JP2004000605A - X-ray ct device - Google Patents

X-ray ct device Download PDF

Info

Publication number
JP2004000605A
JP2004000605A JP2003132657A JP2003132657A JP2004000605A JP 2004000605 A JP2004000605 A JP 2004000605A JP 2003132657 A JP2003132657 A JP 2003132657A JP 2003132657 A JP2003132657 A JP 2003132657A JP 2004000605 A JP2004000605 A JP 2004000605A
Authority
JP
Japan
Prior art keywords
ray
tube
imaging system
scanning
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003132657A
Other languages
Japanese (ja)
Other versions
JP3631235B2 (en
Inventor
Chieko Konakawa
粉川 智恵子
Kyojiro Nanbu
南部 恭二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003132657A priority Critical patent/JP3631235B2/en
Publication of JP2004000605A publication Critical patent/JP2004000605A/en
Application granted granted Critical
Publication of JP3631235B2 publication Critical patent/JP3631235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray CT device having much improved examination efficiency compared to a one bulb type X-ray CT device. <P>SOLUTION: This X-ray CT device comprises a first photography system having a first X-ray tube 3-1 for irradiating an X-ray and a first detector 4-1 for detecting the X-ray transmitted through a subject, a second photography system having a second X-ray tube 3-2 for irradiating an X-ray and a second detector 4-2 for detecting the X-ray transmitted through the subject, and a central control unit 12. When the first photography system generates an error during scanning, the central control unit makes the second photography system scan under a photography condition of the first photography system. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、複数の光源(例えばX線源)及び各X線源に対応するX線検出器を有するX線CT装置に関する。
【0002】
【従来の技術】
近年、医用診断装置の開発が進められる中で、被検体の任意の部位の断層像を撮影するCT装置が多く用いられるようになってきた。また、昨今では断層像の撮影の短縮化を図るため、被検体の周囲を螺旋状にスキャンし、各スライス位置のデータを補間処理により算出してこれを基にスライス画像を再構成するヘリカルスキャン方法が実用に供されている。
【0003】
従来のヘリカルスキャンCT装置は、図9A,B,Cに示すように1個の管球71が体軸方向に移動可能な寝台75の上の患者(被検体)70の周りを軌道76に沿って連続的に回転し、ビーム72により螺旋状の走査を行なっていた。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のヘリカルスキャンCT装置には、
(1) 管球が一つなので、ある時刻における複数箇所の走査ができない。
(2) 一度に一つの走査条件でしか走査できない。
(3) 光学系の熱容量が一杯になると、冷めるまで待たなければならない。また、故障したとき代りの光学系の取替作業に手間取る。
(4) 造影剤が去らないうちに短時間に走査する必要があるが、管球が一つしかないので、短時間に走査できない。
(5) 管球が一つしかないので、一定時間で広い範囲を走査することができない。
という不都合があった。
【0005】
本発明は上記不都合に鑑みてなされたものであり、1管球のX線CT装置より大幅に検査効率を向上させることを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明は、被検体をスキャンして得られた投影データに基づき前記被検体のCT像を再構成するX線CT装置において、X線を曝射する第1のX線源及び前記被検体を透過したX線を検出するための第1の検出器を有する第1の撮影系と、X線を曝射する第2のX線源及び前記被検体を透過したX線を検出するための第2の検出器を有する第2の撮影系と、前記第1の撮影系がスキャン中にエラーを生じた場合、前記第2の撮影系を前記第1の撮影系の撮影条件でスキャンさせる制御手段とを備えたことを特徴とするものである。
【0007】
そして、前記制御手段は、前記第1の撮影系がスキャン中にエラーを生じた場合、第1の撮影系の使用を禁止して良い。
【0008】
また前記2の撮影系は、前記第1の撮影系のスキャン中に使用されないことが好ましい。
【0009】
また、上記目的を達成するため、本発明は、被検体をスキャンして得られた投影データに基づき前記被検体のCT像を再構成するX線CT装置において、X線を曝射する第1のX線源及び前記被検体を透過したX線を検出するための第1の検出器を有する第1の撮影系と、X線を曝射する第2のX線源及び前記被検体を透過したX線を検出するための第2の検出器を有する第2の撮影系と、前記第1の撮影系の第1のX線管から照射されるX線のエネルギーと前記第2の撮影系の第2のX線管から照射されるX線のエネルギーとを異ならせて、前記被写体の同一位置をスキャンさせる制御手段とを備えたことを特徴とするものである。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1は本発明に係るX線CT装置の概略的な構成を示すブロック図である。
