JP2004000887A - Seawater desalting method, seawater concentrating method and apparatus, desalted deep seawater and concentrated deep seawater - Google Patents

Seawater desalting method, seawater concentrating method and apparatus, desalted deep seawater and concentrated deep seawater Download PDF

Info

Publication number
JP2004000887A
JP2004000887A JP2002282276A JP2002282276A JP2004000887A JP 2004000887 A JP2004000887 A JP 2004000887A JP 2002282276 A JP2002282276 A JP 2002282276A JP 2002282276 A JP2002282276 A JP 2002282276A JP 2004000887 A JP2004000887 A JP 2004000887A
Authority
JP
Japan
Prior art keywords
seawater
steam
chamber
water
decompression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002282276A
Other languages
Japanese (ja)
Other versions
JP3993058B2 (en
JP2004000887A5 (en
Inventor
Yoshinobu Kozuka
小塚 義信
Yoshimasa Shinpo
新保 善正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002282276A priority Critical patent/JP3993058B2/en
Publication of JP2004000887A publication Critical patent/JP2004000887A/en
Publication of JP2004000887A5 publication Critical patent/JP2004000887A5/ja
Application granted granted Critical
Publication of JP3993058B2 publication Critical patent/JP3993058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which adjusts the amount of a solute contained corresponding to the use of obtained fresh water or concentrated seawater when fresh water or concentrated seawater obtained from deep seawater is utilized for various commodities and performs the efficient desalting and concentration of seawater at normal pressures, and also to provide an apparatus therefor. <P>SOLUTION: Seawater sampled from deep sea is injected in the vacuum chamber of a vacuum tank wherein a steam chamber is provided around the vacuum chamber through a heat transfer wall and steam overheated to a boiling temperature or higher by high frequency heating under atmospheric pressure is supplied to the steam chamber to heat seawater in the vacuum chamber. Thereby, moisture in seawater is evaporated and condensed to obtain fresh water. Further, concentrated seawater remaining in the vacuum chamber is taken out and, if necessary, moisture of concentrated seawater is further evapolated to obtain salt. Moisture of seawater can be separated in a short time. The content of a solute in distilled water is increased when the vacuum degree of the vacuum chamber is raised, and reduced when lowered. By utlizing such operation, a ratio of a mineral component in the obtained fresh water or concentrated seawater can be changed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、深海から採取した海水(深層水)を食品、飲料、調味料、化粧品等の商品の原料ないし添加物として利用する際に特に好適な、海水の淡水化方法、濃縮(製塩を含む)方法及び装置並びに当該方法により得られた淡水化深層水及び濃縮深層水(塩を含む)に関するもので、海水の水分を蒸発して淡水化ないし濃縮する際の熱源となる加熱蒸気に特徴のある上記方法及び装置並びに生成物に関するものである。
【0002】
【従来の技術】
海水中の水分を蒸発・凝縮して淡水化すること、及び残存した濃縮海水を更に加熱して塩を得ることは、古来から行われていることである。また液体の加熱に蒸気を用いることも一般的に行われている技術である。蒸気加熱の場合は、加熱用蒸気の温度が加熱される液体の沸騰温度よりある程度高くないと、速やかな伝熱が期待できず、効率のよい処理を行うことができない。蒸気加熱による海水中の水分の蒸散においては、水の沸点より加熱用蒸気の温度を高くする必要が生ずるので、加圧された圧力蒸気を用いる。従って、加熱容器や蒸気発生用のボイラなどは圧力容器となり、強度や気密性についての配慮が必要である。
【0003】
また深海から採取した深層水は、通常の海水と異なるミネラル成分を含んでいることから、これを淡水化ないし減塩したミネラル含有水を使用した飲料水や化粧品などが商品化されている。従来、深層水を淡水化ないし濃縮する方法として、イオン交換法(特開2001−211864号)、冷凍法(特開2001−129542号)、電気分解法(特開2000−23646号)、逆浸透法(特開2000−354864号)などが提案されている。
【0004】
【発明が解決しようとする課題】
この発明は、深層水から得られた淡水や濃縮海水ないし塩を種々の商品に利用する際に、得られる淡水や濃縮海水の用途に応じてそれらに含まれる溶質(塩分やミネラル分)の割合を調整可能で、かつ常圧で効率のよい淡水化及び濃縮ないし製塩が可能な方法及び装置並びに当該方法により得られた淡水化深層水及び濃縮深層水を提供することを課題としている。
【0005】
【課題を解決するための手段】
上記課題を解決したこの出願の請求項1の発明に係る海水の淡水化方法は、減圧室13の周囲に伝熱壁11を隔てて蒸気室14を設けた減圧タンク1の前記減圧室に海水、特に深海から採取した海水を注入し、前記蒸気室に高周波加熱により沸騰温度以上に過熱した常圧の水蒸気を供給して、前記減圧室内の海水を加熱して当該海水中の水分を蒸発させ、これを凝縮して淡水を得るというものである。
【0006】
またこの出願の請求項5の発明に係る海水の濃縮方法は、上記の減圧室13内の海水を加熱して水分を蒸発させる工程のあとに当該減圧室内に残存した濃縮海水を得るというものであり、更に請求項10の発明に係る製塩方法は、上記濃縮海水の水分を更に蒸発させて塩を得るというものである。
【0007】
またこの出願の請求項6の発明に係る海水の濃縮方法は、上記の減圧室13内に、イオン交換法又は請求項1、2若しくは3記載の方法で淡水化した海水、特に好ましくは上記方法で淡水化した深層水を注入し、前記蒸気室に高周波加熱により沸騰温度以上に過熱した常圧の水蒸気を供給して、前記減圧室内の淡水化海水を加熱して当該淡水化海水中の水分を蒸発させて前記減圧室内に残存した濃縮淡水化海水を得るというものである。
【0008】
過熱した常圧の水蒸気を得る手段としては、高周波コイル中を通過する空気に水を噴霧する方法、ボイラで生成した飽和水蒸気を高周波コイルを巻装した蒸気配管に通す方法が実用上好ましい。
【0009】
また上記濃縮方法の実施に用いるこの発明の海水の濃縮装置は、回転中心軸と平行な方向に多数の襞10を有する伝熱壁11によって周囲の蒸気室14とその内側の減圧室13とに区画された回転ドラム1と、回転継手19Lを介して減圧室13に開口する海水注入口23と、回転継手18Lを介して前記減圧室に開口する真空吸引口22と、回転継手18R、19Rを介して蒸気室14に開口する加熱用蒸気の供給口及び排出口39、40と、加熱用蒸気の供給口に連なる蒸気供給管30に設けられた高周波コイル32とを備えている。
【0010】
また上記淡水化方法の実施に用いるこの発明の海水の淡水化装置は、上記濃縮装置の真空吸引口22に真空ポンプ25を介してコンデンサ26が接続されているものである。
【0011】
この発明では、深層水を飽和温度以上に加熱した過熱蒸気を熱源として真空環境下で蒸発させるため、短時間で海水中の水分の分離を行うことができ、この蒸気を凝縮することにより、微量成分を含んだ淡水と減圧室内に残存する濃縮海水とを得ることができる。減圧室13の真空度を高めると激しく沸騰して深層水中に含まれる各種の化合物が蒸気中に巻き込まれて蒸留水中への溶質の混入が増え、真空度を低くすると残存する濃縮海水中への溶質の残存割合が増える。このことを利用して、減圧室内の真空度の設定を行うことにより、得られる淡水と濃縮海水中の微量成分の割合を変えることができ、用途にあった淡水化深層水及び濃縮深層水を得ることができる。
【0012】
またこの発明では、深層水を加熱する熱源として、高周波コイルで誘導加熱した過熱蒸気を用いている。周知のように、水は常圧(大気圧)では沸騰温度(約100℃)より高くはならない。処理速度を上げるためにより高い温度の水蒸気を得ようとすると、蒸気室の加圧が必要である。これに対して高周波加熱により過熱蒸気を得る方法によれば、常圧でも200℃以上の過熱蒸気が得られ、しかも水分子が電磁場を通過するときに電子が励起されて分子間及び分子自体の結合が緩くなるという現象が起り、分子が細かくなるため伝熱性が向上する。すなわち、加熱用蒸気として常圧の飽和蒸気を用いる代わりに、高周波加熱された過熱蒸気を用いることにより、温度差が大きくなることによる伝熱率の向上と、蒸気分子が細分化されることによる伝熱率の向上との相乗効果が得られ、より速やかな処理が可能になる。
【0013】
過熱蒸気を得る方法は、ボイラで得られた飽和水蒸気を高周波コイルを巻装した金属管に通し、加熱された管壁から熱を受けて過熱水蒸気を得るというものである。飽和水蒸気を通す管として、高周波コイルを巻装したガラス管やセラミックス管などの非導電性の管を用いることにより、より効率よくかつより伝熱性に優れた過熱蒸気を得ることができる。
【0014】
更に、空気中に噴霧した水を高周波コイルを巻装した非導電性の管に通して高周波加熱するという方法を採用することにより、簡単な装置で速やかに過熱蒸気を得ることができ、装置コストを安価にできる。
【0015】
減圧室13と蒸気室14との間の伝熱壁11を回転ドラムの軸方向の襞10のある伝熱壁とすることで、伝熱面積の増大による伝熱率の向上が図れる。減圧室内に残った濃縮海水は、真空吸引して取り出すことができる。取り出した濃縮海水を加熱容器に入れて適宜な熱源で再加熱することにより、更に水分を蒸散させて塩を得ることができる。
【0016】
減圧室13内への深層水の供給は、減圧室の負圧を利用して行う。減圧室13内で蒸発した水は、真空吸引口22から真空ポンプ25へと導かれ、コンデンサ26で凝縮されて淡水となる。なお、この蒸気を高周波コイルで加熱したあと凝縮して淡水化することもできる。
【0017】
【発明の実施の形態】
図1は、この発明の海水の淡水化装置の一実施形態を示す模式図である。処理容器となる回転ドラム1は円筒状で、その両側外周部分に支持鍔2を備え、各支持鍔の円周2箇所を基台3上の支持ローラ4で支持することにより、基台3に水平軸回りに自由回転可能に支持されている。回転ドラム1の外周中央部には、リング状のスプロケット5が固定され、このスプロケットとモータ6の出力軸に取付けたスプロケットとがチェン7で連結されて、回転ドラム1を駆動する。
【0018】
回転ドラム1は、外周数箇所に透明ガラスを嵌め込んだ開閉扉8を備えている。回転ドラムの外周壁9の内側には、図2に示すように深い波形に屈曲することによって軸方向の多数の襞10を形成した伝熱壁11が、その両端を回転ドラムの鏡板12L、12Rに気密に固定して配置され、回転ドラム1の内部を伝熱壁11の内側の減圧室13と外側の蒸気室14とに区画している。
【0019】
回転ドラム1の両側の鏡板12L、12Rの中心には、それぞれ2重管15L、15Rが固定され、各2重管の内管16L、16R及び外管17L、17Rの端部には、それぞれ回転継手18L、19L、18R、19Rが連結されている。図1の左側の2重管の内管16Lの基端は、減圧室13内に突出して開口する真空吸引口22となっており、外管17Lの基端は、鏡板12Lの内面にリング状に開口する海水注入口23となっている。真空吸引口22は、回転継手18L及び真空配管24を介して真空ポンプ25に連結され、この真空ポンプ25の吐出側にコンデンサ26が連結されている。海水注入口23は、回転継手19L及び海水配管27を介して海水タンク28に連結されている。海水配管27には開閉弁29が設けられている。
【0020】
図1では、回転ドラム1の図の左側の2重管の内管16Lを真空ポンプ25に連結して蒸気通路とし、外管17Lを海水タンク28に連結して海水通路としているが、内管16Lを海水タンク28に連結して海水通路とし、外管17Lを真空ポンプ25に連結して蒸気通路としてもよい。海水の流量より蒸気の流量が大きくなることを考慮すれば、後者の構造がむしろ好ましい。
【0021】
図1の右側の2重管の内管16Rの回転継手18Rは、セラミックス製の蒸気供給管30に連結されている。この蒸気供給管30には高周波加熱器31が設けられ、当該供給配管に巻回された高周波コイル32が高周波電源33に接続されている。高周波加熱器31の手前側(蒸気流れの上流側)には、蒸気供給管30内に水を噴霧する水噴霧装置34が設けられており、更にその上流側に押込ファン35が設けられている。図1の右側の2重管の外管17Rの回転継手19Rには、蒸気排出パイプ36が連結されている。この内管16R及び外管17Rは、半径方向の連結管37、38を介して、蒸気室14の端部に供給口39と排出口40として開口している。
【0022】
次に上記実施例装置を用いて行う深層水の淡水化方法について説明する。深海から採取した深層水は、海水タンク28に投入される。真空ポンプ25及びコンデンサ26を運転し、減圧室13内を真空にする。また、押込ファン35を運転し、高周波加熱器31のコイル32に高周波電流を流して、水噴霧装置34から水を噴霧する。噴霧された水は、高周波加熱され、押込ファン35により空気と共に蒸気室14へと流入する。
【0023】
十分な容量の高周波加熱器を設けることにより、噴霧水を常圧で200℃程度に過熱する。この状態で開閉弁29を開くと、海水タンク内の深層水が真空圧により減圧室13内に吸引される。適当な量が吸引されたら開閉弁29を閉じ、回転ドラム1を連続回転する。減圧室13内の深層水の水分は、蒸気室14の過熱蒸気によって熱せられた伝熱壁11で加熱されて蒸発し、真空ポンプ25で吸引されてコンデンサ26で凝縮する。蒸発した水分を補充するように、開閉弁29を適時開閉して、深層水を減圧室13内に供給する。海水タンク28が空になり、減圧室13内の深層水が濃縮されたら、装置を停止する。
【0024】
深層水中に溶解していた各種の化合物は、減圧室内に濃縮された状態で残るから、開閉扉8を開けて真空吸引して回収する。回収した濃縮深層水は、適宜希釈して調味料の原料や健康食品、化粧水の添加液として用いる。また得られた濃縮深層水を加熱容器に入れ、更にガスコンロ等で加熱して水分を蒸散させて塩を得る。得られた塩は、調味料の原料として用いる。コンデンサ26で凝縮された蒸留水は、淡水化深層水として清涼飲料水や化粧水などの原料として用いる。
【0025】
海水タンク28内にイオン交換法又は上記実施例の方法得られた淡水化海水ないし淡水化深層水を注入して上記操作を行うことにより、減圧室13で更に濃縮することができ、淡水化海水ないし淡水化深層水中のミネラル濃度を高くすることができる。この方法で得られた濃縮海水ないし濃縮深層水は、高濃度のミネラルを含む淡水化海水ないし深層水として清涼飲料水や化粧水などの原料として用いる。
【0026】
図3はこの発明の方法で用いる過熱蒸気を得る他の装置を示した図である。図3の装置は、飽和水蒸気を得るボイラ41と得られた飽和水蒸気の過熱装置42とを備えている。ボイラ41は、金属製の缶43の周囲に間隔をあけて高周波コイル44を巻装したものである。缶43に水を入れてコイル44に高周波電流を印加することにより、誘導加熱された缶壁の熱を缶内の水に伝達して沸騰させ、飽和水蒸気を発生させる。過熱装置42は、飽和水蒸気が通過するセラミックス製の蒸気供給管30の周囲に高周波コイル45を巻装したものである。ボイラ41で発生した飽和水蒸気は、蒸気供給管30を通過する間に高周波コイル45で誘導加熱され、過熱蒸気となって蒸気室に供給される。
【0027】
【発明の効果】
以上説明したこの発明によれば、深層水を蒸発・凝縮して得られる淡水及び残った濃縮海水中の溶質成分の調整が可能で、用途に応じてミネラル分の含有割合を変えた淡水化深層水及び濃縮深層水が容易に得られる。また、深層水を蒸留ないし濃縮するための加熱手段として、高周波加熱された過熱蒸気を用いることにより、伝熱効率の向上によって速やかな処理が可能になると共に、コンパクトな処理装置を安価に提供することが可能となり、個々の食品加工場や化粧品工場等での低コストで効率のよい淡水化ないし濃縮処理が可能になるという効果がある。
【図面の簡単な説明】
【図1】淡水化兼濃縮装置の一実施例を示す模式的な断面側面図
【図2】図1の装置の回転ドラムの縦断面図
【図3】過熱水蒸気発生装置の他の例を示した模式的な断面側面図
【符号の説明】
1 回転ドラム
10 襞
11 伝熱壁
13 減圧室
14 蒸気室
18L 回転継手
18R 回転継手
19L 回転継手
19R 回転継手
22 真空吸引口
23 海水注入口
30 蒸気供給管
32 高周波コイル
39 蒸気の供給口
40 蒸気の排出口
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is particularly suitable for utilizing seawater (deep water) collected from the deep sea as a raw material or additive of products such as foods, beverages, seasonings, cosmetics, etc. The present invention relates to a method and an apparatus, and to a desalinated deep water and a concentrated deep water (including salt) obtained by the method, which are characterized by heated steam serving as a heat source when evaporating seawater moisture to desalinate or concentrate. Some of the above methods and apparatus and products.
[0002]
[Prior art]
It has been practiced since ancient times to evaporate and condense water in seawater to make it desalinated and to further heat the remaining concentrated seawater to obtain salt. The use of steam for heating the liquid is also a commonly used technique. In the case of steam heating, unless the temperature of the heating steam is somewhat higher than the boiling temperature of the liquid to be heated, rapid heat transfer cannot be expected, and efficient processing cannot be performed. In the evaporation of water in seawater by steam heating, it is necessary to make the temperature of the heating steam higher than the boiling point of water, so pressurized pressure steam is used. Therefore, a heating vessel, a boiler for generating steam, or the like is a pressure vessel, and it is necessary to consider strength and airtightness.
[0003]
Further, since deep water collected from the deep sea contains a mineral component different from ordinary seawater, drinking water, cosmetics, and the like using mineral-containing water obtained by desalinating or reducing the salt are commercialized. Conventionally, as a method for desalinating or concentrating deep water, an ion exchange method (JP-A-2001-212864), a refrigeration method (JP-A-2001-129542), an electrolysis method (JP-A-2000-23646), and reverse osmosis. (Japanese Patent Laid-Open No. 2000-354864) and the like have been proposed.
[0004]
[Problems to be solved by the invention]
The present invention relates to the use of freshwater or concentrated seawater or salt obtained from deep water for various products, the proportion of solutes (salts or minerals) contained in the freshwater or concentrated seawater depending on the intended use. It is an object of the present invention to provide a method and an apparatus capable of adjusting the water content and efficiently performing desalination and concentration or salt production at normal pressure, and to provide desalinated deep water and concentrated deep water obtained by the method.
[0005]
[Means for Solving the Problems]
The seawater desalination method according to the invention of claim 1 of the present application that solves the above-mentioned problem is characterized in that seawater is supplied to the decompression chamber of the decompression tank 1 provided with a steam chamber 14 around the decompression chamber 13 with a heat transfer wall 11 interposed therebetween. Injecting seawater collected especially from the deep sea, supplying normal-pressure steam superheated to a boiling temperature or higher by high-frequency heating to the steam chamber, heating the seawater in the decompression chamber and evaporating the water in the seawater. This is condensed to obtain fresh water.
[0006]
The method for concentrating seawater according to the invention of claim 5 of the present application is to obtain concentrated seawater remaining in the decompression chamber after the step of evaporating water by heating the seawater in the decompression chamber 13. In addition, the salt producing method according to the invention of claim 10 is to further evaporate the water content of the concentrated seawater to obtain a salt.
[0007]
In the method for concentrating seawater according to the invention of claim 6 of the present application, seawater desalinated by the ion exchange method or the method of claim 1, 2 or 3 is preferably stored in the decompression chamber 13, and particularly preferably the method described above. Inject deep water desalinated in the above, supply steam at normal pressure superheated to a boiling temperature or higher by high frequency heating to the steam chamber, heat the desalinated seawater in the decompression chamber to remove the water in the desalinated seawater. Is evaporated to obtain concentrated desalinated seawater remaining in the decompression chamber.
[0008]
As a means for obtaining superheated normal-pressure steam, a method of spraying water on air passing through a high-frequency coil and a method of passing saturated steam generated by a boiler through a steam pipe around which the high-frequency coil is wound are preferred in practice.
[0009]
Further, the seawater concentrating apparatus of the present invention used for carrying out the above-mentioned concentrating method has a heat transfer wall 11 having a large number of folds 10 in a direction parallel to the rotation center axis to form a surrounding steam chamber 14 and a decompression chamber 13 inside thereof. The partitioned rotary drum 1, the seawater inlet 23 opening to the decompression chamber 13 via the rotary joint 19L, the vacuum suction port 22 opening to the decompression chamber via the rotary joint 18L, and the rotary joints 18R and 19R. A heating steam supply port and a discharge port 39 and 40 that open to the steam chamber 14 via the heating chamber 14, and a high-frequency coil 32 provided in a steam supply pipe 30 connected to the heating steam supply port.
[0010]
Further, in the seawater desalination apparatus of the present invention used for carrying out the desalination method, a condenser 26 is connected to a vacuum suction port 22 of the concentrator through a vacuum pump 25.
[0011]
In the present invention, since the deep water is evaporated in a vacuum environment using superheated steam heated to a saturation temperature or higher as a heat source, water in seawater can be separated in a short time, and by condensing this steam, a trace amount of water can be separated. Fresh water containing the components and concentrated seawater remaining in the decompression chamber can be obtained. When the degree of vacuum in the decompression chamber 13 is increased, the compound boiled violently and various compounds contained in the deep water were caught in the steam, so that the contamination of the solute into the distilled water increased. The solute retention rate increases. Utilizing this, by setting the degree of vacuum in the decompression chamber, it is possible to change the ratio of the trace components in the obtained fresh water and concentrated seawater, and to use the desalinated deep water and concentrated deep water suitable for the application. Obtainable.
[0012]
In the present invention, superheated steam induction-heated by a high-frequency coil is used as a heat source for heating deep water. As is well known, water does not rise above its boiling temperature (about 100 ° C.) at normal pressure (atmospheric pressure). In order to obtain higher temperature steam in order to increase the processing speed, the steam chamber needs to be pressurized. On the other hand, according to the method of obtaining superheated steam by high-frequency heating, superheated steam of 200 ° C. or more can be obtained even at normal pressure, and when water molecules pass through an electromagnetic field, electrons are excited to generate intermolecular and intermolecular molecules. A phenomenon in which the bonding is loosened occurs, and the molecules become finer, so that the heat conductivity is improved. That is, instead of using saturated steam at normal pressure as heating steam, by using superheated steam heated by high frequency, the heat transfer rate is improved due to a large temperature difference, and the steam molecules are subdivided. The synergistic effect with the improvement of the heat transfer coefficient is obtained, and the processing can be performed more quickly.
[0013]
A method for obtaining superheated steam is to pass saturated steam obtained by a boiler through a metal tube around which a high-frequency coil is wound, and receive heat from a heated tube wall to obtain superheated steam. By using a non-conductive tube such as a glass tube or a ceramic tube around which a high-frequency coil is wound as a tube through which the saturated water vapor passes, it is possible to obtain superheated steam with higher efficiency and higher heat conductivity.
[0014]
Furthermore, by adopting a method in which water sprayed into the air is passed through a non-conductive tube around which a high-frequency coil is wound to perform high-frequency heating, superheated steam can be obtained quickly with a simple device, and the cost of the device can be reduced. Can be inexpensive.
[0015]
By making the heat transfer wall 11 between the decompression chamber 13 and the steam chamber 14 a heat transfer wall having the fold 10 in the axial direction of the rotary drum, the heat transfer rate can be improved by increasing the heat transfer area. The concentrated seawater remaining in the decompression chamber can be taken out by vacuum suction. The concentrated seawater taken out is put in a heating vessel and reheated by an appropriate heat source, whereby water can be further evaporated to obtain a salt.
[0016]
The supply of deep water into the decompression chamber 13 is performed using the negative pressure of the decompression chamber. The water evaporated in the decompression chamber 13 is guided from the vacuum suction port 22 to the vacuum pump 25, and is condensed by the condenser 26 to become fresh water. The steam may be heated by a high-frequency coil and then condensed for desalination.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic diagram showing an embodiment of the seawater desalination apparatus of the present invention. The rotating drum 1 serving as a processing container is cylindrical and has support flanges 2 on both outer peripheral portions thereof. By supporting two circumferential portions of each support flange with support rollers 4 on the base 3, It is supported so as to be freely rotatable around a horizontal axis. A ring-shaped sprocket 5 is fixed to the center of the outer periphery of the rotating drum 1, and the sprocket and a sprocket attached to an output shaft of a motor 6 are connected by a chain 7 to drive the rotating drum 1.
[0018]
The rotating drum 1 is provided with an opening / closing door 8 in which transparent glass is fitted at several locations on the outer periphery. Inside the outer peripheral wall 9 of the rotary drum, a heat transfer wall 11 having a large number of axial folds 10 formed by bending into a deep waveform as shown in FIG. 2 has both ends of the end plates 12L, 12R of the rotary drum. The inside of the rotary drum 1 is partitioned into a decompression chamber 13 inside the heat transfer wall 11 and a steam chamber 14 outside.
[0019]
Double pipes 15L, 15R are fixed to the centers of the end plates 12L, 12R on both sides of the rotary drum 1, respectively, and end portions of the inner pipes 16L, 16R and the outer pipes 17L, 17R of each double pipe are respectively rotated. The joints 18L, 19L, 18R, 19R are connected. The base end of the inner tube 16L of the double tube on the left side in FIG. 1 is a vacuum suction port 22 that protrudes and opens into the decompression chamber 13, and the base end of the outer tube 17L is a ring-shaped on the inner surface of the end plate 12L. The seawater inlet 23 is open to the outside. The vacuum suction port 22 is connected to a vacuum pump 25 via a rotary joint 18L and a vacuum pipe 24, and a condenser 26 is connected to a discharge side of the vacuum pump 25. The seawater inlet 23 is connected to a seawater tank 28 via a rotary joint 19L and a seawater pipe 27. An opening / closing valve 29 is provided in the seawater pipe 27.
[0020]
In FIG. 1, the inner pipe 16L of the double pipe on the left side of the rotary drum 1 in the drawing is connected to a vacuum pump 25 to form a steam passage, and the outer pipe 17L is connected to a seawater tank 28 to form a seawater passage. The 16L may be connected to the seawater tank 28 to form a seawater passage, and the outer pipe 17L may be connected to the vacuum pump 25 to form a steam passage. Considering that the steam flow rate is larger than the seawater flow rate, the latter structure is rather preferable.
[0021]
The rotary joint 18R of the inner pipe 16R of the double pipe on the right side in FIG. 1 is connected to a steam supply pipe 30 made of ceramics. A high-frequency heater 31 is provided in the steam supply pipe 30, and a high-frequency coil 32 wound around the supply pipe is connected to a high-frequency power supply 33. A water spraying device 34 for spraying water into the steam supply pipe 30 is provided on the near side of the high-frequency heater 31 (upstream of the steam flow), and a pushing fan 35 is further provided on the upstream side thereof. . A steam discharge pipe 36 is connected to the rotary joint 19R of the outer pipe 17R of the double pipe on the right side in FIG. The inner pipe 16R and the outer pipe 17R are opened at the ends of the steam chamber 14 as supply ports 39 and discharge ports 40 via connecting pipes 37 and 38 in the radial direction.
[0022]
Next, a method for desalinating deep water using the above-described apparatus will be described. Deep water collected from the deep sea is supplied to a seawater tank 28. The vacuum pump 25 and the condenser 26 are operated to evacuate the decompression chamber 13. Further, the pushing fan 35 is operated to supply a high-frequency current to the coil 32 of the high-frequency heater 31 to spray water from the water spray device 34. The sprayed water is heated by high frequency and flows into the steam chamber 14 together with the air by the pushing fan 35.
[0023]
By providing a high-frequency heater having a sufficient capacity, the spray water is heated to about 200 ° C. at normal pressure. When the on-off valve 29 is opened in this state, deep water in the seawater tank is sucked into the decompression chamber 13 by vacuum pressure. When an appropriate amount is sucked, the on-off valve 29 is closed, and the rotating drum 1 is continuously rotated. The moisture of the deep water in the decompression chamber 13 is heated and evaporated by the heat transfer wall 11 heated by the superheated steam in the steam chamber 14, sucked by the vacuum pump 25, and condensed by the condenser 26. The on-off valve 29 is opened and closed as necessary so as to replenish the evaporated water, and the deep water is supplied into the decompression chamber 13. When the seawater tank 28 becomes empty and the deep water in the decompression chamber 13 is concentrated, the apparatus is stopped.
[0024]
Since various compounds dissolved in the deep water remain concentrated in the decompression chamber, the opening / closing door 8 is opened and vacuum suction is performed to collect. The collected concentrated deep water is appropriately diluted and used as a raw material for a seasoning, a health food, and a liquid for adding a lotion. Further, the obtained concentrated deep water is put into a heating vessel, and further heated with a gas stove or the like to evaporate the water to obtain a salt. The obtained salt is used as a raw material for seasonings. The distilled water condensed by the condenser 26 is used as a raw material for soft drinks, lotion, and the like as desalinated deep water.
[0025]
By injecting the desalinated seawater or the desalinated deep water obtained by the ion exchange method or the method of the above embodiment into the seawater tank 28 and performing the above operation, the seawater can be further concentrated in the decompression chamber 13 and the desalinated seawater can be obtained. In addition, the mineral concentration in the desalinated deep water can be increased. The concentrated seawater or concentrated deep water obtained by this method is used as a raw material for soft drinks, lotion, etc. as desalinated seawater or deep water containing a high concentration of minerals.
[0026]
FIG. 3 is a diagram showing another apparatus for obtaining superheated steam used in the method of the present invention. The apparatus shown in FIG. 3 includes a boiler 41 for obtaining saturated steam and a superheater 42 for the obtained saturated steam. The boiler 41 has a high-frequency coil 44 wound around a metal can 43 at intervals. When water is put into the can 43 and a high-frequency current is applied to the coil 44, the heat of the induction-heated can wall is transferred to the water in the can and boiled to generate saturated steam. The superheater 42 has a high-frequency coil 45 wound around a ceramic steam supply pipe 30 through which saturated steam passes. The saturated steam generated in the boiler 41 is induction-heated by the high-frequency coil 45 while passing through the steam supply pipe 30, and is supplied to the steam chamber as superheated steam.
[0027]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention demonstrated above, the solute component in the fresh water obtained by evaporating and condensing deep water and the remaining concentrated seawater can be adjusted, and the desalination deep layer which changed the mineral content according to the application Water and concentrated deep water are easily obtained. In addition, by using high-frequency heated superheated steam as a heating means for distilling or condensing deep water, it is possible to perform rapid processing by improving heat transfer efficiency and to provide a compact processing apparatus at low cost. This makes it possible to effect low-cost and efficient desalination or concentration treatment at individual food processing plants or cosmetic factories.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional side view showing an embodiment of a desalination / concentration apparatus. FIG. 2 is a vertical cross-sectional view of a rotating drum of the apparatus of FIG. 1. FIG. 3 shows another example of a superheated steam generator. Typical cross-sectional side view [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Rotary drum 10 Fold 11 Heat transfer wall 13 Decompression room 14 Steam room 18L Rotary joint 18R Rotary joint 19L Rotary joint 19R Rotary joint 22 Vacuum suction port 23 Seawater injection port 30 Steam supply pipe 32 High frequency coil 39 Steam supply port 40 Vent

Claims (13)

減圧室(13)の周囲に伝熱壁(11)を隔てて蒸気室(14)を設けた減圧タンク(1)の前記減圧室に海水を注入し、前記蒸気室に高周波加熱により沸騰温度以上に過熱した常圧の水蒸気を供給して、前記減圧室内の海水を加熱して当該海水中の水分を蒸発させ、これを凝縮して淡水を得ることを特徴とする、海水の淡水化方法。Seawater is injected into the decompression chamber of the decompression tank (1) provided with the steam chamber (14) around the decompression chamber (13) via the heat transfer wall (11), and the steam chamber is heated to a boiling temperature or higher by high frequency heating. A seawater in the decompression chamber is heated to evaporate water in the seawater and condensed to obtain freshwater, thereby obtaining freshwater. 高周波コイル中を通過する空気に水を噴霧して上記過熱した常圧の水蒸気を得ることを特徴とする、請求項1記載の海水の淡水化方法。The seawater desalination method according to claim 1, wherein water is sprayed on air passing through the high-frequency coil to obtain the superheated normal-pressure steam. ボイラで生成した飽和水蒸気を高周波コイルを巻装した蒸気配管に通すことにより上記過熱した常圧の水蒸気を得ることを特徴とする、請求項1記載の海水の淡水化方法。The seawater desalination method according to claim 1, wherein the superheated normal-pressure steam is obtained by passing saturated steam generated by the boiler through a steam pipe around which a high-frequency coil is wound. 深層水を請求項1、2又は3の方法で淡水化した、淡水化深層水。4. A desalinated deep water obtained by desalinating the deep water by the method of claim 1, 2 or 3. 減圧室(13)の周囲に伝熱壁(11)を隔てて蒸気室(14)を設けた減圧タンク(1)の前記減圧室に海水を注入し、前記蒸気室に高周波加熱により沸騰温度以上に過熱した常圧の水蒸気を供給して、前記減圧室内の海水を加熱して当該海水中の水分を蒸発させて前記減圧室内に残存した濃縮海水を得ることを特徴とする、海水の濃縮方法。Seawater is injected into the decompression chamber of the decompression tank (1) provided with the steam chamber (14) around the decompression chamber (13) via the heat transfer wall (11), and the steam chamber is heated to a boiling temperature or higher by high frequency heating. A method for concentrating seawater, comprising supplying superheated normal-pressure steam to seawater in the decompression chamber and evaporating water in the seawater to obtain concentrated seawater remaining in the decompression chamber. . 減圧室(13)の周囲に伝熱壁(11)を隔てて蒸気室(14)を設けた減圧タンク(1)の前記減圧室に、イオン交換法又は請求項1、2若しくは3記載の方法で淡水化した海水を注入し、前記蒸気室に高周波加熱により沸騰温度以上に過熱した常圧の水蒸気を供給して、前記減圧室内の淡水化海水を加熱して当該淡水化海水中の水分を蒸発させて前記減圧室内に残存した濃縮淡水化海水を得ることを特徴とする、海水の濃縮方法。The method according to claim 1, wherein the depressurizing chamber of the depressurizing tank (1) provided with a steam chamber (14) around the depressurizing chamber (13) via a heat transfer wall (11) is an ion exchange method or a method according to claim 1. Injecting seawater desalinated in, supplying steam at normal pressure superheated to a boiling temperature or higher by high frequency heating to the steam chamber, heating the desalinated seawater in the decompression chamber to remove the water in the desalinated seawater. A method for concentrating seawater, comprising evaporating to obtain concentrated desalinated seawater remaining in the decompression chamber. 高周波コイル中を通過する空気に水を噴霧して上記過熱した常圧の水蒸気を得ることを特徴とする、請求項5又は6記載の海水の濃縮方法。The seawater enrichment method according to claim 5 or 6, wherein water is sprayed on air passing through the high-frequency coil to obtain the superheated normal-pressure steam. ボイラで生成した飽和水蒸気を高周波コイルを巻装した蒸気配管に通すことにより上記過熱した常圧の水蒸気を得ることを特徴とする、請求項5又は6記載の海水の濃縮方法。The method for concentrating seawater according to claim 5 or 6, wherein the superheated normal-pressure steam is obtained by passing saturated steam generated by the boiler through a steam pipe around which a high-frequency coil is wound. 深層水を請求項5、6、7又は8の方法で濃縮した、濃縮深層水。Concentrated deep water obtained by concentrating deep water by the method of claim 5, 6, 7, or 8. 請求項5、7又は8の方法で得られた濃縮海水の水分を更に蒸発させて塩を得ることを特徴とする、製塩方法。9. A method for producing a salt, characterized by further evaporating the water content of the concentrated seawater obtained by the method according to claim 5, 7 or 8 to obtain a salt. 深層水を請求項10の方法で製塩して得られる、塩。A salt obtained by salting deep water by the method of claim 10. 回転中心軸と平行な方向に多数の襞(10)を有する伝熱壁(11)によって周囲の蒸気室(14)とその内側の減圧室(13)とに区画された回転ドラム(1)と、回転継手(19L)を介して減圧室(13)に開口する海水注入口(23)と、回転継手(18L)を介して前記減圧室に開口する真空吸引口(22)と、回転継手(18R,19R)を介して蒸気室(14)に開口する過熱蒸気の供給口及び排出口(39,40)と、過熱蒸気の供給口に連なる蒸気供給管(30)に設けられた高周波コイル(32)とを備えた、海水の濃縮装置。A rotary drum (1) partitioned into a surrounding steam chamber (14) and a decompression chamber (13) inside by a heat transfer wall (11) having a number of folds (10) in a direction parallel to the rotation center axis; A seawater inlet (23) opening to the decompression chamber (13) via a rotary joint (19L), a vacuum suction port (22) opening to the decompression chamber via a rotary joint (18L), and a rotary joint ( 18R, 19R) through a supply port and a discharge port (39, 40) for superheated steam that opens into the steam chamber (14), and a high-frequency coil (30) provided in a steam supply pipe (30) connected to the supply port for superheated steam. 32) A seawater concentrating device comprising: 回転中心軸と平行な方向に多数の襞(10)を有する伝熱壁(11)によって周囲の蒸気室(14)とその内側の減圧室(13)とに区画された回転ドラム(1)と、回転継手(19L)を介して減圧室(13)に開口する海水注入口(23)と、回転継手(18L)を介して前記減圧室に開口する真空吸引口(22)と、回転継手(18R,19R)を介して蒸気室(14)に開口する過熱蒸気の供給口及び排出口(39,40)と、真空ポンプ(25)を介して真空吸引口(22)に連結されたコンデンサ(26)と、過熱蒸気の供給口に連なる蒸気供給管(30)に設けられた高周波コイル(32)とを備えた、海水の淡水化装置。A rotary drum (1) partitioned into a surrounding steam chamber (14) and a decompression chamber (13) inside by a heat transfer wall (11) having a number of folds (10) in a direction parallel to the rotation center axis; A seawater inlet (23) opening to the decompression chamber (13) via a rotary joint (19L), a vacuum suction port (22) opening to the decompression chamber via a rotary joint (18L), and a rotary joint ( 18R, 19R), a supply port and a discharge port (39, 40) of the superheated steam which open to the steam chamber (14), and a condenser (22) connected to a vacuum suction port (22) via a vacuum pump (25). 26) and a desalination apparatus for seawater, comprising: a high-frequency coil (32) provided in a steam supply pipe (30) connected to a supply port of superheated steam.
JP2002282276A 2001-09-28 2002-09-27 Seawater desalination method, concentration method and apparatus Expired - Fee Related JP3993058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002282276A JP3993058B2 (en) 2001-09-28 2002-09-27 Seawater desalination method, concentration method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001301980 2001-09-28
JP2002112339 2002-04-15
JP2002282276A JP3993058B2 (en) 2001-09-28 2002-09-27 Seawater desalination method, concentration method and apparatus

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003395929A Division JP2004098065A (en) 2001-09-28 2003-11-26 Desalination method and concentration method of deep water, desalinated deep water, and concentrated deep-sea water
JP2005213118A Division JP2005334882A (en) 2001-09-28 2005-07-22 Desalination method for deep sea water, concentration method and apparatus therefor, desalinated deep sea water, and concentrated deep sea water

Publications (3)

Publication Number Publication Date
JP2004000887A true JP2004000887A (en) 2004-01-08
JP2004000887A5 JP2004000887A5 (en) 2004-11-18
JP3993058B2 JP3993058B2 (en) 2007-10-17

Family

ID=30449038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282276A Expired - Fee Related JP3993058B2 (en) 2001-09-28 2002-09-27 Seawater desalination method, concentration method and apparatus

Country Status (1)

Country Link
JP (1) JP3993058B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530801A (en) * 2007-06-22 2010-09-16 デサリネイション テクノロジー ピーティーワイ リミテッド Desalting
KR101165351B1 (en) 2012-04-19 2012-07-18 (주)강원엔.티.에스 Sea-water heater
CN103588254A (en) * 2013-09-12 2014-02-19 东北林业大学 Low-pressure multi-effect circulating seawater desalting system
CN109695268A (en) * 2017-10-23 2019-04-30 李贺清 A kind of method that fresh water is extracted on island
WO2019059960A3 (en) * 2017-09-22 2019-05-16 Jiang Kai Deserts' water generation theory and its principle application — an easy way to obtain freshwater from the atmosphere
CN115738314A (en) * 2022-11-15 2023-03-07 泊头市航澄机械制造有限公司 Multifunctional vacuum extraction and concentration unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530801A (en) * 2007-06-22 2010-09-16 デサリネイション テクノロジー ピーティーワイ リミテッド Desalting
KR101165351B1 (en) 2012-04-19 2012-07-18 (주)강원엔.티.에스 Sea-water heater
CN103588254A (en) * 2013-09-12 2014-02-19 东北林业大学 Low-pressure multi-effect circulating seawater desalting system
CN103588254B (en) * 2013-09-12 2015-01-07 东北林业大学 Low-pressure multi-effect circulating seawater desalting system
WO2019059960A3 (en) * 2017-09-22 2019-05-16 Jiang Kai Deserts' water generation theory and its principle application — an easy way to obtain freshwater from the atmosphere
CN109695268A (en) * 2017-10-23 2019-04-30 李贺清 A kind of method that fresh water is extracted on island
CN115738314A (en) * 2022-11-15 2023-03-07 泊头市航澄机械制造有限公司 Multifunctional vacuum extraction and concentration unit

Also Published As

Publication number Publication date
JP3993058B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
US11014833B2 (en) Energy saving desalination system
JP2008521586A (en) Liquid processing apparatus and method
JPH11207104A (en) Device for extracting component from raw material
CN109052796A (en) A kind of high-COD waste water treatment zero draining technique with high salt and device
JP3993058B2 (en) Seawater desalination method, concentration method and apparatus
TWI306840B (en)
TNSN05147A1 (en) Method and plant for desalinating salt-containing water
JP2004269288A (en) Method and apparatus for producing microcrystalline salt
JP2016518873A (en) Reactor
JP2005334882A (en) Desalination method for deep sea water, concentration method and apparatus therefor, desalinated deep sea water, and concentrated deep sea water
NL2009613C2 (en) Membrane distillation system, method of starting such a system and use thereof.
JP4420737B2 (en) Direct pressurization heat pump type processing equipment
JP2004000887A5 (en)
KR100559173B1 (en) Torsion generator
JP2004098065A (en) Desalination method and concentration method of deep water, desalinated deep water, and concentrated deep-sea water
RU64200U1 (en) DISTILLER
US7008516B2 (en) Method and apparatus for desalinating and concentrating sea water, desalinated deep water and concentrated deep water
JP2012161731A (en) Concentration system including centrifugal thin film vacuum evaporator, and method of operating the same
JP4814456B2 (en) Method and apparatus for treating plating waste liquid
CN110382068A (en) A kind of crystallization apparatus and method
CN207792751U (en) Can antiscaling, descaling waste water evaporator
CN107892347A (en) A kind of high-voltage electrostatic field formula gas-liquid contact is concentrated by evaporation high-salt wastewater device and its technique
US20200095136A1 (en) Method and apparatus for treating water
WO2016013997A1 (en) A water purification system with a barometric column
CN206635061U (en) A kind of sea water desalinating unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Ref document number: 3993058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees