength of torsion or the like maintains the matrix polymer itself and is a composite material with increased rigidity.
12)なお、本発明と同様の目的で、表面生体活性なバイオセラミックスも使用できるが、このバイオセラミックスは生体内に吸収されて消失することがないので、生体内吸収性のバイオセラミックスが好ましく用いられる。
この表面生体活性なバイオセラミックスとしては、該バイオセラミックスの微粒子を適温〔ハイドロキシアパタイト(HA)は600〜1250℃、アパタイトウオラストナイトガラスセラミックス(AW)は1500℃、トリカルシウムフォスフェート(TCP)は1150℃,1400℃〕で焼成した後に、機械的に粉砕して節分けした、およそ0.2〜50μm、より好ましくは1〜10数μmの粒径のものを選び、その集合塊もまた50μm以下の径となるようにして均一分散した系が用いられる。
12) For the same purpose as in the present invention, surface bioactive bioceramics can also be used. However, since this bioceramic is not absorbed and disappears in vivo, bioabsorbable bioceramics are preferably used. It is done.
As the surface bioactive bioceramics, fine particles of the bioceramics are suitable temperature (hydroxyapatite (HA) is 600 to 1250 ° C., apatite wollastonite glass ceramics (AW) is 1500 ° C., tricalcium phosphate (TCP) is 1250 ° C., 1400 ° C.] and then mechanically pulverized and sectioned, and a particle size of approximately 0.2 to 50 μm, more preferably 1 to several tens μm, is selected. A system that is uniformly dispersed so as to have the following diameter is used.
13)ここで、バイオセラミックス/ポリマ−の重量比率は10%以下の低比率から60%を越える高比率まで混合可能である。
バイオセラミックスの添加量が、10%未満ではバイオセラミックスの占める体積比率が小さいので、バイオセラミックスに期待される骨との直接の結合、骨伝導の性質が発現され難く、生体骨との置換も遅い。
また、60%を越えると、混合系の熱成形時の流動性が不足するので成形が困難になる。そして、成形物中のポリマ−の量が不足してバインダ−効果が及ばないため、フィラ−とポリマ−が分離し易いので強度的に脆くなる。
従って、好ましい混合比率は20〜50重量%であるが、最も好ましくは30〜40重量%である、この範囲内であれば複合材料として分散材とポリマ−マトリックスの両方の望ましい特性が構造と機能の両面で顕著に発現される。
HAのように比較的容易に凝集するバイオセラミックスをマトリックス中に二次凝集することなく混合するための一つの有効な方策は、溶剤に溶解したポリマ−に該バイオセラミックスを加えてよく分散し、この分散系を非溶剤にて沈殿することである。
13) Here, the bioceramic / polymer weight ratio can be mixed from a low ratio of 10% or less to a high ratio exceeding 60%.
When the amount of bioceramics added is less than 10%, the volume ratio occupied by bioceramics is small, so that direct bonding with bones and bone conduction properties that are expected of bioceramics are difficult to be exhibited, and replacement with living bones is slow. .
On the other hand, if it exceeds 60%, the fluidity at the time of thermoforming of the mixed system is insufficient, so that molding becomes difficult. Further, since the amount of the polymer in the molded product is insufficient and the binder effect does not reach, the filler and the polymer are easily separated, so that the strength becomes brittle.
Therefore, the preferred mixing ratio is 20 to 50% by weight, but most preferably 30 to 40% by weight. Within this range, the desirable properties of both the dispersion material and the polymer matrix as a composite material are structural and functional. It is remarkably expressed on both sides.
One effective strategy for mixing bioceramics such as HA relatively easily aggregated into the matrix without secondary aggregation is to add the bioceramics to a polymer dissolved in a solvent and disperse well. This dispersion is precipitated with a non-solvent.
以上、均一分散を得る条件、目的および方法についてバイオセラミックスとポリマ−の混合系を得る観点から記述した。
14)しかし、このように均一分散されたポリマ−とフィラ−の複合材料を通常の熱成形法によって加工しても高強度のプラスチックの強さを越え、そのうえ皮質骨の強度(曲げ強度150〜200MPa)をも越えた生体材料が得られるわけではない。
一般に、フィラ−を多量に含んだポリマ−は、流動性が良くないので熱成形が困難である。まして、本発明のように生体への安全性を配慮するために、流動性の改良に極めて効果のあるチタン系カップリング剤が使用できない場合の熱成形は更に困難である。
この流動性の乏しいポリマ−とセラミックス粉体の複合体を混練、溶融時に剪断力が加わるような成形法である押出成形で熱成形すると、ポリマ−自身は本来の流動特性をもって変形流動するけれども、充填された無機フィラ−は熱により可塑化して流動する性質がないので、ポリマ−とフィラ−粒子の界面で流動変形による移動時に劈界が生じて空洞(ボイド)を介在する結果、密度の粗なる成形物ができる。
ボイドを多く含んだ多孔な成形物の強度は低い。そこで、このような多量にフィラ−を充填したポリマ−の成形には、ボイドが形成されるのを防ぐ目的で、一般に射出成形、プレス成形などの加圧方式の成形法が用いられる。
The conditions, purpose, and method for obtaining uniform dispersion have been described above from the viewpoint of obtaining a mixed system of bioceramics and polymer.
14) However, even if the polymer-filler composite material uniformly dispersed in this way is processed by the usual thermoforming method, it exceeds the strength of high-strength plastic, and further, the strength of cortical bone (bending strength 150 ~ Biomaterials exceeding 200 MPa) are not obtained.
Generally, a polymer containing a large amount of filler is difficult to be thermoformed because of poor fluidity. In addition, in consideration of safety to living bodies as in the present invention, thermoforming when a titanium coupling agent that is extremely effective in improving fluidity cannot be used is more difficult.
Kneading the composite of this poorly fluid polymer and ceramic powder, and thermoforming by extrusion, which is a molding method that applies a shearing force when melted, the polymer itself deforms and flows with its original flow characteristics, Since the filled inorganic filler does not have the property of plasticizing and flowing due to heat, a boundary is formed at the interface between the polymer and the filler particles due to fluid deformation, and voids are interposed, resulting in a rough density. Can be formed.
The strength of a porous molded product containing a lot of voids is low. Therefore, in order to prevent the formation of voids, a pressure type molding method such as injection molding or press molding is generally used for molding such a polymer filled with a large amount of filler.
15)しかしながら、通常のこのような成形法では、本発明のポリ乳酸やその共重合体は剪断力によって容易に熱劣化したり、含有している少量の水により著しく加水分解して劣化するので、高い強度の成形物は到底得られるものではない。
それでも、プレス成形の加熱条件、乾燥条件、成形条件を厳しく調整すれば、ポリマ−の劣化が幾分かは少ないプレ−トなどは成形できるかもしれないが、ポリマ−自体が分子構造や高次構造のレベルで補強されたものではないので、皮質骨を越えるような強度はやはり得られない。
15) However, in such a normal molding method, the polylactic acid and the copolymer thereof of the present invention are easily thermally deteriorated by shearing force, or significantly hydrolyzed and deteriorated by a small amount of water contained therein. A molded product with high strength cannot be obtained at all.
Even so, if the heating conditions, drying conditions, and molding conditions of press molding are strictly adjusted, it may be possible to mold a plate with little degradation of the polymer, but the polymer itself has a molecular structure and higher order. Since it is not reinforced at the level of structure, it is still impossible to obtain strength exceeding the cortical bone.
16)ポリL乳酸とその共重合体のように結晶性であり、熱可塑性であるポリマ−の強度を上げる一つの方法に延伸がある。これは、ある特定の温度(ポリマ−が溶融して流動する温度Tm以下)で、一次成形物であるロッドなどの両端を、あるいは一端を固定した他端を、成形物から外向きに引張ることで長軸方向に一軸延伸して、分子鎖やそのとき生ずる結晶相を引張方向(MD)に配向させてより強度の高い二次成形物を得る塑性加工である。 16) One method of increasing the strength of a polymer that is crystalline and thermoplastic, such as poly L-lactic acid and its copolymer, is stretching. This means that at a specific temperature (temperature Tm or less at which the polymer melts and flows), both ends of the rod, which is the primary molded product, or the other end with one end fixed is pulled outward from the molded product. In the plastic processing, the uniaxial stretching is performed in the major axis direction, and the molecular chain and the resulting crystal phase are oriented in the tensile direction (MD) to obtain a secondary molded product having higher strength.
本発明とは目的も方法も異なるが、1〜15%の少量のHAを混合してその一次成形体を長軸方向に一軸延伸する方法が、先述の特公平3−63901号公報に示されている。しかし、フィラ−を充填したポリマ−をこのように延伸すると、先述したようにポリマ−の塑性変形に伴ってポリマ−自体は機械方向に移動するが、フィラ−粒子自体はポリマ−の塑性変形に完全に同調して移動することはないので、延伸中に粒子とポリマ−の界面に劈界が生じ、そこにボイドが発生することは回避できない。殊に、延伸過程で延伸方向に対して垂直方向から外力の加わらない方法である上記自由幅一軸延伸においては、延伸によって働く力によって単位体積当たりの材料が稀薄になる移動が起きている。
そして、延伸倍率が高くなると、ポリマ−はミクロフィブリルからフィブリル化した状態に変わるが、この状態ではフィブリル間にミクロな不連続空間が生ずるので、材料の密度はより低下する。
Although the purpose and the method are different from those of the present invention, a method of mixing a small amount of HA of 1 to 15% and uniaxially stretching the primary molded body in the major axis direction is disclosed in the aforementioned Japanese Patent Publication No. 3-63901. ing. However, when the polymer filled with the filler is stretched in this way, as described above, the polymer itself moves in the machine direction along with the plastic deformation of the polymer, but the filler particles themselves do not undergo plastic deformation of the polymer. Since they do not move completely in synchronism, it is inevitable that a boundary is formed at the interface between the particle and the polymer during stretching and voids are generated there. In particular, in the above-described free-width uniaxial stretching, which is a method in which an external force is not applied from the direction perpendicular to the stretching direction in the stretching process, a movement in which the material per unit volume is diluted by the force acting by stretching occurs.
When the draw ratio increases, the polymer changes from microfibrils to fibrillated states, but in this state, micro discontinuous spaces are formed between the fibrils, and the density of the material is further reduced.
17)この事実からすると、フィラ−を多量に分散した複合材料の延伸成形物は、フィラ−の充填量が多ければ多いほど、多数のボイドをもち、延伸による変形量が大きければ大きいほど(延伸倍率が大きいほど)、大きなボイドを持つことになる。
ましてや、フィラ−の粒径の大きさが調整されておらず、分散が不良であり、大きな凝集塊を含む系にあっては、ボイドの数と大きさは尚更不均一である。
事実、このようなボイドのある複合材料は延伸途中で容易に切断するので、目的とする延伸物は得られるものでない。
斯くして、ボイドを包含した延伸された複合材料では、本発明が求めている高い強度の成形物は到底得られない。
17) From this fact, the stretched composite material in which filler is dispersed in a large amount has a larger filler filling amount, a larger number of voids, and a larger deformation amount due to stretching (stretching). The higher the magnification), the larger the void.
In addition, the number and size of voids are even more uneven in systems where the filler particle size is not adjusted, dispersion is poor, and the system contains large agglomerates.
In fact, a composite material having such voids is easily cut during stretching, so that the intended stretched product cannot be obtained.
Thus, the stretched composite material including the voids cannot provide the molded article having high strength required by the present invention.
18)そこで、本発明者は鋭意考え以下の成形法により目的を達成するに到った。それは、先述したような均一分散した多量の生体内吸収性のバイオセラミックスを含む該ポリマ−のビレットを、押出あるいは圧縮成形などの方法で熱劣化を極力抑えた条件で溶融成形し、更にこのビレット中のマトリックスポリマ−を加圧、例えば圧縮成形または鍛造成形により結晶化して配向させ、高密度の加圧配向体とする方法である。
この方法に依れば、配向成形時の外力は延伸とは逆の材料本体に向かった内向きに作用するので、材料は緻密な状態になる。そのために、粒子とマトリックスの界面はより密着した状態に変わり、混合過程で界面に存在していた空気を介在したミクロなボイドさえも消減するので高い緻密度が得られる。つまり、両者はより一層一体化する。
18) Accordingly, the present inventor has earnestly achieved the object by the following molding method. This is because the billet of the polymer containing a large amount of the bio-absorbable bioceramics uniformly dispersed as described above is melt-molded by a method such as extrusion or compression molding and the thermal deterioration is suppressed as much as possible. This is a method in which the matrix polymer inside is crystallized and oriented by pressurization, for example, compression molding or forging, to obtain a high-density pressurized orientation product.
According to this method, the external force at the time of orientation molding acts inward toward the material body opposite to stretching, so that the material is in a dense state. For this reason, the interface between the particles and the matrix is changed to a more closely-contacted state, and even micro voids intervening in the air existing at the interface during the mixing process disappear, so that a high density can be obtained. That is, both are further integrated.
加えて、マトリックスのポリマ−は分子鎖軸と結晶相が配向するので、得られた複合材料は著しく高い強度を示す。
この場合、一次成形物であるビレットを、特に該ビレットの断面積よりも小さい断面積を一部又は全体に亘って有する型のキャビティ内に加圧充填することで得られる結晶の配向は、金型面からの「ずり」により力が加わるために、単なる長軸方向への延伸による一軸配向とは異なり、ある基準軸に平行に面配向している傾向の強い形態をしていることが考えられる。
そのため、配向による異方性が少なく、捩りなどの変形にも強いという特徴が発現される。但し、配向の度合いは本質的に分子鎖ラメラが配向する程度に抑えたものであり、延伸倍率の高いときに見られるミクロフィブリル、フィブリル構造によってボイドが発生する程度の高いものではない。
In addition, since the polymer of the matrix is oriented with the molecular chain axis and the crystalline phase, the resulting composite material exhibits significantly higher strength.
In this case, the orientation of the crystal obtained by press-filling the billet, which is the primary molding, particularly into the cavity of a mold having a partial or entire cross-sectional area smaller than the cross-sectional area of the billet is gold Because force is applied by “shearing” from the mold surface, it is considered that the surface has a strong tendency to be oriented parallel to a certain reference axis, unlike uniaxial orientation by simply stretching in the major axis direction. It is done.
Therefore, the characteristics that there is little anisotropy due to orientation and resistance to deformation such as twisting are manifested. However, the degree of orientation is essentially limited to such an extent that the molecular chain lamella is oriented, and is not so high that voids are generated due to the microfibril and fibril structure seen when the draw ratio is high.
19)以上、本発明の複合材料の強化方式について記述したが、これを従来の複合材料のそれと比較すると図6に示されるように、形態の違いが明らかである。
即ち、従来の粒子強化型(a) と繊維強化型(b) は各々充填した粒子と繊維自体の物理的強度を、充填率を出来るだけ高くしてそれらの系の中で発現させると同時に、マトリックスポリマーとの化学的・物理的な結合力に依存して本質的に強度を上げることを目的とした方式である。
繊維強化型(b) は繊維同志の絡み合いが強度向上に実に有効に作用する。
この場合、マトリックスポリマーに比較的高い強度のものを用いれば、それだけ高い強度は得られる。
19) The method of strengthening the composite material of the present invention has been described above. When this is compared with that of the conventional composite material, the difference in form is clear as shown in FIG.
In other words, the conventional particle-reinforced type (a) and fiber-reinforced type (b) each exhibit the physical strength of the filled particles and the fiber itself in those systems by increasing the packing rate as much as possible. This method aims to increase the strength essentially depending on the chemical and physical bonding strength with the matrix polymer.
In the fiber reinforced type (b), the entanglement of the fibers works effectively to improve the strength.
In this case, if a matrix polymer having a relatively high strength is used, a higher strength can be obtained.
20)しかし、本発明のように、この系のマトリックスを結晶(分子鎖)配向のための二次加工(例えば加圧配向)の処理を行って強化した例は、従来に見られない。
本発明は粒子強化型(a) の強化方式に加えて、マトリックスポリマーを上述のように加圧配向することにより結晶(分子鎖)を配向させ、また、粒子とマトリックスポリマーの界面をより密着させることで、より緻密な系を作ることにより強化する〔粒子強化+マトリックス強化型〕(c)
の強化方式である。
即ち、従来行われていなかったマトリックスポリマーを物理的に冷間で二次成形加工(例えば加圧配向)して強化する新規な方式と、それによって得た複合系に関するものであり、従来方式との違いが明らかである。
20) However, as in the present invention, an example in which the matrix of this system is strengthened by performing a secondary processing (for example, pressure orientation) for crystal (molecular chain) orientation has not been seen conventionally.
In the present invention, in addition to the particle strengthening type (a), the matrix polymer is oriented by pressurizing the matrix polymer as described above, and the interface between the particles and the matrix polymer is more closely adhered. To strengthen by creating a denser system [particle reinforcement + matrix reinforcement type] (c)
This is a strengthening method.
That is, the present invention relates to a novel method for physically strengthening a matrix polymer that has not been conventionally performed by secondary molding processing (for example, pressure orientation) in cold, and a composite system obtained thereby. The difference is clear.
(A)
高強度インプラント材料
本発明の高強度インプラント材料は、基本的に、(i) 生体内分解吸収性である結晶性の熱可塑性ポリマーマトリックス中に、一次粒子又は一次粒子の集合塊の大きさが0.2〜10μmの生体内吸収性のバイオセラミックスである未焼成ハイドロキシアパタイト粉体を10〜60重量%実質的に均一に分散させた、結晶化度が10〜70%である高密度の配向成形体からなる複合化された高強度インプラント材料であることを特徴とする。
(ii)また、生体内分解吸収性である結晶性の熱可塑性ポリマーマトリックス中に、一次粒子又は一次粒子の集合塊の大きさが0.2〜10μmの生体内吸収性のバイオセラミックス粉体を実質的に均一に分散させた成形体からなる複合材料であって、該マトリックスポリマーが加圧により結晶化して配向し、且つその結晶化度が10〜70%である高密度の加圧配向成形体からなる複合化された高強度インプラント材料であることを特徴とする。
ここで、「加圧配向成形体」とは、その文言から明らかなように、(ビレット中の)マトリックスポリマーを加圧により結晶化して配向させた高密度の配向成形体を指し、例えば下記「(B) インプラントの製造」の項で詳述する「閉鎖成形型内に圧入充填して配向した圧縮成形又は鍛造成形により得られた高密度の配向成形体」が含められる。
(A)
High-strength implant material The high-strength implant material of the present invention basically has (i) the size of primary particles or aggregates of primary particles is 0 in a crystalline thermoplastic polymer matrix that is biodegradable and absorbable. .High-density orientation molding having a crystallinity of 10 to 70%, in which 10 to 60% by weight of a non-fired hydroxyapatite powder, which is a bio-absorbable bioceramic of 2 to 10 μm, is dispersed substantially uniformly It is a composite high-strength implant material composed of a body.
(ii) In addition, a bioabsorbable bioceramic powder having a primary particle or aggregate size of primary particles of 0.2 to 10 μm in a crystalline thermoplastic polymer matrix that is biodegradable and absorbable. A high-density pressure-oriented molding which is a composite material composed of a molded product substantially uniformly dispersed, wherein the matrix polymer is crystallized and oriented by pressing, and the crystallinity is 10 to 70%. It is a composite high-strength implant material composed of a body.
Here, as is clear from the terminology, the “pressure-oriented molded article” refers to a high-density oriented molded article obtained by crystallizing and orienting a matrix polymer (in a billet) under pressure. “A high-density oriented molded body obtained by compression molding or forging molding oriented by press-fitting into a closed mold” described in detail in the section of (B) Implant production ”is included.
以下、その内容を詳細に説明する。
(a)
バイオセラミックス
1)本発明に用いるバイオセラミックスは、生体内吸収性のバイオセラミックスである。
該バイオセラミックスとしては、未焼成ハイドロキシアパタイト(未焼成HA)、ジカルシウムホスフェ−ト、トリカルシウムホスフェート、テトラカルシウムホスフェート、オクタカルシウムホスフェート、カルサイトなどいずれか単独又は2種以上の混合物を挙げることができる。
具体的な生体内吸収性のバイオセラミックスとしては、未焼成のHA(未焼成HA)、ジカルシウムホスフェ−ト、α−トリカルシウムホスフェ−ト(α−TCP)、β−トリカルシウムホスフェ−ト(β−TCP)、テトラカルシウムホスフェ−ト(TeCP)、オクタカルシウムホスフェ−ト(OCP)、ジカルシウムホスフェ−ト・ハイドレ−ト・オクタカルシウムホスフェ−ト(DCPD・OCP)、ジカルシウムホスフェ−ト・アンハイドライド・テトラカルシウムホスフェ−ト(DCPA・TeCP)、カルサイトなどを挙げることができる。
特に、未焼成ハイドロキシアパタイトが好適である。
The details will be described below.
(a)
Bioceramics 1) The bioceramic used in the present invention is a bioceramic that is absorbable in vivo.
Examples of the bioceramics include unsintered hydroxyapatite (unsintered HA), dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, calcite, etc., either alone or as a mixture of two or more. Can do.
Specific bioabsorbable bioceramics include unfired HA (unfired HA), dicalcium phosphate, α-tricalcium phosphate (α-TCP), β-tricalcium phosphate. -To (β-TCP), tetracalcium phosphate (TeCP), octacalcium phosphate (OCP), dicalcium phosphate, hydrate, octacalcium phosphate (DCPD · OCP) , Dicalcium phosphate, anhydride, tetracalcium phosphate (DCPA · TeCP), calcite and the like.
In particular, unsintered hydroxyapatite is suitable.
2)他のバイオセラミックスについて
本発明に用いるバイオセラミックスとしては、上記生体内吸収性のバイオセラミックスに限定したが、勿論、表面生体活性なバイオセラミックスのような他のバイオセラミックスも同様に使用できるが、生体内に吸収されて消失する点で、本発明に用いた生体内吸収性のバイオセラミックスが好ましい。
表面生体活性なバイオセラミックスとしては、焼結ハイドロキシアパタイト、バイオガラス系もしくは結晶化ガラス系の生体用ガラスなどのいずれか単独又は2種以上の混合物を挙げることができる。
具体的には、焼成したハイドロキシアパタイト(HA)、バイオガラス系のバイオグラス、セラビタ−ル、結晶化ガラス系のA−Wガラスセラミックスなどや結晶化ガラス系のバイオベリット−1、インプラント−1、β−結晶化ガラス、ディオプサイドなどのいずれか単独、又は2種以上の混合物を挙げることができる。
2) Other bioceramics The bioceramics used in the present invention are limited to the above-described bioabsorbable bioceramics. Of course, other bioceramics such as surface bioactive bioceramics can be used as well. The bioabsorbable bioceramic used in the present invention is preferable in that it is absorbed into the living body and disappears.
Examples of the surface bioactive bioceramics include sintered hydroxyapatite, bioglass-based or crystallized glass-based biological glass alone, or a mixture of two or more thereof.
Specifically, calcined hydroxyapatite (HA), bioglass-based bioglass, cerabital, crystallized glass-based AW glass ceramics, crystallized glass-based bioberit-1, implant-1, Any one of β-crystallized glass and diopside, or a mixture of two or more thereof can be mentioned.
3)以上の1)、2)のバイオセラミックスは生体活性の度合いが異なっていて、新生骨の形成の速さと形態に差異をもたらすので、必要とする生体活性を有するように単独或いは2種以上配合して適宜用いる。
従って、ここで「生体内吸収性のバイオセラミックス」と言う場合は、生体内吸収性のバイオセラミックス単独、或いは該生体内吸収性のバイオセラミックスを主体とし、表面生体活性なバイオセラミックスの少量との混合物も含まれる。
そして、このうち本発明に係わる1)の生体内吸収性のバイオセラミックスである未焼成のHAは、2)の焼成HAとは異なり、生体中のHAに極めて似ており、生体内にて完全に吸収消失し、活性度も高く、安全性もあり、実使用の実績もあるので、本発明の系として最も有効な生体吸収性の活性な粉体の一つである。
3) The bioceramics of 1) and 2) above differ in the degree of biological activity, resulting in differences in the speed and form of formation of new bone, so that they have the necessary biological activity alone or in combination of two or more. Mix and use as appropriate.
Therefore, the term “bioabsorbable bioceramics” herein refers to bioabsorbable bioceramics alone or a small amount of bioactive ceramics mainly composed of the bioabsorbable bioceramics. Mixtures are also included.
Of these, unfired HA, which is a bioabsorbable bioceramic of 1) according to the present invention, is different from the fired HA of 2) and is very similar to HA in the living body, and is completely in vivo. It is one of the most effective bioabsorbable active powders in the system of the present invention because it is absorbed and lost, has high activity, is safe, and has a track record of actual use.
(b) バイオセラミックス粉体の粒径
ここで、生体内吸収性のバイオセラミックス粉体とは、生体内吸収性のバイオセラミックスの一次粒子又はその集合(凝集)塊である二次粒子を総称して指す。
1)生体内吸収性のバイオセラミックス粉体の粒径は、上記の理由に基いて高強度の複合材料を得るために0.2〜10μmの一次粒子又は二次集合(凝集)塊の粒径のものが用いられる。生体内分解吸収性である結晶性の熱可塑性ポリマーと均一に分散させる上からも上記粒径のものが良い。
生体内吸収性のバイオセラミックス粉体の粒径が50μmに近い上限の場合、およそ10μmの一次粒子が二次凝集したときの集合塊の大きさであることが望ましい。
独立した一次粒子が50μmに近い大きさである時は、複合材料が降伏時に折損(破断)するので望ましくない。
成形体及び配向成形体は、最終的には切削加工などの方法により種々の精緻な形状をもったインプラント材料に仕上げられる。
粒径が大きいと微細で精緻な形状物は粉体の界面で欠けたり、割れたりするので加工し難くなる。そこで、粒径50μmはインプラント材料の形状の精緻さを決定する上限と言える。
(b) Particle size of bioceramic powder Here, bioabsorbable bioceramic powder is a general term for primary particles of bioabsorbable bioceramics or secondary particles that are aggregates (aggregates) of the particles. Point to it.
1) The particle size of the bioabsorbable bioceramic powder is the particle size of primary particles or secondary aggregates (aggregates) of 0.2 to 10 μm in order to obtain a high-strength composite material based on the above reasons. Is used. From the viewpoint of uniform dispersion with a crystalline thermoplastic polymer that is biodegradable and absorbable, those having the above-mentioned particle sizes are also preferable.
When the particle size of the bioabsorbable bioceramic powder is an upper limit close to 50 μm, it is desirable that the aggregate size is when the primary particles of about 10 μm are secondary aggregated.
When the independent primary particles have a size close to 50 μm, it is not desirable because the composite material breaks (breaks) when it yields.
The molded body and the oriented molded body are finally finished into an implant material having various fine shapes by a method such as cutting.
When the particle size is large, a fine and fine shape is chipped or broken at the interface of the powder, making it difficult to process. Therefore, it can be said that the particle size of 50 μm is the upper limit for determining the precision of the shape of the implant material.
2)また、下限の粒径0.2μmは、例えば未焼成のHAの一次粒子の大きさに相当する。
通常、この微粒子は集合して数μm〜10数μmの二次凝集粒子を形成する。見かけの平均粒径が斯かる範囲内にある生体内吸収性のバイオセラミックスの粒子又は集合塊をポリマ−マトリックス中に均一分散させた系を得ると、高強度が得られ、また、その吸収により生体骨に早急にインプラントが置換されるという両方の性質が同時に満足される。そして精緻な形状をもつインプラント複合材料が得られる。
2) The lower limit particle size of 0.2 μm corresponds to, for example, the size of primary particles of unfired HA.
Usually, the fine particles aggregate to form secondary agglomerated particles of several μm to several tens μm. By obtaining a system in which bioabsorbable bioceramic particles or aggregates having an apparent average particle size within such a range are uniformly dispersed in a polymer matrix, high strength can be obtained. Both properties of rapid replacement of the implant with living bone are satisfied at the same time. An implant composite material having a precise shape can be obtained.
3)かかる生体内吸収性のバイオセラミックスを含有したインプラント材料が生体内に埋入されると、表面に顕在するバイオセラミックス粉体は、周囲の生体骨と線維性の結合組織を介さずに直接的に、或いは表面に沈積したHAを介して間接的に結合するので、早期に両者間の初期固定が得られる。この特性は骨折の接合、固定を目的とするピンやスクリュ−等のインプラント材料にとって好ましい。
また、従来、強度不足が主なる原因で使用できなかったプレートや異形状の骨代替物や骨接合材にも骨との結合性があるために、適用できる。
3) When an implant material containing such bioabsorbable bioceramics is implanted in a living body, the bioceramic powder that appears on the surface is directly transferred without surrounding living bones and fibrous connective tissue. Or indirectly through HA deposited on the surface, early fixation between the two can be obtained at an early stage. This characteristic is preferable for implant materials such as pins and screws for the purpose of joining and fixing fractures.
In addition, the plate, the bone substitute having a different shape, and the bone joint material that could not be used due to the lack of strength in the past can also be applied because of the bonding with the bone.
4)骨中にて骨折固定材として使われるインプラント材料は、骨癒合に要する短くても2〜4ヶ月間は固定に必要な強度を維持し、その後は体液と接している表面から徐々に加水分解が進行して劣化する過程をとる。
この過程で内部に含まれている生体内吸収性のバイオセラミックス粉体が徐々に体液に露呈される。その後更に該バイオセラミックス粉体とポリマ−の界面を伝って体液がインプラントのより内部に侵入する。その結果ポリマ−の加水分解と分解物の生体内への吸収が、生体内吸収性のバイオセラミックスを含まないポリマ−単独の系の場合よりも早くなる。
また、この過程で、露呈された生体内吸収性のバイオセラミックス粉体は新生骨の侵入を促し、時には骨形成の核となって骨梁を形成する。そして、自らは破骨細胞によって吸収される。このようにして、インプラント材料の消失した骨孔への生体骨の侵入・置換が有効になされる。
4) Implant materials used as bone fracture fixing materials in bone maintain the strength required for fixation for at least 2 to 4 months required for bone fusion, and then gradually add water from the surface in contact with body fluids. Take the process of degradation as degradation progresses.
In this process, the bioabsorbable bioceramic powder contained inside is gradually exposed to the body fluid. Thereafter, the body fluid further penetrates into the interior of the implant through the interface between the bioceramic powder and the polymer. As a result, the hydrolysis of the polymer and the absorption of the degradation product into the living body are faster than in the case of the polymer alone system not containing the bioabsorbable bioceramics.
In this process, the exposed bioresorbable bioceramic powder promotes the invasion of new bone and sometimes forms a trabecular bone as a nucleus of bone formation. And it is absorbed by osteoclasts. In this way, the invasion / replacement of the living bone into the bone hole in which the implant material has disappeared is effectively performed.
5)本発明のインプラント材料によって骨孔が生体骨で置換される過程と形態は、それが含む生体内吸収性のバイオセラミックスの種類と顆粒の形状、大きさ或いは含有量によってかなり異なるが、生体内吸収性ポリマ−単独でできたインプラント材料と比較すると、生体内吸収性のバイオセラミックス粉体が充填された比率の分だけ本発明のインプラント材料はポリマ−の量が少ないので、分解過程で発生するポリマ−細片の一時的多発に起因する異物反応による炎症反応の発現の恐れを回避できる。
それは、本発明の生体内吸収性のバイオセラミックスである未焼成HAのような完全吸収性のバイオアクティブ粒子の場合に特に効果的である。
また、骨孔の修復の速さも生体内吸収性のバイオセラミックスの種類、大きさ、量を選択することで任意に調整することができる。
5) The process and form in which the bone hole is replaced with living bone by the implant material of the present invention varies considerably depending on the type of bioabsorbable bioceramics it contains and the shape, size, or content of the granules. Compared to implant material made of bioabsorbable polymer alone, the amount of polymer in the implant material of the present invention is smaller than the amount filled with bioabsorbable bioceramics powder. The risk of an inflammatory reaction due to a foreign body reaction due to temporary occurrence of polymer strips can be avoided.
It is particularly effective in the case of fully absorbable bioactive particles such as unfired HA which is the bioabsorbable bioceramics of the present invention.
In addition, the speed of bone hole repair can be arbitrarily adjusted by selecting the type, size, and amount of bioresorbable bioceramics.
(c) ポリマーの組成
ポリマーとしては、生体内分解吸収性である結晶性の熱可塑性ポリマーであれば特に制限されないが、そのうちでも生体安全性、生体適合性が確認され、既に実用されているポリ乳酸や、各種のポリ乳酸共重合体(例えば乳酸−グリコール酸共重合体)が好ましく使用される。
ポリ乳酸としては、L−乳酸又はD−乳酸のホモポリマーが好適であり、また、乳酸−グリコール酸共重合体としては、モル比が99:1〜75:25の範囲内のものが、グリコール酸のホモポリマーよりは耐加水分解性が良くて好適である。
また、非晶性のD、L−ポリ乳酸又はその乳酸−グリコール酸共重合体、乳酸−カプロラクトン共重合体、或いは該ホモポリマー、コポリマーと相溶性のある生体内分解吸収性の他のポリマーの少量を、塑性変形しやすくするために、或いは得られる加圧配向による配向成形体に靱性を持たせるために混合しても良い。
もちろん、生体との反応、或いは分解速度を配慮すると、未反応のモノマーや触媒残渣が除去・精製されて少ないポリマーが良い。
(c) Polymer composition The polymer is not particularly limited as long as it is a crystalline thermoplastic polymer that is biodegradable and absorbable, but among them, biosafety and biocompatibility have been confirmed, and polymers already in practical use have been confirmed. Lactic acid and various polylactic acid copolymers (for example, lactic acid-glycolic acid copolymer) are preferably used.
The polylactic acid is preferably a homopolymer of L-lactic acid or D-lactic acid, and the lactic acid-glycolic acid copolymer is a glycol having a molar ratio in the range of 99: 1 to 75:25. It has better hydrolysis resistance than acid homopolymers.
In addition, amorphous D, L-polylactic acid or a lactic acid-glycolic acid copolymer thereof, a lactic acid-caprolactone copolymer, or other polymers that are compatible with the homopolymer and the copolymer are biodegradable and absorbable. A small amount may be mixed in order to facilitate plastic deformation or in order to impart toughness to the oriented molded product obtained by pressure orientation.
Of course, in consideration of the reaction with the living body or the decomposition rate, unreacted monomers and catalyst residues are removed and purified, and a small amount of polymer is preferable.
(d) 原料ポリマー及び予備成形体の分子量
1)上記ポリマーは、骨接合材として少なくとも或る値以上の強度等の物性が必要であるが、該ポリマーの分子量がビレット等の予備成形体に溶融成形する段階でどうしても低下するので、該ポリマーがポリ乳酸又は乳酸−グリコール酸共重合体の場合、初期の粘度平均分子量が15万〜70万、好ましく25万〜55万のものを使用することが重要である。
この範囲の分子量を有するポリマーを使用すると、加熱下に溶融成形加工して最終的に10万〜60万の粘度平均分子量を有する予備成形体を得ることができる。
(d) Raw material polymer and molecular weight of preformed body 1) The above polymer must have at least a certain property such as strength as an osteosynthesis material, but the molecular weight of the polymer melts into a preformed body such as billet. When the polymer is a polylactic acid or a lactic acid-glycolic acid copolymer, the initial viscosity average molecular weight is 150,000 to 700,000, preferably 250,000 to 550,000. is important.
When a polymer having a molecular weight in this range is used, a preform having a viscosity average molecular weight of 100,000 to 600,000 can be finally obtained by melt molding under heating.
2)該ポリマーを、その後の加圧配向による分子鎖(結晶)の配向のための冷間での塑性変形によって、高強度のインプラント材料用の複合材料とすることができるが、この塑性変形の過程でうまく条件を設定して操作すれば、分子量の低下を極力抑えることができる。
この生体内吸収性のバイオセラミックスを含むインプラント材料を構成するポリマーの粘度平均分子量の範囲は、ポリマ−のみを同様の方法で成形して得たインプラントの場合の範囲と相違がある。それは、生体内吸収性のバイオセラミックス粉体を多量に含むために、見掛上の溶融粘度や工程中の劣化の程度に差異があるためである。
本発明に係るポリマ−がこの範囲内の分子量をもち、分子鎖(結晶)が加圧操作により配向された成形体が、生体内で、例えば骨接合材として実際に使用されると、骨癒合に必要な平均的な期間である少なくとも2〜4ヶ月間は生体骨と同程度以上の強度を維持し、その後は骨接合材が分解してできる細片が周囲の組織細胞と強い異物反応を示して炎症反応を呈することのない速度で徐々に分解する。この過程で生体内吸収性のバイオセラミックスの生体活性な性質が発現するので、骨との初期結合が得られ、その後、該バイオセラミックスが生体内に吸収され、生体骨との置換がほどよく進行する。
2) The polymer can be made into a composite material for a high-strength implant material by cold plastic deformation for the orientation of molecular chains (crystals) by subsequent pressure orientation. If you set the conditions well in the process, you can minimize the decrease in molecular weight.
The range of the viscosity average molecular weight of the polymer constituting the implant material containing the bioresorbable bioceramics is different from the range of an implant obtained by molding only a polymer by the same method. This is because there is a difference in the apparent melt viscosity and the degree of deterioration during the process because the bioabsorbable bioceramic powder is contained in a large amount.
When the polymer according to the present invention has a molecular weight within this range, and a molded body in which molecular chains (crystals) are oriented by a pressing operation is actually used in vivo, for example, as an osteosynthesis material, For at least 2 to 4 months, which is the average period required for bone, the strength is at least as high as that of living bones. It slowly degrades at a rate that does not exhibit an inflammatory response. In this process, the bioactive properties of bioabsorbable bioceramics are expressed, so that initial bonding with bone is obtained, and then the bioceramics are absorbed into the living body and the replacement with living bone progresses moderately. To do.
3)ポリマーの初期粘度平均分子量が15万未満では、溶融粘度が低いので成形が容易である利点はあるが、高い初期強度は得られない。また、生体中での強度の低下が速いために強度の維持期間が骨癒合に必要な期間よりも短くなる。そして、生体に埋入後の1.5〜2年以内の短期に低分子量の細片が多量に発生する可能性があるので、その異物反応による炎症の発生の恐れがある。
また、ポリマ−の初期粘度平均分子量が70万を越えて高くなり過ぎると、ポリマ−が加熱時に流動し難くなり、溶融成形で予備成形体を造る際に高温、高圧が必要となるため、加工時の高い剪断応力や摩擦力によって発生する熱のために大幅な分子量の低下を招き、最終的に得られるインプラント材料の分子量は却って70万以下のものを使用した場合よりも低くなるので、強度が期待される値より小さいものとなる。
3) When the initial viscosity average molecular weight of the polymer is less than 150,000, the melt viscosity is low, so that there is an advantage that molding is easy, but high initial strength cannot be obtained. In addition, since the strength decreases rapidly in the living body, the strength maintenance period becomes shorter than the period necessary for bone fusion. And since there is a possibility that a small amount of low molecular weight fragments are generated in a short time within 1.5 to 2 years after implantation in a living body, there is a risk of inflammation due to the foreign body reaction.
Also, if the initial viscosity average molecular weight of the polymer exceeds 700,000, it becomes difficult for the polymer to flow during heating, and high temperature and high pressure are required when preparing a preform by melt molding. Due to the heat generated by the high shear stress and frictional force at the time, the molecular weight is greatly reduced, and the molecular weight of the finally obtained implant material is lower than that of using 700,000 or less. Is smaller than expected.
初期粘度平均分子量が低い15万〜20万のポリマーでは、比較的多量の30〜60重量%の生体内吸収性のバイオセラミックス粉体を充填することが可能であるが、溶融成形後に分子量がより低くなると、曲げ変形などの外力を受けて降伏したときに破断(降伏破壊)し易いので、10〜30重量%の低充填量に抑えのが良く、また後記する変形度Rも比較的小さく抑えるのが良い。
一方、粘度平均分子量が55万〜70万の高いポリマーを、溶融成形することは比較的難いので40〜60重量%の多量の生体内吸収性のバイオセラミックス粉体を充填して溶融成形することはより一層困難である。そこで、生体内吸収性のバイオセラミックス粉体を20重量%以下に、また変形度Rも必然的に小さく抑えるべきである。
要するに、初期粘度平均分子量が20万〜55万程度であれば、比較的広範囲の充填量と変形度Rが選択できる。また、生体内での強度維持期間が適当であり、分解・吸収の速度もまたほど良い程度である。
A polymer having a low initial viscosity average molecular weight of 150,000 to 200,000 can be filled with a relatively large amount of 30 to 60% by weight of bioabsorbable bioceramic powder, but the molecular weight is higher after melt molding. When it is low, it is easy to break (yield fracture) when it yields due to external force such as bending deformation, so it is good to keep it to a low filling amount of 10 to 30% by weight, and the degree of deformation R described later is also kept relatively small. Is good.
On the other hand, a polymer having a high viscosity average molecular weight of 550,000 to 700,000 is relatively difficult to melt mold, so a large amount of bioabsorbable bioceramic powder of 40 to 60% by weight is filled and melt molded. Is even more difficult. Therefore, the bioabsorbable bioceramic powder should be 20% by weight or less, and the degree of deformation R must be kept small.
In short, if the initial viscosity average molecular weight is about 200,000 to 550,000, a relatively wide filling amount and degree of deformation R can be selected. Moreover, the strength maintenance period in the living body is appropriate, and the rate of decomposition / absorption is also moderate.
4)フィラ−の充填量が多い場合には混合物の流動性が乏しいので、溶融粘度を下げて成形し易くするために、粘度平均分子量が10万以下、場合によっては1万以下の低分子量のポリマ−を滑剤として最終のインプラントの物性に影響しない程度に少量添加してもよい。
使用するポリマー中に残存モノマーの量が多いと加工の過程で分子量の低下を招き、生体内での分解も速くなるので、その量は約0.5重量%以下に抑えることが望ましい。
4) Since the fluidity of the mixture is poor when the filler filling amount is large, the viscosity average molecular weight is 100,000 or less, and in some cases, the low molecular weight is 10,000 or less so that the melt viscosity is lowered to facilitate molding. A small amount of polymer may be added as a lubricant so as not to affect the physical properties of the final implant.
If the amount of the residual monomer in the polymer used is large, the molecular weight is lowered during the processing, and the degradation in vivo is accelerated. Therefore, the amount is preferably suppressed to about 0.5% by weight or less.
フィラーが40重量%以上の高充填の場合に、両者の界面結合力を上げる目的で、軟質の生体内吸収性のポリマーや、ポリ乳酸のD体とL体の光学異性体からなるコンプレックスをフィラーに表面処理して用いても良い。
その後の成形型への圧入充填による分子(結晶)配向の操作によって分子量を実質的に低下させることなく高強度の加圧配向成形体、即ちインプラントのための材料が得られる。
次いで、切削加工、フライス加工、打ち抜き加工、孔開け等の二次加工により高強度のスクリュー状、ピン状、ロッド状、円盤状、ボタン状、筒状その他の所望の形状の骨接合材を製造する。
When the filler is highly filled at 40% by weight or more, a soft bioabsorbable polymer or a complex composed of polylactic acid D-form and L-form optical isomer is used as a filler in order to increase the interfacial bond strength between them. The surface treatment may be used.
By subsequently manipulating the molecular (crystal) orientation by press-fitting into the mold, a high-strength pressure-oriented molded product, that is, a material for an implant can be obtained without substantially reducing the molecular weight.
Next, high strength screw-shaped, pin-shaped, rod-shaped, disk-shaped, button-shaped, cylindrical, and other desired bone joint materials are manufactured by secondary processing such as cutting, milling, punching, and drilling. To do.
(e) 結晶化度
本発明の加圧配向成形体は、高い機械的強度を持ち、ほど良い加水分解の速度をもつという2つの要求因子のバランスを考えて、結晶化度の範囲を10〜70%、好ましくは20〜50%に選択する必要がある。
結晶化度が70%を越えると、見掛けの剛性は高いが、靱性に欠けるので脆くなり、体中でストレスが加わると容易に折れる。また、分解は必要以上に遅くなり、生体内での吸収、消失に長期を要するので望ましくない。
逆に、結晶化度が10%未満と低い場合には、結晶配向による強度の向上は望めない。
このように機械的強度と分解、吸収による消滅の速さ、或いは生体への刺激が少ないことを勘案すると、適切な結晶化度は10〜70%、好ましくは20〜50%である。
10〜20%の低結晶化度であっても、フィラーの効果によって強度は非充填の場合よりも向上する。
また、50〜70%の高結晶化度であっても、加圧による塑性変形の過程で微結晶が生じて、生体内での分解、吸収に不利に作用することは少ない。
(e) Crystallinity The pressure-oriented molded article of the present invention has a crystallinity range of 10 to 10 in consideration of the balance of two required factors of high mechanical strength and moderate hydrolysis rate. It is necessary to select 70%, preferably 20 to 50%.
When the degree of crystallinity exceeds 70%, the apparent rigidity is high, but it becomes brittle because it lacks toughness, and easily breaks when stress is applied in the body. Moreover, decomposition | degradation becomes slow more than necessary, and since it takes a long time for absorption and disappearance in the living body, it is not desirable.
Conversely, when the degree of crystallinity is as low as less than 10%, improvement in strength due to crystal orientation cannot be expected.
Considering the mechanical strength, the speed of annihilation due to decomposition and absorption, or the less irritation to the living body, the appropriate crystallinity is 10 to 70%, preferably 20 to 50%.
Even with a low crystallinity of 10 to 20%, the strength is improved by the effect of the filler as compared with the case of non-filling.
Even if the crystallinity is 50 to 70%, microcrystals are hardly generated in the process of plastic deformation due to pressurization, and adversely affect decomposition and absorption in vivo.
(f) 密度
本発明のインプラント材料は、(i) 二次成形されておらず且つ無配向でも、従来の延伸配向の成形体に比して密度が高くて高い機械的特性を有する(後記の参考実施例1の表1のNO3’参照)、或いは(ii)三次元的に加圧配向された成形体であるので、従来の延伸配向の成形体に比較して、密度が高くなる。それは変形度にも左右されるが、本発明の生体内吸収性のバイオセラミックスを20%台混合した成形体は1.4〜1.5g/cm3
、30%台混合した成形体は1.5〜1.6g/cm3 、40%台混合した成形体は1.6〜1.7g/cm3 、50%台混合した成形体は1.7〜1.8g/cm3 となる。従って、バイオセラミックスを20〜50重量%混合した成形体の密度は1.4〜1.8である。この高密度は材料の緻密さを示す指数でもあり、高強度を裏付ける重要な要因の一つである。
(f) Density The implant material of the present invention has (i) a high density and high mechanical properties compared with a conventional stretch-oriented molded article (i) which is not secondary molded and non-oriented. (Refer to NO3 ′ in Table 1 of Reference Example 1), or (ii) a three-dimensionally press-molded molded body, so that the density is higher than that of a conventional stretch-oriented molded body. Although it depends on the degree of deformation, the molded body obtained by mixing 20% of the bioabsorbable bioceramics of the present invention is 1.4 to 1.5 g / cm 3.
The molded body mixed in the 30% range is 1.5 to 1.6 g / cm 3, the molded body mixed in the 40% range is 1.6 to 1.7 g / cm 3, and the molded body mixed in the 50% range is 1.7 to 1 .8 g / cm @ 3. Therefore, the density of the compact in which 20 to 50% by weight of bioceramics is mixed is 1.4 to 1.8. This high density is also an index indicating the density of the material and is one of the important factors supporting high strength.
(g)結晶形態
本発明のインプラント材料は、加圧配向によって作られたために、成形体の結晶(分子鎖)が配向している。
特に、圧縮成形又は鍛造成形のような圧入充填による場合、本質的に複数の基準軸に平行に配向している。
一般に、基準軸が多くなるほど成形体の強度的な異方性が少なくなるので、方向性のある材料のように、或る方向からの比較的弱い力で破壊するようなことは少なくなる。
特に、圧入充填による場合、本発明のインプラント材料における、成形体の結晶が本質的に複数の基準軸に平行に配向している事実の裏付けを図1、2により説明してその内容を明らかにする。
即ち、図1 (イ)、図1 (ロ)は、夫々加圧配向の代表例として丸ロッドを圧入充填法により加圧配向した場合の結晶の状態を示す縦断面図と平面図である。
(G) Crystal Form Since the implant material of the present invention is made by pressure orientation, crystals (molecular chains) of the molded body are oriented.
In particular, in the case of press-fitting such as compression molding or forging, the orientation is essentially parallel to a plurality of reference axes.
In general, as the reference axis increases, the strength anisotropy of the molded body decreases, so that it is less likely to break with a relatively weak force from a certain direction like a directional material.
In particular, in the case of press-fitting, the fact that the crystals of the molded body are essentially oriented parallel to a plurality of reference axes in the implant material of the present invention will be explained with reference to FIGS. To do.
That is, FIGS. 1A and 1B are a longitudinal sectional view and a plan view showing a crystal state when a round rod is pressure-oriented by a press-fitting method as a representative example of pressure orientation.
圧入充填による加圧配向成形体の結晶の形態は、基本的に図1 (イ)、図1 (ロ)に示すように、成形体の力学的な芯となる軸(単に中心軸という)L、即ち成形時に外部からの力が集中した力学的な点の連続した中心の軸Lに向かって外周面から斜めに傾斜した多数の基準軸Nに沿って図1
(イ)の上方から下方に連続して平行に配向している。
換言すれば、中心軸Lの周りに放射状の斜め配向状態をとる多数の基準軸Nが図1 (ロ)のように円周方向に連続して略円錐状を作り、これが図1 (イ)のように上下方向に連続して、基準軸Nに平行に配向して略円錐状の面の連続相を構成している。
すなわち、該円錐状の結晶面が中心軸Lの上下方向に連続し、且つ外周から中心に向かう結晶面が中心軸の方向に配向した状態をなしている配向構造と見なすこともできる。
As shown in FIGS. 1 (a) and 1 (b), the crystal form of the press-oriented molded body by press-fitting is basically an axis L (simply referred to as a central axis) L as a dynamic core of the molded body. That is, along a number of reference axes N inclined obliquely from the outer peripheral surface toward the central axis L where the mechanical points where external forces are concentrated during molding are continuous.
They are oriented in parallel continuously from the top to the bottom of (a).
In other words, a large number of reference axes N taking a radially oblique orientation around the central axis L form a substantially conical shape continuously in the circumferential direction as shown in FIG. Thus, a continuous phase of a substantially conical surface is formed by being oriented in the vertical direction and parallel to the reference axis N.
That is, it can be regarded as an oriented structure in which the conical crystal plane is continuous in the vertical direction of the central axis L and the crystal plane from the outer periphery toward the center is oriented in the direction of the central axis.
このような結晶状態は、圧入充填、例えば圧縮成形する際にビレット1が摩擦による大きな剪断を受け、結晶化が進むと同時に中心軸Lに向かって外周面から斜めに配向することによりなされる。
図1 (イ)、 (ロ)においては、丸ロッドのような円柱について説明したが、円柱ではなくて平板のような圧入充填による加圧配向成形体は、図2 (イ)、
(ロ)に示すように、その両側面から大きな剪断力を受けて力学的な芯となる軸は中心線とはならず、この軸を含み且つ板の対向する両側面に平行で等距離(真中)にある面Mを形成する。
従って、圧入充填による板状の加圧配向成形体の結晶は、板の対向する両側面から該面Mに向かう斜めの基準軸Nに平行に配向する。
また、成形体の力学的な芯となる軸L又は軸Lを含む面Mは、外部からの力の集中する点であるから、圧入充填による加圧配向時に周囲又は両側面からの力を加減することにより、外部からの力の集中する点が中心又は真中をはずれ、結晶は中心を外れた軸L又は真中から左右のいずれかに偏位した面Mに向かって配向した結晶の状態となる。
Such a crystalline state is achieved by the fact that the billet 1 is subjected to large shear due to friction during press-fitting, for example, compression molding, and is oriented obliquely from the outer peripheral surface toward the central axis L as crystallization proceeds.
In FIGS. 1 (a) and (b), a cylinder such as a round rod has been described. However, a pressure-oriented molded body by press-fitting and filling such as a flat plate instead of a cylinder is shown in FIG. 2 (a),
(B) As shown in (b), the axis that becomes a dynamic core by receiving a large shearing force from both side surfaces thereof is not a center line, and is parallel to and equidistant to both opposite side surfaces of the plate including this axis. A plane M in the middle) is formed.
Therefore, the crystals of the plate-like pressure-oriented molded body by press-fitting are oriented parallel to the oblique reference axis N from the opposite side surfaces of the plate toward the surface M.
Further, since the axis L or the surface M including the axis L that is the dynamic core of the molded body is a point where the force from the outside is concentrated, the force from the surrounding or both sides is adjusted during the pressurizing orientation by press-fitting and filling. By doing so, the point where the force from the outside is concentrated is off the center or the center, and the crystal is in the state of the crystal oriented toward the axis L off the center or the surface M deviated from the center to the left or right. .
(B) インプラント材料の製造
本発明のインプラント材料の製造は、基本的に、(i) 予め生体内分解吸収性である結晶性の熱可塑性ポリマーと生体内吸収性のバイオセラミックス粉体とが実質的に均一に分散した混合物を作り、次いで該混合物を溶融成形して予備成形体を造り、該予備成形体を二次成形して塑性変形させて配向成形体とすることを特徴とする。
そして、(1)該二次成形が、該予備成形体を閉鎖成形型のキャビティ内に、冷間で加圧して塑性変形させて配向成形体とする点にも特徴とする。
(2) 上記ポリマーと生体内吸収性のバイオセラミックス粉体との混合物が、上記ポリマーの溶媒溶液中に該バイオセラミックス粉体を実質的に均一に混合・分散し、これを該ポリマーの非溶媒で沈澱することにより作成される点にも特徴とする。
(3)上記加圧配向成形体を更に切削加工等する点にも特徴とする。
(B) Production of implant material Production of the implant material of the present invention basically consists of (i) a crystalline thermoplastic polymer that is previously biodegradable and absorbable and a bioabsorbable bioceramic powder. A uniformly dispersed mixture is prepared, then the mixture is melt-molded to prepare a preform, and the preform is secondarily molded and plastically deformed to obtain an oriented molded body.
(1) The secondary molding is also characterized in that the preform is cold-pressed into a closed mold cavity and plastically deformed to form an oriented molded body.
(2) A mixture of the polymer and the bioabsorbable bioceramic powder mixes and disperses the bioceramic powder substantially uniformly in a solvent solution of the polymer, and this is mixed with the non-solvent of the polymer. It is also characterized by the fact that it is created by sedimentation.
(3) It is also characterized in that the pressure-oriented molded body is further cut.
(a) ポリマーと生体内吸収性のバイオセラミックス粉体との混合物の作成
1)比較的容易に凝集する生体内吸収性のバイオセラミックス粉体をマトリックスポリマー中に実質的に均一に混合・分散させるには、例えばジクロロメタン、クロロホルム等の溶媒に溶解したマトリックスポリマ−に生体内吸収性のバイオセラミックス粉体を加えてよく分散し、この分散系をエタノール、メタノール等の非溶媒を加えて沈殿させて、混合物とする方法の採用が望ましい。この場合のポリマーの溶解濃度と溶媒と非溶媒との比率はポリマーの種類と重合度に見合って調製すればよい。
(a) Preparation of mixture of polymer and bioabsorbable bioceramic powder 1) Bioabsorbable bioceramic powder that aggregates relatively easily is mixed and dispersed substantially uniformly in the matrix polymer. For example, bio-absorbable bioceramics powder is added to a matrix polymer dissolved in a solvent such as dichloromethane or chloroform and dispersed well. The dispersion is precipitated by adding a non-solvent such as ethanol or methanol. It is desirable to adopt a method of making a mixture. In this case, the polymer dissolution concentration and the ratio of solvent to non-solvent may be adjusted in accordance with the type of polymer and the degree of polymerization.
2)生体内吸収性のバイオセラミックス粉体/マトリックスポリマ−の混合比は10〜60重量%、好ましくは20〜50重量%、より好ましくは30〜40重量%である。
混合比が10重量%未満では生体内吸収性のバイオセラミックス粉体の占める体積比率が小さいので、生体内吸収性のバイオセラミックス粉体に期待される骨との直接の結合、骨伝導、骨誘導の性質が発現され難く、生体骨との置換もポリマー単独の場合とよく似て比較的遅い。
また、60重量%を越えると、混合系の熱成形時の流動性が不足するので成形が困難になるし、成形物中のポリマ−の量が不足してバインダ−効果が及ばないため、フィラ−とポリマ−が分離し易いので強度的に脆くなる。
また、生体中の分解過程で生体内吸収性のバイオセラミックス粉体の骨接合材表面からの露呈が速いので、生体への為害性の発現の危惧が考えられる。
この範囲内の混合比であると、生体内吸収性のバイオセラミックス粉体とポリマ−マトリックスの両方の望ましい特性が複合材料の構造と機能の両面で顕著に発現できる。
2) The bioabsorbable bioceramic powder / matrix polymer mixing ratio is 10 to 60% by weight, preferably 20 to 50% by weight, more preferably 30 to 40% by weight.
When the mixing ratio is less than 10% by weight, the volume ratio of the bioresorbable bioceramic powder is small, so that direct binding to bone, bone conduction, and bone induction are expected for the bioresorbable bioceramic powder. These properties are difficult to express, and the replacement with living bone is relatively slow, much like the polymer alone.
On the other hand, if it exceeds 60% by weight, the fluidity at the time of thermoforming of the mixed system is insufficient, so that molding becomes difficult, and the amount of polymer in the molded product is insufficient and the binder effect does not reach. Since − and polymer are easily separated, they become brittle in strength.
In addition, since the bioresorbable bioceramic powder is rapidly exposed from the surface of the bone-bonding material during the decomposition process in the living body, there is a concern that it may be harmful to the living body.
When the mixing ratio is within this range, desirable characteristics of both the bioabsorbable bioceramic powder and the polymer matrix can be remarkably exhibited in both the structure and function of the composite material.
(b) 溶融成形
1)本発明の複合材料は粒子強化複合材料に属するが、本発明のインプラント材料のように、生体内吸収性のバイオセラミックス粉体を多量に含んだポリマ−系は、一般に流動性が良くないので熱成形が困難である。
まして、インプラントに対しては生体中の安全性を配慮しなければならず、流動性の改良に極めて効果のあるチタン系カップリング剤が使用できない現状での成形は更に困難である。
この流動性の乏しい複合材料を混練、溶融時に剪断力が加わる一般的な押出成形等で熱成形すると、ポリマ−自身は本来の流動特性をもって変形流動するけれども、充填された生体内吸収性のバイオセラミックス粉体は熱により可塑化して流動する性質がないので、ポリマ−と生体内吸収性のバイオセラミックス粒子の界面で成形に伴う流動変形による移動時に劈界が生じてボイドを介在する結果、密度の粗なる成形体ができ、その成形体の強度は低くなる傾向は不可避である。
(b) Melt molding 1) Although the composite material of the present invention belongs to a particle-reinforced composite material, a polymer system containing a large amount of bioceramic powder that is bioabsorbable like an implant material of the present invention is generally used. Thermoforming is difficult because of poor fluidity.
In addition, the safety in the living body must be taken into consideration for the implant, and it is further difficult to mold the titanium-based coupling agent that is extremely effective for improving the fluidity.
When this composite material with poor fluidity is kneaded and thermoformed by general extrusion molding, where shearing force is applied at the time of melting, the polymer itself deforms and flows with its original flow characteristics, but the filled bioabsorbable biomaterial Since ceramic powder does not have the property of plasticizing and flowing due to heat, the density of density increases as a result of the formation of a void at the interface between the polymer and the bioabsorbable bioceramic particles due to fluid deformation accompanying molding and the inclusion of voids. It is inevitable that a rough molded body is formed and the strength of the molded body is lowered.
2)本発明のように多量に生体内吸収性のバイオセラミックス粉体のようなフィラ−を含んだポリマ−系を一次成形(溶融成形して予備成形体をつくる)するには、ラム(プランジャ)方式の溶融押出成形法が有利であるが、ボイドが形成され難いように、上記の問題を配慮した特殊な射出成形、圧縮成形などの加圧方式の成形法を用いるのも良い。
要するに、ビレットを得るための溶融成形は、ポリマーの融点以上の温度条件で行えばよいが、温度が高すぎると分子量の低下が著しいので、融点より少し高い温度で熱劣化を防ぐように工夫し、ボイドを介在しないように溶融成形することが望ましい。
2) A ram (plunger) is used to perform primary molding (melt molding to form a preformed body) of a polymer system containing a filler such as a bioceramic powder that is absorbed in a large amount of living body as in the present invention. ) Type melt extrusion molding method is advantageous, but it is also possible to use a pressure type molding method such as special injection molding or compression molding in consideration of the above problems so that voids are not easily formed.
In short, melt molding to obtain a billet may be performed under a temperature condition equal to or higher than the melting point of the polymer. However, if the temperature is too high, the molecular weight is significantly reduced. It is desirable to perform melt molding without interposing voids.
例えば、ポリマーとして初期粘度平均分子量が15万〜70万程度の前記ポリ乳酸を用いる場合は、その融点以上、200℃以下、好ましくは約190℃の温度条件を選択し、予めポリマ−の脱水、乾燥を十分に行えば、その溶融成形後の粘度平均分子量を10万〜60万に維持することができる。
同様に、圧力条件についても、摩擦による発熱のために分子量が低下するのを抑えるために、溶融成形が可能な最小の圧力、例えば300kg/cm2 以下、好ましくは150〜250kg/cm2 を採用することが望ましい。しかし、これは予備成形体(ビレット)の組成、大きさ(厚さ、径、長さ)などでかなり差異があるので状況によって変えればよい。
For example, when the polylactic acid having an initial viscosity average molecular weight of about 150,000 to 700,000 is used as the polymer, a temperature condition of not less than the melting point and not more than 200 ° C., preferably about 190 ° C. is selected, If drying is performed sufficiently, the viscosity average molecular weight after melt molding can be maintained at 100,000 to 600,000.
Similarly, as for the pressure condition, in order to prevent the molecular weight from decreasing due to heat generated by friction, the minimum pressure capable of melt molding, for example, 300 kg / cm 2 or less, preferably 150 to 250 kg / cm 2 is adopted. Is desirable. However, since this is considerably different depending on the composition and size (thickness, diameter, length) of the preform (billet), it may be changed depending on the situation.
3)ビレットは加圧配向成形のための型のキャビティの断面形状に相似した断面形状となるように溶融成形することが望ましく、キャビティが円形の断面形状を有する場合は、それより大きい円形の断面形状を有する円柱体となるようにビレットを溶融成形する。
このようにビレットの断面形状がキャビティの断面形状に相似していると、ビレットを周囲から均等に圧縮しながら塑性変形させてキャビティ内へ圧入充填できるため、均質な加圧配向成形体を得ることができる。
3) It is desirable that the billet is melt-molded so as to have a cross-sectional shape similar to the cross-sectional shape of the cavity of the mold for pressure-oriented molding, and if the cavity has a circular cross-sectional shape, a larger circular cross-section The billet is melt-molded to form a cylindrical body having a shape.
When the cross-sectional shape of the billet is similar to the cross-sectional shape of the cavity in this way, the billet can be plastically deformed while being uniformly compressed from the periphery, and can be press-fitted into the cavity, so that a homogeneous pressure-oriented molded product can be obtained Can do.
4)その際、ビレットはその断面積がキャビティの断面積の1.5〜5.0倍となるように溶融成形することが望ましい。このように加圧配向による二次工程を経た後に、切削加工等の三次加工により所望の形状を切り出す。
5) なお、予備成形体であるビレットは、場合によっては(特に複雑な断面形状の場合)、次工程である加圧配向、例えば鍛造配向或いは圧縮配向による二次成形に適した所望の形状に切り出し加工してもよい。
4) At that time, the billet is preferably melt-molded so that the cross-sectional area thereof is 1.5 to 5.0 times the cross-sectional area of the cavity. Thus, after passing through the secondary process by pressure orientation, a desired shape is cut out by tertiary processing such as cutting.
5) In addition, the billet which is a preformed body may have a desired shape suitable for secondary forming by pressure orientation which is the next step, for example, forging orientation or compression orientation, in some cases (particularly in the case of a complicated cross-sectional shape). Cutting may be performed.
(c) 閉鎖型への加圧成形
(i) 一次成形物であるビレットを二次成形用の閉鎖型にて加圧成形することにより多軸に配向した成形体が得られる。
すなわち、例えば基本的にラム押出法や圧縮成形法の技術を利用して、該ビレットを、その断面積の2/3〜1/5の断面積を有する閉鎖成形型(但し、2/3〜1/5のいずれか単一の値を型の全体に亘って有する場合、部分的にこの範囲のいずれか複数の値の断面積を型の複数の部位に有している場合、あるいはこれら前二者の残りの部分がビレットと同じ断面積である場合の型を含む)のキャビティ内に、連続的あるいは断続的に加圧しながら冷間[ガラス転移点(Tg)と溶融温度(Tm)の間の結晶が生ずる適当な温度(Tc)]で塑性変形させてキャビティ内に圧入充填して配向すればよい。
(c) Pressure molding to closed mold
(i) A billet, which is a primary molded product, is pressure-molded with a closed mold for secondary molding to obtain a multi-axis oriented molded body.
That is, for example, basically using the technique of the ram extrusion method or the compression molding method, the billet is formed into a closed mold having a cross-sectional area 2/3 to 1/5 of the cross-sectional area (however, 2/3 to 3/3 If you have any single value of 1/5 over the entire mold, if you have partial cross-sections of any value in this range partially in multiple parts of the mold, or before (Including the mold where the rest of the two have the same cross-sectional area as the billet), while cold or continuous pressurization (glass transition point (Tg) and melting temperature (Tm) An appropriate temperature (Tc) at which an interstitial crystal is formed may be plastically deformed and press-fitted into the cavity for orientation.
(1) 圧縮成形
図3、図4は、加圧成形の1例として圧縮成形による成形モデルを模式的に示した縦断面図であり、図3はビレットを成形型のキャビティに圧入充填する前を、図4は圧入充填後の状態を示す。
このような成形型2は、ビレット1を収容する太い円筒状の収容筒部2aと、加圧手段2bによってビレット1が圧入充填される細い円筒状の成形キャビティ2cからなり、それらは下窄まりのテーパーを付した縮径部20aを介して上下に同軸上に連結されている。
収容筒部2aの上部には、加圧手段2bが設けられ、ビレット1はピストン(ラム)等の加圧手段2bにより連続的又は断続的に加圧される。そして、キャビティ2cの底部には、極く微小な空気抜きの孔や隙間(不図示)が形成されている。
(1) Compression molding FIGS. 3 and 4 are longitudinal sectional views schematically showing a molding model by compression molding as an example of pressure molding, and FIG. 3 is a diagram before press-filling a billet into a cavity of a molding die. FIG. 4 shows the state after press-fitting.
Such a mold 2 comprises a thick cylindrical housing cylinder portion 2a for housing the billet 1 and a thin cylindrical molding cavity 2c into which the billet 1 is press-fitted and filled by the pressurizing means 2b. Are connected coaxially up and down via a reduced diameter portion 20a having a taper.
A pressurizing unit 2b is provided on the upper portion of the housing cylinder 2a, and the billet 1 is pressurized continuously or intermittently by a pressurizing unit 2b such as a piston (ram). An extremely minute air vent or gap (not shown) is formed at the bottom of the cavity 2c.
このような成形型2を用いて、図3に示すように、ビレット1を収容筒部2aに収容し、加圧手段2bでビレット1を連続的又は断続的に加圧して、キャビティ2c内に冷間で塑性変形させながら圧入充填して図4の状態にすると、圧入時に縮径部20aの内面との間及びキャビティ2cの内面との間に摩擦による大きな剪断が生じ、これがポリマーを配向させる横又は斜め方向の外力(ベクトル力)として作用する。
そのために、縮径部20aの内面に沿って本質的にポリマーが配向して結晶化が進行する。同時に成形キャビティ2cの中心部への圧入速度が周囲より早いため、キャビティ2cの形状通りに成形された圧縮配向成形体10の結晶軸は、図1に示すうように、その縦方向の中心軸Lに対して斜めに配向し、結晶は円周から中心軸Lに向かう多くの基準軸に平行に配向する。つまりキャビティ2cの内周面に沿った同心円状に配向する圧縮配向成形体10が得られる。
それと同時に縦方向(機械方向)にポリマーは圧縮されるので、この方向にも配向を示す。そして質的に緻密な細い円柱状の圧縮配向成形体10が得られるのである。
Using such a mold 2, as shown in FIG. 3, the billet 1 is accommodated in the accommodating cylinder portion 2a, and the billet 1 is continuously or intermittently pressurized by the pressurizing means 2b to enter the cavity 2c. If it is press-fitted while plastically deforming in the cold state to obtain the state shown in FIG. 4, a large shear due to friction occurs between the inner surface of the reduced diameter portion 20a and the inner surface of the cavity 2c during the press-fitting, and this orients the polymer. Acts as a lateral or diagonal external force (vector force).
For this reason, the polymer is essentially oriented along the inner surface of the reduced diameter portion 20a and crystallization proceeds. At the same time, since the press-fitting speed into the central portion of the molding cavity 2c is faster than the surroundings, the crystal axis of the compression-oriented molded body 10 molded according to the shape of the cavity 2c is the central axis in the longitudinal direction as shown in FIG. Oriented obliquely with respect to L, the crystal is oriented parallel to many reference axes from the circumference toward the central axis L. That is, the compression oriented molded body 10 that is oriented concentrically along the inner peripheral surface of the cavity 2c is obtained.
At the same time, since the polymer is compressed in the machine direction (machine direction), it also shows orientation in this direction. Thus, a qualitatively dense thin cylindrical compression-oriented molded body 10 is obtained.
このような圧入充填成形において、成形型2の収容筒部2aと、これに相似する小さな断面を有するキャビティ2cの形状を変えることにより、種々の形状の圧縮配向成形体を得ることができる。
例えば、図2に示すように骨接合プレートのような板状の圧縮配向成形体を得るには、断面長方形の収容筒部とキャビティとを縮径部(長辺方向の2辺のみにテーパーを付した形状、或いは4辺にテーパーを付した形状)を介して上下方向に同軸上に連結した成形型を用いて、同様に加圧配向すれば良い。
また、成形型2の縮径部20aの傾斜角θを全周に亘って、或いは部分的に変化させることにより、成形体の力学的な芯となる軸L又は面Mが中心又は真中を外れ、偏位した軸L又は面Mに向かって斜めに配向した結晶状態を有する圧縮配向成形体を得ることができる。
In such press-fitting and molding, various shapes of compression-oriented moldings can be obtained by changing the shape of the housing cylinder portion 2a of the molding die 2 and the cavity 2c having a small cross section similar to this.
For example, as shown in FIG. 2, in order to obtain a plate-like compression-oriented molded body such as an osteosynthesis plate, the accommodation cylinder portion having a rectangular cross section and the cavity are reduced in diameter (tapered only on two sides in the long side direction). It is only necessary to perform pressure orientation in the same manner using a molding die that is coaxially connected in the vertical direction via a shape attached thereto or a shape provided with four sides tapered.
Further, by changing the inclination angle θ of the reduced diameter portion 20a of the mold 2 over the entire circumference or partially, the axis L or the surface M, which serves as the dynamic core of the molded body, deviates from the center or the middle. A compression-oriented molded body having a crystal state that is oriented obliquely toward the deviated axis L or the plane M can be obtained.
(2) 鍛造成形
図5は、加圧成形の他の例として鍛造成形による成形モデルを模式的に示した縦断面図である。
図5に示す成形型2は、円筒状又は(多)角筒状の収容筒部2aを、該筒部2aの断面積より大きい投影平面の面積を有する中空円板状又は中空(多)角筒状キャビティ2cの中央部に設け、収容筒部2aの上部にピストン(ラム)等の加圧手段を設けたものである。
このような成形型を用い、上記ポリマー系からなるビレット1を、収容筒部2aに収容して加圧手段2bで連続的又は断続的に加圧することにより、ビレット1を冷間で投影平面の面積の大きいキャビティ2cの中央部から周辺部へ押し広げながら圧入充填して、円筒状又は(多)角筒状の鍛造配向成形体を得るようにしている。
(2) Forging Molding FIG. 5 is a longitudinal sectional view schematically showing a molding model by forging molding as another example of pressure molding.
The molding die 2 shown in FIG. 5 has a cylindrical or (multi-) square tube-shaped accommodation tube portion 2a having a hollow disk shape or a hollow (multi-) angle having a projection plane area larger than the cross-sectional area of the tube portion 2a. It is provided at the center of the cylindrical cavity 2c, and a pressurizing means such as a piston (ram) is provided at the upper part of the accommodating cylinder 2a.
Using such a mold, the billet 1 made of the above-mentioned polymer is accommodated in the accommodating cylinder 2a and continuously or intermittently pressurized by the pressurizing means 2b, so that the billet 1 is cold on the projection plane. A forged oriented molded body having a cylindrical shape or a (multi-) square tube shape is obtained by press-fitting and filling the cavity 2c having a large area from the center to the periphery.
この実施の形態で得られる鍛造配向成形体は、前記圧縮配向成形体とは異なり、分子軸や結晶が成形キャビティ2cの中央部から周辺部に向かって多くの軸をもって放射状に配向している多くの基準軸に平行に配向した鍛造配向成形体であり、単なる一軸延伸物とは配向形態の異なる成形体である。
このような実施形態の方法は、円筒状、(多)角筒状、ボタン状などの内部に孔を有する骨接合材或いはその付属材を製造する場合に特に有効である。
鍛造成形の場合、ビレットを成形型のキャビティ内に冷間に圧入充填する加圧作用は基本的に打延によるものであるが、配向のメカニズムは基本的に上記圧縮成形の場合と同じである。
The forged oriented molded body obtained in this embodiment is different from the compression oriented molded body in that many molecular axes and crystals are radially oriented with many axes from the central part to the peripheral part of the molding cavity 2c. This is a forged oriented molded product that is oriented parallel to the reference axis, and is a molded product having a different orientation form from a simple uniaxially stretched product.
The method of such an embodiment is particularly effective when manufacturing an osteosynthesis or an accessory having a hole in a cylindrical shape, a (multi) rectangular tube shape, a button shape, or the like.
In the case of forging, the pressurizing action of cold-pressing and filling the billet into the cavity of the mold is basically due to drawing, but the orientation mechanism is basically the same as in the case of compression molding. .
(ii)(1)、(2)のような加圧配向方法によると、配向成形時の外力は延伸とは逆の材料本体に向かった内向きに作用するので、材料は緻密な状態になる。
そのために、生体内吸収性のバイオセラミックス粉体とマトリックスポリマーの界面はより密着した状態に変わり、混合過程で界面に存在していた空気を介在したミクロなボイドさえも消減するので高い緻密度が得られる。つまり、両者はより一層一体化するのである。
加えて、マトリックスのポリマ−は分子鎖軸と結晶相が配向するので、得られた複合材料は著しく高い強度を示す。
その形態は前述した図6の〔粒子強化+マトリックス強化型〕(c) 図のように示されるものであり、従来の材料の複合化による強化方式との違いが明らかである。
加圧配向成形、特に圧縮配向成形の場合、図1に示されるように、金型面(成形型面)からの「ずり」によりベクトル力が加わるために、単なる長軸方向への延伸による一軸配向とは異なり、ある基準軸に平行に配向している傾向の強い形態をしている。
そのため、配向による異方性が少なく、捩りなどの変形にも強いという特徴が発現される。
(ii) According to the pressure orientation method as in (1) and (2), the external force at the time of orientation molding acts inwardly toward the material body opposite to stretching, so that the material is in a dense state. .
For this reason, the interface between bioabsorbable bioceramic powder and matrix polymer changes to a more tightly bonded state, and even micro voids intervening in the air that existed at the interface during the mixing process disappear, resulting in high density. can get. That is, both are further integrated.
In addition, since the polymer of the matrix is oriented with the molecular chain axis and the crystalline phase, the resulting composite material exhibits significantly higher strength.
The form is shown in FIG. 6 [Particle Strengthening + Matrix Strengthening] (c) as described above, and the difference from the conventional strengthening method by combining materials is clear.
In the case of pressure orientation molding, particularly compression orientation molding, as shown in FIG. 1, since a vector force is applied by “shear” from the mold surface (mold surface), it is uniaxial by simply stretching in the major axis direction. Unlike the orientation, it has a strong tendency to be oriented parallel to a certain reference axis.
Therefore, the characteristics that there is little anisotropy due to orientation and resistance to deformation such as twisting are manifested.
(iii) 本発明にかかわる加圧成形により、本質的に分子鎖軸あるいは結晶相が選択的に配向したブロック状、プレ−ト状、ピン状、ロッド状、円盤状等の二次成形体を得る。
その後に、必要に応じて更にフライス加工、切削加工、ネジ切り加工、孔開け加工等を施して、スクリュ−状、ピン状、ロッド状、円盤状、ボタン状、筒状等の所望形状のインプラントに仕上げられる。
但し、ここで言う圧縮成形あるいは鍛造成形のような加圧配向によって配向成形体を得る方法とは、典型的には、溶融成形物であるビレットをそれ自体よりも径、厚み、あるいは幅のいずれかが部分的あるいは全体的に小さい成形型の狭い空間に、連続的あるいは断続的に強制的に加圧して押し込む成形法のことを意味する。
従って、材料を引き延ばす延伸による配向成形とは、方法および得られた成形物が本質的に異なるものである。
(iii) By the pressure molding according to the present invention, a secondary molded body having a block shape, a plate shape, a pin shape, a rod shape, a disk shape, or the like, in which molecular chain axes or crystal phases are selectively selectively oriented. obtain.
After that, it is further milled, cut, threaded, drilled, etc. as necessary, and has the desired shape such as screw, pin, rod, disk, button, and cylinder. Finished.
However, the method for obtaining an oriented molded body by pressure orientation such as compression molding or forging as used herein typically means that a billet, which is a melt-formed product, has any diameter, thickness, or width rather than itself. It means a molding method in which the pressure is forced and pressed continuously or intermittently into a narrow space of a molding die that is partially or entirely small.
Therefore, the method and the molded product obtained are essentially different from the orientation molding by stretching which stretches the material.
(iv)変形度
変形度R=So/S(但し、Soはビレットの断面積、Sは加圧配向された成形体の断面積)は3/2〜5/1の範囲で加圧配向成形すれば良い。
変形度が3/2未満では加圧配向の度合が低くて高い強度が得られず、5/1より大きいと変形が容易でなく、成形途中に割れ目が発生したり、フィブリル化が生じて異方性も大きくなるので望ましくない。最も安定して成形できるRの範囲は2/1〜4/1である。
(iv) Deformation degree Deformation degree R = So / S (where So is the cross-sectional area of the billet, S is the cross-sectional area of the pressure-oriented molded article) is in the range of 3/2 to 5/1. Just do it.
If the degree of deformation is less than 3/2, the degree of pressure orientation is low and high strength cannot be obtained. If the degree of deformation is greater than 5/1, deformation is not easy, and cracks may occur during molding, or fibrillation may occur. It is not desirable because the directivity increases. The range of R that can be molded most stably is 2/1 to 4/1.
(v) 塑性変形温度
塑性変形させる温度は冷間、要するに[ガラス転移点(Tg)以上溶融温度(Tm)以下の結晶が生ずる適当な温度(Tc)]であるが、例えばポリ乳酸の場合、Tg(60〜65℃)
からTm(175〜185℃) の間の結晶化に適した温度( Tc) を選べばよい。
経験的には、120℃以上の高温では分子のすべりが生ずるので、良好な加圧配向状態は得られ難く、また、80℃以下では非晶相の比率がかなり大きくなるので皮質骨程度の強度の高い配向成形体を得難い。
従って、好ましい温度の範囲は80〜120℃であり、更に好ましくは90〜110℃である。また、モノマー比率が前記の範囲である乳酸−グリコール共重合体のTgは50〜55℃であるが、好ましい塑性変形の温度は単一重合体のそれと殆ど変わらない。
(v) Plastic deformation temperature Plastic deformation temperature is cold, in other words, [appropriate temperature (Tc) at which a crystal having a glass transition point (Tg) or higher and a melting temperature (Tm) or lower is generated]. Tg (60-65 ° C)
And a temperature (Tc) suitable for crystallization between Tm and Tm (175 to 185 ° C.).
Empirically, molecular slip occurs at a high temperature of 120 ° C. or higher, so that it is difficult to obtain a good pressure orientation state, and the ratio of the amorphous phase becomes considerably large at 80 ° C. or lower, so that it is as strong as cortical bone. It is difficult to obtain a highly oriented molded product.
Therefore, the preferable temperature range is 80 to 120 ° C, more preferably 90 to 110 ° C. The Tg of the lactic acid-glycol copolymer having the monomer ratio in the above range is 50 to 55 ° C., but the preferable plastic deformation temperature is almost the same as that of the single polymer.
(vi)塑性変形圧力等
塑性変形時に加える圧力は変形度R、加圧配向に要する時間(変形速度と加熱している時間)、および予備成形体を収容するSo断面をもつ成形型のキャビティから、Soよりも小さなSの断面積をもつ成形型のキャビティに圧縮するときの経路の絞り角度(θ)(10°〜60°の範囲で任意に選択できる)との関係で決まるが、300〜10,000kg/cm2 、好ましくは500〜5000kg/cm2 である。
加熱時間は結晶化とその成長速度を配慮すると、1〜5分である。
(Vi) The pressure applied during plastic deformation, such as plastic deformation pressure, is the degree of deformation R, the time required for pressure orientation (deformation speed and heating time), and the cavity of the mold having the So cross section that accommodates the preform. , Which is determined by the relationship with the throttle angle (θ) of the path (which can be arbitrarily selected within the range of 10 ° to 60 °) when compressed into the cavity of the mold having an S cross-sectional area smaller than So. It is 10,000 kg / cm @ 2, preferably 500 to 5000 kg / cm @ 2.
The heating time is 1 to 5 minutes considering the crystallization and the growth rate.
(vii)加圧配向の作用
かかる条件で塑性変形すると、例えば鍛造成形の場合、ビレットよりもより小さな径、厚みあるいは幅をもつ狭いキャビティを有する成形型に加圧充填するときに、型壁との間に摩擦による大きな剪断が生じ、これがポリマ−が配向するための横、斜め方向の外力(ベクトル力)として作用して結晶が選択的に配向される。そして、配向軸の方向に成形体が圧縮され、ポリマ−とバイオセラミックス粉体の界面がより密着した状態になるので質的に緻密になり、高い強度が得られるわけである。
しかしながら、該ポリマー系を単純に、押出し、引抜き、延伸により機械方向に配向させる方法では、横方向(側面)はフリ−(自由幅)であり、延伸過程で太さが細くなり、側面からは外力がかからない。そのため、一軸(長軸)方向にのみ分子鎖と結晶が配向した一軸配向成形体となる。そして、これは配向軸方向に成形体が延伸されているために質的には延伸以前よりも稀薄な材料(ボイドも形成される)となるので、力学的に弱く、また、本発明の成形体よりも異方性が大きく、機械強度もまた小さい。
ビレットを加圧配向成形すると、成形途中の配向時に結晶化が進行する。結晶化度は成形時間と温度により変わるが、本発明のようにフィラ−である生体内吸収性のバイオセラミックス粉体を多量に含んでいる複合材料の場合、マトリックスポリマ−の結晶の成長は生体内吸収性のバイオセラミックスによって阻害され、また塑性変形時の圧力で結晶が細かく破壊される傾向があるので、結晶化度はマトリックスポリマ−単独で同様な配向のための成形をした場合よりもやや小さくなる。これは生体中での分解の速さと組織反応の観点からすれば好ましい現象である。
(Vii) Action of pressure orientation When plastically deformed under such conditions, for example, in the case of forging, when press-filling a mold having a narrow cavity having a smaller diameter, thickness or width than a billet, In the meantime, a large shear is generated due to friction, and this acts as an external force (vector force) in the lateral and oblique directions for the orientation of the polymer to selectively orient the crystal. Then, the compact is compressed in the direction of the orientation axis, and the interface between the polymer and the bioceramic powder becomes more closely attached, so that it becomes qualitatively dense and high strength is obtained.
However, when the polymer system is simply extruded, drawn, and oriented in the machine direction by stretching, the lateral direction (side surface) is free (free width), and the thickness becomes thin during the stretching process. No external force is applied. Therefore, it becomes a uniaxially oriented molded body in which molecular chains and crystals are oriented only in the uniaxial (long axis) direction. Since the molded body is stretched in the direction of the orientation axis, the material is qualitatively thinner than that before stretching (voids are also formed), so it is mechanically weak and the molding of the present invention. The anisotropy is greater than the body, and the mechanical strength is also low.
When the billet is subjected to pressure orientation molding, crystallization proceeds during orientation during molding. The degree of crystallinity varies depending on the molding time and temperature. However, in the case of a composite material containing a large amount of bioabsorbable bioceramic powder as a filler as in the present invention, the growth of the matrix polymer crystals does not occur. The crystallinity is somewhat lower than when the matrix polymer alone is molded for the same orientation because it is hindered by the bioabsorbable bioceramics and tends to break the crystals finely by the pressure during plastic deformation. Get smaller. This is a preferable phenomenon from the viewpoint of degradation speed and tissue reaction in the living body.
(C) インプラント材料の物性等の特徴
(i) 本発明の加圧配向成形体は、成形時の圧力で圧縮されて緻密になっているが、場合により、その結晶の配向する基準軸が多いものほど強度的な異方性も減少している。
一方、基準軸が一軸の場合、結晶(分子鎖)は基準軸方向に一様に平行に配列している。そのため、本発明の加圧配向成形体は、基準軸が多いので、曲げ強度、曲げ弾性率、引張強度、引裂き強度、剪断強度、捩り強度、表面硬度などの力学的性質がバランスよく向上し、破壊が生じ難い。
(C) Features such as physical properties of implant materials
(i) The pressure-oriented molded article of the present invention is compressed and compacted by the pressure at the time of molding, but in some cases, the more the standard axis in which the crystals are oriented, the more the strength anisotropy decreases. doing.
On the other hand, when the reference axis is uniaxial, the crystals (molecular chains) are uniformly arranged in parallel with the reference axis direction. Therefore, since the pressure-oriented molded article of the present invention has many reference axes, the mechanical properties such as bending strength, flexural modulus, tensile strength, tear strength, shear strength, torsion strength, surface hardness are improved in a well-balanced manner, Destruction is unlikely to occur.
(ii)物性
本発明のインプラント材料、特に配向成形体からなるものは、曲げ強度が150〜320MPa、曲げ弾性率が6〜15GPaであるものが、生体内吸収性のバイオセラミックスの充填量、変形度及び分子量の大きさに依存して得られる。また、他の物理的強度の範囲は引張強度80〜180MPa、剪断強度100〜150MPa、圧縮強度100〜150MPaであるものが得られ、これらは総体的にヒトの皮質骨の強さに似ているのでインプラントとして理想に近いと言える。
(ii) Physical properties The implant material of the present invention, in particular, an oriented molded body, has a bending strength of 150 to 320 MPa and a bending elastic modulus of 6 to 15 GPa. Depending on the degree and molecular weight. In addition, other physical strength ranges are obtained with a tensile strength of 80-180 MPa, a shear strength of 100-150 MPa, and a compressive strength of 100-150 MPa, which are generally similar to the strength of human cortical bone. Therefore, it can be said that it is close to an ideal as an implant.
例えば、前述の初期粘度平均分子量範囲を有するL−乳酸のホモポリマ−に平均粒径5μmのHA30重量%を均一に混合・分散した場合、ビレットを用い、変形度R=So/Sが1.5以上となるように冷間で加圧配向成形して得られる加圧配向成形体は、曲げ強度が250MPa以上に達するものが得られ、皮質骨の曲げ強度を十分越えている。
配向の度合を変える変形度Rを大きくすると、複合材料の機械方向の機械強度は向上する。また、同時に生体内吸収性のバイオセラミックス粉体の充填量が多いと、弾性率の高いものが得られる。
そして、曲げ強度で300MPaを越えるもの、弾性率が皮質骨の15GPaに近いものが得られる。
この弾性率6〜15GPaの範囲は数値の上では大差がないように思われるが、約10GPa以上ではそれ以下と比べると、実際の使用上、挿入時の曲がり難さ、たわみ難さ、プレートの変形し難さ或いは剛性に大きな違いがあるので、骨接合材などとして使う際の物理的有用性に数値以上の差異が認められる。
(iii) 本発明の加圧配向した高強度の複合化されたロッド状などの成形体を、更に切削などの方法で最終成形物に切り出し、医療用インプラントを得ることができる。
For example, when L-lactic acid homopolymer having the above initial viscosity average molecular weight range is uniformly mixed and dispersed with 30% by weight of HA having an average particle size of 5 μm, billet is used and the degree of deformation R = So / S is 1.5. A pressure-oriented molded product obtained by pressure-oriented molding in the cold so as to achieve the above can be obtained with a bending strength of 250 MPa or more, sufficiently exceeding the bending strength of cortical bone.
Increasing the degree of deformation R that changes the degree of orientation increases the mechanical strength of the composite material in the machine direction. At the same time, if the filling amount of the bioabsorbable bioceramic powder is large, a high elastic modulus can be obtained.
Then, a bending strength exceeding 300 MPa and a modulus of elasticity close to 15 GPa of cortical bone are obtained.
The range of this elastic modulus of 6 to 15 GPa does not seem to be much different on the numerical value, but it is less likely to bend and bend at the time of insertion in practical use than it is below about 10 GPa or more. Since there is a large difference in the difficulty of deformation or rigidity, a difference of more than a numerical value is recognized in physical usefulness when used as an osteosynthesis material.
(iii) The pressure-oriented high-strength composite rod-shaped molded product of the present invention can be further cut into a final molded product by a method such as cutting to obtain a medical implant.
(iv)インプラント材料の特徴
本発明のインプラント材料は:
(1) 大きさが0.2〜10μmの一次粒子または一次粒子の集合塊(クラスター)を10〜60重量%の多量且つ緻密に含んでいるので、その表面を切削加工などで削ったものは、生体内吸収性のバイオセラミックスである未焼成ハイドロキシアパタイト粒子が表面に多数顕在しており、埋入後の初期時点で、生体適合性が良く、バイオセラミックスが直接生体骨と結合するので初期固定性を増す。
(2) 適当な分子量とその分子量分布をもつポリマーの分子鎖あるいは結晶が結晶化度10〜70%に配向しているポリマーマトリックスが、配向により強化された新規複合強化方法によって作られているので、初期高強度が付与され、かつ、それに近い強度が骨癒合に必要な少なくとも2〜4ケ月間は維持され、その後は組織反応を起こさない速さで徐々に分解されるように設計できる。
(3) 生体内吸収性のバイオセラミックスである未焼成ハイドロキシアパタイト粉体は複合材料の内部まで連続して存在しているので、徐々に分解して表面に露呈することにより生体骨と結合することに寄与する。また、生体内吸収性のバイオセラミックスである未焼成ハイドロキシアパタイト粉体は骨誘導、骨伝導を促進して、最終的にポリマーの消滅した空洞を速やかに充填するので、生体骨の置換が効率良く行われる。
(4) 複合材料中には、生体内吸収性のバイオセラミックスである未焼成ハイドロキシアパタイト微粒子が多量に含まれているので、単純X線写真に程良く写し出すことができ、ポリマーのみの場合不可能であった治療の具合、治療の過程のレントゲン観察が効果的にできる。さらに、マトリックスポリマーと生体内吸収性のバイオセラミックスである未焼成ハイドロキシアパタイトは過去に臨床に実用された実績があり、しかも生体に安全であり、生体適合性にも優れている。従って、このインプラント用の複合材料は理想的な生体材料の一つといえる。
(iv) Features of the implant material The implant material of the present invention is:
(1) Since the primary particles or the aggregates (clusters) of primary particles having a size of 0.2 to 10 μm are included in a large amount and in a large amount of 10 to 60% by weight, Many unburned hydroxyapatite particles, which are bioabsorbable bioceramics, are evident on the surface, and at the initial stage after implantation, biocompatibility is good, and bioceramics directly bind to living bones, so that they are fixed in the initial stage. Increases nature.
(2) Since a polymer matrix in which molecular chains or crystals of a polymer having an appropriate molecular weight and its molecular weight distribution are oriented at a crystallinity of 10 to 70% is made by a new composite strengthening method strengthened by orientation. It can be designed such that initial high strength is imparted, and strength close to that is maintained for at least 2 to 4 months necessary for bone fusion, and then gradually decomposed at a rate that does not cause tissue reaction.
(3) Unburned hydroxyapatite powder, which is a bioabsorbable bioceramic, exists continuously up to the inside of the composite material, so it must be gradually decomposed and exposed to the surface to bond with living bone. Contribute to. In addition, the non-fired hydroxyapatite powder, which is a bioresorbable bioceramic, promotes bone induction and conduction, and quickly fills the void where the polymer has finally disappeared. Done.
(4) Since the composite material contains a large amount of unburned hydroxyapatite fine particles, which are bio-absorbable bioceramics, it can be copied well on simple X-ray photographs, which is impossible only with polymers. It is possible to effectively observe X-rays during the treatment process. Furthermore, unsintered hydroxyapatite, which is a matrix polymer and bioabsorbable bioceramics, has been used in clinical practice in the past, and is safe for the living body and excellent in biocompatibility. Therefore, this composite material for implants can be said to be one of ideal biomaterials.
以上の説明から明らかなように、本発明の複合化された高強度インプラント材料は、皮質骨と同等以上の機械的強度を有し、剛性と靱性があって初期に破壊が起き難く、生体内吸収性のバイオセラミックスによる生体骨との結合、骨伝導、骨誘導および生体内での分解・吸収の性質が生かされて、生体骨による置換が効率良く行われ、硬組織が治癒するまでの期間は強度を維持するが、その後は周囲骨に為害性を発現しない程度の速さで徐々に分解して吸収され、その消失した跡がすみやかに生体によって再建されると共に、手術後に単純X線写真によって写し出すこともできる、理想的な生体材料である。
また、本発明の方法は、特別な装置や過酷な条件を採用することなく簡単に上記のインプラント材料を製造することができるものである。
As is clear from the above description, the composite high-strength implant material of the present invention has mechanical strength equal to or higher than that of cortical bone, has rigidity and toughness, and does not easily break in the initial stage. The period from the time when hard bone is healed by taking advantage of the properties of bone binding, bone conduction, bone induction and in vivo degradation / resorption by resorbable bioceramics, and efficient replacement with living bone Maintains strength, but then gradually decomposes and absorbs at a rate that does not cause harm to the surrounding bones, and the disappeared trace is immediately reconstructed by the living body, and a simple radiograph after surgery It is an ideal biomaterial that can be projected by
In addition, the method of the present invention can easily produce the above-described implant material without employing a special apparatus or harsh conditions.
以下、本発明を実施例により具体的に説明するが、これらは本発明の範囲を制限しない。
種々の物性値についての測定法を以下に説明する。
(1) 圧縮曲げ強度、圧縮曲げ弾性率:JIS−K−7203(1982)に準じて測定した。
(2)引張強度:JIS−K−7113(1981)に準じて測定した。
(3) 剪断強度:R.SUURONENらの方法〔R.SUURONEN ,T.POHJONEN et al
,J.Mater.Med, (1992)426〕により測定した。
(4) 密度:JIS−K−7112(1980)に準じて測定した。
(5) 結晶化度:示差走査型熱量計(DSC)測定による融解ピークのエンタルピーより算出した。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, these do not restrict | limit the scope of the present invention.
Measurement methods for various physical property values will be described below.
(1) Compressive bending strength, compressive bending elastic modulus: measured according to JIS-K-7203 (1982).
(2) Tensile strength: Measured according to JIS-K-7113 (1981).
(3) Shear strength: R.SUURONEN et al. [R.SUURONEN, T.POHJONEN et al
, J. Mater. Med, (1992) 426].
(4) Density: Measured according to JIS-K-7112 (1980).
(5) Crystallinity: Calculated from the enthalpy of melting peak by differential scanning calorimeter (DSC) measurement.
(参考実施例1)<圧縮成形;その例1>
粘度平均分子量40万のポリL−乳酸(PLLA)をジクロロメタンに4重量%溶かした溶液中に、最大粒径31.0μm、最小粒径0.2μm、平均粒径1.84μmのハイドロキシアパタイト(HA)(900℃焼成)のエチルアルコ−ル懸濁液を加えて撹拌し、HAを二次凝集させることなく均一に分散させた。更に、撹拌しながらエチルアルコ−ルを加えてPLLAとHAを共沈させた。次いで、これを濾過し、完全に乾燥して、その内部に上記の粒径をもつHAがそれぞれ20、30、40、50、60重量%の割合で均一に分散しているPLLAの顆粒を得た。
これを押出機で185℃で溶融押出して、直径13.0mm、長さ40mm、粘度平均分子量が25万の円柱状のビレットを得た。
(Reference Example 1) <Compression molding; Example 1>
Hydroxyapatite (HA) having a maximum particle size of 31.0 μm, a minimum particle size of 0.2 μm, and an average particle size of 1.84 μm in a solution of 4% by weight of poly L-lactic acid (PLLA) having a viscosity average molecular weight of 400,000 in dichloromethane. ) (Fired at 900 ° C.) was added and stirred to uniformly disperse HA without causing secondary aggregation. Further, ethyl alcohol was added with stirring to coprecipitate PLLA and HA. Next, this is filtered and completely dried to obtain PLLA granules in which HA having the above particle diameter is uniformly dispersed at a ratio of 20, 30, 40, 50, and 60% by weight, respectively. It was.
This was melt extruded at 185 ° C. with an extruder to obtain a cylindrical billet having a diameter of 13.0 mm, a length of 40 mm, and a viscosity average molecular weight of 250,000.
次いで、図3、図4に示されるように、このビレットを直径13.0mmの孔の収容筒部中にて110℃に加熱し、この収容筒部と縮径部を介して連結した直径7.8mm、長さ90mmの孔を有するキャビティに圧入して成形することにより、このキャビティの孔と同形状で、HAが均一に分散しているPLLAとHAが複合化された圧縮配向成形体を得た。但し、θ=15°である。
ここで得られた成形体の断面積をS、塑性変形以前のビレットの断面積をSoとすると、変形度R=So/S=2.8である。
表1に、得られた複合化HA/PLLAの圧縮配向成形体(試料No.2,3,4,5,6;参考実施例)と、PLLAのみから成る変形度2.8のPLLA圧縮配向成形体(試料No.1:対照例1)、およびHA粒子を30重量%含むが圧縮配向成形していない無配向の成形体(試料No.3′;比較実施例)の物性を比較した。
Next, as shown in FIGS. 3 and 4, the billet is heated to 110 ° C. in a housing cylinder portion having a hole with a diameter of 13.0 mm, and the diameter 7 is connected to the housing cylinder portion through a reduced diameter portion. By compressing and molding into a cavity having a hole having a length of .8 mm and a length of 90 mm, a compression oriented molded body in which the same shape as that of the cavity and PLLA and HA in which HA is uniformly dispersed is combined is formed. Obtained. However, θ = 15 °.
When the cross-sectional area of the molded body obtained here is S and the cross-sectional area of the billet before plastic deformation is So, the degree of deformation is R = So / S = 2.8.
Table 1 shows the obtained composite HA / PLLA compression-oriented molding (sample Nos. 2, 3, 4, 5, 6; reference examples) and PLLA compression-oriented with a deformation degree of 2.8 consisting only of PLLA. The physical properties of the molded body (Sample No. 1: Control Example 1) and the non-oriented molded body containing 30% by weight of HA particles but not subjected to compression orientation molding (Sample No. 3 ′; Comparative Example) were compared.
表1に示すように、表面生体活性なバイオセラミックスであるHAを含有して複合化したPLLAの圧縮配向成形体の機械的物性は著しく向上している。また、もう一つの対照例として、本発明の圧縮配向とは逆向きの材料から離れる方向に配向のための力が加わり、また配向の形態も異なる従来の一般的な一軸延伸方法により延伸配向された成形物(試料No.7;対照例2)の物性を表1に示した。延伸は110℃の流動パラフィン中で加熱後延伸するようにした。
上記HAを含有して複合化したPLLAの無配向の成形体(試料No.3′)の機械的物性は、上記HAを含有又は不含の圧縮配向成形体(試料No.1〜6)に比較すると劣るものの、上記延伸配向成形体(試料No.7)のそれよりも優れていることが分かった。
なお、上記HAに変えて未焼成のHAを配向して複合化したPLLAの無配向の成形体は、上記の場合と同等以上の機械的物性を有することを確認した。
As shown in Table 1, the mechanical properties of the compression-oriented molded article of PLLA combined with HA, which is a surface bioactive bioceramic, are remarkably improved. Further, as another control example, a stretching force is applied by a conventional general uniaxial stretching method in which a force for orientation is applied in a direction away from the material opposite to the compression orientation of the present invention, and the orientation form is different. The physical properties of the molded product (Sample No. 7; Control Example 2) are shown in Table 1. Stretching was performed after heating in 110 ° C. liquid paraffin.
The mechanical properties of the non-oriented molded article (sample No. 3 ′) of PLLA combined with the above HA are the same as those of the compression oriented molded article (sample No. 1 to 6) containing or not containing the HA. Although it was inferior when compared, it was found to be superior to that of the stretch-oriented molded article (Sample No. 7).
In addition, it was confirmed that the non-oriented molded article of PLLA in which unfired HA was oriented and combined instead of the above HA had mechanical properties equal to or higher than those in the above case.
この試料No.7の成形物は延伸による変形時にフィラ−とポリマーの界面を契機として材料が互いに移動のずれを生ずるので、材料の表面は繊維状となってちぎれ、内部は両者の界面を契機として無数の大小のボイドを形成している劣悪な物質であった。そのため、再現性のある物性値は得られず、その値は低かった。表1のNo.7は、その中で最も良い値を示した。
また、無数のボイドを形成しているために、密度は0.924と低い希薄な物質であり、外部からの生体液の浸入が容易であり、加水分解速度も速いものと思われる。
このことから、一軸延伸では、本発明の目的とする物性を有する骨接合材を得ることは不可能であることが実証された。また、骨接合材として使用できない強度であった。
This sample No. In the molded product of No. 7, since the materials are shifted from each other at the interface between the filler and the polymer when deformed by stretching, the surface of the material is torn like a fiber, and the inside is infinitely large and small at the interface between the two It was an inferior substance forming a void. Therefore, reproducible physical property values could not be obtained and the values were low. No. in Table 1 7 showed the best value among them.
In addition, since innumerable voids are formed, it is a dilute substance with a low density of 0.924, it is easy for biological fluids to enter from the outside, and the hydrolysis rate seems to be high.
From this, it was proved that it is impossible to obtain an osteosynthesis having physical properties intended by the present invention by uniaxial stretching. Moreover, it was the intensity | strength which cannot be used as an osteosynthesis.
(参考比較例1)<圧縮成形>
粘度平均分子量40万のPLLAと、最大粒径100μm,平均粒径60μmのHA(900℃焼成)を用いて、参考実施例1と同様の方法と条件で30重量%のHAが均一に分散しているPLLA顆粒を得た。
そして、これを参考実施例1と同様に押出機にて溶融押出しして、直径13.0mm、長さ40mm、粘度平均分子量が25万の円柱状のビレットを得た。
次いで、このビレットを参考実施例1と同様の方法と条件で成形型の孔に圧入することにより、HAが均一に分散しているR=2.8の複合化されたHA/PLLAの圧縮配向成形体を得た。
表2に、得られた成形体と参考実施例1のHA30重量%含有した成形体(試料No.3)の物性を比較した。
(Reference Comparative Example 1) <Compression molding>
Using PLLA having a viscosity average molecular weight of 400,000 and HA (calcined at 900 ° C.) having a maximum particle size of 100 μm and an average particle size of 60 μm, 30% by weight of HA is uniformly dispersed under the same method and conditions as in Reference Example 1. PLLA granules were obtained.
This was melt-extruded with an extruder in the same manner as in Reference Example 1 to obtain a cylindrical billet having a diameter of 13.0 mm, a length of 40 mm, and a viscosity average molecular weight of 250,000.
Next, this billet is press-fitted into the mold hole by the same method and conditions as in Reference Example 1, so that HA is uniformly dispersed and R = 2.8 combined HA / PLLA compression orientation. A molded body was obtained.
In Table 2, the physical properties of the obtained molded body and the molded body (sample No. 3) containing 30% by weight of HA of Reference Example 1 were compared.
HAの平均粒径が60μmである参考比較例1は、平均粒径が1.84μmである参考実施例1(試料No.3)と比較して強度が低かった。さらに曲げ強度試験では、参考比較例1は降伏点に到達して、最大荷重を示した時点で折損したが、参考実施例1(試料No.3)は折損しなかった。
これは、PLLAは高度に配向しているにもかかわらず、大きなHAの粒子あるいは脆いHAの大きな集合塊が多数分布するために、PLLAの配向のマトリックスがHAによって途切れ、その強度が生かされなくなったためと考えられる。
これに対して、最大粒径でさえも31.0μmの集合塊であるHAを含む参考実施例1(試料No.3)の場合は、最大荷重を示した時点でも折損することはなかった。
同様に、後記する実施例2の最大粒径45μmの粒子あるいは、その集合塊を含む未焼成ハイドロキシアパタイトとの複合材料である圧縮配向成形体の場合も折損することがなかった。
Reference Comparative Example 1 in which the average particle size of HA was 60 μm was lower in strength than Reference Example 1 (Sample No. 3) in which the average particle size was 1.84 μm. Further, in the bending strength test, Reference Comparative Example 1 reached the yield point and broke when it showed the maximum load, but Reference Example 1 (Sample No. 3) did not break.
This is because even though PLLA is highly oriented, a large number of large HA particles or brittle HA aggregates are distributed, so that the matrix of PLLA orientation is interrupted by HA, and its strength is not utilized. It is thought that it was because of.
On the other hand, even in the case of Reference Example 1 (sample No. 3) containing HA which is an aggregate of 31.0 μm even with the maximum particle size, it was not broken even when the maximum load was shown.
Similarly, there was no breakage in the case of a compression-oriented molded body which is a composite material of particles having a maximum particle size of 45 μm in Example 2 described later or unfired hydroxyapatite containing aggregates thereof.
(参考実施例2)<圧縮成形;その例2>
粘度平均分子量が22万および18万のPLLAと、参考実施例1と同じHAを用いて、参考実施例1と同様の方法と条件で30重量%のHAが均一に分散しているPLLA顆粒を得て、押出機にて押出して、直径13.0mm、長さ40mm、粘度平均分子量がそれぞれ15万と10万の円柱状のビレットを得た。
次いで、このビレットを参考実施例1と同じ成形型中に同様の方法で圧入することにより、HAが均一に分散しているR=2.8のHA/PLLAの複合化された圧縮配向成形体を得た。
表3に、得られた圧縮配向成形体と、対照例としてPLLAのみから成る各々と同じ分子量の圧縮配向成形体の物性を比較した。
(Reference Example 2) <Compression molding; Example 2>
Using PLLA having a viscosity average molecular weight of 220,000 and 180,000 and the same HA as in Reference Example 1, a PLLA granule in which 30% by weight of HA is uniformly dispersed under the same method and conditions as in Reference Example 1 Obtained and extruded with an extruder, cylindrical billets having a diameter of 13.0 mm, a length of 40 mm, and viscosity average molecular weights of 150,000 and 100,000, respectively, were obtained.
Next, this billet is press-fitted in the same mold as in Reference Example 1 by the same method, so that HA / PLLA composite compression-oriented molded body of R = 2.8 in which HA is uniformly dispersed. Got.
Table 3 compares the physical properties of the obtained compression-oriented molded article and a compression-oriented molded article having the same molecular weight as each of the PLLA-only molded article as a control example.
粘度平均分子量が15万のビレットからの成形体は参考実施例1と比較すると、強度はやや低いが、曲げ強度は骨接合材としての使用に十分耐えられるものである。また、PLLAのみの比較配向成形体よりも強度と弾性率が増大した。
これに対して、粘度平均分子量が10万のビレットからの成形体は、PLLAのみのものよりも曲げ強度は増大したが、降伏点において折損した。
但し、バイオセラミックス粒子の充填量が10重量%のときには、条件によって降状時に折損しないものが得られる。ポリマ−は一般に分子量が低下すると、それ特有の強度も低下する。粘度平均分子量が10万の成形体は、多量のHAの混入によって複合材料としての靱性が低下したので破断したと考えられる。
従って、HAを混入しても、なお十分な強度(剛性)と靱性を合わせ持つために必要なビレットの粘度平均分子量の下限は10万であると判断される。
The molded body from the billet having a viscosity average molecular weight of 150,000 is slightly lower in strength than the reference example 1, but the bending strength is sufficiently resistant to use as an osteosynthesis material. In addition, the strength and elastic modulus increased as compared with the comparatively oriented molded body containing only PLLA.
In contrast, a molded body from a billet having a viscosity average molecular weight of 100,000 had a bending strength increased more than that of PLLA alone, but broke at the yield point.
However, when the filling amount of the bioceramic particles is 10% by weight, a material that does not break during the falling is obtained depending on conditions. Polymers generally have a lower strength as their molecular weight decreases. The molded article having a viscosity average molecular weight of 100,000 is considered to have broken because the toughness as a composite material was lowered by the mixing of a large amount of HA.
Therefore, even if HA is mixed, it is determined that the lower limit of the viscosity average molecular weight of the billet necessary to have both sufficient strength (rigidity) and toughness is 100,000.
(参考実施例3)<圧縮成形;その例3>
粘度平均分子量40万のPLLAと、参考実施例1と同じHAを用いて、参考実施例1と同様の方法と条件で15重量%のHAが均一に分散しているPLLA顆粒を得て、押出機にて押出しして、直径13.0mm、長さ40mm、粘度平均分子量が25万の円柱状のビレットを得た。
次いで、図3に示されるように、このビレットを直径13.0mmの収容筒部と直径7.0mm、長さ113mmのキャビティを連結した成形型、または、直径14.5mmの収容筒部と直径11.8mm、長さ57mmのキャビティを連結した成形型で、参考実施例1と同様の方法と条件で、HAが均一に分散している各々、R=3.5およびR=1.5のHA/PLLAの複合化された圧縮配向成形体を得た。但し、θ=15°である。
表4に、得られた成形体と、対照例としてPLLAのみから成るR=3.5およびR=1.5のPLLAのみの圧縮配向成形体の物性を比較した。
(Reference Example 3) <Compression molding; Example 3>
Using PLLA having a viscosity average molecular weight of 400,000 and the same HA as in Reference Example 1, a PLLA granule in which 15% by weight of HA is uniformly dispersed by the same method and conditions as in Reference Example 1 is obtained. Extrusion was performed using a machine to obtain a cylindrical billet having a diameter of 13.0 mm, a length of 40 mm, and a viscosity average molecular weight of 250,000.
Next, as shown in FIG. 3, the billet is formed by connecting a housing cylinder portion having a diameter of 13.0 mm and a cavity having a diameter of 7.0 mm and a length of 113 mm, or a housing cylinder portion having a diameter of 14.5 mm and a diameter. In a mold in which cavities having a length of 11.8 mm and a length of 57 mm are connected, HA is uniformly dispersed by the same method and conditions as in Reference Example 1, R = 3.5 and R = 1.5, respectively. A HA / PLLA composite compression-oriented molded body was obtained. However, θ = 15 °.
Table 4 compares the physical properties of the obtained molded body and the compression-oriented molded body of R = 3.5 and R = 1.5 only composed of PLLA as a control example.
この結果から、R=3.5の成形体は、同じ程度に高度に配向したPLLAのみから成る圧縮配向成形体の曲げ強度をさらに上回る、高い強度(剛性)と高い靱性を有するものであった。結晶化度はPLLAのみの成形体のそれよりも低いので、生体内での周囲の組織に対する刺激、炎症性の低い材料である。これは、HA粒子がPLLAの結晶の成長を阻害し、微結晶化に作用したためと考えられる。
R=1.5の成形体は、曲げ強度はPLLAのみの成形体よりもわずかに大きい程度であったが、用途によっては充分使用可能なインプラント材料である。
From this result, the molded product of R = 3.5 had high strength (rigidity) and high toughness, which exceeded the bending strength of the compression-oriented molded product composed only of PLLA highly oriented to the same extent. . Since the degree of crystallinity is lower than that of a molded article made only of PLLA, it is a material that is less irritating and less irritating to surrounding tissues in vivo. This is presumably because the HA particles inhibited the crystal growth of PLLA and acted on microcrystallization.
The molded product of R = 1.5 has a slightly higher bending strength than the molded product of PLLA alone, but is an implant material that can be used sufficiently depending on the application.
(参考実施例4)<圧縮成形;その例4>
粘度平均分子量40万のPLLAと、平均粒径2.7μmのアパタイトウォラストナイトガラスセラミックス(AW−GC)を用いて、参考実施例1と同様の方法と条件で35重量%のAW−GCが均一に分散しているPLLA顆粒を得て、押出機にて溶融押出して、直径14.5mm、長さ45mm、粘度平均分子量が22万の円柱状のビレットを得た。
次いで、図3に示されるように、このビレットを直径14.5mmの収容筒部と直径9.6mm、長さ83mmのキャビティを連結した成形型中に、参考実施例1と同様の方法と条件で圧入充填し、AW−GCが均一に分散しているR=2.3のAW−GC/PLLAの複合化された圧縮配向成形体を得た。但し、θ=20°である。
表5に、得られた圧縮配向成形体、および対照例としてPLLAのみから成るR=2.3のPLLA圧縮配向成形体の物性を比較した。
(Reference Example 4) <Compression molding; Example 4>
Using PLLA having a viscosity average molecular weight of 400,000 and apatite wollastonite glass ceramics (AW-GC) having an average particle size of 2.7 μm, 35% by weight of AW-GC was obtained under the same method and conditions as in Reference Example 1. Uniformly dispersed PLLA granules were obtained and melt-extruded by an extruder to obtain a cylindrical billet having a diameter of 14.5 mm, a length of 45 mm, and a viscosity average molecular weight of 220,000.
Next, as shown in FIG. 3, the same method and conditions as in Reference Example 1 were placed in a molding die in which the billet was connected to a housing cylinder having a diameter of 14.5 mm and a cavity having a diameter of 9.6 mm and a length of 83 mm. Then, a compression-oriented molded body in which AW-GC / PLLA was composited with R = 2.3 in which AW-GC was uniformly dispersed was obtained. However, θ = 20 °.
Table 5 compares the physical properties of the obtained compression-oriented molded article and a PLLA compression-oriented molded article of R = 2.3 consisting only of PLLA as a control example.
得られた成形体は、PLLAのみの成形体と比較して曲げ強度が向上している。本材料を切削して表面にAW−GCを露呈すると、AW−GCは骨誘導して数週後にHA層を表面に旺盛に形成するので、骨結合、骨癒合及び骨置換に極めて有効なインプラントとなり得るものである。
The obtained molded body has improved bending strength as compared with a molded body only of PLLA. When this material is cut and AW-GC is exposed on the surface, AW-GC vigorously forms an HA layer on the surface several weeks after bone induction. It can be.
(実施例1)<圧縮成形;その例5>
粘度平均分子量40万のPLLAと、最大粒径22.0μm、平均粒径7.7μmのアルファ−型トリカルシウムホスフェ−ト(α−TCP)を用いて、参考実施例1と同様の方法と条件で25重量%のα−TCPが均一に分散しているPLLA顆粒を得て、押出機にて溶融押出しして、直径13.0mm、長さ40mm、粘度平均分子量が25万の円柱状のビレットを得た。
次いで、図3に示されるように、このビレットを直径13.0mmの収容筒部と、直径7.5mm、長さ96mmのキャビティを連結した成形型中に、参考実施例1と同様の方法と条件で圧入充填し、α−TCPが均一に分散しているR=3.0のα−TCP/PLLAの複合化された圧縮配向成形体を得た。但し、θ=15℃である。
表6に、得られた圧縮配向成形体と、対照例としてPLLAのみから成るR=3.0の成形体の物性を比較した。
Example 1 <Compression Molding; Example 5>
Using PLLA having a viscosity average molecular weight of 400,000 and alpha-type tricalcium phosphate (α-TCP) having a maximum particle size of 22.0 μm and an average particle size of 7.7 μm, PLLA granules in which 25% by weight of α-TCP is uniformly dispersed are obtained under the conditions, and are melt-extruded by an extruder to form a cylindrical shape having a diameter of 13.0 mm, a length of 40 mm, and a viscosity average molecular weight of 250,000. I got a billet.
Next, as shown in FIG. 3, the billet is placed in a molding die in which a housing cylinder having a diameter of 13.0 mm and a cavity having a diameter of 7.5 mm and a length of 96 mm are connected. Press-filling was carried out under the conditions, and an R-3.0 α-TCP / PLLA composite compression-oriented molded body in which α-TCP was uniformly dispersed was obtained. However, θ = 15 ° C.
Table 6 compares the physical properties of the obtained compression-oriented molded product and a molded product of R = 3.0 consisting only of PLLA as a control example.
得られた成形体は、HA複合の成形体などと同様、高強度を有するものであり、その曲げ強度、弾性率はPLLAのみの成形体を上回っている。α−TCPは生体内吸収性で且つ焼結HAよりも生体活性度が高いので、骨置換に有効な高強度インプラントとなり得るものである。
The obtained molded body has high strength like the HA composite molded body, and its bending strength and elastic modulus are higher than those of the PLLA-only molded body. Since α-TCP is bioabsorbable and has higher bioactivity than sintered HA, it can be a high-strength implant effective for bone replacement.
(実施例2)<圧縮成形;その例6>
粘度平均分子量36万のPLLAと、最大粒径45μm、平均粒径3.39μmの未焼成ハイドロキシアパタイト(wet −HA)を用いて、参考実施例1と同様の方法と条件で40重量%のHAが均一に分散しているPLLA顆粒を得て、押出機にて溶融押出しして、直径10.0mm、長さ40mm、粘度平均分子量が20万の円柱状のビレットを得た。
(Example 2) <Compression molding; Example 6>
Using a PLLA having a viscosity average molecular weight of 360,000 and uncalcined hydroxyapatite (wet-HA) having a maximum particle size of 45 μm and an average particle size of 3.39 μm, 40 wt% HA in the same manner and under the same conditions as in Reference Example 1. Were uniformly dispersed and melt-extruded by an extruder to obtain a cylindrical billet having a diameter of 10.0 mm, a length of 40 mm, and a viscosity average molecular weight of 200,000.
<活性度の測定>
より活性度が高いか否かを調べるために、上記実施例2で用いたPLLAにそれぞれ焼成HAと未焼成HAを40重量%含むビレット2個を作成し、各ビレットから小片(10×10×2mm)を作成し、この両者を凝似体液に浸漬して、その表面に沈積するリン酸カルシウム成分の多少を観察した。その結果、未焼成HA/PLLAは3日後から多量の結晶が沈積しはじめ6日後に結晶の層が全面を覆ったのに対して、焼成HA/PLLAのそれは6日後でも結晶は全面を覆わなかった。
焼成HA粉体は骨細胞により吸収されて消失せず、場合によっては細胞が貧食後、再び吐き出すことも確認されており、また粉体が組織反応を惹起する危険性も指摘されている。
しかし、未焼成のHAは、生体に吸収され消失するという完全吸収性をもち、生体のHAと化学的に同物質であるので、かかる問題はない。現在までに未焼成HA/PLLAの高強度インプラントは全く開発されておらず、本実施例は本発明の新規性、有意義性、発明性の根幹をなす。
次いで、図3に示されるように、このビレットを直径10.0mmの収容筒部と直径7.0mm、長さ76mmのキャビティを連結した成形型中に、参考実施例1と同様の方法と条件で圧入充填し、未焼成HAが均一に分散しているR=2.0の圧縮配向成形体を得た。但し、θ=30°である。
表7に、得られた圧縮配向成形体と、対照例としてPLLAのみから成るR=2.0の成形体の物性を比較した。
<Measurement of activity>
In order to check whether the activity is higher, two billets each containing 40% by weight of fired HA and unfired HA were prepared in the PLLA used in Example 2 above, and small pieces (10 × 10 × 2 mm), and both were immersed in the coagulant fluid, and the amount of calcium phosphate component deposited on the surface was observed. As a result, unsintered HA / PLLA began to deposit a large amount of crystals after 3 days, and the crystal layer covered the entire surface after 6 days, whereas that of sintered HA / PLLA did not cover the entire surface even after 6 days. It was.
The calcined HA powder is absorbed by bone cells and does not disappear. In some cases, it has been confirmed that the cells exhale again after eating poorly, and the risk of the powder causing a tissue reaction has been pointed out.
However, unsintered HA has a complete absorbability that it is absorbed and disappears by the living body, and is not the same problem because it is chemically the same substance as HA in the living body. To date no unfired HA / PLLA high-strength implants have been developed and this example forms the basis of the novelty, significance and inventiveness of the present invention.
Next, as shown in FIG. 3, the same method and conditions as in Reference Example 1 were placed in a molding die in which this billet was connected to a housing cylinder having a diameter of 10.0 mm and a cavity having a diameter of 7.0 mm and a length of 76 mm. Then, an R = 2.0 compression-oriented molded body in which the unfired HA was uniformly dispersed was obtained. However, θ = 30 °.
Table 7 compares the physical properties of the obtained compression-oriented molded body and an R = 2.0 molded body composed only of PLLA as a control example.
未焼成HA/PLLAの複合化された圧縮配向成形体の曲げ強度は、参考実施例1の焼成したHA複合の圧縮配向成形体の場合と同様に、PLLAのみからなる成形体の強度よりも高い値を示した。未焼成HAは生体活性度が焼成HAよりもかなり高いので、高い生体活性な複合化された高強度インプラント材料が得られた。
未焼成HAは焼結されていないので、それ自体は無機化学物質であり、セラミックスのように強度の高い粉体ではないが、焼結による化学的変性はないので、より生体のハイドロキシアパタイトに近い物質である。本発明においては、マトリックスポリマーが強化されたので、未焼成HAもまた焼成HAの場合と同様の強度をもつ複合材料にすることができた。
The bending strength of the uncompressed HA / PLLA composite compression-oriented molded body is higher than the strength of the molded body composed only of PLLA, as in the case of the fired HA-composite compressed alignment molded body of Reference Example 1. The value is shown. Since the unfired HA has a much higher bioactivity than the fired HA, a highly bioactive composite high strength implant material was obtained.
Since unsintered HA is not sintered, it is itself an inorganic chemical substance, and it is not a high-strength powder like ceramics. However, since it is not chemically modified by sintering, it is closer to living body hydroxyapatite. It is a substance. In the present invention, since the matrix polymer was reinforced, the unfired HA could also be made into a composite material having the same strength as that of the fired HA.
(実施例3)<圧縮成形;その例7>
粘度平均分子量40万のPLLAと、最大粒径45μm、平均粒径2.91μmのベ−タ型トリカルシウムホスフェ−ト(β−TCP)を用いて、参考実施例1と同様の方法と条件で30重量%のβ−TCPが均一に分散しているPLLA顆粒を得て、押出機にて溶融押出しして、直径13.0mm、長さ40mm、粘度平均分子量が25万の円柱状のビレットを得た。
次いで、図3に示されるように、このビレットを、直径13.0mmの収容筒部と直径8.6mm、長さ74mm、または、直径7.8mm、長さ90mmのキャビティを連結した成形型中に、参考実施例1と同様の方法と条件で圧入充填し、β−TCPが均一に分散しているRがそれぞれ2.3と2.8のβ−TCP/PLLAの複合化された圧縮配向成形体を得た。但し、θ=15°である。
表8に、得られた圧縮配向成形体と、参考実施例1のHA(900℃焼成)が30重量%分散しているR=2.8の複合化されたHA/PLLAの圧縮配向成形体の物性を比較した。
(Example 3) <Compression molding; Example 7>
The same method and conditions as in Reference Example 1 using PLLA having a viscosity average molecular weight of 400,000 and a solid type tricalcium phosphate (β-TCP) having a maximum particle diameter of 45 μm and an average particle diameter of 2.91 μm To obtain a PLLA granule in which 30% by weight of β-TCP is uniformly dispersed, melt-extruded by an extruder, and a cylindrical billet having a diameter of 13.0 mm, a length of 40 mm, and a viscosity average molecular weight of 250,000 Got.
Next, as shown in FIG. 3, the billet is placed in a molding die in which a housing cylinder portion having a diameter of 13.0 mm and a cavity having a diameter of 8.6 mm and a length of 74 mm, or a diameter of 7.8 mm and a length of 90 mm are connected. In addition, press-filling was performed under the same method and conditions as in Reference Example 1, and β-TCP / PLLA in which β-TCP was uniformly dispersed and R was 2.3 and 2.8 were combined in a compressed orientation. A molded body was obtained. However, θ = 15 °.
Table 8 shows the compression oriented molded product obtained and the composite HA / PLLA compressed oriented product of R = 2.8 in which HA of Reference Example 1 (fired at 900 ° C.) is dispersed by 30% by weight. The physical properties of were compared.
得られた成形体は、表5および表1に示したRがそれぞれ2.3と2.8のPLLAのみの成形体の曲げ強度よりも大きい。また、R=2.8のものは、同じRの圧縮配向成形体と同程度の曲げ強度を有していることから、β−TCPを複合させることによっても高強度の圧縮配向成形体が得られることが明らかとなった。
The obtained molded body has a R shown in Table 5 and Table 1 larger than the bending strength of the molded body of only PLLA having 2.3 and 2.8, respectively. Moreover, since the thing of R = 2.8 has a bending strength comparable as the compression orientation molded object of the same R, a high intensity | strength compression orientation molded object is obtained also by combining (beta) -TCP. It became clear that
(実施例4)<圧縮成形;その例8>
粘度平均分子量40万のPLLAと、最大粒径30.0μm、平均粒径10.0μmのテトラカルシウムホスフェ−ト(TeCP)を用いて、参考実施例1と同様の方法と条件で15重量%と25重量%のTeCPが均一に分散しているPLLA顆粒を得て、圧縮成形機にて溶融させて、直径13.0mm、長さ40mm、粘度平均分子量が25万の円柱状のビレットを得た。
次いで、図3に示されるように、このビレットをTeCPが15重量%含有のものは参考実施例3と同じ成形型中に、またTeCPが25重量%含有のものは実施例5と同じ成形型中に、参考実施例1と同様の方法と条件で圧入することにより、TeCPが均一に分散しているRがそれぞれ3.5と3.0のTeCP/PLLAの圧縮配向成形体を得た。但し、θ=15°である。
表9には、得られたTeCP/PLLAの複合化された圧縮配向成形体と、参考実施例3のHA(900℃焼成)が15重量%分散しているR=3.5のHA/PLLAの複合化された圧縮配向成形体、および実施例5のα−TCPが25重量%分散しているR=3.0の圧縮配向成形体の物性を比較した。
(Example 4) <Compression molding; Example 8>
Using PLLA having a viscosity average molecular weight of 400,000 and tetracalcium phosphate (TeCP) having a maximum particle size of 30.0 μm and an average particle size of 10.0 μm, the same method and conditions as in Reference Example 15 were used, and the weight was 15% by weight. And 25% by weight of TeCP are uniformly dispersed and melted in a compression molding machine to obtain a cylindrical billet having a diameter of 13.0 mm, a length of 40 mm, and a viscosity average molecular weight of 250,000. It was.
Next, as shown in FIG. 3, the billet containing TeCP at 15% by weight is in the same mold as in Reference Example 3, and the one containing 25% by weight of TeCP is the same as in Example 5. Inside, press-fitting was performed under the same method and conditions as in Reference Example 1 to obtain TeCP / PLLA compression-oriented molded bodies in which Te is uniformly dispersed and R is 3.5 and 3.0, respectively. However, θ = 15 °.
Table 9 shows the obtained TeCP / PLLA composite compression-oriented molded body and HA / PLLA of R = 3.5 in which HA of Reference Example 3 (fired at 900 ° C.) is dispersed by 15% by weight. The physical properties of the composite compression-oriented molded product of No. 5 and the compression-oriented molded product of R = 3.0 in which α-TCP of Example 5 is dispersed by 25% by weight were compared.
得られた成形体は、含有するバイオセラミックスが参考実施例3,実施例1のものと種類は異なるが、含有率とRが同じである。しかし、それぞれの成形体はほぼ同程度の強度を有していた。Rが3.5の場合は300Mpaを越えており、極めて高い曲げ強度を示した。
The obtained molded body is different in the type of bioceramics from those of Reference Example 3 and Example 1, but the content rate and R are the same. However, each molded body had almost the same strength. When R was 3.5, it exceeded 300 MPa, indicating extremely high bending strength.
(実施例5)<圧縮成形;その例9>
粘度平均分子量60万のPLLAと、最大粒径40.0μm、平均粒径5.60μmの無水第二リン酸カルシウム(無水リン酸−水素カルシウム:DCPA)を用いて、参考実施例1と同様の方法と条件で45重量%のDCPAが均一に分散しているPLLA顆粒を得て、圧縮成形機にて溶融させて、直径8.0mm、長さ40mm、粘度平均分子量が46万の円柱状のビレットを得た。
次いで、図3に示されるように、このビレットを直径8.0mmの収容筒部と直径5.7mm、長さ76mmのキャビティを連結した成形型中に、参考実施例1と同様の方法と条件で圧入充填し、DCPAが均一に分散しているR=2.0のDCPA/PLLAの複合化された圧縮配向成形体を得た。但し、θ=45°である。
表10に、得られた圧縮配向成形体の物性を示した。
(Example 5) <Compression molding; Example 9>
Using PLLA having a viscosity average molecular weight of 600,000 and anhydrous dicalcium phosphate (anhydrous calcium phosphate-DCPA) having a maximum particle size of 40.0 μm and an average particle size of 5.60 μm, the same method as in Reference Example 1 PLLA granules in which 45% by weight of DCPA is uniformly dispersed under the conditions are obtained and melted in a compression molding machine to obtain a cylindrical billet having a diameter of 8.0 mm, a length of 40 mm, and a viscosity average molecular weight of 460,000. Obtained.
Next, as shown in FIG. 3, the same method and conditions as in Reference Example 1 were placed in a molding die in which this billet was connected to a housing cylinder having a diameter of 8.0 mm and a cavity having a diameter of 5.7 mm and a length of 76 mm. Then, a DCPA / PLLA composite compression oriented molded body of R = 2.0 in which DCPA was uniformly dispersed was obtained. However, θ = 45 °.
Table 10 shows the physical properties of the obtained compression-oriented molded body.
この成形体の粘度平均分子量は高いが、圧入による塑性変形は可能であり、曲げ強度、弾性率ともに高く、高強度および靱性を有している成形体であった。
Although this molded article has a high viscosity average molecular weight, it can be plastically deformed by press fitting, has high bending strength and elastic modulus, and has high strength and toughness.
(実施例6)<圧縮成形;その例10>
粘度平均分子量40万のPLLAと、最大粒径22.0μm、平均粒径8.35μmのオクタカルシウムホスフェ−ト(OCP)を用いて、参考実施例1と同様の方法で10重量%と20重量%のOCPが均一に分散しているPLLA顆粒を得て、圧縮成形機により溶融させて、直径13.0mm、長さ40mm、粘度平均分子量が25万の円柱状のビレットを得た。
次いで、OCPを10重量%含むビレットを直径13.0mmの収容筒部と直径6.1mmのキャビティを連結した成形型中に、またOCPを20重量%含むビレットを直径13.0mmの収容筒部と直径6.5mmのキャビティを連結した成形型に、それぞれ参考実施例1と同様の方法と条件で圧入充填し、OCPが均一に分散しているRがそれぞれ4.5と4.0のOCP/PLLAの複合された圧縮配向成形体を得た。但し、θ=15°である。
表11に、得られた圧縮配向成形体の物性を示した。
(Example 6) <Compression molding; Example 10>
Using PLLA having a viscosity average molecular weight of 400,000 and octacalcium phosphate (OCP) having a maximum particle size of 22.0 μm and an average particle size of 8.35 μm, 10 wt% and 20 wt% in the same manner as in Reference Example 1. PLLA granules in which weight percent OCP was uniformly dispersed were obtained and melted by a compression molding machine to obtain a cylindrical billet having a diameter of 13.0 mm, a length of 40 mm, and a viscosity average molecular weight of 250,000.
Next, a billet containing 10% by weight of OCP is placed in a molding die in which a housing cylinder having a diameter of 13.0 mm and a cavity having a diameter of 6.1 mm are connected, and a billet containing 20% by weight of OCP is contained in a housing cylinder having a diameter of 13.0 mm. And a mold having a diameter of 6.5 mm connected to each other by press-fitting in the same manner and conditions as in Reference Example 1, and OCP having uniformly dispersed R is 4.5 and 4.0, respectively. / PLLA composite compression oriented molded body was obtained. However, θ = 15 °.
Table 11 shows the physical properties of the obtained compression-oriented molded body.
いずれの成形体も、曲げ強度が300MPa以上の高強度の成形体であった。OCP20重量%の成形体は、OCP10重量%の成形体よりもRが低いけれども、強度、弾性率はともに上回った。しかし、圧入時の圧力は、Rが大きいため約10000kg/cm2 の圧力を必要とした。
対照例として、圧入加工が比較的容易であるOCP10重量%のビレットをR=5.5となるような成形型に圧入した。しかし、圧入時の圧力は10000kg/cm2 よりも高い圧力を必要とし、また、得られた成形体は多数のクラックが発生していた。このことから、生体内吸収性のバイオセラミックスを含むPLLAの圧縮配向のための変形度Rは5以下が望ましいと言える。
All the molded bodies were high-strength molded bodies having a bending strength of 300 MPa or more. The OCP 20 wt% molded body had a lower R than the OCP 10 wt% molded body, but exceeded both strength and elastic modulus. However, since the pressure at the time of press-fitting is large, a pressure of about 10,000 kg / cm @ 2 was required.
As a control example, an OCP 10 wt% billet, which is relatively easy to press-fit, was press-fitted into a mold such that R = 5.5. However, the pressure at the time of press-fitting required a pressure higher than 10,000 kg / cm @ 2, and the obtained molded product had many cracks. From this, it can be said that the degree of deformation R for compressive orientation of PLLA containing bioabsorbable bioceramics is desirably 5 or less.
(参考実施例5)<圧縮成形;その例12>
粘度平均分子量38万の乳酸−グリコ−ル酸の共重合体[P(LA−GA)](モル比90:10)と、最大粒径31.0μm、平均粒径1.84μmのHA(900℃焼成)を用いて、参考実施例1と同様の方法と条件で30重量%のHAが均一に分散しているR=2.8のHA/P(LA−GA)の複合化された圧縮配向成形体を得た。但し、θ=15°である。
表12に、得られた成形体と、比較例としてP(LA−GA)のみの圧縮配向成形体の物性を比較した。
(Reference Example 5) <Compression molding; Example 12>
Copolymer of lactic acid-glycolic acid [P (LA-GA)] (molar ratio 90:10) having a viscosity average molecular weight of 380,000 and HA (900 (900)) having a maximum particle size of 31.0 μm and an average particle size of 1.84 μm (Combined compression of R = 2.8 HA / P (LA-GA) in which 30% by weight of HA is uniformly dispersed under the same method and conditions as in Reference Example 1). An oriented molded body was obtained. However, θ = 15 °.
Table 12 compares the physical properties of the obtained molded body and a compression-oriented molded body of only P (LA-GA) as a comparative example.
得られた成形体は、参考実施例1に示したPLLAの場合と比較して、やや強度が低くかった。しかし、インプラント材料として十分に有用である。
The obtained molded product was slightly lower in strength than the PLLA shown in Reference Example 1. However, it is sufficiently useful as an implant material.
(参考実施例6)<鍛造成形;>
粘度平均分子量40万のポリL−乳酸(PLLA)をジクロロメタンに4重量%溶かした溶液中に、最大粒径31.0μm、最小粒径0.2μm、平均粒径1.84μmのハイドロキシアパタイト(HA)(900℃焼成)のエチルアルコ−ル懸濁液を加えて撹拌し、HAを二次凝集させることなく均一に分散させた。更に、撹拌しながらエチルアルコ−ルを加えてPLLAとHAを共沈させた。次いで、これを濾過し、完全に乾燥して、その内部に上記の粒径をもつHAが30、40重量%の割合で均一に分散しているPLLAの顆粒を得た。
これを押出機で185℃で溶融押出して、直径13.0mm、長さ40mm、粘度平均分子量が25万の円柱状のビレットを得た。
次いで、図5に示すように、このビレットを直径50mmの円筒がその中心部に突き出た直径が100mm、厚み10mmの円板状の成形型の収容筒部に入れ、100℃に加熱後、上から圧力3,000kg/cm2 で断続的に鍛造成形することにより、この成形型の円板状の部分と同じサイズのHA/PLLAの複合化された鍛造加圧配向による成形体を得た。
この成形体から円筒部を除いた半径方向に試験片を切り取り、物性を測定した。その結果、曲げ強度は220MPa、曲げ弾性率は7.4GPa、密度は1.505g/cm3 、結晶化度は43.0%であった。
この鍛造配向による成形体は結晶面が上記の実施例と異なり、配向軸が円板状の中心部から外周方向に向かって多軸に配向している配向体と考えられる。
(Reference Example 6) <Forging molding;>
Hydroxyapatite (HA) having a maximum particle size of 31.0 μm, a minimum particle size of 0.2 μm, and an average particle size of 1.84 μm in a solution of 4% by weight of poly L-lactic acid (PLLA) having a viscosity average molecular weight of 400,000 in dichloromethane. ) (Fired at 900 ° C.) was added and stirred to uniformly disperse HA without causing secondary aggregation. Further, ethyl alcohol was added with stirring to coprecipitate PLLA and HA. Then, this was filtered and completely dried to obtain PLLA granules in which HA having the above particle diameter was uniformly dispersed at a ratio of 30 to 40% by weight.
This was melt extruded at 185 ° C. with an extruder to obtain a cylindrical billet having a diameter of 13.0 mm, a length of 40 mm, and a viscosity average molecular weight of 250,000.
Next, as shown in FIG. 5, this billet is put into a receiving cylinder portion of a disk-shaped molding die having a diameter of 100 mm and a thickness of 10 mm, and a cylinder having a diameter of 50 mm protrudes from the center, heated to 100 ° C. Was subjected to intermittent forging at a pressure of 3,000 kg / cm @ 2 to obtain a molded body by HA / PLLA combined forging pressure orientation having the same size as the disk-shaped portion of the mold.
A test piece was cut out from the molded body in the radial direction excluding the cylindrical portion, and the physical properties were measured. As a result, the bending strength was 220 MPa, the bending elastic modulus was 7.4 GPa, the density was 1.505 g / cm @ 3, and the crystallinity was 43.0%.
The formed body by this forging orientation is considered to be an oriented body in which the crystal planes are different from those in the above embodiments, and the orientation axes are oriented in multiple axes from the disk-shaped central portion toward the outer peripheral direction.
(参考実施例7)<切削加工の例:表面観察と経時変化>
参考実施例1で得られたHA/PLLAの複合化された各圧縮配向成形体を施盤にて切削し、外径4.5mm、谷径3.2mm、長さ50mmのスクリュ−、および直径3.2mm、長さ40mmのピンに加工した。
また、参考実施例1の30重量%のHAが分散しているPLLA顆粒を用いて、押出機にてプレ−ト状に押出したビレットを得て、断面長方形(プレート状)の収容筒部とこれより断面積の小さい断面長方形のキャビティを連結した成形型中に、参考実施例1と同様の方法と条件で圧入し、R=2.8のプレ−ト状成形体を得た。この成形体をスライス盤にて表面を切削加工し、厚さ2.0mm、長さ20mm、幅5mmのプレ−トを得た。
(Reference Example 7) <Example of cutting: surface observation and change over time>
Each HA / PLLA composite compression-oriented molded body obtained in Reference Example 1 was cut with a lathe, a screw having an outer diameter of 4.5 mm, a valley diameter of 3.2 mm, a length of 50 mm, and a diameter of 3 Processed into a pin with a length of 2 mm and a length of 40 mm.
Moreover, using the PLLA granule in which 30% by weight of HA of Reference Example 1 is dispersed, a billet extruded into a plate shape by an extruder is obtained, and an accommodating cylinder portion having a rectangular cross section (plate shape) and A plate-shaped molded body with R = 2.8 was obtained by press-fitting into a mold having a cross-sectional rectangular cavity with a smaller cross-sectional area connected in the same manner and under the same conditions as in Reference Example 1. The surface of this molded body was cut with a slicing machine to obtain a plate having a thickness of 2.0 mm, a length of 20 mm, and a width of 5 mm.
このスクリュ−、ピン、およびプレ−トの表面を、走査型電子顕微鏡で観察した。切削加工されたいずれの加工品も、表面にHAが二次凝集して大きな集合塊を形成することもなく微粒子が均一に分散した状態で露呈していた。また、内部も同様に均一に分散しているのが観察された。そして、これらはHAの含有率が高くなるほど、より多くのHAが表面に現れていた。
このようなインプラントは緻密質でボイドがなく、バイオセラミックスとポリマ−は互いに物理的に良く密着していることも確認された。これは、本発明の材料が高い力学的強度をもち、生体骨がバイオセラミックスと直接接触することによって骨と結合し、それを骨癒合に必要な期間維持し、骨伝導或いは骨置換が有効に行われる根拠を示している。
また、実施例或いは参考実施例で得られた高強度のポリマ−・バイオセラミックスが複合化された加圧配向成形体は、37℃の凝似体液中で2〜4ヶ月にわたり、その強度をほぼ維持していることが確認できた。その後、材料の組成や構造によって分解の挙動が異なるものの、骨癒合後はポリマ−のみの場合よりも早く分解吸収され、骨置換されることがin
vivoにおいて確認できた。
The surfaces of the screw, pin, and plate were observed with a scanning electron microscope. All of the cut processed products were exposed in a state where fine particles were uniformly dispersed without forming HA on the surface to form a large aggregate. In addition, it was observed that the inside was similarly uniformly dispersed. And as these HA contents increased, more HA appeared on the surface.
It was also confirmed that such an implant was dense and free of voids, and that the bioceramics and the polymer were in good physical contact with each other. This is because the material of the present invention has high mechanical strength, and the living bone is bonded to the bone by direct contact with the bioceramics, maintaining it for the period necessary for bone healing, and bone conduction or bone replacement is effective. Indicates the basis for what is being done.
In addition, the pressure-oriented molded body in which the high-strength polymer / bioceramics obtained in the examples or the reference examples are composited in an aggregate liquid at 37 ° C. for 2 to 4 months has almost the same strength. It was confirmed that it was maintained. After that, although the degradation behavior differs depending on the composition and structure of the material, it is possible that after bone fusion, the bone is replaced and bone-removed faster than the polymer alone.
It was confirmed in vivo.
1 ビレット
2 成形型
2a 収容筒部
2b 加圧手段
2c キャビティ
20a 縮径部
3 インプラント材料
DESCRIPTION OF SYMBOLS 1 Billet 2 Mold 2a Accommodating cylinder part 2b Pressurizing means 2c Cavity 20a Reduced diameter part 3 Implant material
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004290055A JP2005066354A (en) | 2004-10-01 | 2004-10-01 | Composite osteosynthesis material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004290055A JP2005066354A (en) | 2004-10-01 | 2004-10-01 | Composite osteosynthesis material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002129488A Division JP3633909B2 (en) | 1995-09-14 | 2002-05-01 | Composite high-strength implant material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005066354A true JP2005066354A (en) | 2005-03-17 |
Family
ID=34420329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004290055A Pending JP2005066354A (en) | 2004-10-01 | 2004-10-01 | Composite osteosynthesis material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005066354A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009535101A (en) * | 2006-04-25 | 2009-10-01 | テレフレックス・メディカル・インコーポレイテッド | Calcium phosphate polymer composites and methods |
JP2014504315A (en) * | 2010-12-10 | 2014-02-20 | ディーエスエム アイピー アセッツ ビー.ブイ. | HPPE member and method of manufacturing HPPE member |
KR102209078B1 (en) * | 2019-08-22 | 2021-01-28 | 주식회사 시지바이오 | Bioactive crystallized glass ceramics comprising wollastonite, hydroxyapatite and diopside and uses thereof |
US11213605B2 (en) | 2015-08-06 | 2022-01-04 | Greenbone Ortho S.P.A. | Large 3D porous scaffolds made of active hydroxyapatite obtained by biomorphic transformation of natural structures and process for obtaining them |
-
2004
- 2004-10-01 JP JP2004290055A patent/JP2005066354A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009535101A (en) * | 2006-04-25 | 2009-10-01 | テレフレックス・メディカル・インコーポレイテッド | Calcium phosphate polymer composites and methods |
JP2014504315A (en) * | 2010-12-10 | 2014-02-20 | ディーエスエム アイピー アセッツ ビー.ブイ. | HPPE member and method of manufacturing HPPE member |
US11213605B2 (en) | 2015-08-06 | 2022-01-04 | Greenbone Ortho S.P.A. | Large 3D porous scaffolds made of active hydroxyapatite obtained by biomorphic transformation of natural structures and process for obtaining them |
US11357886B2 (en) | 2015-08-06 | 2022-06-14 | GreenBone Ortho S.r.l. | Large 3D porous scaffolds made of active hydroxyapatite obtained by biomorphic transformation of natural structures and process for obtaining them |
KR102209078B1 (en) * | 2019-08-22 | 2021-01-28 | 주식회사 시지바이오 | Bioactive crystallized glass ceramics comprising wollastonite, hydroxyapatite and diopside and uses thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3633909B2 (en) | Composite high-strength implant material | |
JP3418350B2 (en) | Biodegradable and absorbable implant material and its shape adjusting method | |
Sousa et al. | Processing and properties of bone-analogue biodegradable and bioinert polymeric composites | |
KR100383433B1 (en) | Method for preparing bioabsorbable organic/inorganic composition for bone fixation devices and itself prepared thereby | |
JP2002540855A (en) | Biologically active, bioabsorbable and surgically used composites and devices comprising a copolymer of polyethylene glycol and polybutylene terephthalate | |
JPH0763504B2 (en) | Material for bone grafting device and method for manufacturing the same | |
JP3239127B2 (en) | Composite high-strength implant material and method for producing the same | |
JP3571560B2 (en) | Concentration gradient material | |
US20240050623A1 (en) | An implant comprising magnesium alloy and a method for preparing thereof | |
KR100429937B1 (en) | Bone Bonding Materials, High Strength Graft Materials and Their Manufacturing Methods | |
JP2005066354A (en) | Composite osteosynthesis material | |
Demina et al. | Biodegradable nanostructured composites for surgery and regenerative medicine | |
AU2012360738B2 (en) | Composite containing polymer and additive as well as its use | |
JP5067957B2 (en) | Complementary reinforced composite and method for producing the same | |
JP2011062417A (en) | Bioabsorbable member | |
WO2007110611A1 (en) | Composite material | |
JP3215047B2 (en) | Manufacturing method of osteosynthesis material | |
JP6408966B2 (en) | Ligament fixture | |
JPWO2006022018A1 (en) | Bone treatment tool manufacturing method and bone treatment tool | |
JP3597716B2 (en) | Amorphous biodegradable and absorbable implant material | |
JP2009240413A (en) | Bone connecting material | |
JP2004351137A (en) | Method of manufacturing bone treatment instrument and bone treatment instrument | |
JP3215046B2 (en) | Osteosynthesis material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080701 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090106 |