【0011】
図面に示すX線CT装置は、互いに平行な間隔で独立又は連動して回転可能な3個の管球(X線管)3−1、3−2、3−3と、それぞれの管球に対応して設けられている3組の検出器4−1、4−2、4−3と、それぞれの検出器によって検出されたそれぞれの投影データを収集し処理しやすい形にする3組のデータ収集部5−1、5−2、5−3と、管球3−1、3−2、3−3及び検出器4−1、4−2、4−3の回転を制御する回転制御部7及び管球3−1、3−2、3−3の間隔を制御する光学系位置制御部8と、を含む架台(破線の部分)2を有している。
【0012】
X線CT装置は、更に、管球3−1、3−2、3−3の照射するX線量を制御するX線制御部6と、寝台11を駆動する寝台駆動部10及び寝台駆動部10を制御するコントローラ9と、中央制御部(CPU)12と、中央制御部6にバス(図示せず)を介して接続するモニター13、走査条件入力装置としてのキーボード14、内部メモリ15、収集データや画像データを記憶する磁気ディスク16を有している。
【0013】
中央制御部12はX線制御部6、回転制御部7、光学系位置制御部8、及びコントローラ9及び画像再構成装置(図示せず)を制御し、本実施形態のX線CT装置全体の動作を統轄している。また、X線制御部6は中央制御部12の制御の下に各X線管(管球)毎のX線の制御を行う。そして、あるX線管(例えば、管球3−1が曝射するX線量と他のX線管(例えば、管球3−2)が曝射するX線量をそれぞれ異なった量とすることができる。
【0014】
回転制御部7は中央制御部12の制御の下にそれぞれのX線管および/または検出器の回転制御を行ない、X線管および検出器の組は回転制御部7により他のX線管および検出器の組とは独立して回転することができるようになっている。光学系位置制御部8は中央制御部12の制御の下に各X線管及び検出器の寝台方向(患者(被検体)の体軸方向)の動きの制御を行なう。具体的には、走査開始位置にX線管(管球)をセットし、X線管3−1、3−2、3−3のうちどのX線管を寝台方向(正の方向、或いは負の方向)にどの程度どの位の速度で移動するかを制御する。コントローラ9は中央制御部12の制御の下に寝台駆動部10を駆動させ寝台1を患者の体軸方向に移動させる。
【0015】
図2は図1に示した各制御部の構成を示すブロック図であり、中央制御部12は同図に示す走査条件リスト17を参照し、走査条件に基づいて管球単位にX線制御部6、回転制御部7、光学系位置制御部8、及びコントローラ9に命令(信号)を送り、それら各制御部6、7、8、9の制御を行なうと共にそれら各制御部6、7、8、9及び検出器4−1、4−2、4−3からの情報(例えば、回転角、光学系の位置(間隔)、寝台の位置等及びそれぞれの検出器からX線透過量等)を入力し、各制御部6、7、8、9をフィードバック制御する。各制御部6、7、8、9はそのフィードバック制御に基づいてそれぞれのX線源のX線発生量、管球及び検出器の回転及び移動と、寝台の移動制御を行なう。なお、管球及び検出器の回転及び移動は各管球と対応する検出器の組毎に回転駆動装置(図示せず)及び移動装置(図示せず)を有し、回転制御7及び光学系制御部8からの駆動信号に基づいてそれぞれ独立又は連動して駆動される。
【0016】
走査条件リスト17は通常磁気ディスク16に記憶されており、X線CT装置1が起動されると磁気ディスク16から内部メモリ15に読み込まれ中央制御部12により参照されるが、オペレータは走査条件リスト17の条件をキーボード14から変更、追加・登録、削除を行なうことができる。この場合走査条件リスト17は図2に示すような形でモニター13に表示されるので、オペレータは簡単に走査条件の入力ができる。また、走査条件リスト17は管球別に走査条件を格納し、管球には予め固有の番号が割当てられておりこの番号は変更できない。図2の符号17は走査条件リストの一例を示しており、1行目には1番目の管球3−1の状態グラフ(例えば、この管球を使用する・・1;使用しない・・2;故障・・3、といった管球の状態を示す値)、X線条件(X線電圧、及び電流)、管球及び検出器の回転量(角)、管球及び検出器の移動量等の条件(情報)が格納され、2行目には2番目の管球3−2の、3行目には3番目の管球3−3の、そしてn行目にはn番目の管球3−nの状態フラグ、X線条件(X線電圧、及び電流)、管球及び検出器の回転速度、管球及び検出器の移動量等の条件(情報)が格納される。走査条件リストによるX線発生源、管球、検出器の駆動動作例として、例えば、中央制御部が走査条件リストから1番目の管球3−1の走査条件「状態=1;120KV;50mA;1rps;2mmps」を読取って、その走査条件に基づく命令(信号)を各制御部6、7、8に送出すると、X線制御部6は管球3−1のX線発生源に対する供給電圧を120KV,電流を50mAとしてX線発生量を制御し、回転制御部7は管球3−1及び検出器4−1の回転速度を1rpsとするよう管球3−1及び検出器4−1の回転駆動装置に駆動制御信号を送り、光学系位置制御部8は管球3−1及び検出器4−1の移動量を2mmpsとするように管球3−1及び検出器4−1の移動装置(図示せず)に駆動制御信号を送る。
【0017】
本実施形態において、X線CT装置1は被検体に対して螺旋状の走査を行ない、データ再構成装置(図示せず)が、この螺旋状の走査により検出器4−1、4−2、4−3によって得られたデータの組と寝台10の体軸方向の位置データを取込み、取込んだデータ基づいて補間処理(特開平2−211129号参照)より任意のスライス位置の補間データの組を求め、この補間データの組に基づいて画像再構成を行なう。
【0018】
本実施形態において管球の走査中にエラーが生じた場合、例えば、1番目の管球(管球3−1)のX線部にエラーが発生したとすると、管球3−1でエラーが発生したことをX線制御部6が状態ビットから判別し中央制御部12に状態(ステイタス)ビットを送出する。状態ビットは管球の固有番号及び管球の状態を示すビットフラグからなっている。中央制御部12は状態ビットを調べて、管球3−1の使用禁止コードを回転制御部7及び光学系位置制御部8に送出する。回転制御部7及び光学系位置制御部8は管球3−1と検出器4−1の回転駆動装置及び移動装置に駆動停止信号を送る。中央制御部12は管球3−1の全ての動きが止ったことを確認してから、現在使用されていない他の管球に1番目の管球3−1の走査条件等を送り、その管球を管球3−1の代わりに使用する。
【0019】
以下に本実施形態の効果について説明する。
【0020】
(イ) ヘリカルダイナミックスキャンができる。
【0021】
ヘリカルスキャンは被検体を螺旋状に走査する方式であり、広い範囲を素早く走査できる。また、走査した範囲ならどの部分でも画像にできる。一方、ダイナミックスキャンは、ある位置を連続して走査することにより走査位置の経時的変化を観察・撮影することができる。そして、本実施形態のCT装置によれば、図3(A)に示すように複数(図では3個)の管球31a〜31cにより、範囲dをヘリカルスキャンすると同図(B)に示すように各位置P1 〜P4 における画像の経時的変化を見ることができる。即ち、ヘリカルダイナミックスキャンが可能となる。
【0022】
また、ヘリカルダイナミックスキャンを用いて差画像を作成し造影剤の経時変化を観察する際には、図4に示すように各管球31a〜31cの軌道を等しくさせる必要がある。これについては、管球31a〜31cの間隔と被検体の送り速度との関係から容易に設定が可能である。また、被検体の同一部位を何秒後にスキャンするかを決めるには、管球31a〜31cの間隔及び管球31a〜31cの取付角度により決めることができる。また、管球31a〜31cの取付角度をずらすことにより、図5に示すように管球31a〜31cの間隔hを管球自体の幅よりも狭くすることができる。つまり、例えば管球の半径が100[mm]である場合には取付角度をつけないと管球どうしの間隔は少なくとも200[mm]必要とするが、取付角度をつけるとこの間隔を0[mm]以上とすることができる。
【0023】
そして、このようなヘリカルダイナミックスキャンを用いれば、図3(c)に示す如くの3次元画像で経時的変化に沿ったシネ表示34ができる。この表示は例えば脳外科分野で効果的な利用が期待される。
【0024】
(ロ) 複数の撮影条件で、ほぼ同じ時間に同じ範囲をスキャンできる。
【0025】
例えば、図6(A)に示すように2組の光学系41、42で被検体(患者)40を上方と側面から同時に走査すれば、図6(B)に示すようなトップ−ボトム(top−bottom)像とライト−レフト(right−left)像のスキャノグラムを得ることができる。また、ビームや光学系の回転速度を光学系毎に変化させた走査をほぼ同時に同じ範囲で実施できる。そして、これにより造影剤が流失してしまわないうちに相異なる走査条件で走査することができる。また、患者スループットか向上し患者に対する負担が軽減される。そして、条件を変えて走査したい時や撮影に失敗した時等に走査しなおす手間が省ける。これは種々の条件で走査することを要する研究等において特に効果的である。
【0026】
(ハ) 同時に複数部位を、部位に応じた走査条件で撮影することができる。
【0027】
同時に複数部位を、部位に応じた走査条件で走査できる。これは、例えば、集団検診等の場合に、より効果的である。この場合、例えば、図7において、管球51は胸部を走査し管球52は腹部を走査することができる。これら走査は同時にしかも走査条件をそれぞれ部位に応じた条件にセットして走査できるので的確な診断ができ、X線の被曝も必要最小限に抑えることができ、しかも一人当りの走査時間が短くて済む。
【0028】
(ニ) 使用中の管球が使えなくなった時でも他の管球に切換えることができる。
【0029】
従来の装置のダウンタイムの主要因は管球の故障である。しかし、この実施形態では管球が複数個あるので、管球の容量が一杯になった時や管球が故障した時等に使用していない管球を予備として用いることができる。このため、すべての管球を同時に使用する必要のある検査はできなくなるものの、残った管球を用いて検査を続行できる。従って、管球の故障によるダウンタイムがなく、緊急の検査に常時対応することができる。
【0030】
(ホ) 一定の範囲を従来より短時間で走査できる。
【0031】
図8(A)は1個の管球で螺旋状走査を行なう従来のヘリカルスキャンを示し、この場合の1回の走査時間をtとする。一方、図8(B)は本発明による2個の管球で同じ部位を走査する場合を示し、この場合の1回の走査時間は1/2tとなる。このように本発明によりn個の光学系で走査する場合、従来の1/nの時間で撮影が可能である。このことは造影剤を注入した時等のように短時間内に走査しなければならない時により効果的である。
【0032】
(ヘ) 空間分解能を向上させることができる。
【0033】
ある一定の時間内で同範囲を撮影する場合、複数の光学系で撮影するので走査が密にでき体軸に沿った方向の空間分解能を向上させることができる。
【0034】
(ト) デュアルエナジースキャンを行なうことができる。
【0035】
2つ以上の管球で相異なるX線のエネルギーを使用させれば、容易にデュアルエナジースキャンが可能となる。
【0036】
即ち、同一の部位を2種類以上のX線エネルギーで撮影することによって、それぞれのエネルギーごとの画像が得られる。これらの画像を用いて電子分布密度、コンプトン散乱の程度、光電効果を表わす画像を計算によって求めることができる。これらは被写体の元素組成を推定する上で有用な情報となる。元素ごとにコンプトン散乱の強度と光電効果の強度の比が異なるため、この2つの散乱効果及び物質の密度によってX線吸収が決まるのである。
【0037】
なお、本実施形態は上記実施形態に限定されるものではなく、例えば図10(A)に示すように複数(図では3個)のガントリ65〜67を並設して走査を行なっても良い。このような構成では、各X線管の間隔をある程度以下に狭くすることはできないが、図10(B)に示すように、各ガントリ65〜67をチルトさせることができる。
【0038】
【発明の効果】
以上説明したように、1管球のCT装置より大幅に検査効率を向上させることができる。また第1の撮影系がスキャン中にエラーを生じた場合、第2の撮影系を第1の撮影系の撮影条件でスキャンさせるように制御すれば、管球の故障によるダウンタイムを少なくすることができる。
【図面の簡単な説明】
【図1】本発明に基づくCT装置の一実施形態であるX線CT装置の概念図。
【図2】図1の実施形態における制御部の構成図及び走査条件リストの一例を示す。
【図3】部分図Aはヘリカルダイナミックスキャンの一例を示し、部分図Bはヘリカルダイナミックスキャンにより経時的に撮影された複数の頭部画像を示し、部分図Cはヘリカルダイナミックスキャンによる3次元画像で経時変化に沿ったシネ表示の例を示す。
【図4】管球をヘリカルスキャンの螺旋軌道に合わせた例を示す。
【図5】各管球の取付角度をずらした例を示す。
【図6】部分図Aは複数の撮影条件で、ほぼ同じ時間に同じ範囲をスキャンした例を示し、部分図Bは結果として得られた像を示す。
【図7】同時に他部位を、部位に応じた走査条件で走査した例を示す。
【図8】部分図Aは1個の管球で螺旋状走査を行なう状来のヘリカルスキャンを示し、部分図Bは本発明による2個の管球で同じ部位を走査する場合を示す。
【図9】部分図Aは従来のヘリカルスキャンCT装置による走査の例を示す斜視図であり、部分図Bは側面図であり、部分図Cは架台から見通した図である。
【図10】複数のガントリを用いて撮影する例を示す。
【符号の説明】
1 X線CT装置(CT装置)
2 架台
3−1、3−2、3−3 管球
4−1、4−2、4−3 検出器
11 寝台
10 寝台駆動部
12 制御部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an X-ray CT apparatus having a plurality of light sources (for example, X-ray sources) and an X-ray detector corresponding to each X-ray source.
[0002]
[Prior art]
In recent years, as the development of medical diagnostic apparatuses has been advanced, CT apparatuses for capturing a tomographic image of an arbitrary portion of a subject have been increasingly used. In recent years, in order to shorten the tomographic imaging, a helical scan that scans around the subject in a spiral shape, calculates data at each slice position by interpolation processing, and reconstructs a slice image based on the calculated data. The method is put into practical use.
[0003]
As shown in FIGS. 9A, 9B, and 9C, the conventional helical scan CT apparatus has a configuration in which one tube 71 moves along a trajectory 76 around a patient (subject) 70 on a bed 75 that can move in the body axis direction. The beam 72 continuously rotates, and the beam 72 performs a spiral scan.
[0004]
[Problems to be solved by the invention]
However, the conventional helical scan CT apparatus includes:
(1) Since there is only one bulb, it is not possible to scan a plurality of locations at a certain time.
(2) Only one scanning condition can be scanned at a time.
(3) When the heat capacity of the optical system is full, it is necessary to wait until it cools down. Also, it takes time to replace the optical system when a failure occurs.
(4) It is necessary to scan in a short time before the contrast agent leaves, but it is not possible to scan in a short time because there is only one tube.
(5) Since there is only one bulb, it is not possible to scan a wide range in a fixed time.
There was an inconvenience.
[0005]
The present invention has been made in view of the above-described inconveniences, and has as its object to significantly improve the examination efficiency compared to a single-tube X-ray CT apparatus.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an X-ray CT apparatus for reconstructing a CT image of the subject based on projection data obtained by scanning the subject. A first imaging system having a radiation source and a first detector for detecting X-rays transmitted through the subject; a second X-ray source for exposing X-rays and X-rays transmitted through the subject; A second imaging system having a second detector for detecting a line, and if the first imaging system has an error during scanning, the second imaging system is replaced by the first imaging system. And a control unit for performing scanning under photographing conditions.
[0007]
The control unit may prohibit use of the first imaging system when an error occurs during scanning of the first imaging system.
[0008]
Further, it is preferable that the second imaging system is not used during scanning of the first imaging system.
[0009]
According to another aspect of the present invention, there is provided an X-ray CT apparatus configured to reconstruct a CT image of the subject based on projection data obtained by scanning the subject. A first imaging system having an X-ray source and a first detector for detecting X-rays transmitted through the subject, and a second X-ray source for exposing X-rays and transmitting the X-rays through the subject A second imaging system having a second detector for detecting the detected X-rays, the energy of X-rays emitted from a first X-ray tube of the first imaging system, and the second imaging system And control means for scanning the same position of the subject by making the energy of X-rays emitted from the second X-ray tube different from each other.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of the X-ray CT apparatus according to the present invention.
[0011]
The X-ray CT apparatus shown in the drawings includes three tubes (X-ray tubes) 3-1, 3-2, and 3-3 that can rotate independently or in conjunction with each other at parallel intervals, and each of the tubes has Corresponding three sets of detectors 4-1, 4-2, 4-3 and three sets of data for collecting and projecting respective projection data detected by the respective detectors for easy processing. A rotation control unit that controls the rotation of the collection units 5-1, 5-2, and 5-3, the tubes 3-1, 3-2, and 3-3, and the detectors 4-1, 4-2, and 4-3. 7 and an optical system position control unit 8 for controlling the distance between the bulbs 3-1, 3-2, and 3-3.
[0012]
The X-ray CT apparatus further includes an X-ray control unit 6 that controls the amount of X-rays emitted from the tubes 3-1, 3-2, and 3-3, a bed driving unit 10 that drives the bed 11, and a bed driving unit 10 , A central control unit (CPU) 12, a monitor 13 connected to the central control unit 6 via a bus (not shown), a keyboard 14 as a scanning condition input device, an internal memory 15, collected data And a magnetic disk 16 for storing image data.
[0013]
The central control unit 12 controls the X-ray control unit 6, the rotation control unit 7, the optical system position control unit 8, the controller 9, and an image reconstruction device (not shown), and controls the entire X-ray CT device of the present embodiment. Controls the operation. The X-ray control unit 6 controls X-rays for each X-ray tube (tube) under the control of the central control unit 12. Then, the X-ray dose irradiated by a certain X-ray tube (for example, the tube 3-1) and the X-ray dose irradiated by another X-ray tube (for example, the tube 3-2) are set to different amounts. it can.
[0014]
The rotation control unit 7 controls the rotation of each X-ray tube and / or detector under the control of the central control unit 12, and the set of X-ray tubes and detectors is controlled by the rotation control unit 7 to control other X-ray tubes and / or detectors. It can rotate independently of the set of detectors. The optical system position control unit 8 controls the movement of each X-ray tube and the detector in the direction of the bed (in the direction of the body axis of the patient (subject)) under the control of the central control unit 12. Specifically, an X-ray tube (tube) is set at the scanning start position, and any one of the X-ray tubes 3-1, 3-2, and 3-3 is set in the bed direction (positive direction or negative direction). In the direction) and at what speed. The controller 9 drives the couch driving unit 10 under the control of the central control unit 12 to move the couch 1 in the body axis direction of the patient.
[0015]
FIG. 2 is a block diagram showing the configuration of each control unit shown in FIG. 1. The central control unit 12 refers to the scanning condition list 17 shown in FIG. 6. A command (signal) is sent to the rotation control unit 7, the optical system position control unit 8, and the controller 9 to control the control units 6, 7, 8, and 9, and to control the control units 6, 7, 8, and 8. , 9 and the detectors 4-1 4-2, and 4-3 (for example, the rotation angle, the position (interval) of the optical system, the position of the bed, and the amount of X-ray transmission from each detector). Input and feedback control the respective control units 6, 7, 8, and 9. Each of the control units 6, 7, 8, 9 controls the amount of X-rays generated by each X-ray source, rotation and movement of the tube and detector, and movement of the bed based on the feedback control. The rotation and movement of the tube and the detector have a rotation driving device (not shown) and a movement device (not shown) for each set of the detector corresponding to each tube, and a rotation control 7 and an optical system. They are driven independently or in conjunction with each other based on a drive signal from the control unit 8.
[0016]
The scanning condition list 17 is normally stored on the magnetic disk 16, and is read from the magnetic disk 16 into the internal memory 15 when the X-ray CT apparatus 1 is started and referred to by the central control unit 12. 17 conditions can be changed, added, registered, and deleted from the keyboard 14. In this case, the scanning condition list 17 is displayed on the monitor 13 as shown in FIG. 2, so that the operator can easily input the scanning conditions. The scanning condition list 17 stores scanning conditions for each tube, and a unique number is assigned to the tube in advance, and this number cannot be changed. Reference numeral 17 in FIG. 2 indicates an example of the scanning condition list, and the first line shows a state graph of the first bulb 3-1 (for example, use this bulb 1; not use 2) A value indicating the state of the tube such as failure 3), X-ray conditions (X-ray voltage and current), the amount of rotation (angle) of the tube and the detector, and the amount of movement of the tube and the detector. The conditions (information) are stored, the second row is the second bulb 3-2, the third row is the third bulb 3-3, and the nth row is the nth bulb 3 -N state flag, X-ray conditions (X-ray voltage and current), rotation speed of the tube and the detector, and conditions (information) such as the moving amount of the tube and the detector are stored. As an example of the driving operation of the X-ray source, the tube, and the detector according to the scanning condition list, for example, the central control unit scans the first tube 3-1 from the scanning condition list with the scanning condition “state = 1; 120 KV; 50 mA; 1 rps; 2 mmps ", and sends a command (signal) based on the scanning condition to each of the control units 6, 7, and 8. When the X-ray control unit 6 supplies a voltage to the X-ray generation source of the tube 3-1, The X-ray generation amount is controlled with 120 KV and a current of 50 mA, and the rotation control unit 7 controls the tube 3-1 and the detector 4-1 so that the rotation speed of the tube 3-1 and the detector 4-1 is 1 rps. The optical system position control unit 8 sends a drive control signal to the rotation driving device, and the optical system position control unit 8 moves the tube 3-1 and the detector 4-1 so that the amount of movement of the tube 3-1 and the detector 4-1 is 2 mmps. A drive control signal is sent to a device (not shown).
[0017]
In the present embodiment, the X-ray CT apparatus 1 performs a helical scan on the subject, and the data reconstructing apparatus (not shown) uses the helical scan to detect the detectors 4-1 and 4-2. A set of data obtained in step 4-3 and position data of the bed 10 in the body axis direction are fetched, and interpolation data set at an arbitrary slice position is obtained based on the fetched data by an interpolation process (see Japanese Patent Application Laid-Open No. 2-211129). And image reconstruction is performed based on the set of interpolation data.
[0018]
In the present embodiment, if an error occurs during the scanning of the tube, for example, if an error occurs in the X-ray portion of the first tube (tube 3-1), the error occurs in the tube 3-1. The X-ray controller 6 discriminates the occurrence from the status bits, and sends a status (status) bit to the central controller 12. The status bit comprises a unique number of the bulb and a bit flag indicating the state of the bulb. The central control unit 12 checks the status bit, and sends a use prohibition code of the bulb 3-1 to the rotation control unit 7 and the optical system position control unit 8. The rotation control unit 7 and the optical system position control unit 8 send a drive stop signal to the rotation driving device and moving device of the tube 3-1 and the detector 4-1. After confirming that all the movements of the tube 3-1 have stopped, the central control unit 12 sends the scanning conditions of the first tube 3-1 to other tubes which are not currently used, and sends the same. A tube is used in place of the tube 3-1.
[0019]
Hereinafter, effects of the present embodiment will be described.
[0020]
(B) Helical dynamic scan can be performed.
[0021]
Helical scan is a method in which a subject is spirally scanned, and can scan a wide range quickly. Also, any part of the scanned range can be converted into an image. On the other hand, in the dynamic scan, it is possible to observe and photograph a temporal change in the scanning position by continuously scanning a certain position. Then, according to the CT apparatus of the present embodiment, as shown in FIG. 3A, when the range d is helically scanned by a plurality of (three in the figure) tubes 31a to 31c as shown in FIG. In FIG. 7, the temporal change of the image at each of the positions P1 to P4 can be seen. That is, helical dynamic scanning becomes possible.
[0022]
Also, when a difference image is created using helical dynamic scanning and the change over time of the contrast agent is observed, it is necessary to make the trajectories of the respective bulbs 31a to 31c equal as shown in FIG. This can be easily set from the relationship between the interval between the tubes 31a to 31c and the feeding speed of the subject. The number of seconds after which the same part of the subject is scanned can be determined by the intervals between the tubes 31a to 31c and the mounting angles of the tubes 31a to 31c. Further, by shifting the mounting angles of the tubes 31a to 31c, the interval h between the tubes 31a to 31c can be made smaller than the width of the tube itself, as shown in FIG. That is, for example, when the radius of the tube is 100 [mm], the interval between the tubes needs to be at least 200 [mm] unless the mounting angle is set, but when the mounting angle is set, this interval is reduced to 0 [mm]. ] Or more.
[0023]
Then, by using such a helical dynamic scan, a cine display 34 along a temporal change can be made in a three-dimensional image as shown in FIG. This display is expected to be effectively used, for example, in the field of brain surgery.
[0024]
(B) The same range can be scanned at almost the same time under a plurality of shooting conditions.
[0025]
For example, if the subject (patient) 40 is simultaneously scanned from above and from the side by two sets of optical systems 41 and 42 as shown in FIG. 6A, a top-bottom (top) as shown in FIG. A scanogram of a (bottom) image and a right-left image can be obtained. Scanning in which the beam and the rotation speed of the optical system are changed for each optical system can be performed almost simultaneously in the same range. Thus, scanning can be performed under different scanning conditions before the contrast agent is washed away. Further, the patient throughput is improved, and the burden on the patient is reduced. Then, when scanning is to be performed under different conditions or when photographing has failed, the trouble of rescanning can be saved. This is particularly effective in research or the like that requires scanning under various conditions.
[0026]
(C) A plurality of parts can be photographed at the same time under scanning conditions corresponding to the parts.
[0027]
At the same time, a plurality of parts can be scanned under scanning conditions corresponding to the parts. This is more effective, for example, in the case of mass screening. In this case, for example, in FIG. 7, the tube 51 can scan the chest and the tube 52 can scan the abdomen. These scans can be performed at the same time, and the scanning conditions can be set to the conditions corresponding to the respective parts, so that accurate diagnosis can be made, X-ray exposure can be minimized, and the scanning time per person is short. I'm done.
[0028]
(D) Even when the tube in use becomes unusable, it can be switched to another tube.
[0029]
A major cause of downtime in conventional devices is tube failure. However, in this embodiment, since there are a plurality of bulbs, unused bulbs can be used as spares when the capacity of the bulbs is full or when the bulbs are out of order. For this reason, although it is not possible to perform an inspection that requires all the bulbs to be used at the same time, the inspection can be continued using the remaining bulbs. Therefore, there is no downtime due to the failure of the tube, and it is possible to always respond to an urgent inspection.
[0030]
(E) A certain range can be scanned in a shorter time than before.
[0031]
FIG. 8A shows a conventional helical scan in which helical scanning is performed with one tube, and one scanning time in this case is t. On the other hand, FIG. 8 (B) shows a case where the same part is scanned by two bulbs according to the present invention. In this case, one scanning time is 1 / 2t. As described above, when scanning is performed by the n optical systems according to the present invention, it is possible to capture an image in 1 / n of the conventional time. This is more effective when scanning must be performed within a short time, such as when a contrast agent is injected.
[0032]
(F) Spatial resolution can be improved.
[0033]
When the same range is photographed within a certain period of time, the photographing is performed by a plurality of optical systems, so that the scanning can be performed densely and the spatial resolution in the direction along the body axis can be improved.
[0034]
(G) Dual energy scan can be performed.
[0035]
If different X-ray energies are used in two or more bulbs, dual energy scanning can be easily performed.
[0036]
That is, by photographing the same site with two or more types of X-ray energies, an image for each energy can be obtained. Using these images, images representing the electron distribution density, the degree of Compton scattering, and the photoelectric effect can be obtained by calculation. These are useful information for estimating the element composition of the subject. Since the ratio of the intensity of the Compton scattering to the intensity of the photoelectric effect differs for each element, the X-ray absorption is determined by the two scattering effects and the density of the substance.
[0037]
Note that the present embodiment is not limited to the above-described embodiment. For example, as shown in FIG. 10A, a plurality of (three in the figure) gantry 65 to 67 may be arranged for scanning. . In such a configuration, the distance between the X-ray tubes cannot be reduced to a certain level or less, but the gantry 65 to 67 can be tilted as shown in FIG.
[0038]
【The invention's effect】
As described above, the inspection efficiency can be greatly improved compared to a single-tube CT apparatus. Further, if an error occurs during scanning of the first imaging system, by controlling the second imaging system to scan under the imaging conditions of the first imaging system, downtime due to a failure of the tube can be reduced. Can be.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an X-ray CT apparatus which is an embodiment of a CT apparatus according to the present invention.
FIG. 2 shows a configuration diagram of a control unit and an example of a scanning condition list in the embodiment of FIG.
FIG. 3 shows an example of a helical dynamic scan, FIG. 3B shows a plurality of head images taken over time by the helical dynamic scan, and FIG. 3C shows a three-dimensional image of the helical dynamic scan. An example of a cine display along with a change over time is shown.
FIG. 4 shows an example in which a tube is adjusted to a helical trajectory of a helical scan.
FIG. 5 shows an example in which the mounting angle of each tube is shifted.
FIG. 6 is a partial view showing an example in which the same range is scanned at substantially the same time under a plurality of photographing conditions, and a partial view B shows a resulting image.
FIG. 7 shows an example in which another part is simultaneously scanned under scanning conditions corresponding to the part.
FIG. 8A shows a conventional helical scan in which a helical scan is performed with one tube, and FIG. 8B shows a case where the same region is scanned with two tubes according to the present invention.
FIG. 9 is a perspective view showing an example of scanning by a conventional helical scan CT apparatus, a partial view B is a side view, and a partial view C is a view seen from a gantry.
FIG. 10 shows an example of imaging using a plurality of gantry.
[Explanation of symbols]
1 X-ray CT equipment (CT equipment)
2 Mounts 3-1, 3-2, 3-3 Tubes 4-1, 4-2, 4-3 Detector 11 Bed 10 Bed drive unit 12 Control unit

Claims (4)

被検体をスキャンして得られた投影データに基づき前記被検体のCT像を再構成するX線CT装置において、
X線を曝射する第1のX線源及び前記被検体を透過したX線を検出するための第1の検出器を有する第1の撮影系と、
X線を曝射する第2のX線源及び前記被検体を透過したX線を検出するための第2の検出器を有する第2の撮影系と、
前記第1の撮影系がスキャン中にエラーを生じた場合、前記第2の撮影系を前記第1の撮影系の撮影条件でスキャンさせる制御手段とを備えたことを特徴とするX線CT装置。
An X-ray CT apparatus for reconstructing a CT image of the subject based on projection data obtained by scanning the subject,
A first imaging system having a first X-ray source for emitting X-rays and a first detector for detecting X-rays transmitted through the subject;
A second imaging system having a second X-ray source for emitting X-rays and a second detector for detecting X-rays transmitted through the subject;
An X-ray CT apparatus, comprising: a control unit for causing the second imaging system to scan under the imaging conditions of the first imaging system when an error occurs during scanning of the first imaging system. .
前記制御手段は、前記第1の撮影系がスキャン中にエラーを生じた場合、第1の撮影系の使用を禁止することを特徴とする請求項1記載のX線CT装置2. The X-ray CT apparatus according to claim 1, wherein the control unit prohibits use of the first imaging system when an error occurs during scanning of the first imaging system. 前記2の撮影系は、前記第1の撮影系のスキャン中に使用されないことを特徴とする請求項1又は請求項2記載のX線CT装置。The X-ray CT apparatus according to claim 1, wherein the second imaging system is not used during a scan of the first imaging system. 被検体をスキャンして得られた投影データに基づき前記被検体のCT像を再構成するX線CT装置において、
X線を曝射する第1のX線源及び前記被検体を透過したX線を検出するための第1の検出器を有する第1の撮影系と、
X線を曝射する第2のX線源及び前記被検体を透過したX線を検出するための第2の検出器を有する第2の撮影系と、
前記第1の撮影系の第1のX線管から照射されるX線のエネルギーと前記第2の撮影系の第2のX線管から照射されるX線のエネルギーとを異ならせて、前記被写体の同一位置をスキャンさせる制御手段とを備えたことを特徴とするX線CT装置。
An X-ray CT apparatus for reconstructing a CT image of the subject based on projection data obtained by scanning the subject,
A first imaging system having a first X-ray source for emitting X-rays and a first detector for detecting X-rays transmitted through the subject;
A second imaging system having a second X-ray source for emitting X-rays and a second detector for detecting X-rays transmitted through the subject;
The energy of X-rays emitted from a first X-ray tube of the first imaging system and the energy of X-rays emitted from a second X-ray tube of the second imaging system are made different from each other, An X-ray CT apparatus comprising: control means for scanning the same position of a subject.
JP2003132657A 1992-05-27 2003-05-12 X-ray CT system Expired - Fee Related JP3631235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132657A JP3631235B2 (en) 1992-05-27 2003-05-12 X-ray CT system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13504492 1992-05-27
JP2003132657A JP3631235B2 (en) 1992-05-27 2003-05-12 X-ray CT system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002320653A Division JP3441455B2 (en) 1992-05-27 2002-11-05 X-ray CT system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004303438A Division JP2005013768A (en) 1992-05-27 2004-10-18 X-ray ct apparatus

Publications (2)

Publication Number Publication Date
JP2004000605A true JP2004000605A (en) 2004-01-08
JP3631235B2 JP3631235B2 (en) 2005-03-23

Family

ID=30445396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132657A Expired - Fee Related JP3631235B2 (en) 1992-05-27 2003-05-12 X-ray CT system

Country Status (1)

Country Link
JP (1) JP3631235B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071472A (en) * 2004-09-02 2006-03-16 Yukihiro Nishikawa Ct method and ct apparatus
JP2006187453A (en) * 2005-01-06 2006-07-20 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
JP2008093440A (en) * 2006-10-13 2008-04-24 General Electric Co <Ge> Method and apparatus for high rotation speed scanner
US7512215B2 (en) 2003-04-25 2009-03-31 Rapiscan Systems, Inc. X-ray tube electron sources
JP2009297304A (en) * 2008-06-13 2009-12-24 Canon Inc X-ray image diagnosis apparatus and its control method
US7684538B2 (en) 2003-04-25 2010-03-23 Rapiscan Systems, Inc. X-ray scanning system
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US8094784B2 (en) 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
US8135110B2 (en) 2005-12-16 2012-03-13 Rapiscan Systems, Inc. X-ray tomography inspection systems
US8451974B2 (en) 2003-04-25 2013-05-28 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US8824637B2 (en) 2008-09-13 2014-09-02 Rapiscan Systems, Inc. X-ray tubes
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US9020095B2 (en) 2003-04-25 2015-04-28 Rapiscan Systems, Inc. X-ray scanners
US9052403B2 (en) 2002-07-23 2015-06-09 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
US9223050B2 (en) 2005-04-15 2015-12-29 Rapiscan Systems, Inc. X-ray imaging system having improved mobility
US9223052B2 (en) 2008-02-28 2015-12-29 Rapiscan Systems, Inc. Scanning systems
US9223049B2 (en) 2002-07-23 2015-12-29 Rapiscan Systems, Inc. Cargo scanning system with boom structure
US9263225B2 (en) 2008-07-15 2016-02-16 Rapiscan Systems, Inc. X-ray tube anode comprising a coolant tube
US9285498B2 (en) 2003-06-20 2016-03-15 Rapiscan Systems, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
US9332624B2 (en) 2008-05-20 2016-05-03 Rapiscan Systems, Inc. Gantry scanner systems
US9420677B2 (en) 2009-01-28 2016-08-16 Rapiscan Systems, Inc. X-ray tube electron sources
US9429530B2 (en) 2008-02-28 2016-08-30 Rapiscan Systems, Inc. Scanning systems
US9726619B2 (en) 2005-10-25 2017-08-08 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
US9791590B2 (en) 2013-01-31 2017-10-17 Rapiscan Systems, Inc. Portable security inspection system
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US10591424B2 (en) 2003-04-25 2020-03-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10670769B2 (en) 2002-07-23 2020-06-02 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US9223049B2 (en) 2002-07-23 2015-12-29 Rapiscan Systems, Inc. Cargo scanning system with boom structure
US9052403B2 (en) 2002-07-23 2015-06-09 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US10007019B2 (en) 2002-07-23 2018-06-26 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US9001973B2 (en) 2003-04-25 2015-04-07 Rapiscan Systems, Inc. X-ray sources
US7903789B2 (en) 2003-04-25 2011-03-08 Rapiscan Systems, Inc. X-ray tube electron sources
US10901112B2 (en) 2003-04-25 2021-01-26 Rapiscan Systems, Inc. X-ray scanning system with stationary x-ray sources
US8085897B2 (en) 2003-04-25 2011-12-27 Rapiscan Systems, Inc. X-ray scanning system
US8094784B2 (en) 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
US10591424B2 (en) 2003-04-25 2020-03-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US8451974B2 (en) 2003-04-25 2013-05-28 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US9618648B2 (en) 2003-04-25 2017-04-11 Rapiscan Systems, Inc. X-ray scanners
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US9442082B2 (en) 2003-04-25 2016-09-13 Rapiscan Systems, Inc. X-ray inspection system and method
US8885794B2 (en) 2003-04-25 2014-11-11 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US10175381B2 (en) 2003-04-25 2019-01-08 Rapiscan Systems, Inc. X-ray scanners having source points with less than a predefined variation in brightness
US7684538B2 (en) 2003-04-25 2010-03-23 Rapiscan Systems, Inc. X-ray scanning system
US9020095B2 (en) 2003-04-25 2015-04-28 Rapiscan Systems, Inc. X-ray scanners
US7512215B2 (en) 2003-04-25 2009-03-31 Rapiscan Systems, Inc. X-ray tube electron sources
US11796711B2 (en) 2003-04-25 2023-10-24 Rapiscan Systems, Inc. Modular CT scanning system
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US9675306B2 (en) 2003-04-25 2017-06-13 Rapiscan Systems, Inc. X-ray scanning system
US9285498B2 (en) 2003-06-20 2016-03-15 Rapiscan Systems, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
JP2006071472A (en) * 2004-09-02 2006-03-16 Yukihiro Nishikawa Ct method and ct apparatus
JP2006187453A (en) * 2005-01-06 2006-07-20 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
US9223050B2 (en) 2005-04-15 2015-12-29 Rapiscan Systems, Inc. X-ray imaging system having improved mobility
US9726619B2 (en) 2005-10-25 2017-08-08 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US8625735B2 (en) 2005-12-16 2014-01-07 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US8135110B2 (en) 2005-12-16 2012-03-13 Rapiscan Systems, Inc. X-ray tomography inspection systems
US10976271B2 (en) 2005-12-16 2021-04-13 Rapiscan Systems, Inc. Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US10295483B2 (en) 2005-12-16 2019-05-21 Rapiscan Systems, Inc. Data collection, processing and storage systems for X-ray tomographic images
US9638646B2 (en) 2005-12-16 2017-05-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US8958526B2 (en) 2005-12-16 2015-02-17 Rapiscan Systems, Inc. Data collection, processing and storage systems for X-ray tomographic images
US9048061B2 (en) 2005-12-16 2015-06-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
JP2008093440A (en) * 2006-10-13 2008-04-24 General Electric Co <Ge> Method and apparatus for high rotation speed scanner
US9223052B2 (en) 2008-02-28 2015-12-29 Rapiscan Systems, Inc. Scanning systems
US11768313B2 (en) 2008-02-28 2023-09-26 Rapiscan Systems, Inc. Multi-scanner networked systems for performing material discrimination processes on scanned objects
US11275194B2 (en) 2008-02-28 2022-03-15 Rapiscan Systems, Inc. Scanning systems
US9429530B2 (en) 2008-02-28 2016-08-30 Rapiscan Systems, Inc. Scanning systems
US10585207B2 (en) 2008-02-28 2020-03-10 Rapiscan Systems, Inc. Scanning systems
US9332624B2 (en) 2008-05-20 2016-05-03 Rapiscan Systems, Inc. Gantry scanner systems
US10098214B2 (en) 2008-05-20 2018-10-09 Rapiscan Systems, Inc. Detector support structures for gantry scanner systems
JP2009297304A (en) * 2008-06-13 2009-12-24 Canon Inc X-ray image diagnosis apparatus and its control method
US9263225B2 (en) 2008-07-15 2016-02-16 Rapiscan Systems, Inc. X-ray tube anode comprising a coolant tube
US8824637B2 (en) 2008-09-13 2014-09-02 Rapiscan Systems, Inc. X-ray tubes
US9420677B2 (en) 2009-01-28 2016-08-16 Rapiscan Systems, Inc. X-ray tube electron sources
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
US10317566B2 (en) 2013-01-31 2019-06-11 Rapiscan Systems, Inc. Portable security inspection system
US11550077B2 (en) 2013-01-31 2023-01-10 Rapiscan Systems, Inc. Portable vehicle inspection portal with accompanying workstation
US9791590B2 (en) 2013-01-31 2017-10-17 Rapiscan Systems, Inc. Portable security inspection system

Also Published As

Publication number Publication date
JP3631235B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
JP3405760B2 (en) CT device
JP2004000605A (en) X-ray ct device
JP3441455B2 (en) X-ray CT system
JP2005013768A (en) X-ray ct apparatus
US6041097A (en) Method and apparatus for acquiring volumetric image data using flat panel matrix image receptor
JP3512874B2 (en) X-ray computed tomography equipment
JP4170305B2 (en) Radiography equipment
JP2007021217A (en) Method for generating image in body range of moving living body and x-ray diagnostic equipment
JP2004173924A (en) Method for controlling x-ray, and x-ray image photographing equipment
JPH0458944A (en) X-ray tomography photographing device
JP2009125250A (en) X-ray ct equipment
JP5317389B2 (en) Radiation tomography equipment
JP2007125174A (en) Method and apparatus for radiographic imaging
JP3977624B2 (en) X-ray computed tomography system
JP2003299643A (en) Tomographic equipment
JP2005080918A (en) Radiation tomography apparatus and radiation tomography method, as well as image generation apparatus and image generation method
JP4406106B2 (en) X-ray CT system
JP2006255241A (en) Radiography method and radiography equipment
JP2003204960A (en) Computed tomographic system
JPH11206755A (en) X-ray ct device
JP3305759B2 (en) CT device
JP4490627B2 (en) Computed tomography equipment
JP4756849B2 (en) Cone beam X-ray CT imaging system for head and neck
JP4551612B2 (en) Computed tomography equipment
JP4509709B2 (en) Radiation imaging apparatus and radiation scanning apparatus therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050427

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20050708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees